
Game-Theoretic Golog under Partial Observability

Alberto Finzi
Institut für Informationssysteme, TU Wien

Favoritenstraße 9-11, 1040 Vienna, Austria
DIS, Università di Roma “La Sapienza”

Via Salaria 113, 00198 Rome, Italy

Thomas Lukasiewicz
Institut für Informationssysteme, TU Wien

Favoritenstraße 9-11, 1040 Vienna, Austria
DIS, Università di Roma “La Sapienza”

Via Salaria 113, 00198 Rome, Italy

ABSTRACT
We present the agent programming language POGTGolog, which
combines explicit agent programming in Golog with game-theore-
tic multi-agent planning in a special kind of partially observable
stochastic games (POSGs). The approach allows for partially spec-
ifying a high-level control program for a system of multiple agents,
and for optimally filling in missing details by viewing it as a gen-
eralization of a special POSG and computing a Nash equilibrium.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Languages, algorithms

Keywords
Game-theoretic agent programming, Golog, POSG

1. INTRODUCTION
In this paper, we present the language POGTGolog, which ex-

tends GTGolog [2] and thus also DTGolog [1] by partial observ-
ability. POGTGolog is a combination of explicit agent program-
ming in Golog with game-theoretic multi-agent planning in a spe-
cial kind of partially observable stochastic games (POSGs) [5].
POSGs are a partially observable generalization of Markov games.
They also generalize normal form games, partially observable Mar-
kov decision processes (POMDPs) [6], and decentralized POMDPs
(DEC-POMDPs) [4]. We consider a special kind of POSG, where
at each action selection point, every agent knows what the other
agents believe. By this assumption, we can characterize finite-
horizon Nash equilibria by finite-horizon value iteration as in fully
observable Markov games. The main contributions are as follows:

• We define the language POGTGolog, which integrates ex-
plicit agent programming in Golog with game-theoretic mul-
ti-agent planning in special POSGs. It is a generalization of
GTGolog that allows for partial observability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

• The language POGTGolog allows for specifying a control
program for a system of multiple agents, which is then com-
pleted in an optimal way by viewing it as a generalization of
a special POSG, and computing a Nash equilibrium.

• We show that POGTGolog generalizes its special class of
POSGs. Furthermore, we also show that the POGTGolog
interpreter is optimal in the sense that it computes a Nash
equilibrium of POGTGolog programs.

Note that further details are given in the extended paper [3].

2. PARTIALLY OBSERVABLE GTGOLOG
We now present the language POGTGolog for n≥ 2 agents. We

first describe the domain theory and the syntax of POGTGolog pro-
grams. We then define the semantics of POGTGolog programs. To
introduce the framework, we will refer to a rugby example (see
Fig. 2), which is adapted from Littman’s soccer example in [7].

Example 2.1 We assume two competing teams A = {a0, . . . , ap}
and B = {b0, . . . , bq}. The rugby field is a 4 × 5 grid. Each agent
occupies a square and is able to do one of the following actions
on each turn: N, S, E, W, stand, passTo(a), and receive (move up,
down, right, left, no move, pass, and receive the ball, resp.). An
agent is a ball owner iff it occupies the same square as the ball.
The ball follows the moves of the ball owner. The ball owner scores
when he/she steps into the adversary goal. When the ball owner
goes into the square occupied by the other agent, if the other agent
stands, possession of ball changes.

A
O
G

L

A
O
G

L
A
O
G

L

A
O
G

L

A

B

B

Aa1

b0

a0b1

a1

b0

a0a0b1

b1

Figure 1: Rugby Example.

Domain Theory. POGTGolog programs are interpreted w.r.t. a
background action theory AT and a background optimization the-
ory OT , specified in the Situation Calculus (SC) and extending
the Basic Action Theory (see [8]) to represent stochastic actions
and rewards. We can illustrate this encoding by considering the

rugby domain. Given two agents for each team (A = {a0, a1} and
B = {b0, b1}), to axiomatize the theory of actions AT , we intro-
duce the deterministic actions move(~α, ~β, ~m,~n), where ni, mj ∈
{N, S, E, W, stand, passTo, receive} (agents αi and βj execute
concurrently ni and mj , resp.) and the fluents at(αi, x, y, s) (agent
αi is at (x, y) in situation s) and haveBall(αi, s) (agent αi has the
ball in s) defined by the successor state axioms, e.g. for at we have:

at(α, x, y, do(a, s)) ≡ (∃x′, y′,m).at(α, x′, y′, s) ∧
moved(α, a,m) ∧ (m = stand ∧ y′ = y ∨m = N∧
y′ = y − 1 ∨m = S ∧ y′ = y + 1) ∧ x = x′ ∨

(m = E ∧ x′ = x− 1 ∨m = W ∧ x′ = x+ 1) ∧ y′ = y∨
(∃β).(m = passTo(β) ∨m = receive) ∧ y′ = y ∧ x′ = x .

Here, moved(α, a, m) is true iff m is the action of α in a.
Analogously to [1], we represent stochastic actions by means of

a finite set of deterministic actions. When a stochastic action is exe-
cuted, then with a certain probability “nature” executes exactly one
of its deterministic actions and produces one of its observations.
Going back to the example, we can introduce the stochastic ac-
tions moveTo(αi, x) representing the agent attempt in doing x. If
moveTo(αi, x) succeeds, then the associated deterministic action
a is executed, i.e., moved(αi, a, x), otherwise it fails and no action
is performed, i.e., moved(αi, a, stand). We assume also that after
the moveTo action, the agent can observe a team member in the
direction of the movement, e.g.,

prob(moveTo(α, x), s, a, observe(α′)) = p ≡
(∃y, p1).moved(α, a, y) ∧ (visible(α, α′, a, s)∧

(y = stand ∧ p1 = 0.2 ∨ y = x ∧ p1 = 0.8∧
p = p1 × 0.8) ∨ (¬visible(α, α′, s) ∧ p = 0.0)) .

The optimization theory OT specifies a reward and a utility
function. The former associates with every situation s and multi-
agent action a, a reward to each agent i∈I , denoted reward(i, a, s).
The utility function maps every reward and success probability to a
real-valued utility utility(v, pr), e.g., utility(v, pr) = v · pr .

Belief States. To model partial observability, we introduce belief
state situations b = (bi)i∈I , which represent the belief of agent i

expressed as a probability distribution over ordinary situations. For
example, in Fig. 2, the belief states of a0 and a1 are depicted, resp.,
in the upper and lower part. While in the belief state of a0 there is
only one situation s1 with probability 1, the belief state of a1 is a set
of four possible situations, i.e. b1 either at (1, 1) (a) or at (1, 2) (b),
and a0 either at (2, 1) (c) or at (3, 1) (d), with, e.g., the probability
distribution: {(sa,c, 0.5), (sa,d, 0.3), (sb,c, 0.1), (sb,d, 0.1)}.

Syntax of POGTGolog. Given the multi-agent actions represented
by the domain theory, programs p in POGTGolog are inductively
built using the following constructs (where φ is a condition, p1 and
p2 are programs, and α, . . . , β are multi-agent actions): Action se-
quence: p1; p2. Nondeterministic choice: α| . . . |β. Test action: φ?
(testing φ’s truth in the current situation). Nondeterministic choice
of an argument. Conditionals, while loops, procedures, includ-
ing recursion. We write ‖j∈Jchoice(j : aj,1| · · · |j : aj,nj

) to de-
note (j1:aj1,1‖ · · · ‖jk:ajk,1) | · · · | (j1:aj1,nj1

‖ · · · ‖jk:ajk,njk
),

with J a set of agents. Informally, the agents in J execute simulta-
neously one action each.

For example, the following high-level program (1) represents a
game schema for the rugby domain:

proc(schema,
choice(a0 : moveTo(a0, E)|stand|passTo(a1))‖

choice(a1 : moveTo(a1, E)|moveTo(a1, S)|receive) ;
choice(a0 : moveTo(a0, E)|stand|passTo(a1))‖

choice(a1 : moveTo(a1, E)|receive) ;
moveTo(a0, E)‖moveTo(a1, E) ;
moveTo(a0, E)‖moveTo(a1, E) ;nil).

In this schema, the agents a0 and a1 have two possible chances to
coordinate themselves in order to pass the ball; after that, both of
them have to run towards the goal.

Semantics of POGTGolog. The semantics of a POGTGolog pro-
gram p w.r.t. AT and OT for two agents 1 and 2 is defined through
the macro DoG(p, b, h, π, v, pr), where b = (b1, b2), v = (v1, v2),
and pr = (pr

1
, pr

2
). Here, we have as input the program p, a be-

lief state b, and a finite horizon h≥ 0. The predicate DoG then
determines a strategy π for both agents 1 and 2, its rewards v1 and
v2 to 1 and 2, and its success probabilities pr

1
and pr

2
from [0, 1],

respectively. We define DoG(p, b, h, π, v, pr) by induction on the
program structure. For example, the semantics of a two-agents par-
allel choice is defined as follows:
DoG(choice(1 : a1| . . . |an)‖choice(2 : o1| . . . |om);
p, b, h, π, v, pr) =def ∃πi,j , vi,j , pr i,j , π1, π2 :

Vn
i=1

Vm
j=1

DoG(1:ai‖2:bj ; p, b, h, 1:ai‖2:bj ;πi,j , vi,j , pr i,j)∧
(π1, π2)= selectNash({ri,j = utility(vi,j , pr i,j) | i, j}) ∧
π=π1‖π2; if φ1∧ψ1 then π1,1 else if φ2∧ψ1 then π2,1 . . .

else if φn∧ψm then πn,m ∧
v=

Pn
i=1

Pm
j=1

vi,j · π1(ai) · π2(oj) ∧
pr =

Pn
i=1

Pm
j=1

pr i,j · π1(ai) · π2(oj) .

Intuitively, we compute a Nash strategy by finite horizon value it-
eration for POSGs. For each possible pair of action choices, the
optimal strategy is calculated. Then, a Nash strategy is locally ex-
tracted from a matrix game by the function selectNash .

Strategy Generation. Suppose our aim is to control agent a1, which
executes its part of the strategy π that is obtained from the DoG

formula associated with the program p. For example, assuming a 4-
steps horizon, an optimal instantiation of the schema (1) is the strat-
egy π such that AT ∪OT |= DoG(schema, (ba0

, ba1
), 4, π, (v1,

v2), (pr1 , pr1)), where vi and pri are the associated values and
probabilities, respectively. Given the initial belief state in Fig. 2,
a possible strategy could be, e.g.:

passTo(a1)‖receive ; moveTo(a0, stand)‖moveTo(a1, E) ;
moveTo(a0, E)‖moveTo(a1, E) ;
moveTo(a0, E)‖moveTo(a1, E) ,

which gives to agent a1 three moveTo(a1, E) attempts to achieve
the touch-line.

Acknowledgments. This work was supported by the Austrian Sci-
ence Fund Project P18146-N04 and by a Heisenberg Professorship
of the German Research Foundation. We thank the reviewers for
their constructive comments, which helped to improve our work.

3. REFERENCES
[1] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun.

Decision-theoretic, high-level agent programming in the
situation calculus. In Proc. AAAI-2000, pp. 355–362.

[2] A. Finzi and T. Lukasiewicz. Game-theoretic agent
programming in Golog. In Proc. ECAI-2004, pp. 23–27.

[3] A. Finzi and T. Lukasiewicz, ‘Game-theoretic Golog under
partial observability’, Technical Report INFSYS RR-1843-
05-02, Institut für Informationssysteme, TU Wien, 2005.

[4] C. V. Goldman and S. Zilberstein. Decentralized control of
cooperative systems: Categorization and complexity analysis.
J. Artif. Intell. Res., 22:143–174, 2004.

[5] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In
Proc. AAAI-2004, pp. 709–715. AAAI Press.

[6] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains.
Artif. Intell., 101(1–2):99–134, 1998.

[7] M. L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proc. ICML-1994, pp. 157–163.

[8] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. 2001.

