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Abstract

Towards probabilistic formalisms for resolving local incon-
sistencies under model-theoretic probabilistic entailment, we
present probabilistic generalizations of Pearl’s entailment in
SystemZ and Lehmann’s lexicographic entailment. We then
analyze the nonmonotonic and semantic properties of the new
notions of entailment. In particular, we show that they satisfy
the rationality postulates of SystemP and the property of Ra-
tional Monotonicity. Moreover, we show that model-theoretic
probabilistic entailment is stronger than the new notion of
lexicographic entailment, which in turn is stronger than the
new notion of entailment in SystemZ. As an important fea-
ture of the new notions of entailment in SystemZ and lexico-
graphic entailment, we show that they coincide with model-
theoretic probabilistic entailment whenever there are no local
inconsistencies. We also show that the new notions of entail-
ment in SystemZ and lexicographic entailment are proper
generalizations of their classical counterparts. Finally, we
present algorithms for reasoning under the new formalisms,
and we give a precise picture of its computational complexity.

Introduction
During the recent decades, reasoning about probabilities
has started to play an important role in AI. In particular,
reasoning about interval restrictions for conditional prob-
abilities, also called conditional constraints (which are of
the form(ψ|φ)[l, u] with a conditional eventψ|φ and reals
l, u∈ [0, 1]) has been a subject of extensive research efforts.

One important approach for handling conditional con-
straints is model-theoretic probabilistic logic, which has its
origin in philosophy and logic, and whose roots can be
traced back to Boole (1854). There is a wide spectrum of
formal languages that have been explored in model-theoretic
probabilistic logic, ranging from constraints for uncondi-
tional and conditional events to rich languages that specify
linear inequalities over events (see especially the works by
Nilsson (1986), Faginet al. (1990), Dubois and Pradeet al.
(1988; 1991), Frisch and Haddawy (1994), and Lukasiewicz
(1999a; 1999b; 2001b); see also the survey on sentential
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probability logic by Hailperin (1996)). The main decision
and optimization problems in model-theoretic probabilis-
tic logic are deciding satisfiability, deciding logical conse-
quence, and computing tight logically entailed intervals.

The notion of model-theoretic probabilistic entailment is
widely accepted in AI. However, it fails to produce satisfac-
tory conclusions about conditional eventsψ|φ in the case
where our knowledge about the premiseφ is locally incon-
sistent. The following example illustrates this drawback.

Example 1 Suppose that we have the knowledge “all pen-
guins are birds”, “birds have legs with probability 1”, “birds
fly with probability 1”, and “penguins fly with a probabil-
ity of at most 0.05”. Under model-theoretic probabilistic
logic, this knowledge islocally inconsistent relative to pen-
guins (since it says“penguins fly with probability 1”, but
in the same time also“penguins fly with a probability of at
most 0.05”), and thus we cannot conclude anything about
the properties of penguins. In fact, we even conclude“there
are no penguins”, which reports this local inconsistency re-
lated to penguins. But it seems reasonable to interpret “birds
have legs with probability 1” and “birds fly with probabil-
ity 1” as defaults “generally, birds have legs” and “generally,
birds fly”, respectively, and to conclude “generally, penguins
have legs” (that is, “penguins have legs with probability 1”)
and “penguins fly with a probability of at most 0.05”.2

The above example suggests that such local inconsisten-
cies under model-theoretic probabilistic entailment are es-
sentially due to the fact that 0/1-probabilistic knowledge is
interpreted as strict logical knowledge, and not as default
knowledge. The main idea behind this paper is to combine
the notion of model-theoretic probabilistic entailment with
mechanisms from default reasoning from conditional knowl-
edge bases in order to obtain a notion of entailment in prob-
abilistic logic that can handle such local inconsistencies.

The literature contains several different proposals for de-
fault reasoning from conditional knowledge bases and ex-
tensive work on its desired properties. The core of these
properties are the rationality postulates of SystemP by
Kraus, Lehmann, and Magidor (1990), which constitute
a sound and complete axiom system for several classical
model-theoretic entailment relations under uncertainty mea-
sures on worlds. They characterize classical model-theoretic
entailment under preferential structures (Shoham 1987;



Kraus, Lehmann, & Magidor 1990), infinitesimal prob-
abilities (Adams 1975; Pearl 1989), possibility measures
(Dubois & Prade 1991), and world rankings (Spohn 1988;
Goldszmidt & Pearl 1992). They also characterize an entail-
ment relation based on conditional objects (Dubois & Prade
1994). A survey of all these relationships is given in (Benfer-
hat, Dubois, & Prade 1997; Gabbay & Smets 1998). Mainly
to solve problems with irrelevant information, the notion of
rational closure as a more adventurous notion of entailment
was introduced by Lehmann (1989; 1992). It is equivalent
to entailment in SystemZ by Pearl (1990), to the least spe-
cific possibility entailment by Benferhatet al. (1992), and
to a conditional (modal) logic-based entailment by Lamarre
(1992). Finally, mainly to solve problems with property
inheritance from classes to exceptional subclasses, lexico-
graphic entailment was introduced by Lehmann (1995) and
Benferhatet al.(1993), and other more sophisticated notions
of entailment for default reasoning were proposed.

In this paper, we present probabilistic generalizations of
Pearl’s entailment in SystemZ (1990) and of Lehmann’s
lexicographic entailment (1995), which are weaker than en-
tailment in model-theoretic probabilistic logic. Roughly,
model-theoretic probabilistic entailment realizes an inher-
itance of 0/1-probabilistic knowledge along subclass rela-
tionships, but does not have any mechanism for resolving
local inconsistencies due to this inheritance. The new prob-
abilistic formalisms now add such a mechanism to model-
theoretic probabilistic entailment, and this is why they are
weaker than model-theoretic probabilistic entailment. The
main contributions of this paper are as follows:

• We present probabilistic generalizations of Pearl’s entail-
ment in SystemZ and Lehmann’s lexicographic entail-
ment, which are weaker than model-theoretic probabilis-
tic entailment. We explore and compare the nonmono-
tonic properties of the new notions of entailment and of
model-theoretic probabilistic entailment. In particular,
the new formalisms satisfy the rationality postulates of
SystemP , the property of Rational Monotonicity, and
some Irrelevance and Direct Inference properties.

• We analyze the relationship between the new notion of
entailment in SystemZ, the new notion of lexicographic
entailment, and model-theoretic probabilistic entailment.
It turns out that model-theoretic probabilistic entailment
is stronger than the new lexicographic entailment, which
is in turn stronger than the new entailment in SystemZ.

• As an important feature of the new entailment in Sys-
tem Z and the new lexicographic entailment, we show
that they coincide with model-theoretic probabilistic en-
tailment whenever there are no local inconsistenciesas
illustrated in Example 1. Furthermore, we show that they
are proper generalizations of their classical counterparts.

• We present algorithms for computing tight intervals un-
der the new notions of entailment in SystemZ and of lex-
icographic entailment, which are based on reductions to
the standard tasks of deciding model existence and com-
puting tight intervals under model-theoretic probabilistic
entailment. Furthermore, we give a precise picture of the

complexity of deciding logical consequence and of com-
puting tight intervals under the new notions of entailment
in SystemZ and of lexicographic entailment in general as
well as restricted cases.

Note that detailed proofs of all results in this paper are
given in the extended paper (Lukasiewicz 2003).

Model-Theoretic Probabilistic Logic
In this section, we recall the main concepts from model-
theoretic probabilistic logic (see especially the works by
Nilsson (1986), Faginet al. (1990), Dubois and Prade
et al. (1988; 1991), Frisch and Haddawy (1994), and
Lukasiewicz (1999a; 1999b; 2001b).

We assume a set ofbasic eventsΦ = {p1, . . . , pn}, n≥ 1,
and use⊥ and> to denotefalseandtrue, respectively. The
set ofeventsis inductively defined as follows. Every ele-
ment ofΦ∪{⊥,>} is an event. Ifφ andψ are events, then
also¬φ and(φ ∧ ψ). A conditional eventhas the formψ|φ,
whereψ andφ are events. Aconditional constraintis of
the form (ψ|φ)[l, u] with a conditional eventψ|φ and re-
alsl, u∈ [0, 1]. We defineprobabilistic formulasinductively
as follows. Every conditional constraint is a probabilistic
formula. IfF andG are probabilistic formulas, then also¬F
and(F∧G). We use(F ∨G) (resp.,(F ⇐G)) to abbreviate
¬(¬F ∧¬G) (resp.,¬(¬F ∧G)), whereF andG are either
two events or two probabilistic formulas, and adopt the usual
conventions to eliminate parentheses. Alogical constraintis
an event of the formψ⇐φ. A probabilistic knowledge base
KB =(L,P ) consists of a finite set of logical constraintsL
and a finite set of conditional constraintsP .

A world I is a truth assignment to the basic events
in Φ, which is inductively extended to all events as usual
(that is, byI(⊥)= false, I(>)= true, I(¬φ) = true iff
I(φ) = false, andI(φ∧ψ) = true iff I(φ) = I(ψ) = true).
We useIΦ to denote the set of all worlds forΦ. A world I
is a modelof an eventφ, denotedI |=φ, iff I(φ) = true.
We sayI is a modelof a set of eventsL, denotedI |=L,
iff I is a model of allφ∈L. An eventφ (resp., a set of
eventsL) is satisfiableiff a model of φ (resp.,L) exists.
An eventψ is a logical consequenceof φ (resp.,L), de-
notedφ |=ψ (resp.,L |=ψ), iff each model ofφ (resp.,L) is
also a model ofψ. We useφ 6|=ψ (resp.,L 6|=ψ) to denote
thatφ |=ψ (resp.,L |=ψ) does not hold.

A probabilistic interpretationPr is a probability func-
tion on IΦ (that is, a mappingPr from IΦ to [0, 1] such
that

∑
I ∈IΦ

Pr(I) = 1). The probability of an eventφ in
Pr is defined asPr(φ) =

∑
I∈IΦ, I|=φ Pr(I). For eventsφ

and ψ with Pr(φ)> 0, let Pr(ψ|φ) =Pr(ψ∧φ) /Pr(φ),
and let theconditioningof Pr onφ be defined byPrφ(I) =
Pr(I) /Pr(φ) for all I ∈IΦ with I |=φ, and byPrφ(I) = 0
for all other I ∈IΦ. The truth of logical constraints and
probabilistic formulasF in Pr , denotedPr |=F , is defined
by induction as follows:

• Pr |=ψ⇐φ iff Pr(ψ ∧φ) =Pr(φ);
• Pr |=(ψ|φ)[l, u] iff Pr(φ)= 0 or Pr(ψ|φ)∈[l, u];
• Pr |=¬F iff not Pr |=F ; and

• Pr |=(F ∧G) iff Pr |=F andPr |=G.



We sayPr satisfiesF , orPr is amodelof F , iff Pr |=F . It
satisfiesa set of logical constraints and probabilistic formu-
lasF , or Pr is amodelof F , denotedPr |= F , iff Pr is a
model of allF ∈F . We sayF is satisfiableiff a model ofF
exists. A logical constraint or probabilistic formulaF is a
logical consequenceof F , denotedF ||=F , iff every model
of F is also a model ofF .

A probabilistic knowledge baseKB =(L,P ) is satisfi-
ableiff L∪P is satisfiable. We next define the notion oflog-
ical entailmentfor conditional constraints fromKB . Note
that each entailment relation for conditional constraints con-
sists of a consequence relation and a tight consequence re-
lation. A conditional constraint(ψ|φ)[l, u] is a logical con-
sequenceof KB , denotedKB ||=(ψ|φ)[l, u], iff L∪P ||=
(ψ|φ)[l, u]. We say(ψ|φ)[l, u] is atight logical consequence
of KB , denotedKB ||=tight(ψ|φ)[l, u], iff l (resp.,u) is the
infimum (resp., supremum) ofPr(ψ|φ) subject to all mod-
elsPr of L∪P with Pr(φ)> 0. Note that we define[l, u]
as the empty interval[1, 0], whenL∪P ||=⊥⇐φ.

Example 2 The knowledge that “all eagles are birds”,
“birds have legs with the probability 1”, and “birds fly with
a probability of at least 0.95” can be expressed by the prob-
abilistic knowledge baseKB1 shown in Table 1.

In model-theoretic probabilistic logic,KB1 encodes the
strict logical knowledge“all eagles are birds” and “all birds
have legs” (that is, in model-theoretic probabilistic logic,
a logical constraintψ⇐φ∈L has the same meaning as a
conditional constraint(ψ|φ)[1, 1]∈P ), and theprobabilis-
tic knowledge“birds fly with a probability of at least 0.95”.

It is not difficult to see thatKB1 is satisfiable, and that
some tight logical consequences ofKB1 are given as shown
in Table 2. Notice that the 0/1-probabilistic property of hav-
ing legs is inherited from birds to the subclass eagles, while
the probabilistic property of being able to fly with a proba-
bility of at least 0.95 isnot inherited from birds to eagles.2

Example 3 The knowledge “all penguins are birds”, “birds
have legs with the probability 1”, “birds fly with the prob-
ability 1”, and “penguins fly with a probability of at most
0.05” can be expressed by the probabilistic knowledge base
KB2 =(L2, P2) shown in Table 1. It is not difficult to see
that KB2 is satisfiable, and that some tight logical conse-
quences ofKB2 are as shown in Table 2.

Here, the empty interval “[1, 0]” for the last two condi-
tional events is due to the fact that the 0/1-probabilistic prop-
erty of being able to fly is inherited from birds to penguins
and is incompatible there with penguins being able to fly
with a probability of at most 0.05. That is, our knowledge
about penguins is inconsistent. That is, there does not exist
any modelPr of L2 ∪P2 such thatPr(penguin)> 0, and
thus we are having a local inconsistency relative topenguin.
Hence, logical entailment is too strong here, since the de-
sired tight conclusions fromKB2 are(fly |penguin)[0, 0.05]
and(legs|penguin)[1, 1] instead of(fly |penguin)[1, 0] and
(legs|penguin)[1, 0], respectively.2

Weak Nonmonotonic Probabilistic Logics
In this section, we present novel probabilistic generaliza-
tions of Pearl’s entailment in SystemZ and of Lehmann’s

Table 1: Probabilistic Knowledge Bases

KB1 = ({bird⇐eagle}, {(legs|bird)[1, 1],
(fly |bird)[0.95, 1]})

KB2 = ({bird⇐penguin}, {(legs|bird)[1, 1],
(fly |bird)[1, 1], (fly |penguin)[0, 0.05]})

Table 2: Tight Conclusions

KB (ψ|φ) ||=tight ‖∼ lex
tight ‖∼ z

tight ‖∼ p
tight

KB1 (legs|bird) [1, 1] [1, 1] [1, 1] [1, 1]
KB1 (fly |bird) [0.95, 1] [0.95, 1] [0.95, 1] [0.95, 1]
KB1 (legs|eagle) [1, 1] [1, 1] [1, 1] [0, 1]
KB1 (fly |eagle) [0, 1] [0, 1] [0, 1] [0, 1]
KB2 (legs|bird) [1, 1] [1, 1] [1, 1] [1, 1]
KB2 (fly |bird) [1, 1] [1, 1] [1, 1] [1, 1]
KB2 (legs|penguin) [1, 0] [1, 1] [0, 1] [0, 1]
KB2 (fly |penguin) [1, 0] [0, 0.05] [0, 0.05] [0, 0.05]

lexicographic entailment. We first define probability rank-
ings, and a notion of entailment that is based on sets of prob-
ability rankings, which generalizes entailment in SystemP ,
and which coincides with probabilistic entailment under g-
coherence (see below). We then define the novel formalisms,
which are based on unique single probability rankings.

Example 4 Under weak nonmonotonic probabilistic log-
ics, KB1 in Table 1 represents thestrict logical knowl-
edge“all eagles are birds”, thedefault knowledge“gener-
ally, birds have legs” (that is, a logical constraintψ⇐φ∈L
now does not haveanymore the same meaning as a condi-
tional constraint(ψ|φ)[1, 1]∈P ; note that only(ψ|φ)[0, 0]
and(ψ|φ)[1, 1] in P express defaults), and theprobabilistic
knowledge“birds fly with a probability of at least 0.95”.2

Preliminaries
A probabilistic interpretationPr verifies a conditional
constraint(ψ|φ)[l, u] iff Pr(φ)> 0 and Pr |=(ψ|φ)[l, u].
We sayPr falsifies (ψ|φ)[l, u] iff Pr(φ)> 0 and Pr 6|=
(ψ|φ)[l, u]. A set of conditional constraintsP toleratesa
conditional constraintC undera set of logical constraintsL
iff L ∪ P has a model that verifiesC. We sayP is underL
in conflictwith C iff no model ofL ∪ P verifiesC.

A conditional constraint rankingσ on a probabilistic
knowledge baseKB =(L,P ) maps eachC ∈P to a non-
negative integer. It isadmissiblewith KB iff every P ′⊆P
that is underL in conflict with someC ∈P contains
someC ′ such thatσ(C ′)<σ(C).

In the sequel, we useα> 0 to abbreviate the probabilis-
tic formula ¬(α|>)[0, 0]. A probability rankingκ maps
each probabilistic interpretation onIΦ to a member of
{0, 1, . . .} ∪ {∞} such thatκ(Pr) = 0 for at least one in-
terpretationPr . It is extended to all logical constraints
and probabilistic formulasF as follows. IfF is satisfiable,



thenκ(F ) = min {κ(Pr) |Pr |=F}; otherwise,κ(F ) =∞.
A probability rankingκ is admissiblewith a probabilistic
knowledge baseKB =(L,P ) iff κ(¬F )=∞ for all F ∈L
andκ(φ> 0)<∞ andκ(φ> 0∧ (ψ|φ)[l, u]) < κ(φ> 0 ∧
¬(ψ|φ)[l, u]) for all (ψ|φ)[l, u]∈P .

Consistency and Entailment in SystemP
We now generalize the notions of consistency and entail-
ment in SystemP to probabilistic knowledge bases.

A probabilistic knowledge baseKB =(L,P ) is p-con-
sistentiff there exists a probability rankingκ that is admis-
sible with KB . We then define the notion ofp-entailment
in terms of admissible probability rankings as follows. A
conditional constraint(ψ|φ)[l, u] is a p-consequenceof a
p-consistentKB =(L,P ), denotedKB ‖∼ p(ψ|φ)[l, u], iff
κ(φ>0)=∞ orκ(φ>0∧(ψ|φ)[l, u])<κ(φ>0∧¬(ψ|φ)[l, u])
for every probability rankingκ admissible withKB . We
say that(ψ|φ)[l, u] is a tight p-consequenceof KB , de-
notedKB ‖∼ p

tight(ψ|φ)[l, u], iff l=sup l′ (resp.,u= inf u′)
subject toKB ‖∼ p(ψ|φ)[l′, u′].

In ordinary default reasoning, the notion ofp-consistency
is equivalent to the existence of admissible default rankings
(Geffner 1992). The following theorem shows that similarly
probabilisticp-consistency can be expressed in terms of ad-
missible conditional constraint rankings.

Theorem 5 A probabilistic knowledge baseKB =(L,P ) is
p-consistent iff there exists a conditional constraint ranking
onKB that is admissible withKB .

The next theorem shows that also a characterization of
ordinaryp-consistency due to Goldszmidt and Pearl (1991)
carries over to probabilisticp-consistency.

Theorem 6 A probabilistic knowledge baseKB =(L,P ) is
p-consistent iff there is an ordered partition(P0, . . . , Pk)
of P such that either (a) everyPi, 0≤ i≤ k, is the set of
all C ∈

⋃k
j=i Pj tolerated underL by

⋃k
j=i Pj , or (b) for ev-

ery i, 0≤i≤k, eachC∈Pi is tolerated underL by
⋃k

j=i Pj .

The following result shows that also a characterization of
ordinary p-entailment, which is essentially due to Adams
(1975), carries over to the probabilistic case.

Theorem 7 Let KB =(L,P ) be ap-consistent probabilis-
tic knowledge base and(β|α)[l, u] be a conditional con-
straint. Then,KB ‖∼ p(β|α)[l, u] iff (L,P ∪ {(β|α)[p, p]})
is notp-consistent for allp∈ [0, l)∪ (u, 1].

The next result completes the picture.

Theorem 8 Let KB =(L,P ) be a p-consistent proba-
bilistic knowledge base, and let(β|α)[l, u] be a condi-
tional constraint. Then,KB ‖∼ p

tight(β|α)[l, u] iff (i) (L,P ∪
{(β|α)[p, p]}) is not p-consistent for allp∈ [0, l) ∪ (u, 1],
and (ii) (L,P∪{(β|α)[p, p]}) is p-consistent for allp∈[l, u].

It is easy to verify that the probabilistic knowledge bases
KB1 andKB2 in Table 1 are bothp-consistent. Some tight
conclusions underp-entailment are shown in Table 2. Ob-
serve that neither the default property of having legs, nor the
probabilistic property of being able to fly with a probability
of at least0.95, is inherited from birds down to eagles.

Entailment in System Z
We now extend entailment in SystemZ (Pearl 1990; Gold-
szmidt & Pearl 1996) top-consistent probabilistic knowl-
edge basesKB =(L,P ). The new notion of entailment in
SystemZ is associated with an ordered partition ofP , a
conditional constraint rankingz on KB , and a probability
rankingκz. The z-partition of KB is the unique ordered
partition (P0, . . . , Pk) of P such that eachPi is the set of
all C ∈

⋃k
j=i Pj that are tolerated underL by

⋃k
j=i Pj .

Example 9 Thez-partition ofKB1 in Table 1 is given by

(P0) = ({(legs|bird)[1, 1], (fly |bird)[0.95, 1]}) ,
while thez-partition ofKB2 in Table 1 is given by

(P0, P1) = ({(legs|bird)[1, 1], (fly |bird)[1, 1]},
{(fly |penguin)[0, 0.05]}) . 2

We next definez andκz. For everyj ∈ {0, . . . , k}, each
C ∈Pj is assigned the valuej under the conditional con-
straint rankingz. The probability rankingκz on all proba-
bilistic interpretationsPr is then defined by:

κz(Pr) =


∞ if Pr 6|= L

0 if Pr |= L ∪ P
1 + max

C∈P : Pr 6|=C
z(C) otherwise.

The following lemma shows that the rankingsz andκz are
both admissible withKB .

Lemma 10 Let KB =(L,P ) bep-consistent. Then,z and
κz are both admissible withKB .

We next define a preference relation on probabilistic in-
terpretations as follows. For probabilistic interpretationsPr
and Pr ′, we sayPr is z-preferableto Pr ′ iff κz(Pr) <
κz(Pr ′). A model Pr of a set of logical constraints and
probabilistic formulasF is a z-minimal modelof F iff no
model ofF is z-preferable toPr .

We finally define the notion ofz-entailmentas follows.
A conditional constraint(ψ|φ)[l, u] is a z-consequenceof
KB , denotedKB ‖∼ z(ψ|φ)[l, u], iff everyz-minimal model
of L∪{φ> 0} satisfies(ψ|φ)[l, u]. We say(ψ|φ)[l, u] is a
tight z-consequenceof KB , denotedKB ‖∼ z

tight(ψ|φ)[l, u],
iff l (resp.,u) is the infimum (resp., supremum) ofPr(ψ|φ)
subject to allz-minimal modelsPr of L∪{φ> 0}.
Example 11 Table 2 gives the tight conclusions underz-
entailment from the probabilistic knowledge bases in Ta-
ble 1. They show thatz-entailment realizes an inheritance of
0/1-probabilistic properties from classes to non-exceptional
subclasses. But it does not inherit 0/1-probabilistic proper-
ties from classes to subclasses that are exceptional relative to
some other property (and thus, like its classical counterpart,
has the problem of inheritance blocking).2

The following theorem characterizes the notion ofz-
consequence in terms of the probability rankingκz.

Theorem 12 LetKB =(L,P ) be ap-consistent probabilis-
tic knowledge base, and let(ψ|φ)[l, u] be a conditional
constraint. Then,KB ‖∼ z(ψ|φ)[l, u] iff κz(φ> 0) =∞ or
κz(φ> 0 ∧ (ψ|φ)[l, u])<κz(φ> 0 ∧ ¬(ψ|φ)[l, u]).



Lexicographic Entailment
We next extend Lehmann’s lexicographic entailment (1995)
top-consistent probabilistic knowledge basesKB = (L,P ).
Note that, even though we do not use probability rankings
here, the new notion of lexicographic entailment can be eas-
ily expressed through a unique single probability ranking.

We use thez-partition (P0, . . . , Pk) of KB to define
a lexicographic preference relation on probabilistic inter-
pretations as follows. For probabilistic interpretationsPr
and Pr ′, we say thatPr is lexicographically prefer-
able (or lex-preferable) to Pr ′ iff some i∈{0, . . . , k} ex-
ists such that|{C∈Pi |Pr |=C}|> |{C∈Pi |Pr ′ |=C}| and
|{C∈Pj |Pr |=C}|= |{C∈Pj |Pr ′ |=C}| for all i< j≤ k.
A modelPr of a set of logical constraints and probabilistic
formulasF is a lexicographically minimal(or lex-minimal)
model ofF iff no model ofF is lex-preferable toPr .

We are now ready to define the notion oflexicographic
entailment(or lex-entailment) as follows. A conditional
constraint(ψ|φ)[l, u] is a lex-consequenceof KB , denoted
KB ‖∼ lex (ψ|φ)[l, u], iff each lex-minimal model ofL ∪
{φ> 0} satisfies(ψ|φ)[l, u]. We say(ψ|φ)[l, u] is a tight
lex-consequenceof KB , denotedKB ‖∼ lex

tight(ψ|φ)[l, u], iff
l (resp.,u) is the infimum (resp., supremum) ofPr(ψ|φ)
subject to alllex-minimal modelsPr of L∪{φ> 0}.
Example 13 Table 2 gives the tight conclusions underlex-
entailment fromKB1 andKB2 in Table 1. They show that
lex-entailment realizes a correct inheritance of logical prop-
erties, without the problem of inheritance blocking.2

Semantic Properties
In this section, we explore the semantic properties of the
probabilistic notions ofp-, z-, and lex-entailment, and we
give a comparison to logical entailment. We first describe
their nonmonotonicity and nonmonotonic properties. We
then explore the relationships between the probabilistic for-
malisms and to their classical counterparts.

Nonmonotonicity
Logical entailment has the following property ofinheritance
of logical knowledge(L-INH) along subclass relationships:

L-INH. If KB ‖∼(ψ|φ)[c, c] andφ⇐φ? is valid,
thenKB ‖∼(ψ|φ?)[c, c],

for all eventsψ, φ, andφ?, all probabilistic knowledge bases
KB , and allc∈{0, 1}. The notions ofp-, z-, and lex-en-
tailment are nonmonotonic in the sense that they all do not
satisfyL-INH. Here,p-entailment completely failsL-INH,
while z- andlex-entailment realize some weaker form ofL-
INH, as they are both obtained from logical entailment by
adding some strategy for resolving local inconsistencies.

Note that logical,p-, z-, andlex-entailmentall do not have
the following property ofinheritance of purely probabilistic
knowledge(P-INH) along subclass relationships:

P-INH. If KB ‖∼(ψ|φ)[l, u] andφ⇐φ? is valid,
thenKB ‖∼(ψ|φ?)[l, u],

for all eventsψ, φ, andφ?, all probabilistic knowledge bases
KB , and all [l, u] ⊆ [0, 1] different from [0, 0], [1, 1], and

[1, 0]. See (Lukasiewicz 2002) for entailment semantics
that satisfyP-INH and restricted forms ofP-INH. For ex-
ample, under such entailment semantics, we can conclude
(fly |eagle)[0.95, 1] from KB1 in Table 1.

Nonmonotonic Properties
We now explore the nonmonotonic behavior (especially re-
lated toL-INH) of the probabilistic formalisms of this paper.

We first consider the postulatesRight Weakening (RW),
Reflexivity (Ref), Left Logical Equivalence (LLE), Cut,
Cautious Monotonicity (CM), andOr proposed by Kraus,
Lehmann, and Magidor (1990), which are commonly re-
garded as being particularly desirable for any reasonable
notion of nonmonotonic entailment. The following result
shows that the notions of logical,p-, z-, andlex-entailment
all satisfy (probabilistic versions of) these postulates.

Theorem 14 ||= , ‖∼ p, ‖∼z, and ‖∼lex satisfy the follow-
ing properties for all probabilistic knowledge basesKB =
(L,P ), all eventsε, ε′, φ, andψ, and all l, l′, u, u′ ∈ [0, 1]:
RW. If (φ|>)[l, u]⇒ (ψ|>)[l′, u′] is logically valid

andKB ‖∼(φ|ε)[l, u], thenKB ‖∼(ψ|ε)[l′, u′].
Ref. KB ‖∼(ε|ε)[1, 1].
LLE. If ε⇔ ε′ is logically valid,

thenKB ‖∼(φ|ε)[l, u] iff KB ‖∼(φ|ε′)[l, u].
Cut. If KB ‖∼(ε|ε′)[1, 1] andKB ‖∼(φ|ε∧ ε′)[l, u],

thenKB ‖∼(φ|ε′)[l, u].
CM. If KB ‖∼(ε|ε′)[1, 1] andKB ‖∼(φ|ε′)[l, u],

thenKB ‖∼(φ|ε∧ ε′)[l, u].
Or. If KB ‖∼(φ|ε)[1, 1] andKB ‖∼(φ|ε′)[1, 1],

thenKB ‖∼(φ|ε∨ ε′)[1, 1].
Another desirable property isRational Monotonicity

(RM) (Kraus, Lehmann, & Magidor 1990), which describes
a restricted form of monotony, and allows to ignore certain
kinds of irrelevant knowledge. The next theorem shows that
logical, z-, and lex-entailment satisfyRM. Here,KB 6‖∼C
denotes thatKB ‖∼C does not hold.

Theorem 15 ||= , ‖∼z, and ‖∼lex satisfy the following
property for allKB =(L,P ) and all eventsε, ε′, andψ:

RM. If KB ‖∼(ψ|ε)[1, 1] andKB 6‖∼(¬ε′|ε)[1, 1],
thenKB ‖∼(ψ|ε∧ ε′)[1, 1].
The notion ofp-entailment, however, generally does not

satisfyRM, as the following example shows.

Example 16 Consider the probabilistic knowledge base
KB =({bird⇐eagle}, {(fly |bird)[1, 1]}). It is easy to see
that(fly |bird)[1, 1] is a logical (resp.,p-, z-, andlex-) conse-
quence ofKB , while (¬eagle|bird)[1, 1] is not a logical
(resp.,p-, z-, and lex-) consequence ofKB . Observe now
that (fly |bird∧eagle)[1, 1] is a logical (resp.,z- and lex-)
consequence ofKB , but (fly |bird∧eagle)[1, 1] is not ap-
consequence ofKB . Note that(fly |bird∧eagle)[1, 1] is the
tight logical (resp.,z- and lex-) consequence ofKB , while
(fly |bird∧eagle)[0, 1] is the tightp-consequence ofKB . 2

We next consider the propertyIrrelevance (Irr) adapted
from (Benferhat, Saffiotti, & Smets 2000), which says that
ε′ is irrelevant to a conclusion “P ‖∼(ψ|ε)[1, 1]” when they
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||= ‖∼ z ‖∼ p‖∼ lex

|∼ lex |∼ z|= |∼ p
“R1 is special case ofR2”

“R1 is subset ofR2”

Figure 1: Relationship between Probabilistic Formalisms and to Classical Formalisms

are defined over disjoint sets of atoms. The following result
shows that logical,z-, andlex-entailment satisfyIrr .

Theorem 17 ||= , ‖∼z, and ‖∼lex satisfy the following
property for allKB =(L,P ) and all eventsε, ε′, andψ:

Irr. If KB ‖∼(ψ|ε)[1, 1], and no atom ofKB and(ψ|ε)[1, 1]
occurs inε′, thenKB ‖∼(ψ|ε∧ε′)[1, 1].
The notion ofp-entailment, however, does not satisfyIrr .

This is shown by the following example.

Example 18 Consider the probabilistic knowledge base
KB =(∅, {(fly |bird)[1, 1]}). Clearly, (fly |bird)[1, 1] is a
logical (resp.,p-, z-, andlex-) consequence ofKB . Observe
now that(fly | red∧bird)[1, 1] is a logical (resp.,z- andlex-)
consequence ofKB , but (fly | red ∧ bird)[1, 1] is not ap-
consequence ofKB . Note that(fly | red∧bird)[1, 1] is the
tight logical (resp.,z- and lex-) consequence ofKB , while
(fly | red∧bird)[0, 1] is the tightp-consequence ofKB . 2

We finally consider the propertyDirect Inference (DI)
adapted from (Bacchuset al. 1996). Informally,DI ex-
presses thatP should entail all its own conditional con-
straints (which is similar toLLE, but in general not equiv-
alent toLLE). The following theorem shows that logical,
p-, z-, andlex-entailment all satisfyDI.

Theorem 19 ||= , ‖∼ p, ‖∼z, and ‖∼lex satisfy the follow-
ing property for all probabilistic knowledge basesKB =
(L,P ), all eventsε, φ, andψ, and all l, u∈ [0, 1]:
DI. If (ψ|φ)[l, u]∈P andε⇔φ is logically valid,

thenKB ‖∼(ψ|ε)[l, u].

Table 3: Summary of Nonmonotonic Properties

Property ||= ‖∼ lex ‖∼ z ‖∼ p

KLM postulates Yes Yes Yes Yes
Rational Monotonicity Yes Yes Yes No
Irrelevance Yes Yes Yes No
Direct Inference Yes Yes Yes Yes

Relationship between Probabilistic Formalisms
We now investigate the relationships between the probabilis-
tic formalisms of this paper. The following theorem shows
that logical entailment is stronger thanlex-entailment, and
that the latter is stronger thanz-entailment, which in turn is

stronger thanp-entailment That is, the logical implications
illustrated in Fig. 1 hold between the entailment relations.
Theorem 20 LetKB =(L,P ) bep-consistent, and letC =
(ψ|φ)[l, u] be a conditional constraint. Then,

(a) KB ‖∼ p
C impliesKB ‖∼ z

C.

(b) KB ‖∼ z
C impliesKB ‖∼ lex

C.

(c) KB ‖∼ lex
C impliesKB ||= C.

In general, none of the converse implications holds, as
Table 2 immediately shows. But in the special case where
L∪P has a model in which the conditioning eventφ has
a positive probability, the notions of logical,z-, and lex-
entailment of(ψ|φ)[l, u] from KB all coincide. This im-
portant result is expressed by the following theorem.
Theorem 21 LetKB =(L,P ) be ap-consistent probabilis-
tic knowledge base, and letC =(ψ|φ)[l, u] be a conditional
constraint such thatL∪P has a modelPr with Pr(φ)> 0.
Then,KB ||= C iff KB ‖∼ lex

C iff KB ‖∼ z
C.

The following example shows thatp-entailment, however,
generally does not coincide with logical entailment when
L∪P has a modelPr with Pr(φ)> 0.
Example 22 Consider again the probabilistic knowledge
baseKB1 =(L1, P1) shown in Table 1. Then,L1 ∪P1 has a
modelPr with Pr(eagle)>0, and(legs|eagle)[1,1] is a log-
ical, z-, andlex-consequence ofKB , but (legs|eagle)[1, 1]
is not ap-consequence ofKB . Note that(legs|eagle)[1, 1]
is in fact the tight logical,z-, andlex-consequence ofKB ,
while (legs|eagle)[0, 1] is the tightp-consequence ofKB . 2

Relationship to Classical Formalisms
We finally explore the relationship between the new notions
of p-, z-, andlex-entailment and their classical counterparts.
The following theorem shows that the entailment relation
‖∼ s for p-consistent probabilistic knowledge bases gener-
alizes the classical counterpart|∼s for p-consistent condi-
tional knowledge bases, wheres∈{p, z, lex}. Here, the op-
eratorγ on conditional constraints, sets of conditional con-
straints, and probabilistic knowledge bases replaces each
conditional constraint(ψ|φ)[1, 1] by the defaultψ←φ.
Theorem 23 LetKB =(L, {(ψi|φi)[1, 1] | i∈{1, . . . , n}})
be ap-consistent probabilistic knowledge base, and letβ|α
be a conditional event. Then, for alls∈{p, z, lex}, it holds
thatKB ‖∼ s(β|α)[1, 1] iff γ(KB) |∼s

β←α .



Algorithms
We now describe algorithms for the main inference prob-
lems in weak nonmonotonic probabilistic logics.

Overview
The main decision and optimization problems are as follows:

CONSISTENCY: Given a probabilistic knowledge baseKB ,
decide whetherKB is p-consistent.

S-CONSEQUENCE: Givenp-consistent probabilistic knowl-
edge baseKB and a conditional constraint(β|α)[l, u], de-
cide whetherKB ‖∼ s(β|α)[l, u], for some fixed seman-
ticss∈{p, z, lex}.

TIGHT S-CONSEQUENCE: Given ap-consistent probabilis-
tic knowledge baseKB and a conditional eventβ|α, com-
pute l, u∈ [0, 1] such thatKB ‖∼ s(β|α)[l, u], for some
fixed semanticss∈{p, z, lex}.

The basic idea behind the algorithms for solving these deci-
sion and optimization problems is to perform a reduction to
the following standard decision and optimization problems
in model-theoretic probabilistic logic:

POSITIVE PROBABILITY : Given a probabilistic knowledge
baseKB = (L,P ) and an eventα, decide whetherL∪P
has a modelPr such thatPr(α)> 0.

LOGICAL CONSEQUENCE: Given a probabilistic knowl-
edge baseKB and a conditional constraint(β|α)[l, u], de-
cide whetherKB ||=(β|α)[l, u].

TIGHT LOGICAL CONSEQUENCE: Given a probabilistic
knowledge baseKB and a conditional eventβ|α, com-
putel, u∈ [0, 1] such thatKB ||=tight(β|α)[l, u].
An algorithm for solving the decision problem CON-

SISTENCY (which is similar to the algorithm for decid-
ing ε-consistency in default reasoning by Goldszmidt and
Pearl (1991), and which also computes thez-partition
of KB , if KB is p-consistent) and an algorithm for solving
the optimization problem TIGHT p-CONSEQUENCEwere
presented in (Biazzoet al. 2001). The decision problemp-
CONSEQUENCEcan be solved in a similar way.

In the next subsection, we provide algorithms for solv-
ing the optimization problems TIGHT z- and TIGHT lex-
CONSEQUENCE. The decision problemsz- and lex-CON-
SEQUENCEcan be solved in a similar way.

Tight S-Consequence
We now present algorithms for solving the optimization
problems TIGHT z- and TIGHT lex-CONSEQUENCE. In
the sequel, letKB =(L,P ) be ap-consistent probabilistic
knowledge base, and let(P0, . . . , Pk) be itsz-partition.

We first provide some preparative definitions as follows.
ForG,H ⊆P , we say thatG is z-preferabletoH iff some
i∈{0, . . . , k} exists such thatPi⊆G, Pi 6⊆H, andPj ⊆G
andPj ⊆H for all i< j≤ k. We say thatG is lex-preferable
to H iff some i∈{0, . . . , k} exists such that|G ∩ Pi| >
|H∩Pi| and|G∩Pj |= |H∩Pj | for all i< j≤ k. ForD⊆ 2P

ands∈{z, lex}, we sayG is s-minimal in D iff G∈D and
noH ∈D is s-preferable toG.

Algorithm tight- z-consequence

Input : p-consistent probabilistic knowledge baseKB=(L, P ),
conditional eventβ|α.

Output : interval[l, u]⊆ [0, 1] such thatKB ‖∼ z
tight(β|α)[l, u].

Notation:(P0, . . . , Pk) denotes thez-partition ofKB .

1. R := L;
2. if R∪{α > 0} is unsatisfiablethen return [1, 0];
3. j := k;
4. while j≥ 0 and R∪Pj ∪{α > 0} is satisfiabledo begin
5. R := R∪Pj ;
6. j := j − 1
7. end;
8. computel, u∈ [0, 1] such thatR ||=tight(β|α)[l, u];
9. return [l, u].

Figure 2: Algorithmtight-z-consequence

Algorithm tight- lex-consequence

Input : p-consistent probabilistic knowledge baseKB=(L, P ),
conditional eventβ|α.

Output : interval[l, u]⊆ [0, 1] such thatKB ‖∼ lex
tight(β|α)[l, u].

Notation:(P0, . . . , Pk) denotes thez-partition ofKB .

1. R := L;
2. if R∪{α > 0} is unsatisfiablethen return [1, 0];
3. H := {∅};
4. for j := k downto 0 do begin
5. n := 0 ;
6. H′ := ∅;
7. for eachG ⊆ Dj andH ∈ H do
8. if R∪G∪H ∪{α > 0} is satisfiablethen
9. if n = |G| thenH′ := H′ ∪{G∪H}

10. else ifn < |G| then begin
11. H′ := {G∪H};
12. n := |G|
13. end;
14. H := H′;
15. end;
16. (l, u) := (1, 0);
17. for eachH ∈H do begin
18. computec, d∈ [0, 1] s. t.R∪H ||=tight(β|α)[c, d];
19. (l, u) := (min(l, c), max(u, d))
20. end;
21. return [l, u].

Figure 3: Algorithmtight-lex-consequence

The following theorem shows how TIGHT s-CONSE-
QUENCE, where s∈{z, lex}, can be reduced to POSI-
TIVE PROBABILITY and TIGHT LOGICAL CONSEQUENCE.
The main idea behind this reduction is that there exists
a setDs

α(KB)⊆ 2P such thatKB ‖∼ s(β|α)[l, u] iff L ∪
H ||=(β|α)[l, u] for all H ∈Ds

α(KB).

Theorem 24 LetKB =(L,P ) be ap-consistent probabilis-
tic knowledge base, and letβ|α be a conditional event. Let
s∈{z, lex}. LetDs

α(KB) denote the set of alls-minimal
elements in{H ⊆P |L∪H ∪{α> 0} is satisfiable}. Then,
l (resp.,u) such thatKB ‖∼ s

tight(β|α)[l, u] is given by:



(a) If L∪{α> 0} is unsatisfiable, thenl=1 (resp.,u=0).
(b) Otherwise,l= min c (resp.,u= max d) subject toL∪
H ||=tight(β|α)[c, d] andH ∈Ds

α(KB).

Fors= z (resp.,s= lex), Algorithm tight-s-consequence
(see Fig. 2 (resp., 3)) computes tight intervals unders-
entailment. Step 2 checks whetherL∪{α> 0} is unsatis-
fiable. If this is the case, then[1, 0] is returned by Theo-
rem 24 (a). Otherwise, we computeDs

α(KB) along thez-
partition ofKB in steps 3–7 (resp., 3–15), and the requested
tight interval using Theorem 24 (b) in step 8 (resp., 16–20).

Computational Complexity
In this section, we draw a precise picture of the computa-
tional complexity of the decision and optimization problems
described in the previous section.

Complexity Classes
We assume some basic knowledge about the complexity
classes P, NP, and co-NP. We now briefly describe some
other complexity classes that occur in our results. See espe-
cially (Garey & Johnson 1979; Johnson 1990; Papadimitriou
1994) for further background.

The classPNP contains all decision problems that can
be solved in deterministic polynomial time with an oracle
for NP. The classPNP

‖ contains the decision problems in

PNP where all oracle calls must be first prepared and then
issued in parallel. The relationship between these complex-
ity classes is described by the following inclusion hierarchy
(note that all inclusions are currently believed to be strict):

P ⊆ NP, co-NP ⊆ PNP
‖ ⊆ PNP .

To classify problems that compute an output value, rather
than a Yes / No-answer, function classes have been intro-
duced. In particular,FP and FPNP are the functional
analogs ofP andPNP, respectively.

Overview of Complexity Results
We now give an overview of the complexity results. We con-
sider the problemss-CONSEQUENCEand TIGHT s-CON-
SEQUENCE, wheres∈{z, lex}. Note that CONSISTENCY,
p-CONSEQUENCEand TIGHT p-CONSEQUENCEare com-
plete for NP, co-NP, andFPNP, respectively, in the general
and in restricted cases (Biazzoet al. 2001). We assume
thatKB and(β|α)[l, u] contain only rational numbers.

The complexity results are compactly summarized in Ta-
bles 4 and 5. The problemsz- and lex-CONSEQUENCE
are complete for the classesPNP

‖ and PNP, respectively,
whereas the problems TIGHT z- and TIGHT lex-CONSEQU-
ENCE are both complete for the classFPNP.

The hardness often holds even in the restrictedliteral-
Horn case, whereKB andβ|α are both literal-Horn. Here,
a conditional eventψ|φ (resp., logical constraintψ⇐φ) is
literal-Horn iff ψ is a basic event (resp.,ψ is either a ba-
sic event or the negation of a basic event) andφ is either>
or a conjunction of basic events. A conditional constraint
(ψ|φ)[l, u] is literal-Horn iff the conditional eventψ|φ is

literal-Horn. A probabilistic knowledge baseKB =(L,P )
is literal-Horn iff each member ofL∪P is literal-Horn.

Table 4: Complexity ofs-CONSEQUENCE

Problem Complexity

z-CONSEQUENCE PNP
‖ -complete

lex-CONSEQUENCE PNP-complete

Table 5: Complexity of TIGHT s-CONSEQUENCE

Problem Complexity

TIGHT z-CONSEQUENCE FPNP-complete

TIGHT lex-CONSEQUENCE FPNP-complete

Detailed Complexity Results
The following theorem shows thatz- and lex-CONSEQU-
ENCE are complete for the classesPNP

‖ andPNP, respec-

tively. Here, hardness forPNP
‖ andPNP follows from Theo-

rem 23 and thePNP
‖ - andPNP-hardness of deciding Pearl’s

entailment in SystemZ and Lehmann’s lexicographic en-
tailment (Eiter & Lukasiewicz 2000).

Theorem 25 Given ap-consistent probabilistic knowledge
baseKB =(L,P ), and a conditional constraint(β|α)[l, u],
deciding whetherKB ‖∼ z(β|α)[l, u], where s= z (resp.,
s= lex) is complete forPNP

‖ (resp.,PNP). For s= lex, hard-
ness holds even ifKB andβ|α are both literal-Horn.

The next theorem shows that TIGHT s-CONSEQUENCE,
wheres∈{z, lex}, isFPNP-complete. Here, hardness holds
by a polynomial reduction from theFPNP-completetravel-
ing salesman costproblem (Papadimitriou 1994).

Theorem 26 Given ap-consistent probabilistic knowledge
base KB =(L,P ), and a conditional eventβ|α, com-
puting l, u∈ [0, 1] such thatKB ‖∼ s

tight(β|α)[l,u], where

s∈{z, lex}, is complete forFPNP. Hardness holds even
if KB andβ|α are both literal-Horn, andL= ∅.

Related Work
We now describe the relationship to probabilistic logic under
coherence and to strong nonmonotonic probabilistic logics.

Probabilistic Logic under Coherence
The notions ofp-consistency andp-entailment coincide with
the notions of g-coherence and g-coherent entailment, re-
spectively, from probabilistic logic under coherence.

Probabilistic reasoning under coherence is an approach to
reasoning with conditional constraints, which has been ex-
tensively explored especially in the field of statistics, and
which is based on the coherence principle of de Finetti and
suitable generalizations of it (see, for example, the work by
Biazzo and Gilio (2000), Gilio (1995; 2002), and Gilio and
Scozzafava (1994)), or on similar principles that have been



adopted for lower and upper probabilities (Pelessoni and Vi-
cig (1998), Vicig (1996), and Walley (1991)). We now recall
the main concepts from probabilistic logic under coherence,
and then formulate the above equivalence results.

We first define (precise) probability assessments and their
coherence. Aprobability assessment(L,A) on a set of con-
ditional eventsE consists of a set of logical constraintsL,
and a mappingA from E to [0, 1]. Informally, L de-
scribes logical relationships, whileA represents probabilis-
tic knowledge. For{ψ1|φ1, . . . , ψn|φn}⊆E with n≥ 1 and
n real numberss1, . . . , sn, let the mappingG : IΦ → R be
defined as follows. For everyI ∈ IΦ:

G(I) =
n∑

i=1

si · I(φi) · (I(ψi)−A(ψi|φi)) .

In the framework of betting criterion,G can be inter-
preted as the random gain corresponding to a combination
of n bets of amountss1 ·A(ψ1|φ1), . . . , sn ·A(ψn|φn) on
ψ1|φ1, . . . , ψn|φn with stakess1, . . . , sn. More precisely,
to bet onψi|φi, one pays an amount ofsi ·A(ψi|φi), and
one gets back the amounts ofsi, 0, andsi ·A(ψi|φi), when
ψi ∧φi, ¬ψi ∧φi, and¬φi, respectively, turn out to be true.
The following notion ofcoherenceassures that it is im-
possible (for both the gambler and the bookmaker) to have
sure (or uniform) loss. A probability assessment(L,A)
on a set of conditional eventsE is coherentiff for every
{ψ1|φ1, . . . , ψn|φn}⊆E , n≥ 1, and for all realss1, . . . , sn,
it holdsmax {G(I) | I ∈IΦ, I |=L∪{φ1∨ · · · ∨φn}}≥ 0.

We next define imprecise probability assessments and the
notions of g-coherence and of g-coherent entailment for
them. An imprecise probability assessment(L,A) on a set
of conditional eventsE consists of a set of logical con-
straintsL and a mappingA that assigns to eachε∈E an
interval [l, u]⊆ [0, 1], l≤u. We say(L,A) is g-coherent
iff a coherent precise probability assessment(L,A?) on E
exists withA?(ε)∈A(ε) for all ε∈E . The imprecise prob-
ability assessment[l, u] on a conditional eventγ, denoted
{(γ, [l, u])}, is called ag-coherent consequenceof (L,A)
iff A?(γ)∈ [l, u] for every g-coherent precise probability as-
sessmentA? onE∪{γ} such thatA?(ε)∈A(ε) for all ε∈E .
It is a tight g-coherent consequenceof (L,A) iff l (resp.,u)
is the infimum (resp., supremum) ofA?(γ) subject to all g-
coherent precise probability assessmentsA? onE∪{γ} such
thatA?(ε)∈A(ε) for all ε∈E .

We finally define the concepts of g-coherence and of g-
coherent entailment for probabilistic knowledge bases (Bi-
azzoet al. 2002). Every imprecise probability assessment
IP =(L,A), whereL is finite, andA is defined on a fi-
nite set of conditional eventsE , can be represented by a
probabilistic knowledge base. Conversely, everyreduced
probabilistic knowledge baseKB =(L,P ), where (i)l≤u
for all (ε)[l, u]∈P , and (ii) ε1 6= ε2 for any two distinct
(ε1)[l1, u1], (ε2)[l2, u2]∈P , can be expressed by the impre-
cise assessmentIPKB =(L,AKB ) onEKB , where

AKB = {(ψ|φ, [l, u]) | (ψ|φ)[l, u]∈KB} ,
EKB = {ψ|φ | ∃ l, u∈ [0, 1] : (ψ|φ)[l, u]∈KB} .

A reduced probabilistic knowledge baseKB is g-coherent
iff IPKB is g-coherent. In this case, a conditional con-
straint (ψ|φ)[l, u] is a g-coherent(resp., tight g-coherent)

consequenceof KB , denotedKB ‖∼ g(ψ|φ)[l, u] (resp.,
KB ‖∼ g

tight(ψ|φ)[l, u]), iff {(ψ|φ, [l, u])} is a g-coherent
(resp., tight g-coherent) consequence ofIPKB .

The following theorem shows that g-coherence and g-
coherent entailment coincide withp-consistency andp-
entailment, respectively. It follows immediately from Theo-
rems 5 and 7 and similar characterizations of g-coherence
and g-coherent entailment through conditional constraint
rankings due to Biazzoet al. (2002).

Theorem 27 Let KB =(L,P ) be a reduced probabilistic
knowledge base, and letC be a conditional constraint.
Then, (a)KB is g-coherent iffKB is p-consistent; and
(b) if KB is p-consistent, thenKB ‖∼ g

C iff KB ‖∼ p
C.

Strong Nonmonotonic Probabilistic Logics
A companion paper (Lukasiewicz 2002) presents similar
probabilistic generalizations of Pearl’s entailment in Sys-
temZ and of Lehmann’s lexicographic entailment, which
are, however, quite different from the ones in this paper.

More precisely, the formalisms presented in (Lukasiewicz
2002) add to logical entailment in model-theoretic prob-
abilistic logic (i) some inheritance of purely probabilistic
knowledge, and (ii) a strategy for resolving inconsisten-
cies due to the inheritance of logical and purely probabilis-
tic knowledge. For this reason, they are generally much
stronger than logical entailment. Thus, they are especially
useful where logical entailment is too weak, for example,
in probabilistic logic programming (Lukasiewicz 2001b;
2001a) and probabilistic ontology reasoning in the Seman-
tic Web (Giugno & Lukasiewicz 2002). Other applications
are deriving degrees of belief from statistical knowledge and
degrees of belief, handling inconsistencies in probabilistic
knowledge bases, and probabilistic belief revision.

In particular, in reasoning from statistical knowledge and
degrees of belief, they show a similar behavior as reference-
class reasoning (Reichenbach 1949; Kyburg, Jr. 1974; 1983;
Pollock 1990) in a number of uncontroversial examples.
However, they also avoid many drawbacks of reference-
class reasoning (Lukasiewicz 2002): They can handle comp-
lex scenarios and even purely probabilistic subjective knowl-
edge as input. Furthermore, conclusions are drawn in a
global way from all the available knowledge as a whole.
The following example illustrates the use ofstrong lex -
entailment(Lukasiewicz 2002) for reasoning from statistical
knowledge and degrees of belief.

Example 28 Suppose that we have the statistical knowl-
edge “all penguins are birds”, “between 90% and 95% of
all birds fly”, “at most 5% of all penguins fly”, and “at least
95% of all yellow objects are easy to see”. Moreover,
assume that we believe “Sam is a yellow penguin”. What
do we then conclude about Sam’s property of being easy to
see? Under reference-class reasoning, which is a machinery
for dealing with such statistical knowledge and degrees of
belief, we conclude “Sam is easy to see with a probability of
at least 0.95”. This is also what we obtain using the notion
of strong lex -entailment: The above statistical knowledge
can be represented by the probabilistic knowledge base
KB =(L,P ) = ({bird⇐ penguin}, {(fly | bird)[0.9, 0.95],



(fly | penguin)[0, 0.05], (easy to see | yellow)[0.95, 1]}). It
is then easy to verify thatKB is stronglyp-consistent, and
that under stronglex -entailment fromKB , we obtain the
tight conclusion(easy to see | yellow ∧ penguin)[0.95, 1],
as desired; see (Lukasiewicz 2002).

Notice thatKB is also satisfiable andp-consistent, and
under logical andp-, z-, and lex-entailment fromKB , we
have(easy to see | yellow ∧ penguin)[0, 1], rather than the
above conditional constraint, as tight conclusion.2

Summary and Conclusion
Towards probabilistic formalisms for resolving local incon-
sistencies under model-theoretic probabilistic entailment,
we have introduced novel probabilistic generalizations of
Pearl’s entailment in SystemZ and of Lehmann’s lexicogra-
phic entailment. We have then analyzed the nonmonotonic
and semantic properties of the new notions of probabilistic
entailment. Furthermore, we have presented algorithms for
reasoning under the new formalisms, and we have given a
precise picture of its computational complexity.

As an important feature of the new notions of entail-
ment in SystemZ and of lexicographic entailment, we
have shown that they coincide with model-theoretic prob-
abilistic entailment whenever there are no local inconsisten-
cies. That is, the new formalisms are essentially identical to
model-theoretic probabilistic entailment, except that they re-
solve the problem of local inconsistencies. In particular, this
property also distinguishes the new notions of entailment in
this paper from the notion of probabilistic entailment under
coherence and from the notions of entailment in strong non-
monotonic probabilistic logics (Lukasiewicz 2002).

More precisely, probabilistic entailment under coherence
is related to the new formalisms in this paper, since it is a
generalization of default reasoning in SystemP (see also
(Biazzoet al. 2002; 2001)). However, there are several cru-
cial differences. First, the formalisms in this paper are gen-
eralizations of the more sophisticated notions of entailment
in SystemZ and lexicographic entailment, rather than en-
tailment in SystemP . As a consequence, they have nicer se-
mantic properties, and are strictly stronger than probabilistic
entailment under coherence. Second, as for resolving local
inconsistencies as described in Example 1, the formalisms
here coincide with model-theoretic probabilistic entailment
whenever there are no local inconsistencies, while proba-
bilistic entailment under coherence does not.

The notions of entailment in strong nonmonotonic prob-
abilistic logics (Lukasiewicz 2002), in contrast, aim at in-
creasing the inferential power of model-theoretic probabilis-
tic entailment by adding some restricted forms ofP-INH
(recall that model-theoretic probabilistic entailment com-
pletely lacksP-INH). For this reason, the notions of en-
tailment in (Lukasiewicz 2002) are generally much stronger
than model-theoretic probabilistic entailment. For example,
under the notions of entailment in (Lukasiewicz 2002), we
can conclude(fly |eagle)[0.95, 1] from KB1 of Table 1.

An interesting topic of future research is to develop
and explore further nonmonotonic formalisms for reason-
ing with conditional constraints. Besides extending classi-
cal formalisms for default reasoning, which may addition-

ally contain a strength assignment to the defaults, one may
also think about combining the new formalisms of this paper
and of (Lukasiewicz 2002) with some probability selection
technique (e.g., maximum entropy or center of mass).
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