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Abstract

Towards probabilistic formalisms for resolving local incon-
sistencies under model-theoretic probabilistic entailment, we
present probabilistic generalizations of Pearl’s entailment in
SystemZ and Lehmann’s lexicographic entailment. We then
analyze the nonmonotonic and semantic properties of the new
notions of entailment. In particular, we show that they satisfy
the rationality postulates of Systefhand the property of Ra-
tional Monotonicity. Moreover, we show that model-theoretic
probabilistic entailment is stronger than the new notion of
lexicographic entailment, which in turn is stronger than the
new notion of entailment in Systefi. As an important fea-
ture of the new notions of entailment in Systeéhand lexico-
graphic entailment, we show that they coincide with model-
theoretic probabilistic entailment whenever there are no local
inconsistencies. We also show that the new notions of entail-
ment in SystemZ and lexicographic entailment are proper
generalizations of their classical counterparts. Finally, we
present algorithms for reasoning under the new formalisms,
and we give a precise picture of its computational complexity.

Introduction

During the recent decades, reasoning about probabilities
has started to play an important role in Al. In particular,
reasoning about interval restrictions for conditional prob-
abilities, also called conditional constraints (which are of
the form (¢|¢)[l, u] with a conditional event)|¢ and reals
l,u € [0,1]) has been a subject of extensive research efforts.
One important approach for handling conditional con-
straints is model-theoretic probabilistic logic, which has its
origin in philosophy and logic, and whose roots can be
traced back to Boole (1854). There is a wide spectrum of
formal languages that have been explored in model-theoretic
probabilistic logic, ranging from constraints for uncondi-
tional and conditional events to rich languages that specify
linear inequalities over events (see especially the works by
Nilsson (1986), Fagiet al. (1990), Dubois and Prads al.
(1988; 1991), Frisch and Haddawy (1994), and Lukasiewicz
(1999a; 1999b; 2001b); see also the survey on sentential
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probability logic by Hailperin (1996)). The main decision
and optimization problems in model-theoretic probabilis-
tic logic are deciding satisfiability, deciding logical conse-
guence, and computing tight logically entailed intervals.
The notion of model-theoretic probabilistic entailment is
widely accepted in Al. However, it fails to produce satisfac-
tory conclusions about conditional eventss in the case
where our knowledge about the premisés locally incon-
sistent The following example illustrates this drawback.

Example 1 Suppose that we have the knowledge “all pen-
guins are birds”, “birds have legs with probability 1", “birds
fly with probability 17, and “penguins fly with a probabil-

ity of at most 0.05”. Under model-theoretic probabilistic
logic, this knowledge iocally inconsistent relative to pen-
guins (since it says‘penguins fly with probability 17 but

in the same time alspenguins fly with a probability of at
most 0.05), and thus we cannot conclude anything about
the properties of penguins. In fact, we even concliidere

are no penguins;which reports this local inconsistency re-
lated to penguins. But it seems reasonable to interpret “birds
have legs with probability 1" and “birds fly with probabil-
ity 1” as defaults “generally, birds have legs” and “generally,
birds fly”, respectively, and to conclude “generally, penguins
have legs” (that is, “penguins have legs with probability 17)
and “penguins fly with a probability of at most 0.052.

The above example suggests that such local inconsisten-
cies under model-theoretic probabilistic entailment are es-
sentially due to the fact that 0/1-probabilistic knowledge is
interpreted as strict logical knowledge, and not as default
knowledge. The main idea behind this paper is to combine
the notion of model-theoretic probabilistic entailment with
mechanisms from default reasoning from conditional knowl-
edge bases in order to obtain a notion of entailment in prob-
abilistic logic that can handle such local inconsistencies.

The literature contains several different proposals for de-
fault reasoning from conditional knowledge bases and ex-
tensive work on its desired properties. The core of these
properties are the rationality postulates of Systénby
Kraus, Lehmann, and Magidor (1990), which constitute
a sound and complete axiom system for several classical
model-theoretic entailment relations under uncertainty mea-
sures on worlds. They characterize classical model-theoretic
entailment under preferential structures (Shoham 1987;



Kraus, Lehmann, & Magidor 1990), infinitesimal prob-
abilities (Adams 1975; Pearl 1989), possibility measures
(Dubois & Prade 1991), and world rankings (Spohn 1988;
Goldszmidt & Pearl 1992). They also characterize an entail-
ment relation based on conditional objects (Dubois & Prade
1994). A survey of all these relationships is given in (Benfer-
hat, Dubois, & Prade 1997; Gabbay & Smets 1998). Mainly
to solve problems with irrelevant information, the notion of
rational closure as a more adventurous notion of entailment
was introduced by Lehmann (1989; 1992). It is equivalent
to entailment in Syster® by Pearl (1990), to the least spe-
cific possibility entailment by Benferhat al. (1992), and

to a conditional (modal) logic-based entailment by Lamarre
(1992). Finally, mainly to solve problems with property
inheritance from classes to exceptional subclasses, lexico-
graphic entailment was introduced by Lehmann (1995) and
Benferhatt al. (1993), and other more sophisticated notions
of entailment for default reasoning were proposed.

In this paper, we present probabilistic generalizations of
Pearl’'s entailment in Systerd (1990) and of Lehmann’s
lexicographic entailment (1995), which are weaker than en-
tailment in model-theoretic probabilistic logic. Roughly,
model-theoretic probabilistic entailment realizes an inher-
itance of 0/1-probabilistic knowledge along subclass rela-
tionships, but does not have any mechanism for resolving
local inconsistencies due to this inheritance. The new prob-
abilistic formalisms now add such a mechanism to model-
theoretic probabilistic entailment, and this is why they are
weaker than model-theoretic probabilistic entailment. The
main contributions of this paper are as follows:

e We present probabilistic generalizations of Pearl’s entail-
ment in Systen” and Lehmann’s lexicographic entail-
ment, which are weaker than model-theoretic probabilis-
tic entailment. We explore and compare the nonmono-
tonic properties of the new notions of entailment and of
model-theoretic probabilistic entailment. In particular,
the new formalisms satisfy the rationality postulates of
System P, the property of Rational Monotonicity, and
some Irrelevance and Direct Inference properties.

We analyze the relationship between the new notion of
entailment in Systent, the new notion of lexicographic
entailment, and model-theoretic probabilistic entailment.
It turns out that model-theoretic probabilistic entailment
is stronger than the new lexicographic entailment, which
is in turn stronger than the new entailment in Systém

As an important feature of the new entailment in Sys-
tem Z and the new lexicographic entailment, we show
thatthey coincide with model-theoretic probabilistic en-
tailment whenever there are no local inconsisten@ss
illustrated in Example 1. Furthermore, we show that they
are proper generalizations of their classical counterparts.

We present algorithms for computing tight intervals un-
der the new notions of entailment in Systehand of lex-
icographic entailment, which are based on reductions to
the standard tasks of deciding model existence and com-
puting tight intervals under model-theoretic probabilistic
entailment. Furthermore, we give a precise picture of the

complexity of deciding logical consequence and of com-
puting tight intervals under the new notions of entailment
in System” and of lexicographic entailment in general as
well as restricted cases.

Note that detailed proofs of all results in this paper are
given in the extended paper (Lukasiewicz 2003).

Model-Theoretic Probabilistic Logic

In this section, we recall the main concepts from model-
theoretic probabilistic logic (see especially the works by
Nilsson (1986), Fagiret al. (1990), Dubois and Prade
et al. (1988; 1991), Frisch and Haddawy (1994), and
Lukasiewicz (1999a; 1999b; 2001b).

We assume a set bhsic event® = {p1,...,pn}, n>1,
and usel and T to denotdfalseandtrue, respectively. The
set ofeventsis inductively defined as follows. Every ele-
ment of® U{_L, T} is an event. Ity andy are events, then
also—¢ and(¢ A ¢). A conditional evenhas the formp|¢,
where) and ¢ are events. Aconditional constraints of
the form (¢|¢)[l, w] with a conditional event)|¢ and re-
alsi, v € [0, 1]. We defineprobabilistic formulasnductively
as follows. Every conditional constraint is a probabilistic
formula. If F andG are probabilistic formulas, then alsd”
and(FAG). We usg F'V G) (resp.(F < G)) to abbreviate
—(=F A=G) (resp.~(—F A G)), whereF' andG are either
two events or two probabilistic formulas, and adopt the usual
conventions to eliminate parenthesedogical constraintis
an event of the formp < ¢. A probabilistic knowledge base
KB = (L, P) consists of a finite set of logical constrairts
and a finite set of conditional constrairs

A world I is a truth assignment to the basic events
in ®, which is inductively extended to all events as usual
(that is, byI(L)=false, I(T)= true, I(—¢)=true iff
I(¢) =false, andI (¢pA)) =trueiff 1(¢) =1(y)) =true).

We useZg to denote the set of all worlds fdr. A world 1
is amodelof an eventy, denoted! |= ¢, iff I(¢)=true.
We sayI is amodelof a set of eventd, denoted! = L,
iff 7 is a model of allp € L. An evento (resp., a set of
eventsL) is satisfiableiff a model of ¢ (resp., L) exists.
An event is alogical consequencef ¢ (resp.,L), de-
notede¢ = ¢ (resp.,L = v), iff each model ofp (resp.,L) is
also a model ofp. We useg [~ ¢ (resp.,L |~ v) to denote
thato = (resp.,L |= ) does not hold.

A probabilistic interpretationPr is a probability func-
tion onZy (that is, a mappingPr from Zg to [0, 1] such
thaty ;. Pr(I)=1). The probability of an eventp in
Pris defined as’r(¢) = > _rcz, 1o Pr(l). For events)

and ¢ with Pr(¢) >0, let Pr(y|¢) = Pr(iA¢) / Pr(e),
and let theconditioningof Pr on ¢ be defined byPry (1) =
Pr(I)/ Pr(¢)forall I € Zg with I = ¢, and byPr4(I)=0
for all otherI € Zg. The truth of logical constraints and
probabilistic formulad” in Pr, denotedPr |= F, is defined
by induction as follows:

o Pri=y<=oiff Pr(y A¢)= Pr(s);

o Pri=(4lo)[l,u] iff Pr(¢)=0o0r Pr(y|g)e(l, ul;
e Prl=-Fiff not Pr=F;and

e Pri=(FAG)Iff PriEF andPr=G.



We sayPr satisfiesF, or Pr is amodelof F, iff Pr=F. It
satisfiesa set of logical constraints and probabilistic formu-
las F, or Pr is amodelof F, denotedPr = F, iff Prisa
model of allF' € F. We sayF is satisfiablaff a model of 7
exists. A logical constraint or probabilistic formulais a
logical consequencef F, denotedF |~ F, iff every model

of F is also a model of".

A probabilistic knowledge bas&B = (L, P) is satisfi-
ableiff L U P is satisfiable. We next define the notiorlag-
ical entailmentfor conditional constraints fronkKB. Note
that each entailment relation for conditional constraints con-

sists of a consequence relation and a tight consequence re-

lation. A conditional constraint|¢)[l, u] is alogical con-
sequencef KB, denotedKB |= (¢|¢)[l,u], iff LUP|=
(¥]9)[l, u]. We say(¢|9)[l, u] is atight logical consequence
of KB, denotedKB |=vignt (¢¥]0)[1, u], iff I (resp.,u) is the
infimum (resp., supremum) dPr(v|¢) subject to all mod-
els Pr of LU P with Pr(¢) > 0. Note that we defing, ]
as the empty interval, 0], whenL U P |= L < ¢.

Example 2 The knowledge that “all eagles are birds”,
“birds have legs with the probability 1", and “birds fly with

a probability of at least 0.95” can be expressed by the prob-
abilistic knowledge bas& B shown in Table 1.

In model-theoretic probabilistic logidfB, encodes the
strict logical knowledgéall eagles are birds” and “all birds
have legs” (that is, in model-theoretic probabilistic logic,
a logical constraint) < ¢ € L has the same meaning as a
conditional constrainfy|¢$)[1, 1] € P), and theprobabilis-
tic knowledge'birds fly with a probability of at least 0.95”.

It is not difficult to see thatKB, is satisfiable, and that
some tight logical consequencesioB; are given as shown
in Table 2. Notice that the 0/1-probabilistic property of hav-
ing legs is inherited from birds to the subclass eagles, while
the probabilistic property of being able to fly with a proba-
bility of at least 0.95 is1otinherited from birds to eaglesl

Example 3 The knowledge “all penguins are birds”, “birds
have legs with the probability 1", “birds fly with the prob-
ability 1", and “penguins fly with a probability of at most
0.05” can be expressed by the probabilistic knowledge base
KBs= (L, P») shown in Table 1. It is not difficult to see
that KB, is satisfiable, and that some tight logical conse-
guences of{B, are as shown in Table 2.

Here, the empty interval(f, 0]" for the last two condi-
tional events is due to the fact that the 0/1-probabilistic prop-
erty of being able to fly is inherited from birds to penguins
and is incompatible there with penguins being able to fly
with a probability of at most 0.05. That is, our knowledge

about penguins is inconsistent. That is, there does not exist

any modelPr of Ly U P, such thatPr(penguin >0, and
thus we are having a local inconsistency relativpeaguin
Hence, logical entailment is too strong here, since the de-
sired tight conclusions fromrk B, are(fly | penguin[0, 0.05]

and (legs| penguin[1, 1] instead of(fly | penguin(1,0] and
(legs| penguin[1, 0], respectivelyd

Weak Nonmonotonic Probabilistic Logics

In this section, we present novel probabilistic generaliza-
tions of Pearl’s entailment in System and of Lehmann’s

Table 1: Probabilistic Knowledge Bases

KB, = ({bird < eaglég, {(legs| bird)[1, 1],
(fly| bird)[0.95,1]})
KBy = ({bird < penguir}, {(legs| bird)[1, 1],
(fly | bird)[1, 1], (fly | penguin|0, 0.05]})

Table 2: Tight Conclusions

KB (010)  Irugn uge age o
KB, (legs|bird) 1,1 1,1 1,1  [1,1]
KBy  (fly|bird)  [0.95,1] [0.95,1] [0.95,1] [0.95,1]
KB, (legs|eagle [1,1] [1,1] [1,1]  [0,1]
KB, (fly|eagle 0,1 [o0,1] [0,1]  [0,1]
KBy (legs| bird) 1,1 1,1 1,1  [1,1]
KBy  (fly]|bird) 1,1 1,1 1,1  [1,1]
KB, (legs|pengui [1,0] [1,1] [0,1] [0,1]
KBy (fly| penguin [1,0] [0,0.05] [0,0.05] [0,0.05]

lexicographic entailment. We first define probability rank-
ings, and a notion of entailment that is based on sets of prob-
ability rankings, which generalizes entailment in Systém
and which coincides with probabilistic entailment under g-
coherence (see below). We then define the novel formalisms,
which are based on unique single probability rankings.

Example 4 Under weak nonmonotonic probabilistic log-
ics, KB, in Table 1 represents thstrict logical knowl-
edge“all eagles are birds”, thelefault knowledgégener-
ally, birds have legs” (that is, a logical constraint=¢ € L
now does not havanymore the same meaning as a condi-
tional constraint(+)|¢)[1, 1] € P; note that only(:|¢)]0, 0]
and(¢|¢)[1, 1] in P express defaults), and tipeobabilistic
knowledgée'birds fly with a probability of at least 0.95'0

Preliminaries

A probabilistic interpretationPr verifies a conditional
constraint(y|¢)[l, u] iff Pr(¢) >0 and Pr = (¢|¢)[l, ul.
We say Pr falsifies (¢|¢)[l, u] iff Pr(¢)>0 and Pr -
(¥|9)[l,u]. A set of conditional constraint® toleratesa
conditional constrain€ undera set of logical constraints
iff L U P has a model that verifiegs. We sayP is underL
in conflictwith C' iff no model of L U P verifiesC'.

A conditional constraint rankings on a probabilistic
knowledge basd&(B = (L, P) maps eactC € P to a non-
negative integer. It isdmissiblewith KB iff every P’ C P
that is underLZ in conflict with someC € P contains
someC’ such that (C") < o(C).

In the sequel, we use > 0 to abbreviate the probabilis-
tic formula —(«|T)[0,0]. A probability ranking~ maps
each probabilistic interpretation oy to a member of
{0,1,...} U {oo} such thatx(Pr) =0 for at least one in-
terpretationPr. It is extended to all logical constraints
and probabilistic formulag” as follows. If F' is satisfiable,



thenx(F) = min {k(Pr) | Pr | F}; otherwisex(F) = cc.
A probability rankingx is admissiblewith a probabilistic
knowledge bas&B = (L, P) iff x(—=F)=ocoforall Fe L
andk (¢ >0) < oo andn(q& >0AW]o)[lu]) < k(g>0A
~(])[1,u]) for all ([@)[l, u] € P.

Consistency and Entailment in SystemP

We now generalize the notions of consistency and entail-
ment in SystenP to probabilistic knowledge bases.

A probabilistic knowledge bas&B = (L, P) is p-con-
sistentiff there exists a probability ranking that is admis-
sible with KB. We then define the notion gfentailment
in terms of admissible probability rankings as follows. A
conditional constraint«|¢)[l, u] is a p-consequencef a
p-consistentKB = (L, P), denotedKB |~* (v|¢)[l, u), iff
i ($>0)=00 OF K(¢>0N(|)) 1, u)) <($>0A=(P[$) L, u])
for every probability rankings admissible withKB. We
say that(¢|¢)[l,u] is atight p-consequencef KB, de-
noted KB |/, (¥10)[1, u], iff I =supl’ (resp.,u=inf ')
subject toKB |~ (v]g) I/, u'].

In ordinary default reasoning, the notiongtonsistency
is equivalent to the existence of admissible default rankings
(Geffner 1992). The following theorem shows that similarly
probabilisticp-consistency can be expressed in terms of ad-
missible conditional constraint rankings.

Theorem 5 A probabilistic knowledge bas€B = (L, P) is
p-consistent iff there exists a conditional constraint ranking
on KB that is admissible wittKB.

The next theorem shows that also a characterization of
ordinaryp-consistency due to Goldszmidt and Pearl (1991)
carries over to probabilistig-consistency.

Theorem 6 A probabilistic knowledge bas€B = (L, P) is
p-consistent iff there is an ordered partitiaiP,, . . ., Px)
of P such that either (a) every;, 0<i <k, is the set of
all C e U‘I;:i P; tolerated undei byU?’:i P, or (b) for ev-
eryi, 0<i<k, eachCeP; is tolerated undei, byUf:i P;

The following result shows that also a characterization of
ordinary p-entailment, which is essentially due to Adams
(1975), carries over to the probabilistic case.

Theorem 7 Let KB = (L, P) be ap-consistent probabilis-
tic knowledge base an@3|«)[l,u] be a conditional con-
straint. Then KB |~ (8la)[l, u] iff (L, P U {(5]o)[p.p]})
is notp-consistent for alp € [0,1) U (u, 1

The next result completes the picture.

Theorem 8 Let KB=(L,P) be a p-consistent proba-
bilistic knowledge base, and l€t3|«)[l,u] be a condi-
tional constraint. ThenkB |k ., (Bl (1, u] iff (i) (L, PU
{(Bla)[p,p]}) is notp-consistent for allp € [0,1) U (u, 1],
and (i) (L, PU{(B|a)[p, p]}) is p-consistent for alpe|[l, u].

It is easy to verify that the probabilistic knowledge bases
KB, and KB, in Table 1 are bothp-consistent. Some tight
conclusions undep-entailment are shown in Table 2. Ob-
serve that neither the default property of having legs, nor the
probabilistic property of being able to fly with a probability
of at leasi).95, is inherited from birds down to eagles.

Entailment in System Z

We now extend entailment in Systeth(Pearl 1990; Gold-
szmidt & Pearl 1996) tg-consistent probabilistic knowl-
edge base&B = (L, P). The new notion of entailment in
SystemZ is associated with an ordered partition Bf a
conditional constraint ranking on KB, and a probability
ranking x*. The z-partition of KB is the unique ordered
partition (P, ..., P) of P such that eaclP; is the set of

all ¢ € J;_, P; that are tolerated undérby |J"_, P,
Example 9 The z-partition of KB in Table 1 is given by
(Po) = ({(legs| bird)[1, 1], (fly | bird)[0.95,1]}) ,

while thez-partition of KB in Table 1 is given by
(Fo, P1) = ({(legs| bird)[1, 1], (fly | bird)[1, 1]},
{(fly| penguin[0,0.05]}). O

We next definez andx*. For every;j € {0,...,k}, each
C € P; is assigned the valug under the conditional con-
straint rankingz. The probability ranking:* on all proba-
bilistic interpretationsPr is then defined by:

00 if PrijtL
w*(Pr) = {0 if Pri= LUP
1+ max z(C) otherwise.
CeP: PritC

The following lemma shows that the rankinggnd x* are
both admissible withB.

Lemma 10 Let KB = (L, P) be p-consistent. Then; and
x* are both admissible witlk'B.

We next define a preference relation on probabilistic in-
terpretations as follows. For probabilistic interpretatidhs
and Pr’, we sayPr is z-preferableto Pr’ iff x*(Pr) <
x*(Pr"). A model Pr of a set of logical constraints and
probabilistic formulasF is a z-minimal modelof F iff no
model of F is z-preferable taPr.

We finally define the notion of-entailmentas follows.
A conditional constrain{v|¢)[l, u] is a z-consequencef
KB, denotedk B |~ *(v|¢)[l, ul, iff every z-minimal model
of LU {¢ >0} satisfies(¢)|¢)[l, u]. We say(¢|¢)[l,u] is a
tight 2-consequencef KB, denotedKB |~ ., (¥|0)[1, u,
iff [ (resp.,u) is the infimum (resp., supremum) &% (v|¢)
subject to allz-minimal modelsPr of LU {¢ > 0}.

Example 11 Table 2 gives the tight conclusions under
entailment from the probabilistic knowledge bases in Ta-
ble 1. They show that-entailment realizes an inheritance of
0/1-probabilistic properties from classes to non-exceptional
subclasses. But it does not inherit 0/1-probabilistic proper-
ties from classes to subclasses that are exceptional relative to
some other property (and thus, like its classical counterpart,
has the problem of inheritance blocking).

The following theorem characterizes the notion of
consequence in terms of the probability rankitig
Theorem 12 Let KB = (L, P) be ap-consistent probabilis-
tic knowledge base, and I€t)|¢)[l,u] be a conditional
constraint. ThenKB |~ *(y|¢) [, u] iff k*(¢>0) = o0 or
K50 >0 A (Y])[1,ul) <K% (>0 A =(¥])[l, ul).



Lexicographic Entailment

We next extend Lehmann'’s lexicographic entailment (1995)
to p-consistent probabilistic knowledge badéB = (L, P).
Note that, even though we do not use probability rankings
here, the new notion of lexicographic entailment can be eas-
ily expressed through a unique single probability ranking.
We use thez-partition (P, ..., P;) of KB to define
a lexicographic preference relation on probabilistic inter-
pretations as follows. For probabilistic interpretatiobs
and Pr’, we say thatPr is lexicographically prefer-
able (or lex-preferablg to Pr’ iff someie {0,...,k} ex-
ists suchthat{ CeP; | Pr =C}| > |[{CeP; | Pr' =C}| and
{CeP; | Pri=C} =|{CeP;| Pr'=C}|foralli<j<k.
A model Pr of a set of logical constraints and probabilistic
formulasF is alexicographically minima(or lex-minima)
model of F iff no model of F is lex-preferable taPr.
We are now ready to define the notion lekicographic
entailment(or lex-entailment as follows. A conditional
constraint(y|¢)[l, u] is alex-consequencef KB, denoted

KB |~ " (4|¢)[1, u], iff each lex-minimal model of L U
{¢ >0} satisfies(yp|¢)[l, u]. We say(|¢)[l, u] is atight

lex-consequencef KB, denotedK B |Hf;ht(z/}|¢)[l,u], iff
[ (resp.,u) is the infimum (resp., supremum) &¥r(v|¢)

subject to allexminimal modelsPr of LU {¢ > 0}.

Example 13 Table 2 gives the tight conclusions undex-
entailment fromk B, and KB, in Table 1. They show that
lex-entailment realizes a correct inheritance of logical prop-
erties, without the problem of inheritance blocking.

Semantic Properties

In this section, we explore the semantic properties of the
probabilistic notions of-, z-, andlex-entailment, and we
give a comparison to logical entailment. We first describe
their nonmonotonicity and nonmonotonic properties. We
then explore the relationships between the probabilistic for-
malisms and to their classical counterparts.

Nonmonotonicity

Logical entailment has the following propertyinheritance
of logical knowledgéL-INH) along subclass relationships:

L-INH. If KB |~(1)]¢)[c, ¢] ande < ¢* is valid,
thenKB |~(4|¢)[c, l,

for all eventsy, ¢, and¢*, all probabilistic knowledge bases
KB, and allce {0,1}. The notions ofp-, z-, andlex-en-
tailment are nonmonotonic in the sense that they all do not
satisfy L-INH. Here, p-entailment completely fail&-INH,
while z- andlex-entailment realize some weaker formlof
INH, as they are both obtained from logical entailment by
adding some strategy for resolving local inconsistencies.
Note that logicalp-, z-, andlex-entailmengll do not have
the following property ofnheritance of purely probabilistic
knowledggP-INH) along subclass relationships:

P-INH. If KB |~ («]6)[1, ] andg < ¢* is valid,
thenKB [~ (¢|¢*)[1, ul,

for all eventsy, ¢, and¢*, all probabilistic knowledge bases
KB, and all[l,u] C [0,1] different from|0, 0], [1,1], and

[1,0]. See (Lukasiewicz 2002) for entailment semantics
that satisfyP-INH and restricted forms oP-INH. For ex-
ample, under such entailment semantics, we can conclude
(fly| eagle[0.95,1] from KB, in Table 1.

Nonmonotonic Properties

We now explore the nonmonotonic behavior (especially re-
lated toL-INH) of the probabilistic formalisms of this paper.
We first consider the postulat€®ight Weakening (RW)
Reflexivity (Ref) Left Logical Equivalence (LLE)Cut,
Cautious Monotonicity (CM)and Or proposed by Kraus,
Lehmann, and Magidor (1990), which are commonly re-
garded as being particularly desirable for any reasonable
notion of nonmonotonic entailment. The following result
shows that the notions of logical;, z-, andlex-entailment
all satisfy (probabilistic versions of) these postulates.

Theorem 14 |=, |~”, |~%, and |~'*" satisfy the follow-
ing properties for all probabilistic knowledge bas&®$ =
(L, P), all events:, €', ¢, andwp, and alll, ', u, v’ € [0, 1]:
RW.If (| T)[,u] = (| T)[I, ] is logically valid
and KB [~ (¢le)[l, u], thenKB |~ (]e) I, ']
Ref. KB |~(gle)[1, 1].
LLE. If e &€’ is logically valid,
then KB [~ (o) 1, u] iff KB (9|1, ul.
Cut. If KB |(gle’)[1,1] and KB |~(gle AL, ],
thenKB | (ole)[l, u].
CM. If KB |;(gle’)[1,1] and KB |~ (éle") (1, u],
thenKB |~ (ple AT, u).
Or. If KB [~(gle)[1, 1] and KB |(6]")[1, 1],
thenKB |~ (ple Ve)[1,1].

Another desirable property ifRational Monotonicity
(RM) (Kraus, Lehmann, & Magidor 1990), which describes
a restricted form of monotony, and allows to ignore certain
kinds of irrelevant knowledge. The next theorem shows that
logical, z-, andlex-entailment satishRM. Here, KB |)¢C
denotes thak'B |~C' does not hold.

Theorem 15 |=, |~7, and |~'““ satisfy the following
property for all KB = (L, P) and all eventsg, ¢’, and:

RM. If KB |~(v|e)[1,1] and KB i (=¢'|<)[1, 1],
thenKB | (v]e Ae')[1,1].

The notion ofp-entailment, however, generally does not
satisfyRM, as the following example shows.

Example 16 Consider the probabilistic knowledge base
KB = ({bird < eaglg, {(fly| bird)[1,1]}). Itis easy to see
that(fly | bird)[1, 1] is a logical (resp -, z-, andlex-) conse-
quence ofKB, while (—eagle| bird)[1, 1] is not a logical
resp.,p-, z-, andlex-) consequence okB. Observe now
that (fly | bird A eaglé[1, 1] is a logical (resp.z- andlex-)
consequence ok B, but (fly| bird A eaglé([1, 1] is not ap-
consequence dfB. Note that(fly | bird A eagle[1, 1] is the
tight logical (resp.z- andlex) consequence ok B, while
(fly| bird A eaglg 0, 1] is the tightp-consequence afB. O

We next consider the propertyrelevance (Irr) adapted
from (Benferhat, Saffiotti, & Smets 2000), which says that
¢’ is irrelevant to a conclusion? |~(w|e)[1, 1]” when they

L
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Figure 1: Relationship between Probabilistic Formalisms and to Classical Formalisms

are defined over disjoint sets of atoms. The following result
shows that logical;-, andlex-entailment satisfyrr.

Theorem 17 |=, |~°, and |~'"“" satisfy the following
property for all KB = (L, P) and all eventg, ¢/, and:

Irr. If KB |(v]e)[1, 1], and no atom of{B and (¢ |¢)[1, 1]
occurs ing’, thenKB |~ (ylene’)[1, 1].

The notion ofp-entailment, however, does not satify.
This is shown by the following example.

Example 18 Consider the probabilistic knowledge base
KB=(0,{(fly|bird)[1,1]}). Clearly, (fly|bird)[1,1] is a
logical (resp.p-, z-, andlex-) consequence dtB. Observe
now that(fly | red A bird)[1, 1] is a logical (resp.z- andlex)
consequence of(B, but (fly|red A bird)[1,1] is not ap-
consequence oKB. Note that(fly | redA bird)[1, 1] is the
tight logical (resp.z- andlex-) consequence ok B, while
(fly | red A bird)[0, 1] is the tightp-consequence ok B. O

We finally consider the propertirect Inference (DI)
adapted from (Bacchust al. 1996). Informally,DI ex-
presses thaf should entail all its own conditional con-
straints (which is similar ta.LE, but in general not equiv-
alent toLLE). The following theorem shows that logical,
p-, z-, andlex-entailment all satisfyDl.

Theorem 19 |=, |7, |7, and |~"" satisfy the follow-
ing property for all probabilistic knowledge basésB =
(L, P), all events:, ¢, and¢, and alll, u € [0, 1]:

DI. If (¢|¢)[l,u] € P ande < ¢ is logically valid,
thenKB | (|e)[l, ul.

Table 3: Summary of Nonmonotonic Properties

Property [ETR“TITK"]
KLM postulates Yes| Yes | Yes | Yes
Rational Monotonicity|| Yes| Yes | Yes | No
Irrelevance Yes | Yes Yes | No
Direct Inference Yes | Yes Yes | Yes

Relationship between Probabilistic Formalisms

We now investigate the relationships between the probabilis-
tic formalisms of this paper. The following theorem shows
that logical entailment is stronger théx-entailment, and
that the latter is stronger thanentailment, which in turn is

stronger tham-entailment That is, the logical implications
illustrated in Fig. 1 hold between the entailment relations.

Theorem 20 Let KB = (L, P) bep-consistent, and lef’ =
(|9)[l, u] be a conditional constraint. Then,

(@) KB |~"CimpliesKB |~“C.
(b) KB |~*C impliesKB |~'“"C.
(c) KB |~'"C impliesKB |= C.

In general, none of the converse implications holds, as
Table 2 immediately shows. But in the special case where
LU P has a model in which the conditioning eventhas
a positive probability, the notions of logicat;, andlex-

entailment of(¢y)|¢)[l, ] from KB all coincide. This im-
portant result is expressed by the following theorem.

Theorem 21 Let KB = (L, P) be ap-consistent probabilis-
tic knowledge base, and l16t= (v|¢)[l, u] be a conditional
constraint such that U P has a modePr with Pr(¢) > 0.

Then,KB |= C iff KB|~'““C iff KB|~*C.

The following example shows thatentailment, however,
generally does not coincide with logical entailment when
LU P has a modePr with Pr(¢) > 0.

Example 22 Consider again the probabilistic knowledge
baseKB; = (L1, P;) shown in Table 1. Therl;; U P, has a
model Pr with Pr(eagle>0, and(leggeaglg[1,1] is a log-
ical, z-, andlex-consequence ok B, but (legs| eaglg|1, 1]

is not ap-consequence akB. Note that(legs| eaglg[1, 1]

is in fact the tight logicalz-, andlex-consequence ok B,
while (legs| eagle [0, 1] is the tightp-consequence df B. O

Relationship to Classical Formalisms

We finally explore the relationship between the new notions
of p-, z-, andlex-entailment and their classical counterparts.
The following theorem shows that the entailment relation
|~ * for p-consistent probabilistic knowledge bases gener-
alizes the classical counterpdst® for p-consistent condi-
tional knowledge bases, whese {p, z, lex}. Here, the op-
eratory on conditional constraints, sets of conditional con-
straints, and probabilistic knowledge bases replaces each
conditional constrainfy|$)[1, 1] by the default) — ¢.
Theorem 23 Let KB = (L, {(v:]¢:)[1,1]|i €{1,...,n}})

be ap-consistent probabilistic knowledge base, anddgt

be a conditional event. Then, for alk {p, z,lex}, it holds
that KB |~ ° (B|a)[1, 1] iff v(KB) h°8 «— .



Algorithms

We now describe algorithms for the main inference prob-
lems in weak nonmonotonic probabilistic logics.

Overview
The main decision and optimization problems are as follows:

CONSISTENCY. Given a probabilistic knowledge bas&3,
decide whetheKB is p-consistent.

s-CONSEQUENCE Givenp-consistent probabilistic knowl-
edge bas& B and a conditional constrai(f|«)][l, u], de-
cide whetherKB |~ *(3|a)]l, u], for some fixed seman-
ticss e {p, z, lex}.

TIGHT S-CONSEQUENCE Given ap-consistent probabilis-
tic knowledge bas& B and a conditional everit|«, com-
putel,u € [0,1] such thatKB |~ *(8|)[l, u], for some
fixed semantics € {p, z, lex}.

The basic idea behind the algorithms for solving these deci-
sion and optimization problems is to perform a reduction to
the following standard decision and optimization problems
in model-theoretic probabilistic logic:

PosITIVE PROBABILITY: Given a probabilistic knowledge
baseKB = (L, P) and an event, decide whethef. U P
has a modePr such thatPr(«) > 0.

LoGicAaL CONSEQUENCE Given a probabilistic knowl-
edge basé& B and a conditional constraiff|a) |, u], de-
cide whethe®XB |= (8|a)[l, u].

TIGHT LOoGICAL CONSEQUENCE Given a probabilistic
knowledge basé&(B and a conditional event|a, com-
putel, u € [0, 1] such thatk B |=yign: (5] [1, ).

An algorithm for solving the decision problemo®-
SISTENCY (which is similar to the algorithm for decid-
ing e-consistency in default reasoning by Goldszmidt and
Pearl (1991), and which also computes thgartition
of KB, if KB is p-consistent) and an algorithm for solving
the optimization problem GHT p-CONSEQUENCEWere
presented in (Biazzet al. 2001). The decision problem
CONSEQUENCEcan be solved in a similar way.

In the next subsection, we provide algorithms for solv-
ing the optimization problemsIEHT z- and TiIGHT lex-
CONSEQUENCE The decision problems- andlex-CoN-
SEQUENCECcan be solved in a similar way.

Tight S-Consequence

We now present algorithms for solving the optimization
problems TGHT z- and TIGHT lex-CONSEQUENCE In
the sequel, leKB = (L, P) be ap-consistent probabilistic
knowledge base, and I1&, . . ., P;) be itsz-partition.

We first provide some preparative definitions as follows.
For G, H C P, we say thati is z-preferableto H iff some
i1€{0,...,k} exists such thab;, CG, P, H, andP; CG
andP; C H foralli < j < k. We say that7 is lex-preferable
to H iff someie€{0,...,k} exists such thatG n P;| >
|HNP;| and|GNP;| = |HNP;|foralli < j <k. ForD C 2%
ands € {z,lex}, we sayG is s-minimalin D iff G € D and
no H € D is s-preferable tas.

Algorithm tight- z-consequence

Input: p-consistent probabilistic knowledge ba&&=(L, P),
conditional evenfi|a.

Output: interval[l, u] C [0, 1] such thatkB |~ . (Bla)[l, u].

Notation: (Fo, . .., Px) denotes the-partition of KB.

1. R:=1L;

if RU{a >0} is unsatisfiabl¢hen return [1, 0];

j=k

while j >0 and RU P; U {a. > 0} is satisfiabledo begin
R:= RUP;;
ji=j—1

end;

computd, u € [0, 1] such thatR |=ign (B|a) 1, ul;

return [I, u).

CoNoar~wWN

Figure 2: Algorithmtight-z-consequence

Algorithm tight- lex-consequence

Input: p-consistent probabilistic knowledge bak&=(L, P),
conditional eveng|a.

Output: interval I, u] C [0, 1] such thatk B ”thmt (Blo)[L, u).

Notation: (P, . .., Pr) denotes the-partition of KB.

1. R:=1L;

2. if RU{a >0} is unsatisfiabl¢hen return [1,0];
3. H:={0};

4. for j := k downto 0 do begin

5. n:=0;

6 H =0

7 foreachG C D;j andH € H do

8 if RUGUH U{«a> 0} is satisfiablehen

9 if n=|G|thenH' := H' U{GUH}

else ifn < |G| then begin
11. H ={GUH};
12. n = |G|
13. end,
14. H:=H;
15. end
16. (I,u) :=(1,0);
17. foreach H € H do begin
18.  compute:, d€[0,1]s. t. RU H |=ignt (Bl [c, d];
19.  (I,u) := (min(l, ¢), max(u, d))
20. end;
21. return [I,u].

Figure 3: Algorithmtight-lex-consequence

The following theorem shows how IGHT s-CONSE
QUENCE, where s€ {z,lex}, can be reduced to d%I-
TIVE PROBABILITY and TIGHT LOGICAL CONSEQUENCE
The main idea behind this reduction is that there exists
a setD: (KB) C 27 such thatkB |~ *(B|a)[l,u] iff L U
H = (B|a)[l,u] for all H € DE (KB).

Theorem 24 Let KB = (L, P) be ap-consistent probabilis-
tic knowledge base, and I8{« be a conditional event. Let
s€{z,lex}. LetD:(KB) denote the set of ak-minimal
elementsi{H C P| LU H U{a >0} is satisfiablé. Then,

[ (resp.,u) such thatKB |fv;ght(ﬂ|a)[1, u] is given by:



(@) If LU{«a >0} is unsatisfiable, theh=1 (resp.,u =0).

(b) Otherwise]/ = min ¢ (resp.,u = max d) subjecttalU
H =gt (Bla)[e, d] and H € DE (KB).

For s =z (resp.,s = lex), Algorithm tight-s-consequence
(see Fig. 2 (resp., 3)) computes tight intervals unsler
entailment. Step 2 checks whethet {« > 0} is unsatis-
fiable. If this is the case, thefi, 0] is returned by Theo-
rem 24 (a). Otherwise, we compuf®,(KB) along thez-
partition of KB in steps 3-7 (resp., 3—15), and the requested
tight interval using Theorem 24 (b) in step 8 (resp., 16—20).

Computational Complexity

In this section, we draw a precise picture of the computa-
tional complexity of the decision and optimization problems
described in the previous section.

Complexity Classes

We assume some basic knowledge about the complexity
classes P, NP, and co-NP. We now briefly describe some

other complexity classes that occur in our results. See espe-

cially (Garey & Johnson 1979; Johnson 1990; Papadimitriou
1994) for further background.

The classPNF contains all decision problems that can
be solved in deterministic polynomial time with an oracle
for NP. The classP|" contains the decision problems in

PP where all oracle calls must be first prepared and then
issued in parallel. The relationship between these complex-
ity classes is described by the following inclusion hierarchy

(note that all inclusions are currently believed to be strict):

P C NP,co-NP C Pﬂ“’ C pPNP |

To classify problems that compute an output value, rather
than a Yes/No-answer, function classes have been intro-
duced. In particularFP and FPNY are the functional
analogs of® andP", respectively.

Overview of Complexity Results

We now give an overview of the complexity results. We con-
sider the problems-CoNSEQUENCEand TiGHT s-CON-
SEQUENCE Wheres € {z,lex}. Note that @NSISTENCY,
p-CONSEQUENCEand TiGHT p-CONSEQUENCEare com-
plete for NP, co-NP, an8#P™Y, respectively, in the general
and in restricted cases (Biazab al. 2001). We assume
that KB and((|«)]l, u] contain only rational numbers.

The complexity results are compactly summarized in Ta-
bles 4 and 5. The problems and lex-CONSEQUENCE
are complete for the class&™ and PN”, respectively,
whereas the problems@HT z- and TIGHT lex-CONSEQU
ENCEare both complete for the claB®™F .

The hardness often holds even in the restridtexfal-
Horn case where KB and |« are both literal-Horn. Here,

a conditional event)|¢ (resp., logical constrainp < ¢) is
literal-Horn iff ¢/ is a basic event (respy; is either a ba-
sic event or the negation of a basic event) and eitherT

or a conjunction of basic events. A conditional constraint
(¥|9)[l,u] is literal-Horn iff the conditional event)|¢ is

literal-Horn. A probabilistic knowledge badéB = (L, P)
is literal-Horn iff each member af U P is literal-Horn.

Table 4: Complexity ok-CONSEQUENCE

Problem Complexity
2-CONSEQUENCE Pﬂ“’-complete

lex-CONSEQUENCE PNP-complete

Table 5: Complexity of TGHT s-CONSEQUENCE

Problem Complexity
TIGHT 2-CONSEQUENCE ~ FPNF-complete
TIGHT lex-CoNSEQUENCE FPNP-complete

Detailed Complexity Results

The following theorem shows that and lex-CONSEQU
ENCE are complete for the class@éﬂVP andPNP| respec-

tively. Here, hardness fd?h\”) andPNF follows from Theo-
rem 23 and th@ﬁlp- andPNP-hardness of deciding Pearl’s

entailment in Systen¥ and Lehmann’s lexicographic en-
tailment (Eiter & Lukasiewicz 2000).

Theorem 25 Given ap-consistent probabilistic knowledge
baseKB = (L, P), and a conditional constraints|«)[l, u],
deciding whetherKB |~ *(8]a)|l qu where s =z (resp.,
s =lex) is complete foPh\IP (resp.,PNP). For s = lex, hard-

ness holds even KB and |« are both literal-Horn.

The next theorem shows thatdHT s-CONSEQUENCE
wheres € {z, lex}, is FPNT-complete. Here, hardness holds
by a polynomial reduction from thEP™" -completetravel-
ing salesman cogiroblem (Papadimitriou 1994).

Theorem 26 Given ap-consistent probabilistic knowledge
base KB=(L, P), and a conditional eventi|a, com-
puting I,u € [0,1] such thatKB |~ ,,, (8le)[l,u], where

se{z lex}, is complete fo’PN". Hardness holds even
if KB and 3|« are both literal-Horn, and = ().

Related Work

We now describe the relationship to probabilistic logic under
coherence and to strong nonmonotonic probabilistic logics.

Probabilistic Logic under Coherence

The notions op-consistency ang-entailment coincide with
the notions of g-coherence and g-coherent entailment, re-
spectively, from probabilistic logic under coherence.
Probabilistic reasoning under coherence is an approach to
reasoning with conditional constraints, which has been ex-
tensively explored especially in the field of statistics, and
which is based on the coherence principle of de Finetti and
suitable generalizations of it (see, for example, the work by
Biazzo and Gilio (2000), Gilio (1995; 2002), and Gilio and
Scozzafava (1994)), or on similar principles that have been



adopted for lower and upper probabilities (Pelessoni and Vi-
cig (1998), Vicig (1996), and Walley (1991)). We now recall
the main concepts from probabilistic logic under coherence,
and then formulate the above equivalence results.

We first define (precise) probability assessments and their
coherence. Arobability assessmefL, A) on a set of con-
ditional eventsE consists of a set of logical constraints
and a mappingA from £ to [0,1]. Informally, L de-
scribes logical relationships, whilé represents probabilis-
tic knowledge. FO{ v |1, ..., ¥pn|dn} CE withn > 1 and
n real numbersy, ..., s,, let the mapping7: Zs — R be
defined as follows. For every € Zy:

G(I) = ; si- 1() - (I(s) — A(iln)

In the framework of betting criterion(z can be inter-
preted as the random gain corresponding to a combination
of n bets of amounts; - A(Y1|¢1), ..., Sn- A(n|ds) ON
V1|1, - .., ¥n|d, with stakessy, ..., s,. More precisely,

to bet ony;|¢$;, one pays an amount &f - A(¢;|¢;), and
one gets back the amounts©f 0, ands; - A(v;|¢;), when

v A\ ¢i, i A @, and—e;, respectively, turn out to be true.
The following notion ofcoherenceassures that it is im-
possible (for both the gambler and the bookmaker) to have
sure (or uniform) loss. A probability assessmént A)

on a set of conditional event is coherentiff for every
{1]d1,. . ¥nldn} CE,n>1,andforallreals, . . ., sp,

it holdsmax {G(I)| I €Ze, IELU{p1V -V, }} >0.

consequenceof KB, denoted KB |~ (v|¢)[l,u] (resp.,
KB |~ (10) 1)), iff {(¥]¢,[l,u])} is a g-coherent
(resp., tight g-coherent) consequencedBf s.

The following theorem shows that g-coherence and g-
coherent entailment coincide with-consistency andp-
entailment, respectively. It follows immediately from Theo-
rems 5 and 7 and similar characterizations of g-coherence
and g-coherent entailment through conditional constraint
rankings due to Biazzet al. (2002).

Theorem 27 Let KB = (L, P) be a reduced probabilistic
knowledge base, and let' be a conditional constraint.
Then, (&) KB is g-coherent iff KB is p-consistent; and
(b) if KB is p-consistent, thei& B |~ C iff KB |"C.

Strong Nonmonotonic Probabilistic Logics

A companion paper (Lukasiewicz 2002) presents similar
probabilistic generalizations of Pearl's entailment in Sys-
tem Z and of Lehmann’s lexicographic entailment, which
are, however, quite different from the ones in this paper.
More precisely, the formalisms presented in (Lukasiewicz
2002) add to logical entailment in model-theoretic prob-
abilistic logic (i) some inheritance of purely probabilistic
knowledge, and (ii) a strategy for resolving inconsisten-
cies due to the inheritance of logical and purely probabilis-
tic knowledge. For this reason, they are generally much
stronger than logical entailment. Thus, they are especially
useful where logical entailment is too weak, for example,

We next define imprecise probability assessments and the jn probabilistic logic programming (Lukasiewicz 2001b;

notions of g-coherence and of g-coherent entailment for
them. Animprecise probability assessme(it, A) on a set
of conditional events£ consists of a set of logical con-
straints . and a mappingA that assigns to eache £ an
interval [I,u] C [0,1], I <u. We say(L, A) is g-coherent
iff a coherent precise probability assessm@htA*) on £
exists withA*(e) € A(e) for all e € £. The imprecise prob-
ability assessmerit, u] on a conditional eveny, denoted
{(v,[l,u])}, is called ag-coherent consequencé (L, A)

iff A*(v) € [l,u] for every g-coherent precise probability as-
sessmenti* onEU{~} such thatd*(¢) € A(e) foralle € €.

It is atight g-coherent consequeno&(L, A) iff [ (resp.,u)

is the infimum (resp., supremum) df () subject to all g-
coherent precise probability assessmetiten£U{~} such
thatA*(s) € A(e) foralle € €.

We finally define the concepts of g-coherence and of g-
coherent entailment for probabilistic knowledge bases (Bi-
azzoet al. 2002). Every imprecise probability assessment
IP=(L, A), whereL is finite, and A is defined on a fi-
nite set of conditional events, can be represented by a
probabilistic knowledge base. Conversely, evergluced
probabilistic knowledge baskB = (L, P), where (i)l <wu
for all (¢)[l,u] € P, and (ii) e; #¢2 for any two distinct
(e1)[l1, u1], (e2)[l2, u2] € P, can be expressed by the impre-
cise assessmefiPxp = (L, Axp) onEkp, where

Agp ={(l¢,[l,u]) | ($|9)[l,u] € KB},
Exs = {¥l¢ | 3L ue(0,1): (¥|o)[l,u] € KB}
A reduced probabilistic knowledge ba&& is g-coherent

iff IPxgp is g-coherent. In this case, a conditional con-
straint (¢|¢)[l, u] is a g-coherent(resp.,tight g-coherenjt

2001a) and probabilistic ontology reasoning in the Seman-
tic Web (Giugno & Lukasiewicz 2002). Other applications
are deriving degrees of belief from statistical knowledge and
degrees of belief, handling inconsistencies in probabilistic
knowledge bases, and probabilistic belief revision.

In particular, in reasoning from statistical knowledge and
degrees of belief, they show a similar behavior as reference-
class reasoning (Reichenbach 1949; Kyburg, Jr. 1974; 1983;
Pollock 1990) in a number of uncontroversial examples.
However, they also avoid many drawbacks of reference-
class reasoning (Lukasiewicz 2002): They can handle comp-
lex scenarios and even purely probabilistic subjective knowl-
edge as input. Furthermore, conclusions are drawn in a
global way from all the available knowledge as a whole.
The following example illustrates the use sfrong lez-
entailmen{Lukasiewicz 2002) for reasoning from statistical
knowledge and degrees of belief.

Example 28 Suppose that we have the statistical knowl-
edge “all penguins are birds”, “between 90% and 95% of
all birds fly”, “at most 5% of all penguins fly”, and “at least
95% of all yellow objects are easy to see”. Moreover,
assume that we believe “Sam is a yellow penguin”. What
do we then conclude about Sam'’s property of being easy to
see? Under reference-class reasoning, which is a machinery
for dealing with such statistical knowledge and degrees of
belief, we conclude “Sam is easy to see with a probability of
at least 0.95". This is also what we obtain using the notion
of stronglez-entailment: The above statistical knowledge
can be represented by the probabilistic knowledge base
KB = (L, P) = ({bird < penguin}, {(fly | bird)[0.9,0.95],



(fly | penguin)[0,0.05], (easy_to_see | yellow)[0.95,1]}). It
is then easy to verify thak'B is stronglyp-consistentand
that under strondez-entailment fromKkKB, we obtain the
tight conclusion(easy_to_see | yellow A penguin)[0.95, 1],
as desired; see (Lukasiewicz 2002).

Notice thatKB is also satisfiable ang-consistent, and
under logical ang-, z-, andlex-entailment fromKB, we
have(easy_to_see | yellow A penguin)|0, 1], rather than the
above conditional constraint, as tight conclusion.

Summary and Conclusion

Towards probabilistic formalisms for resolving local incon-
sistencies under model-theoretic probabilistic entailment,
we have introduced novel probabilistic generalizations of
Pearl’s entailment in Systei and of Lehmann’s lexicogra-
phic entailment. We have then analyzed the nonmonotonic
and semantic properties of the new notions of probabilistic
entailment. Furthermore, we have presented algorithms for
reasoning under the new formalisms, and we have given a
precise picture of its computational complexity.

As an important feature of the new notions of entail-
ment in SystemZ and of lexicographic entailment, we
have shown that they coincide with model-theoretic prob-
abilistic entailment whenever there are no local inconsisten-
cies. That is, the new formalisms are essentially identical to
model-theoretic probabilistic entailment, except that they re-
solve the problem of local inconsistencies. In particular, this
property also distinguishes the new notions of entailment in
this paper from the notion of probabilistic entailment under
coherence and from the notions of entailment in strong non-
monotonic probabilistic logics (Lukasiewicz 2002).

More precisely, probabilistic entailment under coherence
is related to the new formalisms in this paper, since it is a
generalization of default reasoning in Systém(see also
(Biazzoet al. 2002; 2001)). However, there are several cru-
cial differences. First, the formalisms in this paper are gen-
eralizations of the more sophisticated notions of entailment
in SystemZ and lexicographic entailment, rather than en-
tailmentin Systen®. As a consequence, they have nicer se-
mantic properties, and are strictly stronger than probabilistic
entailment under coherence. Second, as for resolving local
inconsistencies as described in Example 1, the formalisms
here coincide with model-theoretic probabilistic entailment
whenever there are no local inconsistencies, while proba-
bilistic entailment under coherence does not.

The notions of entailment in strong nonmonotonic prob-
abilistic logics (Lukasiewicz 2002), in contrast, aim at in-
creasing the inferential power of model-theoretic probabilis-
tic entailment by adding some restricted formsR{NH
(recall that model-theoretic probabilistic entailment com-
pletely lacksP-INH). For this reason, the notions of en-
tailment in (Lukasiewicz 2002) are generally much stronger
than model-theoretic probabilistic entailment. For example,
under the notions of entailment in (Lukasiewicz 2002), we
can concludéfly | eaglg[0.95, 1] from KB, of Table 1.

An interesting topic of future research is to develop
and explore further nonmonotonic formalisms for reason-
ing with conditional constraints. Besides extending classi-
cal formalisms for default reasoning, which may addition-

ally contain a strength assignment to the defaults, one may
also think about combining the new formalisms of this paper
and of (Lukasiewicz 2002) with some probability selection
technique (e.g., maximum entropy or center of mass).
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