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Abstract. In previous work, I have presented approaches to nonmonotonic prob-
abilistic reasoning, which is a probabilistic generalization of default reasoning
from conditional knowledge bases. In this paper, I continue this exciting line
of research. I present a new probabilistic generalization of Lehmann’s lexico-
graphic entailment, called

�������
-entailment, which is parameterized through a

value �
	�� 
������ that describes the strength of the inheritance of purely probabilis-
tic knowledge. Roughly, the new notion of entailment is obtained from logical
entailment in model-theoretic probabilistic logic by adding (i) the inheritance of
purely probabilistic knowledge of strength � , and (ii) a mechanism for resolving
inconsistencies due to the inheritance of logical and purely probabilistic knowl-
edge. I also explore the semantic properties of

�������
-entailment.

1 Introduction

During the recent decades, there has been a significant amount of research in AI that
concentrates on probabilistic reasoning with interval restrictions for conditional prob-
abilities, also called conditional constraints [26]. The main focus of this research was
especially on the computational aspects of probabilistic reasoning in model-theoretic
probabilistic logic, which is a major approach for handling conditional constraints that
can be traced back to Boole [8]. A wide spectrum of formal languages has been ex-
plored in model-theoretic probabilistic logic, ranging from constraints for unconditional
and conditional events (e.g., [1,14,25,26,28,32]) to linear inequalities over events [12].
Probabilistic reasoning in model-theoretic probabilistic logic, however, is not the only
way of handling conditional constraints. An alternative approach to probabilistic rea-
soning with conditional constraints is based on the coherence principle of de Finetti
(e.g., [5,16,17]) and has been extensively explored especially in the field of statistics.

Example 1.1. Suppose we have the knowledge “ostriches are birds”, “birds have legs”,
“birds fly with a probability of at least 0.95”, and “ostriches fly with a probability of
at most 0.05”. In model-theoretic probabilistic logic, we then conclude that both birds
and ostriches have legs, and that birds (resp., ostriches) fly with a probability of at
least 0.95 (resp., at most 0.05). In coherence-based probabilistic logic, in contrast, we
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conclude that birds (resp., ostriches) have (resp., do not have) legs, and that they fly
with a probability of at least 0.95 (resp., at most 0.05). �

The relationship between model-theoretic and coherence-based probabilistic logic
has recently been explored in [7]. In particular, it turned out that model-theoretic entail-
ment is strictly stronger that entailment under coherence, while satisfiability in model-
theoretic probabilistic logic is strictly weaker than consistency in probabilistic logic
under coherence. Furthermore, model-theoretic probabilistic entailment is well-known
to be a generalization of model-theoretic entailment in classical propositional logics,
while probabilistic entailment under coherence is a generalization of classical default
entailment from conditional knowledge bases in System � .

Hence, it is natural to wonder whether there are probabilistic generalizations of
other formalisms for default reasoning from conditional knowledge bases.

The literature contains several different proposals for default reasoning from condi-
tional knowledge bases and extensive work on its desired properties. The core of these
properties are the rationality postulates of System � proposed by Kraus et al. [19]. It
turned out that these rationality postulates constitute a sound and complete axiom sys-
tem for several classical model-theoretic entailment relations under uncertainty mea-
sures on worlds. In detail, they characterize classical model-theoretic entailment un-
der preferential structures, infinitesimal probabilities, possibility measures, and world
rankings. They also characterize an entailment relation based on conditional objects.
A survey of the above relationships is given in [4].

Mainly to solve problems with irrelevant information, rational closure as a more ad-
venturous entailment relation was proposed by Lehmann [23]. It is equivalent to entail-
ment in System � by Pearl [33], to the least specific possibility entailment by Benferhat
et al. [3], and to a conditional (modal) logic-based entailment by Lamarre [22]. Finally,
mainly to solve problems with property inheritance from classes to exceptional sub-
classes, further formalisms were proposed, in particular, lexicographic entailment by
Lehmann [24] and Benferhat et al. [2] and conditional entailment by Geffner [15].

Indeed, such formalisms for default reasoning from conditional knowledge bases
can be generalized to the probabilistic framework of conditional constraints [29,30]
(see Section 5 for more details on these formalisms and some of their applications):

� In [29], I introduce probabilistic generalizations of Pearl’s entailment in System �
and Lehmann’s lexicographic entailment, which lie between model-theoretic and
coherence-based probabilistic entailment. Roughly, the main difference between
model-theoretic and coherence-based probabilistic entailment is that the former re-
alizes an inheritance of logical knowledge, while the latter does not. Intuitively, the
new formalisms now add a strategy for resolving inconsistencies to model-theoretic
entailment, and a restricted form of inheritance of logical knowledge to entailment
under coherence. This is why they are weaker than model-theoretic probabilistic
entailment and stronger than coherence-based probabilistic entailment.

� In [30], I introduce similar probabilistic generalizations of Pearl’s entailment in
System � , Lehmann’s lexicographic entailment, and Geffner’s conditional entail-
ment. They, however, behave quite differently from the ones in [29]. Roughly,
model-theoretic probabilistic entailment realizes an inheritance of logical knowl-
edge, but no inheritance of purely probabilistic knowledge. The formalisms in [30]



now add an inheritance of purely probabilistic knowledge and a strategy for re-
solving inconsistencies (due to the inheritance of logical and purely probabilistic
knowledge) to entailment in model-theoretic probabilistic logic. This is why they
are generally much stronger than entailment in model-theoretic probabilistic logic.

In the present paper, I define a general approach to nonmonotonic probabilistic rea-
soning, which subsumes the above two approaches [29] and [30] as special cases, and
which also allows for nonmonotonic probabilistic reasoning between them. Roughly,
the main idea behind this new approach is to add to model-theoretic probabilistic en-
tailment (i) some inheritance of purely probabilistic knowledge that is controlled by a
strength ����� ���	�	
 , and (ii) a mechanism for resolving inconsistencies due to the inheri-
tance of logical and purely probabilistic knowledge. Based on this idea, I define a new
probabilistic generalization of Lehmann’s lexicographic entailment. Other formalisms
for default reasoning from conditional knowledge bases can be extended in quite much
the same way (such an extension of Pearl’s entailment in System � is included in [31]).
The main contributions of this paper can be summarized as follows:

� I present a new probabilistic generalization of Lehmann’s lexicographic entailment,
which is parameterized through a value ����� ������
 that describes the strength of the
inheritance of purely probabilistic knowledge. For ��
�� (resp., ��
�� ), it coincides
with probabilistic lexicographic entailment introduced in [29] (resp., [30]).

� I show that probabilistic lexicographic entailment of strength � has similar proper-
ties as its classical counterpart. In particular, it satisfies the rationality postulates of
System � and the property of Rational Monotonicity.

� I also show that probabilistic lexicographic entailment of strength � is a proper
generalization of its classical counterpart. Furthermore, it is weaker than some no-
tion of logical entailment in model-theoretic probabilistic logic, and under certain
conditions it coincides with this notion of entailment.

Note that detailed proofs of all results are given in [31].

2 Preliminaries

In this section, I define probabilistic knowledge bases. I then recall the notions of satis-
fiability and logical entailment from model-theoretic probabilistic logic, and the notions
of g-coherence and g-coherent entailment from probabilistic logic under coherence.

2.1 Probabilistic Knowledge Bases

I assume a set of basic events ��
���� � �	�	���	������� with ����� . I use  and ! to denote
false and true, respectively. I define events by induction as follows. Every element of
��"#�$ %�&!'� is an event. If ( and ) are events, then also *+( and ,-(%.#)0/ . A conditional
event is an expression of the form )21 ( with events ) and ( . A conditional constraint is
an expression ,3)41 (5/�� 67�98�
 with events )���( , and real numbers 69�98%�:� ������
 . I define proba-
bilistic formulas by induction as follows. Every conditional constraint is a probabilistic
formula. If ; and < are probabilistic formulas, then also *=; and ,�;�.><?/ . I use ,�;A@%<?/
and ,�;ABC<?/ to abbreviate *D,�*=;A.�*=<?/ and *D,�*=;A.:<?/ , respectively, where ; and <



are either two events or two probabilistic formulas, and adopt the usual conventions
to eliminate parentheses. A logical constraint is an event of the form ) B ( . A prob-
abilistic knowledge base

��� 
�,�� � �?/ consists of a finite set of logical constraints �
and a finite set of conditional constraints � .

Example 2.1. The knowledge “eagles are birds”, “birds have legs”, and “birds fly with
a probability of at least 0.95” can be expressed by the probabilistic knowledge base��� 
�,�� � �?/ 
�, �	��

��� B���������� � �	� ,�������� 1���

����/�� � ����
 ��, �"!51���

��� /	� � � #%$ ����
-� / . Note that in
model-theoretic probabilistic logic, )DB ( �&� means the same as ,3)41 (5/�� � �	�	
-� � , where-
as in probabilistic logic under coherence and in probabilistic lexicographic entailment,
) BC('�'� is strict, while ,3)41 (�/	� � �	�	
 � � may have exceptions. �

Example 2.2. The knowledge “ostriches are birds”, “birds have wings with a probabil-
ity between 0.65 and 0.75”, “birds fly with a probability of at least 0.95”, and “ostriches
fly with a probability of at most 0.05” can be expressed by the probabilistic knowledge
base

��� 
 ,�� � �?/ , where � 
 �(��

��� B*)+�-,��-
�.�/ � and � 
 � ,�01

2(�+� 1���

����/	� � � 3%$ � � �54�$ 
 �
, �"!51���

����/�� ��� #6$��	�	
-� , �"!�1�)7�-,��-
�.�/5/�� ������� �6$ 
�� . �

A world 8 is a truth assignment to the basic events in � (that is, a mapping 8:9��<;
�>=�?+@BA���CEDGF�HIA � ), which is inductively extended to all events by 8�,- 2/ 
JCEDGF�HIA , 8�,-!2/2

=�?+@KA , 8�,-*+(�/�
L=�?+@KA iff 8�,-(5/ 
LC�DMF�HIA , and 8�, ,�(5.+)D/9/ 
J=>?7@BA iff 8�,�(5/ 
L8�, )D/ 
J=�?+@KA .
I use NPO to denote the set of all worlds for � . A world 8 satisfies an event ( , or 8 is
a model of ( , denoted 841 
 ( , iff 8�,�(5/ 
L=>?7@BA . I extend worlds 8 to conditional events
)41 ( by 8�, )41 (5/ 
L=�?+@BA iff 8�1 
�) .�( , 8�,3)41 (5/ 
QCEDGF�HIA iff 8�1 
�* ) .�( , and 8�,3)41 (�/ 
R�SBT A%=>A%?+U R�S D	=IA iff 8�1 
�*+( . A probabilistic interpretation V"� is a probability function
on N O (that is, a mapping VW�B96N O ; � ������
 such that all V"� ,�8 / with 8 �XN O sum up to 1).
The probability of an event ( in V"� , denoted V"��,-(�/ , is the sum of all V"��,�8 / such that
8 �YN O and 8 1 
�( . For events ( and ) with V"��,-(�/[Z � , I write V"� , )41 (5/ to abbreviate
V"� , )�. (5/M\:V"� ,-(�/ . The truth of logical constraints and probabilistic formulas ; in a
probabilistic interpretation V"� , denoted V"��1
 ; , is defined as follows:

� V"�:1
 ) BC( iff V"� ,3) .�(5/ 
]V"� ,-(�/ ;
� V"�:1
 , )21 (5/�� 67� 8 
 iff V"� ,�(5/ 
 � or V"� , )41 (5/5� � 67�98�
 ;
� V"�:1
 *=; iff not V"��1
 ; ;
� V"�:1
 ,3; . <?/ iff V"��1
 ; and V"��1
 < .

I say VW� satisfies ; , or V"� is a model of ; , iff V"�D1 
 ; . Moreover, VW� satisfies a
set of logical constraints and probabilistic formulas ^ , or V"� is a model of ^ , de-
noted V"��1
_^ , iff V"� is a model of all ; �'^ .

2.2 Model-Theoretic Probabilistic Logic

I now recall the model-theoretic notions of satisfiability and logical entailment.
A set of logical constraints and probabilistic formulas ^ is satisfiable iff a model

of ^ exists. A conditional constraint , )41 (5/�� 67� 8 
 is a logical consequence of ^ , de-
noted ^ 1 1 
 , )41 (5/�� 67� 8 
 , iff each model of ^ is also a model of , )21 (5/�� 67� 8 
 . It is a tight
logical consequence of ^ , denoted ^ 1 1 
a` b5c�d�`5, )41 (5/�� 67� 8 
 , iff 6 
fe�g	hPVW��, )41 (5/ (resp.,
82
ji�kGlmV"��,3)41 (�/ ) subject to all models V"� of ^ with V"��,�(5/PZ � . Here, I define 6 
��



and 8�
 � , when ^ 1 1 
 ,�(=1 !2/	� � � �$
 . A probabilistic knowledge base
��� 
�,�� � �?/ is sat-

isfiable iff �#" � is satisfiable. A conditional constraint , )41 (5/�� 67� 8 
 is a logical conse-
quence of

���
, denoted

��� 1 1 
 , )41 (5/�� 67� 8 
 , iff �#" � 1 1 
 , )21 (5/�� 67� 8 
 . It is a tight logical
consequence of

���
, denoted

��� 1 1 
 ` b5c�d�` , )21 (5/	� 69�98�
 , iff �#" � 1 1 
 ` b5c�d�` , )41 (5/�� 67� 8 
 .
Example 2.3. Let

��� 
�,�� � �?/ be as in Example 2.1. In model-theoretic probabilistic
logic,

���
represents the logical knowledge “all eagles are birds” and “all birds have

legs”, and the probabilistic knowledge “birds fly with a probability of at least 0.95”. It
is not difficult to see that

���
is satisfiable. Some tight logical consequences of

���
are

shown in Table 1, left sides. For example, , �"! 1����>����� /	� � �	�	
 is a tight logical consequence
of

���
. Observe that the logical property of having legs is inherited from birds down to

the subclass of eagles, while the purely probabilistic property of being able to fly with
a probability of at least ��� #6$ is not inherited. �

Table 1. Tight intervals under logical and g-coherent entailment from ��� in Example 2.1.

Conditional Event � � ����� 	�
�� 
 ������ 	�
��������� ������� � � � � � � � � ��� �������� � �"!#�$��� ��% �&% � � ' �#% �
Conditional Event � � �(��� 	�
�� 
 ������ 	�
��)+* �������"� � 
-, .0/ � ��� � 
1, .0/�� � �)+* � �"!#�$��� � ' �&% � � ' �#% �

2.3 Probabilistic Logic under Coherence

I now recall the notions of g-coherence and g-coherent entailment. I define them by
using some characterizations through concepts from default reasoning [7].

A probabilistic interpretation V"� verifies a conditional constraint ,3)41 (5/�� 67�98�
 iff
V"� ,�(5/PZ � and VW�:1
 ,3)41 (5/�� 67�98�
 . A set of conditional constraints � is under a set of log-
ical constraints � in conflict with , )21 (5/	� 69�98�
 iff no model of � " � verifies ,3)41 (�/	� 69�98�
 .
A conditional constraint ranking 2 on a probabilistic knowledge base

��� 
�,�� � �?/
maps each element of � to a nonnegative integer. It is admissible with

���
iff every

�4315 � that is under � in conflict with some 6 � � contains a conditional constraint
673 such that 2+,�643 /98:2+,;6�/ . A probabilistic knowledge base

���
is g-coherent iff there

exists a conditional constraint ranking on
���

that is admissible with
���

.
Let

��� 
�,�� � �?/ be a g-coherent probabilistic knowledge base, and let , )21 (5/	� 69�98�

be a conditional constraint. Then, , )21 (5/�� 67� 8 
 is a g-coherent consequence of

���
, de-

noted
���=<�>@? , )21 (5/�� 67� 8 
 , iff ,�� � � " � , )21 (5/�� � ����
-� / is not g-coherent for all �'��� ����6�/ "

, 8 �	��
 . It is a tight g-coherent consequence of
���

, denoted
���=<�> ?` b5c�d�` , )41 (5/�� 67� 8 
 ,

iff 6 
 e�g	h$� (resp., 8�
ji�kGl+� ) subject to all g-coherent ,�� � � " � , )21 (5/�� � ����
-� / .
Example 2.4. Let

��� 
�,�� � �?/ be as in Example 2.1. In probabilistic logic under co-
herence,

���
represents the logical knowledge “all eagles are birds”, the default logical

knowledge “generally, birds have legs”, and the default probabilistic knowledge “gen-
erally, birds fly with a probability of at least 0.95”. It is not difficult to see that

���
is g-coherent. Some tight g-coherent consequences of

���
are shown in Table 1, right

sides. Observe that under g-coherent entailment, neither the logical property of having
legs nor the purely probabilistic one of being able to fly with a probability of at least
��� #6$ is inherited from the class of birds down to the subclass of eagles. �



3 Probabilistic Lexicographic Entailment of Strength �
I now introduce a new probabilistic generalization of Lehmann’s lexicographic entail-
ment, called 6������ -entailment, which is parameterized through a value ��� � ������
 that de-
scribes the strength of the inheritance of purely probabilistic knowledge. I first describe
the main ideas behind the new formalism, I then define the concept of � -consistency for
probabilistic knowledge bases, and I finally define the notion of 6������ -entailment.

3.1 Key Ideas

The inheritance of logical knowledge along subclass relationships is the following prop-
erty (for all events )���( ��(	� , probabilistic knowledge bases

���
, and 
=�:� � �	� � ):

L-INH. If
���=<�> ,3)41 (�/	� 
$��
&
 and (2BC( � is valid, then

��� <�> , )21 ( � /	� 
$��
&
 .
The inheritance of purely probabilistic knowledge along subclass relationships is de-
fined as follows (for all events ) �&( ��( � , probabilistic knowledge bases

���
, and inter-

vals � 69�98�
 5 � � �	�	
 different from � � � �$
 , � � ����
 , and � � � � 
 ):
P-INH. If

���=<�> ,3)41 (�/	� 69�98�
 and (2BC( � is valid, then
���=<�> , )21 ( � /�� 67� 8 
 .

It is not difficult to verify that logical entailment satisfies (L-INH), but does not
satisfy (P-INH), while g-coherent entailment satisfies neither (L-INH) nor (P-INH).

The basic idea behind the new probabilistic generalization of Lehmann’s lexico-
graphic entailment in this paper is that it adds to the notion of logical (resp., g-coherent)
entailment (i) some inheritance of purely probabilistic (resp., logical and purely prob-
abilistic) knowledge, where the inheritance of purely probabilistic knowledge depends
on a strength �?� � � �	�	
 , and (ii) a mechanism for resolving inconsistencies due to the
inheritance of logical and purely probabilistic knowledge.

The strength ����� ������
 determines to which extent purely probabilistic knowledge
is inherited from classes down to subclasses. In the extreme cases of ��
 � and ��
�� ,
purely probabilistic knowledge is not inherited at all [29] and completely inherited [30],
respectively, while for � 8 � 8 � , given the interval � 69�98�
 for the property of a class,
some interval � � ��
	
�� � 67� 8 
 is inherited down to all subclasses, where the tightness of
� � ��
�
 depends on the strength � (roughly, the higher is � , the tighter is � � ��
	
 ).

3.2 � -Consistency

I now introduce the notion of � -consistency for probabilistic knowledge bases.
A probabilistic interpretation V"��� -verifies a conditional constraint , )21 (5/	� 69�98�
 iff

V"� verifies ,3)41 (�/	� 69� 8�
 and V"��,�(5/�� � . A set of conditional constraints � � -tolerates a
conditional constraint 6 under a set of logical constraints � iff � " � has a model that
� -verifies 6 . I say � is under � in � -conflict with 6 iff no model of �:" � � -verifies 6 .
A conditional constraint ranking 2 on a probabilistic knowledge base

��� 
�,�� � �?/
is � -admissible with

���
iff every � 315 � that is under � in � -conflict with some 6 � �

contains some 673 such that 2+,;673 /98 2+,�6�/ .
I say

���
is � -consistent iff there exists a conditional constraint ranking 2 on

���
that is � -admissible with

���
. Note that the notion of � -consistency coincides with

the notion of g-coherence. The following theorem characterizes the � -consistency of��� 
�,�� � �?/ through the existence of an ordered partition of � .



Theorem 3.1. A probabilistic knowledge base
��� 
 ,�� � �?/ is � -consistent iff there

exists an ordered partition , ��� ���	����� ���$/ of � such that every ��� , � �����
	
, is the set of

all 6 ��� �
�� � � 
 that are � -tolerated under � by � �
�� � � 
 .
I call this ordered partition , � � �	���	��� � � / of � the � � -partition of

��� 
 ,�� � �?/ . The
following two examples show some � � -partitions.

Example 3.1. Consider the probabilistic knowledge base
��� 
 ,�� � �?/ given in Exam-

ple 2.1. For every �?� � � �	�	
 , the � � -partition of
���

is given by , ��� / 
�, �?/ . �

Example 3.2. Let
��� 
 ,�� � �?/ be as in Example 2.2. For all � �>� ��� ���� 
 , the � � -partition

of
��� 
�,�� � �?/ is , ��� /�
�, �?/ , as

��� 1 1 
 ` b5c�d�`5,�)+��,��-
�.�/=1 !2/	� � � ���� 
 . For all � �>, ���� ����
 , it is
, ��� � � � / 
:, � ,�01

2(�+� 1���

����/	� � � 3%$ � ��� 4�$ 
 � ,�� ! 1���

����/�� ��� #6$�� �	
�� ��� ,��"! 1�)+��,��-
�.�/�/	� � � � � �%$ 
-� / . �

3.3 Probabilistic Lexicographic Entailment of Strength �
I now define a probabilistic generalization of Lehmann’s lexicographic entailment [24]
of strength ��� � ���	�	
 for � -consistent probabilistic knowledge bases

��� 
 ,�� � �?/ .
I use the � � -partition , ��� �	���	��� ���$/ of

���
to define a lexicographic preference re-

lation on probabilistic interpretations as follows. For probabilistic interpretations VW�
and VW� 3 , I say V"� is 6 ��� � -preferable to VW� 3 iff some

� �%� �����	�	� � 	 � exists such that
1 � 6:� ���&1 VW�D1 
 6%� 1�Z 1 �06:� ����1�V"� 3 1 
 6%� 1 and 1 �06:� � 
 1 V"� 1 
 6%� 1 
 1 � 6:� � 
 1�V"� 3 1 

6%� 1 for all

� 8�� ��	 . A model V"� of a set of logical constraints and probabilistic formulas
^ is a 6 ���	� -minimal model of ^ iff no model of ^ is 6���� � -preferable to V"� . I use the
expression (�� � to abbreviate the probabilistic formula *D,�(=1 !2/	� � � �$
 . ,�(=1 !2/�� � ����
 .

I now define the notion of 6������ -entailment as follows. A conditional constraint
, )41 (5/�� 67� 8 
 is a 6����	� -consequence of

���
, denoted

��� < >������! , )21 (5/�� 67� 8�
 , iff every 6������ -
minimal model of � " � ("� � � satisfies ,3)41 (�/	� 69�98�
 . It is a tight 6���� � -consequence
of

���
, denoted

���=<�>������! ` b5c�d�` ,3)41 (�/	� 69� 8�
 , iff 6 (resp., 8 ) is the infimum (resp., supremum)
of VW� ,3)41 (5/ subject to all 6������ -minimal models V"� of � "�� ("� � � .

The following example shows some tight conclusions under 6 � � � -entailment. Simi-
lar to its classical counterpart, 6���� � -entailment realizes some subclass inheritance, with-
out showing the problem of inheritance blocking, that is, properties are also inherited
to subclasses that are exceptional relative to other properties. Observe also that logical
properties are completely inherited along subclass relationships, while the inheritance
of purely probabilistic properties depends on the strength � .

Example 3.3. Some tight intervals under 6������ -entailment from
��� 
 ,�� � �?/ of Exam-

ple 2.1 (resp., 2.2) are shown in Table 2 (resp., 3). For example, � 69�98�
 with
���=<�> �#�$�% ` b5c�d�`

, �"!51���������� /�� 67� 8 
 is given by � " � "�� ,���������� 1 !2/	� � �	�	
�� 1 1 
 ` b5c�d�` , �"! 1����>����� /	� 69�98�
 . �

4 Semantic Properties

In this section, I explore the semantic properties of 6���� � -entailment. I first study some
general nonmonotonic properties. I then explore the relationship to logical entailment
and to Lehmann’s lexicographic entailment.



Table 2. Tight intervals under
�������

-entailment from ��� in Example 2.1.

Conditional Event � � 
 � � 
-, � � � 
1, � � � 
1, � � � 
-, � � � �������� �������"� � � ��� � � � ����� � � ��� � � � ��� � � � ����� � � ������������ � �"!#�$��� ��% �#% � ��% �#% � ��% �#% � ��% �#% � ��% �#% � ��% �#% �)+* �������"� � 
-, .0/ � ��� � 
-, .$/�� ��� � 
-, .0/ � ��� � 
-, .0/ � � � � 
1, .0/�� � � � 
1, .$/�� ���)+* � ��!&�$��� � ' �#% � � ' ,������ % � � ' , �	� � % � � ' , 
	��� % � � ' , 
�� � % � � ' , 
	��� % �

Table 3. Tight intervals under
�������

-entailment from ��� in Example 2.2.

Conditional Event � � 
 � � 
1, � � � 
1, � � � 
-, � � � 
1, � � � �

 ��� ��� �������"� � 
-, �$/�� 
-, �$/�� � 
-, �0/ � 
-, �$/�� � 
-, �0/ ��
1, �$/ � � 
1, �0/�� 
1, ��/ � � 
-, �0/ � 
-, �$/�� � 
-, �0/ ��
1, �$/ �

 ��� ��� ��� ��� � ����� � ' �#% � � '��#% � � ' ,�%����#% � � ' , �����#% � � ' , �	� � ' , 
�� � � ' , �	��� ' ,���� �)+* ������� � � 
1, .$/�� ��� � 
-, .$/�� ��� � 
-, .0/ � ��� � 
-, .0/ � � � � 
-, .0/ � ��� � 
-, .0/ � ���)+* ��� ��� � ����� � 
�� 
-, 
0/�� � 
 � 
1, 
0/ � � 
 � 
1, 
$/ � � 
 � 
-, 
$/ � � 
 � 
1, 
0/ � � 
 � 
1, 
$/ �

I first consider the postulates Right Weakening (RW), Reflexivity (Ref), Left Logical
Equivalence (LLE), Cut, Cautious Monotonicity (CM), and Or by Kraus et al. [19],
which are commonly regarded as being particularly desirable for any reasonable notion
of nonmonotonic entailment. The following result shows that 6 � � � -entailment satisfies
(probabilistic versions of) these postulates. Here,

���=<�> �����  ,-(=1 � @ � 3 /�� 67� 8 
 denotes that
V"�D1 
 ,�(=1 � /�� 67�98�
$@ ,�(=1 � 3 /	� 69�98�
 for all 6���� � -minimal models V"� of � " ��� � �2@ �-3 � � � .
Theorem 4.1. Let

��� 
 ,�� � �?/ be a � -consistent probabilistic knowledge base, let
� ��� 3 � ( �9) be events, and let 67��6 3 �98 �98 3 � � ��� ��
 . Then,

RW. If ,-(=1 !2/	� 69�98�
"! ,3)41 !2/�� 6�3��9893 
 is logically valid and
���=<�> �#�$�! ,�(=1 � /�� 67�98�
 ,

then
���=<�> �����  , )21 � /�� 6�3��9893 
 .

Ref.
���=<�> �#�$�% ,���1 � /�� � ����
 .

LLE. If �$#%�13 is logically valid, then
��� <�> �����  ,-(=1 � /�� 67� 8 
 iff

��� < > �#�$�  ,-( 1 �13 /�� 67�98�
 .
Cut. If

��� < > �����! ,�� 1 �13 /�� � �	�	
 and
����<�> �#�$�! ,�(=1 � .&�13 /	� 69�98�
 , then

��� < >������! ,�(=1 �13 /�� 67� 8 
 .
CM. If

����<�> �#�$�% ,�� 1 �13 /	� � �	��
 and
��� < > �����  ,-(=1 �13 /�� 67� 8 
 , then

��� <�> �����  ,�(=1 �$.$� 3 /�� 67� 8 
 .
Or. If

��� < > �����  ,-(=1 � /�� 67� 8 
 and
��� <�> �����  ,�(=1 �13 /�� 67� 8 
 , then

����<�> �#�$�  ,-( 1 � @ � 3 /�� 67� 8 
 .
Another desirable property is Rational Monotonicity (RM) [19], which describes a

restricted monotony and allows to ignore some irrelevant knowledge. The next theorem
shows that 6���� � -entailment satisfies (a weak form of) RM. Here,

���('< > �#�$�% *D,��13 1 �$/	� � �	�	

denotes that V"� 1 
�,��13 1 � /	� � �	��
 for some 6 � � � -minimal model V"� of � " ��� � � � .
Theorem 4.2. Let

��� 
�,�� � �?/ be a � -consistent probabilistic knowledge base, and
let � ��� 33�9) be events. Then,

RM. If
����<�> �#�$�! , )21 � /	� � � �	
 and

���('<�> �����! *D,��13 1 � /�� � � ��
 , then
����<�>������! ,3)41 �$.$� 3 /�� � � ��
 .

I next explore the relationship to logical entailment with conditional constraints.
The following theorem shows that 6���� � -entailment of ,3)41 (�/	� 69�98�
 from

��� 
�,�� � �?/ is
weaker than logical entailment of ,3)41 (�/	� 69�98�
 from �#" ��" � ("� � � .



Theorem 4.3. Let
��� 
�,�� � �?/ be a � -consistent probabilistic knowledge base, and

let , )21 (5/�� 67� 8 
 be a conditional constraint. Then,
���=<�> �����  , )41 (5/�� 67� 8 
 implies ��"

� "�� (�� � �01 1 
 , )41 (5/�� 67� 8 
 .
In general, the converse does not hold. But, in the special case when ��" ��"�� (�� � �

is satisfiable, 6���� � -entailment of ,3)41 (�/	� 69�98�
 from
��� 
 ,�� � �?/ coincides with logical

entailment of ,3)41 (�/	� 69�98�
 from � " � "�� (�� � � , as the following theorem shows.

Theorem 4.4. Let
��� 
�,�� � �?/ be a � -consistent probabilistic knowledge base, and

let , )41 (5/�� 67� 8 
 be a conditional constraint such that �#" �#"4� ("� � � is satisfiable. Then,���=<�> �����  , )21 (5/�� 67� 8 
 iff �#" �A"#� (�� � �01 1 
 ,3)41 (�/	� 69�98�
 .
I finally study the relationship to Lehmann’s lexicographic entailment. The follow-

ing result shows that the new notion of 6���� � -entailment for � -consistent probabilistic
knowledge bases generalizes Lehmann’s lexicographic entailment for � -consistent con-
ditional knowledge bases, denoted 1 > �����

below.

Theorem 4.5. Let
��� 
 ,�� � �?/ be a � -consistent probabilistic knowledge base, where

� 
 � , ) � 1 ( � /�� � �	�	
D1 � � � � ���	��� �9�=� � , and let ,�� 1 � /	� � �	��
 be a conditional constraint.
Then,

��� <�>������! ,�� 1 �=/�� � ����
 iff ,�� ��� ) ��� ( � 1 � �:� � �	���	� �9�=� � / 1 > �#�$� � � � .

5 Special Cases

The notion of 6 ����� -entailment of strength �4
 � (resp., ��
�� ) coincides with the notion
of probabilistic lexicographic entailment introduced in [29] (resp., [30]). I now briefly
review these formalisms along with some of their applications.

5.1 Probabilistic Lexicographic Entailment of Strength �
The notion of ������� -entailment adds to logical (resp., g-coherent) entailment a strat-
egy for resolving inconsistencies due to the inheritance of logical knowledge (resp.,
a restricted form of inheritance of logical knowledge). This is why ����� � -entailment is
weaker than logical entailment and stronger than g-coherent entailment. Hence, ����� � -
entailment is a refinement of both logical and g-coherent entailment. It can be used in
place of logical entailment, when we want to resolve inconsistencies related to con-
ditioning on zero events. Here, it is especially well-suited as it coincides with logical
entailment as long as we condition on non-zero events [29]. Moreover, ����� � -entailment
can be used in place of g-coherent entailment, when we also want to have a restricted
form of inheritance of logical knowledge. The following example illustrates the use of
����� � -entailment to resolve inconsistencies related to conditioning on zero events.

Example 5.1. Consider the probabilistic knowledge base
��� 
�,�� � �?/ given by � 


�(��

��� B
	M��2(���	

2 � and ��
 � ,����E��� 1���

��� /�� � �	�	
-� , �"!�1���

��� /	� � �	��
 ��,��"!�1 	G��2%���	

25/	� � � � � �%$ 
-� .
It is not difficult to see that

���
is satisfiable, g-coherent, and � -consistent. Moreover,

it holds that
��� 1 1 
 ` b5c�d�`5,����E��� 1 	G��2%���	

25/	� � � �$
 and

��� 1 1 
 ` b5c�d�`�, �"! 1 	M��2%���	

25/	� � � � 
 .
Here, the empty interval is due to the fact that the logical property of being able to

fly is inherited from birds to penguins, and is incompatible there with penguins being



able to fly with a probability of at most 0.05. That is, there exists no model V"� of �#" �
such that V"��, 	M��2%���	

25/PZ � , and thus we are conditioning on the zero event 	G��2%���	

2 .

Hence, logical entailment does not provide the desired tight conclusions about pen-
guins from

���
: Rather than ,����E��� 1 	M��2%���	

25/	� � � � 
 and , �"!51 	M��2(���	

2 /�� � ��� 
 , we would

like to conclude ,�������� 1 	M��2(���	

2 /�� � ����
 and ,��"!�1 	G��2%���	

2 /�� ��� � � �%$ 
 , respectively. These
are exactly the tight conclusions about penguins obtained under ����� � -entailment:

���=<�> ����� �` b5c�d�` ,����E��� 1 	G��2%���	

2 /�� � �	�	
-� ���=<�> ����� �` b5c�d�` ,��"!51 	G��2%���	

2 /�� ��� � � �%$ 
 �
Note that the tight intervals under g-coherent entailment from

���
are as follows:

���=<�> ?` b5c�d�` ,����E��� 1 	G��2%���	

2 /�� ���	�	
-� ���=<�> ?` b5c�d�` ,��"!51 	G��2%���	

2 /�� ��� � � �%$ 
 �
Hence, also g-coherent entailment resolves inconsistencies related to conditioning on
zero events. However, g-coherent entailment is strictly weaker than ����� � -entailment,
and thus does not always produce the desired tight conclusions. �

5.2 Probabilistic Lexicographic Entailment of Strength
�

The notion of ����� � -entailment adds to logical entailment (i) some inheritance of purely
probabilistic knowledge, and (ii) a strategy for resolving inconsistencies due to the in-
heritance of logical and purely probabilistic knowledge. For this reason, ����� � -entailment
is generally much stronger than logical entailment. Thus, it is especially useful where
logical entailment is too weak, for example, in probabilistic logic programming [28,27]
and probabilistic ontology reasoning in the semantic web [18]. Other applications are
deriving degrees of belief from statistical knowledge and degrees of belief, handling
inconsistencies in probabilistic knowledge bases, and probabilistic belief revision.

In particular, in reasoning from statistical knowledge and degrees of belief, ����� � -
entailment shows a similar behavior as reference-class reasoning [35,20,21,34] in a
number of uncontroversial examples. But it also avoids many drawbacks of reference-
class reasoning [30]: It can handle complex scenarios and even purely probabilistic
subjective knowledge as input. Moreover, conclusions are drawn in a global way from
all the available knowledge as a whole. The following example illustrates the use of
����� � -entailment for reasoning from statistical knowledge and degrees of belief.

Example 5.2. Suppose that we have the statistical knowledge “all penguins are birds”,
“between 90% and 95% of all birds fly”, “at most 5% of all penguins fly”, and “at least
95% of all yellow objects are easy to see”. Moreover, assume that we believe “Sam is a
yellow penguin”. What do we then conclude about Sam’s property of being easy to see?
Under reference-class reasoning, which is a machinery for dealing with such statistical
knowledge and degrees of belief, we conclude “Sam is easy to see with a probability of
at least 0.95”. This is also what we obtain using the notion of ����� � -entailment:

More precisely, the above statistical knowledge can be represented by the proba-
bilistic knowledge base

��� 
 ,�� � �?/:
 ,7�(��

��� B 	M��2(���	

2 � �5� , �"!51���

��� /	� � � # � � � #%$ 
 �
, �"!51 	M��2(���	

2 /�� ������� �6$ 
 ��,����7�-! , ) ����� 1 !����
��)+04/�� ��� #6$ ����
-� / . It is then not difficult to verify
that

���
is � -consistent, and that under ����� � -entailment from

���
, we obtain the tight

conclusion ,����+�-! , ) ����� 1 !����
��)+04. 	G��2%���	

2 /�� ��� #6$ ����
 , as desired.



Note that
���

is also satisfiable and g-coherent. However, under both logical and
g-coherent entailment from

���
, we obtain the tight conclusion ,����+�-! , ) ����� 1 !����
��)�0 .

	G��2%���	

25/	� � �	�	
 , rather than the above desired one. �

6 Summary and Outlook

I have presented the notion of 6 � � � -entailment, which is a probabilistic generalization
of Lehmann’s lexicographic entailment that is parameterized through a value ����� � �	�	
 ,
which describes the strength of the inheritance of purely probabilistic knowledge. In
the special case of �4
 � (resp., �4
�� ), the new probabilistic formalism coincides with
probabilistic lexicographic entailment in [29] (resp., [30]). I have shown that 6 ��� � -
entailment has similar properties as its classical counterpart. In particular, it satisfies
the rationality postulates of System � and the property of Rational Monotonicity. Fur-
thermore, 6 � � � -entailment has a proper embedding of its classical counterpart.

An interesting topic of future research is to develop algorithms for probabilistic rea-
soning under 6���� � -entailment and to analyze its computational complexity (e.g., along
the lines of [29,30]). Another exciting topic of future research is to develop and explore
further formalisms for nonmonotonic probabilistic reasoning.
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