
Description Logic Programs under Probabilistic
Uncertainty and Fuzzy Vagueness

Thomas Lukasiewicz 1, 2 and Umberto Straccia 3

1 DIS, Sapienza Università di Roma, Via Ariosto 25, I-00185 Rome, Italy
lukasiewicz@dis.uniroma1.it

3 ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
straccia@isti.cnr.it

Abstract. This paper is directed towards an infrastructure for handling both un-
certainty and vagueness in the Rules, Logic, and Proof layers of the Semantic
Web. More concretely, we present probabilistic fuzzy description logic programs,
which combine fuzzy description logics, fuzzy logic programs (with stratified
nonmonotonic negation), and probabilistic uncertainty in a uniform framework
for the Semantic Web. We define important concepts dealing with both proba-
bilistic uncertainty and fuzzy vagueness, such as the expected truth value of a
crisp sentence and the probability of a vague sentence. Furthermore, we describe
a shopping agent example, which gives evidence of the usefulness of probabilistic
fuzzy description logic programs in realistic web applications. In the extended re-
port, we also provide algorithms for query processing in probabilistic fuzzy de-
scription logic programs, and we delineate a special case where query process-
ing can be done in polynomial time in the data complexity.

1 Introduction

The Semantic Web [1,4] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web
so that they can support richer discovery, data integration, navigation, and automa-
tion of tasks. The main ideas behind it are to add a machine-readable meaning to web
pages, to use ontologies for a precise definition of shared terms in web resources, to use
KR technology for automated reasoning from web resources, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [19], is currently the highest layer of suf-
ficient maturity. OWL consists of three increasingly expressive sublanguages, namely
OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially very ex-
pressive description logics with an RDF syntax. As shown in [8], ontology entailment
in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the de-
scription logic SHIF(D) (resp., SHOIN (D)). On top of the Ontology layer, sophis-
ticated representation and reasoning capabilities for the Rules, Logic, and Proof lay-
ers of the Semantic Web are being developed next.

2 Alternative address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, A-1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.

In particular, a key requirement of the layered architecture of the Semantic Web is to
integrate the Rules and the Ontology layer. Here, it is crucial to allow for building rules
on top of ontologies, that is, for rule-based systems that use vocabulary from ontology
knowledge bases. Another type of combination is to build ontologies on top of rules,
where ontological definitions are supplemented by rules or imported from rules. Both
types of integration have been realized in recent hybrid integrations of rules and ontolo-
gies under the loose coupling, called (loosely coupled) description logic programs (or
simply dl-programs), which have the form KB =(L,P), where L is a description logic
knowledge base, and P is a finite set of rules involving queries to L [3].

Other research efforts are directed towards handling uncertainty and vagueness in
the Semantic Web, which are motivated by important web and semantic web appli-
cations. In particular, formalisms for handling uncertainty are used in data integration,
ontology mapping, and information retrieval, while dealing with vagueness is motivated
by multimedia information processing / retrieval and natural language interfaces to the
Web. There are several extensions of description logics and web ontology languages
by probabilistic uncertainty and fuzzy vagueness. Similarly, there are also extensions of
description logic programs by probabilistic uncertainty [9] and fuzzy vagueness [16,10].

Clearly, since uncertainty and vagueness are semantically quite different, it is im-
portant to have a unifying formalism for the Semantic Web, which allows for dealing
with both uncertainty and vagueness. But even though there has been some important
work in the fuzzy logic community in this direction [5], to date there are no approaches
to description logic programs that allow for handling both uncertainty and vagueness.

In this paper, we try to fill this gap. We present a novel approach to description
logic programs, where probabilistic rules are defined on top of fuzzy rules, which are in
turn defined on top of fuzzy description logics. This approach allows for handling both
probabilistic uncertainty and fuzzy vagueness. Intuitively, it allows for defining several
rankings on ground atoms using fuzzy vagueness, and then for merging these rankings
using probabilistic uncertainty (by associating with each ranking a probabilistic weight
and building the weighted sum of all rankings). The main contributions are as follows:

– We present probabilistic fuzzy description logic programs, which combine (i) fuzzy
description logics, (ii) fuzzy logic programs (with stratified default negation), and
(iii) probabilistic uncertainty in a uniform framework for the Semantic Web.

– Such programs allow for handling both probabilistic uncertainty (especially for
probabilistic ontology mapping and probabilistic data integration) and fuzzy vague-
ness (especially for dealing with vague concepts). We define important concepts
dealing with both probabilistic uncertainty and fuzzy vagueness, such as the ex-
pected truth value of a crisp sentence and the probability of a vague sentence.

– We describe a shopping agent example, which gives evidence of the usefulness of
probabilistic fuzzy description logic programs in realistic web applications.

– In the extended report [11], we also give algorithms for query processing in prob-
abilistic fuzzy description logic programs, and we delineate a special case where
query processing is data tractable (under suitable assumptions about the underly-
ing fuzzy description logics), which is an important feature for the Web.

The rest of this paper is organized as follows. Section 2 gives a motivating example. In
Section 3, we recall combination strategies and fuzzy description logics. Section 4 de-

fines fuzzy dl-programs on top of fuzzy description logics. In Section 5, we then define
probabilistic fuzzy dl-programs. Section 6 summarizes our main results and gives an
outlook on future research. Note that algorithms for query processing and data tractabil-
ity results as well as further technical details are given in the extended report [11].

2 Motivating Example

In this section, we describe a shopping agent example, where we encounter both proba-
bilistic uncertainty (in resource selection, ontology mapping / query transformation, and
data integration) and fuzzy vagueness (in query matching with vague concepts).

Example 2.1 (Shopping Agent). Suppose a person would like to buy “a sports car that
costs at most about 22 000 C and that has a power of around 150 HP”.

In todays Web, the buyer has to manually (i) search for car selling sites, e.g., using
Google, (ii) select the most promising sites (e.g., http://www.autos.com), (iii) browse
through them, query them to see the cars that they sell, and match the cars with our
requirements, (iv) select the offers in each web site that match our requirements, and
(v) eventually merge all the best offers from each site and select the best ones.

It is obvious that the whole process is rather tedious and time consuming, since e.g.
(i) the buyer has to visit many sites, (ii) the browsing in each site is very time consuming,
(iii) finding the right information in a site (which has to match the requirements) is not
simple, and (iv) the way of browsing and querying may differ from site to site.

A shopping agent may now support us as follows, automatizing the whole selection
process once it receives the request / query q from the buyer:

– Probabilistic Resource Selection. The agent selects some sites / resources S that it
considers as promising for the buyer’s request. The agent has to select a subset of
some relevant resources, since it is not reasonable to assume that it will access and
query all the resources known to him. The relevance of a resource S to a query is
usually (automatically) estimated as the probability Pr(q|S) (the probability that
the information need represented by the query q is satisfied by the searching re-
source S, see e.g. [2,6]). It is not difficult to see that such probabilities can be
represented by probabilistic rules.

– Probabilistic Ontology Mapping / Query Reformulation. For the top-k selected
sites, the agent has to reformulate the buyer’s query using the terminology / onto-
logy of the specific car selling site. For this task, the agent relies on so-called trans-
formation rules, which say how to translate a concept or property of the agent’s
ontology into the ontology of the information resource (which is called ontology
mapping in the Semantic Web). To relate a concept B of the buyer’s ontology to
a concept S of the seller’s ontology, one often automatically estimates the proba-
bility P (B|S) that an instance of S is also an instance of B, which can then be
represented as a probabilistic rule [17,18,12].

– Vague Query Matching. Once the agent has translated the buyer’s request for the
specific site’s terminology, the agent submits the query. But the buyer’s request
often contains many so-called vague / fuzzy concepts such as “the price is around
22 000 C or less”, rather than strict conditions, and thus a car may match the buyer’s

Table 1. Combination strategies of various fuzzy logics.

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a B b min(1− a + b, 1)

(
1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

	 a 1− a

(
1 if a = 0

0 otherwise

(
1 if a = 0

0 otherwise
1− a

condition to a degree. As a consequence, a site / resource / web service may return
a ranked list of cars, where the ranks depend on the degrees to which the sold items
match the buyer’s requests q.

– Probabilistic Data Integration. Eventually, the agent has to combine the ranked lists
(see e.g. [14]) by considering the involved matching (or truth) degrees (vagueness)
and probability degrees (uncertainty) and show the top-n items to the buyer.

3 Preliminaries

In this section, we review combination strategies and fuzzy description logics, mainly
through some examples; more details are given in the extended report [11].

Combination Strategies. Rather than being restricted to a binary truth value among
false and true, vague propositions may also have a truth value strictly between false
and true. In the sequel, we use the unit interval [0, 1] as the set of all possible truth
values, where 0 and 1 represent the ordinary binary truth values false and true, re-
spectively. For example, the vague proposition “John is a tall man” may be more or less
true, and it is thus associated with a truth value in [0, 1], depending on the body height
of John. To combine and modify the truth values in [0, 1], we assume combination
strategies, namely, conjunction, disjunction, implication, and negation strategies, de-
noted⊗,⊕, B, and	, respectively, which are functions⊗,⊕, B : [0, 1]× [0, 1]→ [0, 1]
and 	 : [0, 1]→ [0, 1] that generalize the ordinary Boolean operators ∧, ∨, →, and ¬,
respectively, to the set of truth values [0, 1]. As usual, we assume that combination
strategies have some natural algebraic properties. Note that conjunction and disjunction
strategies are also called triangular norms and triangular co-norms [7], respectively.

Example 3.1. The combination strategies of various fuzzy logics are shown in Table 1.

Fuzzy Description Logics. Intuitively, description logics model a domain of interest in
terms of concepts and roles, which represent classes of individuals resp. binary relations
between classes of individuals. A knowledge base encodes in particular subset relation-
ships between concepts, subset relationships between roles, the membership of individ-
uals to concepts, and the membership of pairs of individuals to roles. In fuzzy descrip-
tion logics, these relationships and memberships then have a degree of truth in [0, 1].

(a) (b) (c) (d)

Fig. 1. (a) Tra-function, (b) Tri-function, (c) L-function, and (d) R-function.

We assume fuzzy generalizations of the description logics SHIF(D) and SHO-
IN (D) behind OWL Lite and OWL DL, respectively. We now describe the syntax of
fuzzy SHIF(D) and fuzzy SHOIN (D) (see especially [15]) and illustrate it through
an example. For a formal semantics and more details see [11]; for an implementation of
fuzzy SHIF(D), the fuzzyDL system, see http://gaia.isti.cnr.it/∼straccia.

The elementary ingredients are as follows. We assume a set of data values, a set
of elementary datatypes, and a set of datatype predicates (each with a predefined ar-
ity n> 1). A datatype is an elementary datatype or a finite set of data values. A fuzzy
datatype theory D=(∆D, ·D) consists of a datatype domain ∆D and a mapping
·D that assigns to each data value an element of ∆D, to each elementary datatype
a subset of ∆D, and to each datatype predicate of arity n a fuzzy relation over ∆D

of arity n (that is, a mapping (∆D)n → [0, 1]). We extend ·D to all datatypes by
{v1, . . . , vn}D = {vD1 , . . . , vDn }. Non-crisp predicates are usually defined by functions
for specifying fuzzy set membership degrees, such as the trapezoidal, triangular, left
shoulder, and right shoulder functions (see Fig. 1). Let A, RA, RD, I, and M be pair-
wise disjoint sets of atomic concepts, abstract roles, datatype roles, individuals, and
fuzzy modifiers, respectively.

A role is any element of RA ∪R−
A ∪RD (where R−

A is the set of inverses R− of
allR∈RA). We define concepts inductively as follows. EachA∈A is a concept,⊥ and
> are concepts, and if a1, . . . , an ∈ I, then {a1, . . . , an} is a concept (called oneOf).
If C, C1, C2 are concepts, R,S ∈RA ∪R−

A, and m∈M, then (C1 u C2), (C1 t C2),
¬C, and m(C) are concepts (called conjunction, disjunction, negation, and fuzzy mod-
ification, respectively), as well as ∃R.C, ∀R.C, >nS, and 6nS (called exists, value,
atleast, and atmost restriction, respectively) for an integer n> 0. If D is a datatype and
T, T1, . . . , Tn ∈RD, then ∃T1, . . . , Tn.D, ∀T1, . . . , Tn.D, >nT , and 6nT are con-
cepts (called datatype exists, value, atleast, and atmost restriction, respectively) for an
integer n>0. We eliminate parentheses as usual.

A crisp axiom has one of the following forms: (1) C vD (called concept inclu-
sion axiom), where C and D are concepts; (2) RvS (called role inclusion axiom),
where either R,S ∈RA ∪R−

A or R,S ∈RD; (3) Trans(R) (called transitivity axiom),
where R∈RA; (4) C(a) (called concept assertion axiom), where C is a concept and
a∈ I; (5) R(a, b) (resp., U(a, v)) (called role assertion axiom), where R∈RA (resp.,
U ∈RD) and a, b ∈ I (resp., a∈ I and v is a data value); and (6) a= b (resp., a 6= b)
(equality (resp., inequality) axiom), where a, b∈ I. We define fuzzy axioms as follows:
A fuzzy concept inclusion (resp., fuzzy role inclusion, fuzzy concept assertion, fuzzy role
assertion) axiom is of the form α θ n, where α is a concept inclusion (resp., role inclu-
sion, concept assertion, role assertion) axiom, θ∈{6,=,>}, and n∈ [0, 1]. Informally,
α6n (resp., α=n, α>n) encodes that the truth value of α is at most (resp., equal to,

at least) n. We often use α to abbreviate α=1. A fuzzy (description logic) knowledge
base L is a finite set of fuzzy axioms, transitivity axioms, and equality and inequality
axioms. For decidability, number restrictions in L are restricted to simple abstract roles.
Notice that L may contain fuzzy concept inclusion axioms (between general concepts).

Fuzzy SHIF(D) has the same syntax as fuzzy SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 3.2 (Shopping Agent cont’d). The following axioms are an excerpt of the
fuzzy description logic knowledge base L that conceptualizes the site in Example 2.1:

Cars t Trucks tVans t SUVs v Vehicles , (1)

PassengerCars t LuxuryCars v Cars , (2)

CompactCars tMidSizeCars t SportyCars v PassengerCars , (3)

Cars v (∃hasReview .Integer) u (∃hasInvoice.Integer) u (∃hasHP .Integer)

u (∃hasResellValue.Integer) u (∃hasSafetyFeatures.Integer) u . . . , (4)

(SportyCar u (∃hasInvoice.{18883}) u (∃hasHP .{166}) u . . .)(MazdaMX5Miata) , (5)

(SportyCar u (∃hasInvoice.{20341}) u (∃hasHP .{200}) u . . .)(VolkswagenGTI) , (6)

(SportyCar u (∃hasInvoice.{24029}) u (∃hasHP .{162}) u . . .)(MitsubishiES) . (7)

Here, axioms (1)–(3) describe the concept taxonomy of the site, while axiom (4) de-
scribes the datatype attributes of the cars sold in the site. For example, every passenger
or luxury car is also a car, and every car has a resell value. Axioms (5)–(7) describe
the properties of some sold cars. For example, the MazdaMX5Miata is a sports car,
costing 18 883 C. Note that Integer denotes the datatype of all integers.

We may now encode “costs at most about 22 000 C” and “has a power of around
150 HP” in the buyer’s request through the following concepts C and D, respectively:

C = ∃hasInvoice.LeqAbout22000 and D = ∃hasHP .Around150HP ,

where LeqAbout22000 = L(22000, 25000) and Around150HP = Tri(125, 150, 175)
(see Fig. 1). The latter two equations define the fuzzy concepts “at most about 22 000 C”
resp. “around 150 HP”. The former is modeled as a left shoulder function stating that
if the price is less than 22 000, then the degree of truth (degree of buyer’s satisfaction)
is 1, else the truth is linearly decreasing to 0 (reached at the cost of 25 000). In fact, we
are modeling a case were the buyer would like to pay less than 22 000, though may still
accept a higher price (up to 25 000) to a lesser degree. Similarly, the latter models the
fuzzy concept “around 150 HP” as a triangular function with vertice in 150 HP.

The following fuzzy axioms are (tight) logical consequences of the above descrip-
tion logic knowledge base L (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) = 1.0 , C(VolkswagenGTI) = 1.0 , C(MitsubishiES) = 0.32 ,

D(MazdaMX5Miata) = 0.36 , D(VolkswagenGTI) = 0.0 , D(MitsubishiES) = 0.56 .

4 Fuzzy Description Logic Programs

In this section, we define fuzzy dl-programs, which are similar to the fuzzy dl-programs
in [10], except that they are based on fuzzy description logics as in [15], and that we

consider only stratified fuzzy dl-programs here. Their canonical model associates with
every ground atom a truth value, and so defines a ranking on the Herbrand base. We first
introduce the syntax, and we then define the semantics of positive and stratified fuzzy
dl-programs in terms of a least model resp. an iterative least model semantics.

Syntax. Informally, a normal fuzzy program is a finite collection of normal fuzzy rules,
which are similar to ordinary normal rules, except that (i) they have a lower bound
for their truth value, and (ii) they refer to fuzzy interpretations rather than binary in-
terpretations, and thus every of their logical operators (that is, “←”, “∧”, and “not”)
is associated with a combination strategy (that is, “←” and “∧” are associated with a
conjunction strategy⊗, while “not” is associated with a negation strategy) to specify
how the operator combines truth values. Formally, we assume a function-free first-order
vocabulary Φ with finite nonempty sets of constant symbols (which also belong to the
set I of all description logic individuals) and predicate symbols, and a set X of vari-
ables. A term is a constant symbol from Φ or a variable from X . If p is a predicate
symbol of arity k> 0 from Φ, and t1, . . ., tk are terms, then p(t1, . . ., tk) is an atom. A
literal is an atom a or a default-negated atom not a. A normal fuzzy rule r has the form

a←⊗0 b1 ∧⊗1 b2 ∧⊗2 · · · ∧⊗k−1 bk∧⊗k

not	k+1 bk+1 ∧⊗k+1 · · · ∧⊗m−1 not	m bm > v ,
(8)

where m> k> 0, a, b1, . . . , bm are atoms, ⊗0, . . . ,⊗m−1 are conjunction strategies,
	k+1, . . . ,	m are negation strategies, and v ∈ [0, 1]. We call a the head of r, de-
noted H(r), while the conjunction b1 ∧⊗1 . . . ∧⊗m−1 not	m bm is the body of r.
We define B(r) =B+(r)∪B−(r), where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1,
. . . , bm}. A normal fuzzy program P is a finite set of normal fuzzy rules.

Informally, a fuzzy dl-program consists of a fuzzy description logic knowledge
base L and a generalized normal fuzzy program P , which may contain queries to L. In
such a query, it is asked whether a concept or a role assertion logically follows from L
or not (see [3] for more background and examples of such queries). Formally, a dl-
query Q(t) is either (a) of the form C(t), where C is a concept, and t is a term, or
(b) of the form R(t1, t2), where R is a role, and t1 and t2 are terms. A dl-atom has
the form DL[S1] p1, . . . , Sm] pm; Q](t), where each Si is an atomic concept or a
role, pi is a unary resp. binary predicate symbol, Q(t) is a dl-query, and m> 0. We
call p1, . . . , pm its input predicate symbols. Intuitively, Si] pi encodes that the truth
value of every Si(e) is at least the truth value of pi(e), where e is a constant (resp., pair
of constants) from Φ when Si is a concept (resp., role) (and thus pi is a unary (resp.,
binary) predicate symbol). A fuzzy dl-rule r is of the form (8), where any bi in the body
of r may be a dl-atom. A fuzzy dl-program KB =(L,P) consists of a satisfiable fuzzy
description logic knowledge base L and a finite set of fuzzy dl-rules P . Substitutions,
ground substitutions, ground terms, ground atoms, etc., are defined as usual. We denote
by ground(P) the set of all ground instances of fuzzy dl-rules in P relative to Φ.

Example 4.1 (Shopping Agent cont’d). A fuzzy dl-program KB =(L,P) is given by
the fuzzy description logic knowledge base L in Example 3.2, and the set of fuzzy dl-

rules P , which contains only the following fuzzy dl-rule encoding the buyer’s request,
where ⊗ may, e.g., be the Gödel conjunction strategy (that is, x⊗ y = min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHP(x, y2)∧⊗
DL[LeqAbout22000](y1) ∧⊗ DL[Around150HP](y2) > 1 .

Models of Fuzzy DL-Programs. We first define fuzzy (Herbrand) interpretations, the
semantics of dl-queries, and the truth of fuzzy dl-rules and of fuzzy dl-programs in
interpretations. In the sequel, let KB =(L,P) be a (fully general) fuzzy dl-program.

We denote by HBΦ (resp., HU Φ) the Herbrand base (resp., universe) over Φ. In
the sequel, we assume that HBΦ is nonempty. A fuzzy interpretation I is a mapping
I : HBΦ→ [0, 1]. We denote by HBΦ the fuzzy interpretation I such that I(a) = 1 for
all a∈HBΦ. For fuzzy interpretations I and J , we write I ⊆J iff I(a) 6J(a) for all
a∈HBΦ, and we define the intersection of I and J , denoted I ∩J , by (I ∩J)(a) =
min(I(a), J(a)) for all a∈HBΦ. Note that I ⊆HBΦ for all fuzzy interpretations I .
The truth value of a∈HBΦ in I under L, denoted IL(a), is defined as I(a). The truth
value of a ground dl-atom a=DL[S1] p1, . . . , Sm] pm;Q](c) in I under L, de-
noted IL(a), is the supremum of v subject toL∪

⋃m
i=1Ai(I) |=Q(c) > v and v ∈ [0, 1],

whereAi(I) = {Si(e) > I(pi(e)) | I(pi(e))> 0, pi(e)∈HBΦ}. We say I is a model of
a ground fuzzy dl-rule r of form (8) under L, denoted I |=L r, iff

IL(a) > IL(b1)⊗1 IL(b2)⊗2 · · · ⊗k−1 IL(bk) ⊗k

	k+1 IL(bk+1)⊗k+1 · · · ⊗m−1 	mIL(bm)⊗0 v ,

Here, we implicitly assume that ⊗1, . . . ,⊗m−1,⊗0 are evaluated from left to right. We
say I is a model of KB =(L,P), denoted I |=KB , iff I |=L r for all r∈ ground(P).

Positive Fuzzy DL-Programs. Informally, positive fuzzy dl-programs have no default
negation: A fuzzy dl-program KB =(L,P) is positive iff P is “not”-free.

For ordinary positive programs, as well as positive dl-programs KB , the intersection
of a set of models of KB is also a model of KB . A similar result holds for positive
fuzzy dl-programs KB . Hence, every positive fuzzy dl-program KB has as its canonical
model a unique least model, denoted MKB , which is contained in every model of KB .

Example 4.2 (Shopping Agent cont’d). The fuzzy dl-program KB =(L,P) of Exam-
ple 4.1 is positive, and its minimal model MKB is given as follows:

MKB (query(MazdaMX5Miata)) = 0.36 , MKB (query(MitsubishiES)) = 0.32 ,

and all other ground instances of query(x) have the truth value 0 under MKB .

Stratified Fuzzy DL-Programs. We next define stratified fuzzy dl-programs, which are
composed of hierarchic layers of positive fuzzy dl-programs that are linked via default
negation. Like for ordinary stratified programs, as well as stratified dl-programs, a min-
imal model can be defined by a finite number of iterative least models, which naturally
describes as the canonical model the semantics of stratified fuzzy dl-programs.

For any fuzzy dl-program KB =(L,P), let DLP denote the set of all ground dl-
atoms that occur in ground(P). An input atom of a∈DLP is a ground atom with an
input predicate of a and constant symbols in Φ. A stratification of KB =(L,P) (with
respect to DLP) is a mapping λ :HBΦ ∪DLP→{0, 1, . . . , k} such that

(i) λ(H(r))>λ(a) (resp., λ(H(r))>λ(a)) for each r ∈ ground(P) and a ∈ B+(r)
(resp., a ∈ B−(r)), and

(ii) λ(a) >λ(a′) for each input atom a′ of each a ∈ DLP ,

where k> 0 is the length of λ. For i∈{0, . . . , k}, we define KB i = (L,Pi) = (L, {r ∈
ground(P) |λ(H(r)) = i}), and we define HBPi (resp., HB?

Pi
) as the set of all a ∈

HBΦ such that λ(a) = i (resp., λ(a) 6 i).
A fuzzy dl-program KB =(L,P) is stratified iff it has a stratification λ of some

length k> 0. We define its iterative least models Mi⊆HBΦ with i∈{0, . . . , k} by:

(i) M0 is the least model of KB0;
(ii) if i> 0, then Mi is the least model of KB i such that Mi|HB?

Pi−1
=Mi−1|HB?

Pi−1
,

where Mi|HB?
Pi−1

and Mi−1|HB?
Pi−1

denote the restrictions of the mappings Mi

and Mi−1 to HB?
Pi−1

, respectively.

Then, MKB denotes Mk. Note that MKB is well-defined, since it does not depend on a
particular stratification λ. Furthermore, MKB is in fact a minimal model of KB .

5 Probabilistic Fuzzy Description Logic Programs

In this section, we introduce probabilistic fuzzy dl-programs as a combination of strat-
ified fuzzy dl-programs with Poole’s independent choice logic (ICL) [13]. This will
allow us to express probabilistic rules. Poole’s ICL is based on ordinary acyclic logic
programs P under different “atomic choices”, where each atomic choice along with P
produces a first-order model, and one then obtains a probability distribution on the set of
first-order models by placing a probability distribution on the different atomic choices.
Here, we use stratified fuzzy dl-programs rather than ordinary acyclic logic programs,
and thus we define a probability distribution on a set of fuzzy interpretations. In other
words, we define a probability distribution on a set of rankings on the Herbrand base.

Syntax. We now define the syntax of probabilistic fuzzy dl-programs and probabilistic
queries addressed to them. We first introduce fuzzy formulas, query constraints, and
probabilistic formulas, and we define choice spaces and probabilities on choice spaces.

We define fuzzy formulas by induction as follows. The propositional constants false
and true, denoted⊥ and>, respectively, and all atoms p(t1, . . . , tk) are fuzzy formulas.
If φ and ψ are fuzzy formulas, and ⊗, ⊕, B, and 	 are conjunction, disjunction, im-
plication, resp. negation strategies, then (φ∧⊗ ψ), (φ∨⊕ ψ), (φ⇒B ψ), and ¬	 φ are
also fuzzy formulas. A query constraint has the form (φ θ r)[l, u] or (E[φ])[l, u] with
θ∈{>, >,<,6}, r, l, u∈ [0, 1], and fuzzy formulas φ. Informally, the former asks for
the interval of the probability that the truth value v of φ satisfies v θ r, while the latter
asks for the interval of the expected truth value of φ. We define probabilistic formulas
inductively as follows. Each query constraint is a probabilistic formula. If F and G are

probabilistic formulas, then also ¬F and (F ∧ G). We use (F ∨G) and (F ⇒G) to
abbreviate ¬(¬F ∧¬G) resp. ¬(F ∧¬G), and eliminate parentheses as usual.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ. Any
A∈C is an alternative of C and any a∈A an atomic choice of C. Intuitively, every
A∈C represents a random variable and every a∈A one of its possible values. A total
choice of C is a set B⊆HBΦ such that |B ∩ A|=1 for all A∈C. Intuitively, every
total choice B of C represents an assignment of values to all the random variables.
A probability µ on a choice space C is a probability function on the set of all total
choices of C. Intuitively, every µ is a probability distribution over the set of all variable
assignments. SinceC and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a) = 1 for all A∈C, and (ii) µ(B) =Πb∈Bµ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic fuzzy dl-program KB =(L,P,C, µ) consists of a stratified fuzzy dl-
program (L,P), a choice space C such that (i)

⋃
C ⊆HBΦ and (ii) no atomic choice in

C coincides with the head of any fuzzy dl-rule in ground(P), and a probability µ on C.
Intuitively, since the total choices of C select subsets of P , and µ is a probability distri-
bution on the total choices of C, every probabilistic fuzzy dl-program compactly repre-
sents a probability distribution on a finite set of stratified fuzzy dl-programs. A proba-
bilistic query to KB has the form ∃F , or ∃(α θ r)[L,U], or ∃(E[α])[L,U], where F is
a probabilistic formula, α is a fuzzy formula, r∈ [0, 1], and L,U are variables.

Example 5.1 (Shopping Agent cont’d). A probabilistic fuzzy dl-program KB =(L,P,
C, µ) is given by L of Example 3.2, the following set of fuzzy dl-rules P , which model
the query reformulation and retrieval steps using ontology mapping rules:

query(x) ←⊗ SportsCar(x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower(x, y2) ∧⊗
DL[LeqAbout22000](y1) ∧⊗ DL[Around150HP](y2) > 1 , (9)

SportsCar(x) ←⊗ DL[SportyCar](x) ∧⊗ scpos > 0.9 , (10)

hasPrice(x) ←⊗ DL[hasInvoice](x) ∧⊗ hipos > 0.8 , (11)

hasPower(x) ←⊗ DL[hasHP](x) ∧⊗ hhppos > 0.8 , (12)

the choice space C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}, and the
probability distribution µ, which is given by the following probabilities for the atomic
choices scpos, scneg , hipos, hineg , hhppos, and hhpneg (which are 0-ary predicate sym-
bols), and then extended to all total choices by assuming independence:

µ(scpos) = 0.91 , µ(scneg) = 0.09 , µ(hipos) = 0.78 ,
µ(hineg) = 0.22 , µ(hhppos) = 0.83 , µ(hhpneg) = 0.17 .

Intuitively, C encodes three probabilistically independent random variables with the
binary domains {scpos, scneg}, {hipos, hineg}, and {hhppos, hhpneg}. Rule (9) is the
buyer’s request, but in a “different” terminology than the one of the car selling site.
Rules (10)–(12) are so-called ontology alignment mapping rules. For example, rule (10)
states that the predicate “SportsCar” of the buyer’s terminology refers to the concept
“SportyCar” of the selected side, with probability 0.91. Such mapping rules can be au-
tomatically built by relying on ontology alignment tools, such as oMap [17,18], whose

main purpose is to find relations among the concepts and roles of two different ontolo-
gies. oMap is particularly suited for our case, as it is based on a probabilistic model,
and thus the mappings have a probabilistic reading (see also [12]).

Semantics. A world I is a fuzzy interpretation over HBΦ. We denote by IΦ the set
of all worlds over Φ. A variable assignment σ maps each X ∈X to some t∈HU Φ.
It is extended to all terms by σ(c) = c for all constant symbols c from Φ. The truth
value of fuzzy formulas φ in I under σ, denoted Iσ(φ) (or I(φ) when φ is ground), is
inductively defined by (1) Iσ(φ∧⊗ψ) = Iσ(φ)⊗Iσ(ψ), (2) Iσ(φ∨⊕ψ) = Iσ(φ)⊕Iσ(ψ),
(3) Iσ(φ⇒B ψ) = Iσ(φ) B Iσ(ψ), and (4) Iσ(¬	φ) = 	 Iσ(φ).

A probabilistic interpretation Pr is a probability function on IΦ (that is, a mapping
Pr : IΦ→ [0, 1] such that (i) the set of all I ∈IΦ with Pr(I)> 0 is denumerable, and
(ii) all Pr(I) with I ∈IΦ sum up to 1). The probability of φ θ r in Pr under a variable
assignment σ, denoted Prσ(φ θ r) (or Pr(φ θ r) when φ is ground), is the sum of all
Pr(I) such that I ∈IΦ and Iσ(φ) θ r. The expected truth value of φ under Pr and σ, de-
noted EPr ,σ[φ], is the sum of all Pr(I) · Iσ(φ) with I ∈IΦ. Notice that in the notion of
expected truth value, we combine probabilities and truth values. The truth of probabilis-
tic formulas F in Pr under σ, denoted Pr |=σ F , is inductively defined by (1) Pr |=σ

(φ θ r)[l, u] iff Prσ(φ θ r)∈ [l, u], (2) Pr |=σ (E[φ])[l, u] iff EPr ,σ[φ]∈ [l, u], (3) Pr
|=σ ¬F iff not Pr |=σ F , and (4) Pr |=σ (F ∧G) iff Pr |=σ F and Pr |=σ G.

A probabilistic interpretation Pr is a model of a probabilistic formula F iff Pr |=σF
for every variable assignment σ. We say Pr is the canonical model of a probabilis-
tic fuzzy dl-program KB =(L,P,C, µ) iff every world I ∈IΦ with Pr(I)> 0 is the
canonical model of (L, P ∪{p←| p∈B}) for some total choice B of C with Pr(I) =
µ(B). Notice that every KB has a unique canonical model Pr . We say F is a conse-
quence of KB , denoted KB ‖∼F , iff the canonical model of KB is also a model of F . A
query constraint (φ θ r)[l, u] (resp., (E[φ])[l, u]) is a tight consequence of KB , denoted
KB ‖∼ tight (φ θr)[l, u] (resp., KB ‖∼ tight(E[φ])[l, u]), iff l (resp., u) is the infimum
(resp., supremum) of Prσ(φ θ r) (resp., EPr ,σ[φ]) subject to the canonical model Pr of
KB and all σ. A correct answer to ∃F is a substitution σ such that Fσ is a consequence
of KB . A tight answer to ∃(α θ r)[L,U] (resp., ∃(E[α])[L,U]) is a substitution σ such
that (α θ r)[L,U]σ (resp., (E[α])[L,U]σ) is a tight consequence of KB .

Example 5.2 (Shopping Agent cont’d). The following are some tight consequences of
the probabilistic fuzzy dl-program KB =(L,P,C, µ) in Example 5.1:

(E[query(MazdaMX5Miata)])[0.21, 0.21] , (E[query(MitsubishiES)])[0.19, 0.19] .

So, the agent ranks the MazdaMX5Miata first with degree 0.21 (= 0.36 · 0.91 · 0.78 ·
0.83) and the MitsubishiES second with degree 0.19 (= 0.32 · 0.91 · 0.78 · 0.83).

6 Summary and Outlook

We have presented probabilistic fuzzy dl-programs for the Semantic Web, which allow
for handling both probabilistic uncertainty (especially for probabilistic ontology map-
ping and probabilistic data integration) and fuzzy vagueness (especially for dealing with
vague concepts) in a uniform framework. We have defined important concepts related

to both probabilistic uncertainty and fuzzy vagueness. Furthermore, we have described
a shopping agent example, which gives evidence of the usefulness of probabilistic fuzzy
dl-programs in realistic web applications. In the extended report [11], we also provide
algorithms for query processing in such programs, which can be done in polynomial
time in the data complexity under suitable assumptions.

An interesting topic of future research is to generalize probabilistic fuzzy dl-pro-
grams by non-stratified default negations, classical negations, and disjunctions. Another
interesting issue is to explore how to update probabilistic fuzzy dl-programs.

Acknowledgments. This work has been partially supported by the German Research
Foundation (DFG) under the Heisenberg Programme.

References
1. T. Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.
2. J. Callan. Distributed information retrieval. In W. B. Croft, editor, Advances in Information

Retrieval, pp. 127–150. Kluwer, 2000.
3. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-

ming with description logics for the Semantic Web. In Proc. KR-2004, pp. 141–151, 2004.
4. D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.
5. T. Flaminio and L. Godo. A logic for reasoning about the probability of fuzzy events. Fuzzy

Sets and Systems, 158(6):625–638, 2007.
6. N. Fuhr. A decision-theoretic approach to database selection in networked IR. ACM Trans.

Inf. Syst., 3(17):229–249, 1999.
7. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
8. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satis-

fiability. In Proc. ISWC-2003, pp. 17–29, 2003.
9. T. Lukasiewicz. Probabilistic description logic programs. In Proc. ECSQARU-2005, pp.

737–749, 2005. Extended version in Int. J. Approx. Reason., 45(2):288–307, 2007.
10. T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the

Semantic Web. In Proc. RuleML-2006, pp. 89–96, 2006. Extended version to appear in
Fundamenta Informaticae.

11. T. Lukasiewicz and U. Straccia. Uncertainty and vagueness in description logic programs for
the Semantic Web. Report 1843-07-02, Institut für Informationssysteme, TU Wien, 2007.

12. H. Nottelmann and U. Straccia. Information retrieval and machine learning for probabilistic
schema matching. Inf. Process. Manage., 43(3):552–576, 2007.

13. D. Poole. The independent choice logic for modelling multiple agents under uncertainty.
Artif. Intell., 94(1–2):7–56, 1997.

14. M. E. Renda and U. Straccia. Web metasearch: Rank vs. score-based rank aggregation meth-
ods. In Proc. SAC-2003, pp. 841–846, 2003.

15. U. Straccia. A fuzzy description logic for the Semantic Web. In E. Sanchez, editor, Fuzzy
Logic and the Semantic Web, Capturing Intelligence, chapter 4, pp. 73–90. Elsevier, 2006.

16. U. Straccia. Fuzzy description logic programs. In Proc. IPMU-2006, pp. 1818–1825, 2006.
17. U. Straccia and R. Troncy. oMAP: Combining classifiers for aligning automatically OWL

ontologies. In Proc. WISE-2005, pp. 133–147, 2005.
18. U. Straccia and R. Troncy. Towards distributed information retrieval in the Semantic Web.

In Proc. ESWC-2006, pp. 378–392, 2006.
19. W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 Feb. 2004).

Available at http://www.w3.org/TR/2004/REC-owl-features-20040210/.

