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Abstract

In this paper, we present the agent programming
language TEAMGOLOG, which is a novel approach
to programming a team of cooperative agents under
partial observability. Every agent is associated with
a partial control program in Golog, which is com-
pleted by the TEAMGOLOG interpreter in an opti-
mal way by assuming a decision-theoretic seman-
tics. The approach is based on the key concepts of
a synchronization state and a communication state,
which allow the agents to passively resp. actively
coordinate their behavior, while keeping their be-
lief states, observations, and activities invisible to
the other agents. We show the usefulness of the ap-
proach in a rescue simulated domain.

1 Introduction

During the recent years, the development of controllers for
autonomous agents has become increasingly important in Al
One way of designing such controllers is the programming
approach, where a control program is specified through a lan-
guage based on high-level actions as primitives. Another way
is the planning approach, where goals or reward functions are
specified and the agent is given a planning ability to achieve a
goal or to maximize a reward function. An integration of both
approaches has recently been proposed through the seminal
language DTGolog [Boutilier et al., 2000], which integrates
explicit agent programming in Golog [Reiter, 2001] with
decision-theoretic planning in (fully observable) MDPs [Put-
erman, 1994]. Tt allows for partially specifying a control pro-
gram in a high-level language as well as for optimally filling
in missing details through decision-theoretic planning, and it
can thus be seen as a decision-theoretic extension to Golog,
where choices left to the agent are made by maximizing ex-
pected utility. From a different perspective, it can also be
seen as a formalism that gives advice to a decision-theoretic
planner, since it naturally constrains the search space.
DTGolog has several other nice features, since it is closely
related to first-order extensions of decision-theoretic plan-
ning (see especially [Boutilier et al., 2001; Yoon et al., 2002;
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Guestrin ef al., 2003]), which allow for (i) compactly repre-
senting decision-theoretic planning problems without explic-
itly referring to atomic states and state transitions, (ii) exploit-
ing such compact representations for efficiently solving large-
scale problems, and (iii) nice properties such as modularity
(parts of the specification can be easily added, removed, or
modified) and elaboration tolerance (solutions can be easily
reused for similar problems with few or no extra cost).

However, DTGolog is designed only for the single-agent
framework. That is, the model of the world essentially con-
sists of a single agent that we control by a DTGolog program
and the environment summarized in “nature”. But there are
many applications where we encounter multiple agents that
cooperate with each other. For example, in robotic rescue,
mobile agents may be used in the emergency area to acquire
new detailed information (such as the locations of injured
people in the emergency area) or to perform certain rescue
operations. In general, acquiring information as well as per-
forming rescue operations involves several and different res-
cue elements (agents and/or teams of agents), which cannot
effectively handle the rescue situation on their own. Only the
cooperative work among all the rescue elements may solve
it. Since most of the rescue tasks involve a certain level of
risk for humans (depending on the type of rescue situation),
mobile agents can play a major role in rescue situations, es-
pecially teams of cooperative heterogeneous mobile agents.

Another crucial aspect of real-world environments is that
they are typically only partially observable, due to noisy and
inaccurate sensors, or because some relevant parts of the en-
vironment simply cannot be sensed. For example, especially
in the robotic rescue domain described above, every agent has
generally only a very partial view on the environment.

The practical importance of controlling a system of coop-
erative agents under partial observability by a generalization
of DTGolog has already been recognized in recent works
by Ferrein et al. [2005] and Finzi and Lukasiewicz [2006].
A drawback of these two works, however, is that they are
implicitly centralized by the assumption of a global world
model resp. the assumption that every agent knows the belief
states, observations, and actions of all the other agents (and so
[Ferrein et al., 2005; Finzi and Lukasiewicz, 2006] have no
explicit communication between the agents), which is very
often not possible or not desirable in realistic applications.

In this paper, we present the agent programming language



TEAMGOLOG, which is a novel generalization of DTGolog
for controlling a system of cooperative agents under partial
observability, which does not have such centralization as-
sumptions. It is thus guided by the idea of truly distributed
acting in multi-agent systems with a minimal interaction be-
tween the agents. The main contributions are as follows:

e We introduce the agent programming language TEAM-
GOLOG for controlling a system of cooperative (middle-size)
agents under partial observability. We define a decision-the-
oretic semantics of TEAMGOLOG, which are inspired by de-
centralized partially observable MDPs (Dec-POMDPs) [Nair
et al., 2003; Goldman and Zilberstein, 2004].

e We introduce the concepts of a synchronization state and a
communication state, which are used to coordinate the agents,
taking inspiration from artificial social systems [Shoham and
Tennenholtz, 1995]: The behavior of each agent is encoded
in advance in its domain theory and program, and depends on
the online trace of synchronization and communication states.

e We define an interpreter for TEAMGOLOG, and provide a
number of theoretical results around it. In particular, we show
that the interpreter generates optimal policies.

e We describe a first prototype implementation of the TEAM-
GOLOG interpreter. We also provide experimental results
from the rescue simulation domain, which give evidence of
the usefulness of our approach in realistic applications.

Notice that detailed proofs of all results in this extended
abstract are provided in the full version of this paper.

2 The Situation Calculus and Golog

The situation calculus [McCarthy and Hayes, 1969; Reiter,
2001] is a first-order language for representing dynamic do-
mains. Its main ingredients are actions, situations, and flu-
ents. An action is a first-order term of the form a (), where
a is an action name, and « are its arguments. For example,
moveTo(r, z,y) may represent the action of moving an agent
r to the position (x,y). A situation is a first-order term en-
coding a sequence of actions. It is either a constant symbol or
of the form do(a, s), where a is an action and s is a situation.
The constant symbol Sy is the initial situation and represents
the empty sequence, while do(a, s) encodes the sequence ob-
tained from executing a after the sequence of s. For exam-
ple, do(moveTo(r,1,2),do(moveTo(r,3,4), Sy)) stands for
executing moveTo(r,1,2) after executing moveTo(r,3,4)
in Sy. A fluent represents a world or agent property that
may change when executing an action. It is a predicate sym-
bol whose most right argument is a situation. For example,
at(r,x,y,s) may express that the agent r is at the position
(z,y) in the situation s. In the situation calculus, a dynamic
domain is encoded as a basic action theory AT = (3, Dg,,
Dssas Dunas Dap), Where:

e Y is the set of foundational axioms for situations.

® D, is the set of unique name axioms for actions, saying
that different action terms stand for different actions.

e Dg, is a set of first-order formulas describing the initial
state of the domain (represented by Sy). E.g., at(r,1,2,5))
may express that the agent r is initially at the position (1, 2).

e D.., is the set of successor state axioms [Reiter, 2001].
For each fluent F'(Z,s), it contains an axiom F(Z, do(a,
s)) = ®p(&,a,s), where ®p(Z, a, s) is a formula with free
variables among Z, a, and s. These axioms specify the truth
of the fluent F' in the next situation do(a, s) in terms of the
current situation s, and are a solution to the frame problem
(for deterministic actions). For example,

at(o, x,y,do(a, s)) = a=moveTo(o,x,y) V
at(o,z,y,s) A —3x’,y’ (a=moveTo(o,2',y"))

may express that the object o is at (z,y) in do(a, s) iff it is
moved there in s, or already there and not moved away in s.
e D,, is the set of action precondition axioms. For each
action a, it contains an axiom Poss(a(Z),s)=11(Z, s),
which characterizes the preconditions of a. For example,
Poss(moveTo(o,x,y),s) = =30 (at(o,xz,y,s)) may ex-
press that it is possible to move the object o to (x,y) in s iff
no other object o’ is at (z,y) in s.

Golog is an agent programming language that is based on
the situation calculus. It allows for constructing complex ac-
tions from the primitive actions defined in a basic action the-
ory AT, where standard (and not so standard) Algol-like con-
structs can be used, in particular, (i) action sequences: p1; pa2;
(ii) tests: ¢?; (iii) nondeterministic action choices: pj|pa;
(iv) nondeterministic choices of action argument: 7z (p(x));
and (v) conditionals, while-loops, and procedures.

3 Team Golog under Partial Observability

We now introduce the agent programming language TEAM-
GOLOG, which is a generalization of Golog for programming
teams of cooperative agent under partial observability.

Our approach is based on the key concepts of a synchro-
nization state and a communication state, which allow the
agents to passively resp. actively coordinate their behavior,
while keeping their belief states, observations, and activities
invisible to the other agents. Here, the synchronization state
is fully observable by all the agents, but outside their con-
trol. The communication state is a multi-dimensional state,
containing one dimension for each agent, which is also fully
observable by all the agents. But every agent may change its
part of the communication state whenever necessary, which
encodes its explicit communication to all the other agents.

Since both the synchronization state .S and the commu-
nication state C' are fully observable by all the agents, they
can be used to condition and coordinate the behavior of the
agents. At the same time, each agent can keep its belief state,
observations, and actions invisible to the other agents. We
thus realize a maximally distributed acting of the agents. The
TEAMGOLOG program of each agent encodes the agent’s be-
havior conditioned on S and C, and thus on the current situa-
tion. Hence, TEAMGOLOG programs bear close similarity to
social laws in artificial social systems [Shoham and Tennen-
holtz, 1995]. The basic idea behind such systems is to formu-
late a mechanism, called social law, that minimizes the need
for both centralized control and online resolution of conflicts.

There are many real-world situations where we encounter
such a form of coordination. E.g., the traffic law “right has
precedence over left” regulates the order in which cars can



pass a street cross. In most cases, this law is sufficient to
make the cars pass the street cross without any further inter-
action between the car drivers. Only in exceptional cases,
such as the one where on each street a car is approaching the
cross or when a car has a technical defect, some additional
communication between the car drivers is necessary. Sim-
ilarly, a soccer team can fix in advance the behavior of its
team members in certain game situations (such as defense or
attack), thus minimizing the explicit communication between
the members during the game (which may be observed by
the adversary). In these two examples, the synchronization
state encodes the situation at the street cross resp. the game
situation, while the communication state encodes the explicit
communication. The correct behavior of the car drivers resp.
soccer players is encoded by traffic laws resp. the strategy
fixed by the team in their training units and before the game.

In the rest of this section, we first define a variant of Dec-
POMDPs, which underlies the decision-theoretic semantics
of TEAMGOLOG programs. We then define the domain the-
ory and the syntax of TEAMGOLOG programs.

3.1 Weakly Correlated Dec-POMDPs

We consider the following variant of Dec-POMDPs for n > 2
agents, which essentially consist of a transition function be-
tween global states (where every global state consists of
a communication state for each agent and a synchroniza-
tion state) and a POMDP for each agent and each global
state, where every agent can also send a message to the oth-
ers by changing its communication state. A weakly cor-
related Dec-POMDP (I, S, (Ci)ie[, P, (Si)iefv (Ai)ie[,
(Oi)iers (Pi)ier, (Ri)icr) consists of a set of n > 2 agents
I'={1,...,n}, a nonempty finite set of synchronization
states S, a nonempty finite set of communication states C;
for every agent i€ [, a transition function P:C' xS —
PD(C x S), which associates with every global state, con-
sisting of a joint communication state c € C' = X ;¢ ;C; and
a synchronization state s € .S, a probability distribution over
C x S, and for every agent 7 € I: (i) a nonempty finite set of
local states S;, a nonempty finite set of actions A;, (ii) a non-
empty finite set of observations O;, (iii) a transition function
Pi:CxSxS;xA; — PD(C; x S; x O;), which associates
with every global state (c, s) € (C,.S), local state s; € S;, and
action a; € A; a probability distribution over C; x S; X Oy,
and (iv) a reward function R;: C' x S x S; x A; — R, which
associates with every global state (¢, s) € C' x S, local state
s; € S;, and action a; € A; a reward R;(c, s, s;, a;) to agent 4.

The ¢- and v-functions for agent ¢ € I of a finite-horizon
value iteration are defined in Fig. 1 for n >0 and m >0,
where Py (- |c, s) is the conditioning of P(-|c,s) on ¢}, and
¢’_; denotes ¢’ without ¢}. That is, an optimal action of agent ¢
in the global state (¢, s) and the local state s; when there are n
steps to go is given by argmin,,, 4, Q7 (c, 5,54, a;). Notice
that these are the standard definitions of ¢- and v-functions,
adapted to our framework of local and global states.

3.2 Domain Theory

TEAMGOLOG programs are interpreted relative to a domain
theory, which extends a basic action theory by stochastic
actions, reward functions, and utility functions. Formally,

Q?(C7 S, Si, a‘i) = Ri(C, S, Si,y a‘i)
Qi (c,s,si,a:) = Ri(c, s, si,a:) +
S 3 3 ST Pi(d, s oile, s, i, aq) -
c/eCs’esS steSi 0, €0,
Pc'. (CLi7 S,‘Cv S) : V;jn_l(clv 5/7 8;)
i

Vit(e, s, 8:) = ar.réiqulb Q7 (e, s, 85,a4) ,
JEA;

Figure 1: - and V' -Functions

a domain theory DT ;= (AT;,ST;, OT;) consists of n>2
agents I ={1,...,n}, and for each agent i € I: a basic action
theory AT, a stochastic theory ST;, and an optimization the-
ory OT;, where the latter two are defined below.

The finite nonempty set of primitive actions A is parti-
tioned into nonempty sets of primitive actions Ay, ..., A, of
agents 1,...,n, respectively. We assume a finite nonempty
set of observations O, which is partitioned into nonempty sets
of observations O, ..., O, of agents 1, ..., n, respectively.

A stochastic theory ST; for agent i€ is a set of ax-
ioms that define stochastic actions for agent ;. We represent
stochastic actions through a finite set of deterministic actions,
as usual [Finzi and Pirri, 2001; Boutilier et al., 2000]. When
a stochastic action is executed, then with a certain proba-
bility, “nature” executes exactly one of its deterministic ac-
tions and produces exactly one possible observation. As un-
derlying decision-theoretic semantics, we assume the weakly
correlated Dec-POMDPs of Section 3.1, along with the re-
lational fluents that associate with every situation s a com-
munication state ¢; of agent j € I, a synchronization state z,
and a local state s; of agent i, respectively. The communi-
cation and synchronization properties are visible by all the
agents, the others are private and hidden. We use the pred-
icate stochastic(a, s,n, o0, 1) to encode that when executing
the stochastic action a in the situation s, “nature” chooses the
deterministic action n producing the observation o with the
probability . Here, for every stochastic action a and situa-
tion s, the set of all (n, o, u) such that stochastic(a, s,n, 0, i)
is a probability function on the set of all deterministic com-
ponents n and observations o of a in s. We also use the no-
tation prob(a, s,n,o0) to denote the probability u such that
stochastic(a, s,n, 0, u). We assume that a and all its nature
choices n have the same preconditions. A stochastic action a
is indirectly represented by providing a successor state ax-
iom for every associated nature choice n. The stochastic ac-
tion a is executable in a situation s with observation o, de-
noted Poss(a,, s), iff prob(a,s,n,o0) >0 for some n. The
optimization theory OT; for agent i € I specifies a reward
and a utility function for agent 7. The former associates with
every situation s and action a, a reward to agent ¢ € I, denoted
reward (i, a, s). The utility function maps every reward and
success probability to a real-valued utility wtility (v, pr). We
assume wutility(v, 1) =v and wutility(v,0) =0 for all v. An
example is utility(v, pr) =v - pr. The utility function suit-
ably mediates between the agent reward and the failure of
actions due to unsatisfied preconditions.

Example 3.1 (Rescue Domain) We consider a rescue domain
where several autonomous mobile agents have to localize
some victims in the environment and report their positions



to a remote operator. We assume a team of three heteroge-
neous agents a1, as, and as endowed with shape recognition
(SH), infrared (IF), and CO, sensors, respectively. A vic-
tim position is communicated to the operator once sensed
and analyzed by all the three sensing devices. Each agent
a; can execute one of the actions goTo,(pos), analyze,(pos,
type;), and report ToOp,(pos). The action theory AT; is de-
scribed by the fluents at;(pos, s), analyzed,(pos, type;, s),
and reported;(x, s), which are accessible only by agent a;.
E.g., the successor state axiom for at;(pos, s) is

at;(pos, do(a,s)) = a=goTo,(pos) V ati(pos,s) A
—3pos’ (a= goTo,(pos’))

and the precondition axiom for the action analyze; is given
by Poss(analyze;(pos, type;), s) = at;(pos, s). As for the
global state, the communication state is defined by the fluent
cs;i(data, s), where i is the agent, and data is the shared info,
e.g., cs1(atVictim((2,2), IF), s) means that a; detected a
victim in position (2, 2) through the IF sensor. Other global
data are rep Victim(p) (victim reported in position p) and
no Victim(p) (position p was inspected and there is no vic-
tim). Some synchronization states are start(s) and reset(s)
standing for starting resp. resetting the rescue session. In
ST, we define the stochastic versions of the actions in AT;,
e.g., goToS,;(pos) and analyzeS,;(pos, type;). Each of these
can fail resulting in an empty action, e.g.,

prob(goToS,(pos), s, goTo,(pos), obs(succ)) =0.9,
prob(goToS,(pos), s, nop, obs(fail)) =0.7.

In OT;, we provide a high reward for a fully analyzed victim
correctly reported to the operator, a low reward for the analy-
sis of a detected victim, and a (distance-dependent) cost is as-
sociated with the action goTo. Since two agents can obstacle
each other when operating in the same location, we penalize
the agents analyzing the same victim at the same time. More
precisely, we employ the following reward:

reward(i,a,s) =1 =qef 3p,t(a= analyze,(p,t) A
(detVictim(p, s) A (—conflicts;(a,s) AT =50V
conflicts;(a, s) Ar=10) V =detVictim(p,s) A\r= — 10) V
a = reportToOp,(p) A fullyAnalyzed(p, s) A r=200V
a=goTo;(p) A 3p'(ati(p', s) Ar= — dist(p, p))),

where conflicts,; is true if another agent communicates the
analysis of the same location in the global state; detVic-
tim(p, s) is true if at least one agent has discovered a vic-
tim in p, i.e., ¢s;(atVictim(p,t),s) for some ¢ and ¢; and
fullyAnalyzed(p, s) means that all the analysis has been
performed, i.e., c¢s1(atVictim(p, SH), s) A csa(at Victim(p,
IF), s) A css(atVietim(p, CO5), s). Notice that the action
goTo;(p) has a cost depending on the distance between start-
ing point and destination, hence, in a greedy policy, the agent
should go towards the closest non-analyzed victim and ana-
lyze it. However, given the penalty on the conflicts, the agents
are encouraged to distribute their analysis on different victims
taking into account the decisions of the other agents.

3.3 Belief States

We next introduce belief states over situations for single
agents, and define the semantics of actions in terms of transi-
tions between belief states. A belief state b of agent i € I is a

set of pairs (s, 1) consisting of an ordinary situation s and a
real p1 € (0, 1] such that (i) all 4 sum up to 1, and (ii) all situa-
tions s in b are associated with the same joint communication
state and the same synchronization state. Informally, every b
represents the local belief of agent ¢ € I expressed as a proba-
bility distribution over its local states, along with unique joint
communication and synchronization states. The probability
of a fluent formula ¢(s) (uniform in s) in the belief state b,
denoted ¢(b), is the sum of all x such that ¢(s) is true and
(s, ) € b. In particular, Poss(a,b), where a is an action, is
defined as the sum of all g such that Poss(a, s) is true and
(s, 1) € b, and reward(i,a,b) is defined in a similar way.

Given a deterministic action a and a belief state b of agent
1 € I, the successor belief state after executing a in b, de-
noted do(a, b), is the belief state b’ = {(do(a, s), u/ Poss(a,
b)) | (s, ) €b, Poss(a,s)}. Furthermore, given a stochas-
tic action a, an observation o of a, and a belief state b of
agent i € I, the successor belief state after executing a in b
and observing o, denoted do(a,,b), is the belief state V',
where ' is obtained from all pairs (do(n, s), - ') such that
(s,p) €b, Poss(a,s), and pu' = prob(a,s,n,o0) >0 by nor-
malizing the probabilities to sum up to 1.

The probability of making the observation o after executing
the stochastic action a in the local belief state b of agent ¢ € I,
denoted prob(a, b, 0), is defined as the sum of all x - i/ such
that (s, ) € b and ' = prob(a, s,n,0) > 0.

Example 3.2 (Rescue Domain cont’d) Suppose that agent a;
is aware of its initial situation, and thus has the initial be-
lief state {(Sp, 1)}. After executing the stochastic action
goToS,(1, 1) and observing its success obs(succ), the be-
lief state of a1 then changes to {(Sp, 0.1), (do(goTo,(1,
1), So), 0.9)} (here, prob(goToS,(pos), s, goTo,(pos),
obs(succ)) =0.9, and goToS, (pos) is always executable).

3.4 Syntax

Given the actions specified by a domain theory DT';, a pro-
gram p in TEAMGOLOG for agent ¢ € I has one of the fol-
lowing forms (where ¢ is a condition, p, p1, p2 are programs,
and a,ay,...,a, are actions of agent ):

1. Deterministic or stochastic action: a. Do a.

2. Nondeterministic action choice: choice(i: ay|- - |ay).
Do an optimal action among ay, . . . , Gy,.

3. Test action: ¢?. Test ¢ in the current situation.
4. Action sequence: p1;p2. Do p; followed by po.

5. Nondeterministic choice of two programs: (p1 | p2).
Do p; or po.

6. Nondeterministic choice of an argument: mx (p(x)).
Do any p(z).

7. Nondeterministic iteration: p*. Do p zero or more times.
8. Conditional: if ¢ then p; else p-.
9. While-loop: while ¢ do p.

10. Procedures, including recursion.



Example 3.3 (Rescue Domain cont’d) The following code
represents an incomplete procedure explore; of agent 4:

proc(ezplore,,
7wz (goToS,(x);
if obs(succ) then [analyzeS,(x, type,);
if obs(suce) A fullyAnalyzed(x) then
reportToOp, (rep Victim(x))]);
explore;) .

Here, agent ¢ first has to decide where to go. Once the posi-
tion is reached, agent ¢ analyzes the current location deploy-
ing one of its sensing devices. If a victim is detected, then the
position of the victim is communicated to the operator.

4 TEAMGOLOG Interpreter

In this section, we first specify the decision-theoretic seman-
tics of TEAMGOLOG programs in terms of an interpreter. We
then provide theoretical results about the interpreter.

4.1 Formal Specification

We now define the formal semantics of a TEAMGOLOG pro-
gram p for agent ¢ € I relative to a domain theory DT. We
associate with every TEAMGOLOG program p, belief state b,
and horizon H > 0, an optimal H -step policy 7 along with its
expected utility U to agent ¢ € I. Intuitively, this H-step pol-
icy 7 is obtained from the H-horizon part of p by replacing
every nondeterministic action choice by an optimal action.

Formally, given a TEAMGOLOG program p for agent ¢ €
relative to a domain theory DT, a horizon H > 0, and a start
belief state b of agent ¢, we say that 7 is an H-step pol-
icy of p in b with expected H-step utility U to agent ¢ iff
DT =G(p,b, H, 7, {(v,pr)) and U = utility(v, pr), where
the macro G(p, b, h, 7, (v, pr)) is defined by induction on the
different constructs of TEAMGOLOG. The definition of G for
some of the constructs is given as follows (the complete defi-
nition is given in the full version of this paper):

e Null program (p = nil) or zero horizon (h = 0):
G(pa b7 h’a , <’l), p’l")) =def T= StOp A <Ua pT) = <07 1> .
Intuitively, p ends when it is null or at the horizon end.

e Stochastic first program action with observation and A > 0:

G(lao;p'], b, hym, (v, pr)) =aef (Poss(ao,b) =0 A
m=stop A (v, pr)=(0,1)) V (Poss(a,,b) >0 A
3 (/\51:1 G(p', do(ao,b),h—1, 7, (vg, pry)) A
T =a, ;for g=1tol doif o, then 7, A
. 1
v =reward(i, ao,b) + Zq:l Vg - prob(ao, b, 0q) A

pr = Poss(ao,b) - 22:1 prq - prob(ac, b, 0q))) -

Here, 3(F) is obtained from F by existentially quantifying
all free variables in F'. Moreover, o1, ..., 0; are the different
pairs of a joint communication state and a synchronization
state that are compatible with a,, and prob(a,, b, 04) is the
probability of arriving in such o, after executing a, in b. In-
formally, suppose p = [a, ; p'], where a, is a stochastic action
with observation. If a, is not executable in b, then p has only
the policy 7 = stop along with the expected reward v =0 and
the success probability pr =0. Otherwise, the optimal exe-
cution of [a, ; p] in b depends on that one of p in do(a,, b).

e Stochastic first program action and h > 0:

G([CL ;p/;7 b7 h7 us <U7 p?")) —def
3 (/\q:1 G([a0q§p/]7 b, h, Qoy;Tq, <'Uqa prq)) A
T =a,,;for g=1tol doif o, then 7, A
v= 22:1 vq - prob(a, b, 0q) A
pr= 22:1 pry - prob(a, b,0q)) .

Here, 01,...,0; are the possible observations of the sto-
chastic action a. The generated policy is a conditional plan in
which every such observation o4 is considered.

e Nondeterministic first program action and & > 0:

G([choice(i: a1 - -|an); '], b, hym, (v, pr)) =der
3 (/\2:1 G([aq §p/]a b, h,aq;my, <Uq7p7"q>) A
k=argmax ;¢ . utility(vg, pr,) A
T=Tr ANV=0 A Pr=pry).

4.2 Theoretical Results

The following result shows that the TEAMGOLOG interpreter
indeed generates an optimal H-step policy 7 along with its
expected utility U to agent 7 € [ for a given TEAMGOLOG
program p, belief state b, and horizon H > 0.

Theorem 4.1 Let p be a TEAMGOLOG program for agent
1 € I w.rt. a domain theory DT, let b be a belief state, and
let H >0 be a horizon. Then, the optimal H-step policy  of
p in b along with its expected utility U to agent i € I is given
by DT, EG(p,b, H,m, (v, pr)) and U = utility (v, pr).

The next result gives an upper bound for the number of
leaves in the evaluation tree, which is polynomial when the
horizon is bounded by a constant. Here, n is the maximum
among the maximum number of actions in nondeterministic
action choices, the maximum number of observations after
actions, the maximum number of arguments in nondetermin-
istic choices of an argument, and the number of pairs consist-
ing of a synchronization state and a communication state.

Theorem 4.2 Let p be a TEAMGOLOG program for agent
1€ I w.rt. a domain theory DT, let b be a belief state, and
let H >0 be a horizon. Then, computing the H-step policy 7
of p in b along with its expected utility U to agent i € I via G
generates O(n*H) leaves in the evaluation tree.

5 Rescue Scenario

Consider the rescue scenario in Fig. 2. We assume that three
victims have already been detected in the environment, but
not completely analyzed: in position (3, 7), the presence of
Alice was detected by a; through the SH sensor; in position
(7,7), agent asy discovered Bob through IF, and a3 analyzed
him through the CO4 sensor; finally, in position (4, 2), victim
Carol was detected by ay with IF. We assume that this infor-
mation is available in the global state, that is, the properties
esi(atVietim((3,7), SH), s), css(atVictim((7,7), IF), s),
esa(atVietim((7,7), CO3), s), and cso(atVictim((4,2),
IF), s) hold in the communication state of the agents. As for
the local state, we assume the belief states by = {(s1,1, 0.8),
(81,2, 0.2)}, by = {(82, 1)}, and b3 :{(83, 1)}, with (ltl(?),
67 5171), at1(3, 5, 5172), at2(7, 7, 32), and at3(3, 77 53).
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Figure 2: Rescue Scenario

Given this situation, the task of the team of agents is to fully
analyze the discovered victims and report their positions to
the operator once the victim analysis is completed. This task
can be encoded by the following procedure:

proc(ezplore,,
UEUAS {(35 7)7 (77 7)7 (43 2)} (gOTOSi(‘r);
if obs(succ) then [analyzeS,(x, type, );
if obs(suce) A fullyAnalyzed(x) then
reportToOp, (rep Victim(x))]);
explore;) ,

where type, = SH, type,=1IF, and type; = COq. Every
agent a; with ¢ € {1,2, 3} has to separately compile the pro-
cedure explore; using its global and local information. As-
suming the horizon H =5 and the initial belief state b;, the
optimal 5-step policy 7; for agent a;, produced by the TEAM-
GOLOG interpreter, is such that DT'; = G([explore;; nil], b;,
5,m;, (vi, pr;)). Here, 71, ma, and 75 are complex conditional
plans branching over all possible observations and global
states. E.g., the beginning of 7y is as follows:

goToS(7,7);
if obs(succ) then [analyzeS, ((7,
if obs(succ) A fullyAnalyzed (7
report ToOp, (rep Victim(7,7
goToS,(4,2);...

7),SH);
,7) then
N;

This scenario has been realized in an abstract simulator. The
simulator captures the key features of the environment and al-
lows to execute agent actions computing associated rewards.
A greedy control strategy has been devised as a comparison
with the derived policies 7;. In the greedy strategy, at each
time step, each agent searches for the best victim to ana-
lyze, based on the current distance to the victim. Whenever a
victim has been completely analyzed, the agent reports the
victim state to the operator. Both the greedy strategy and
the policies m; were able to correctly report all victims to
the operator, however, the policies 7; revealed to be supe-
rior with respect to the greedy strategy gaining more reward.
The greedy gain is around 30% of the policies 7;, because
these were able to minimize conflicts among team members.
Notice that, information available to the two strategies are the
same, and that the better performance of the policies 7; are
achieved using planning over the global and local states.

6 Summary and Outlook

We have presented the agent programming language TEAM-
GOLOG for programming a team of cooperative agents under
partial observability. The approach is based on a decision-
theoretic semantics and the key concepts of a synchroniza-
tion state and a communication state, which allow the agents
to passively resp. actively coordinate their behavior, while
keeping their belief states, observations, and activities invisi-
ble to the other agents. We have also provided experimental
results from the rescue simulation domain.

An interesting topic for future research is to develop an
adaptive version of this approach. Another topic for future
work is to explore whether the approach can be generalized
to multi-agent systems with competitive agents.
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