
Adaptive Multi-Agent Programming in GTGolog

Alberto Finzi1, 2 and Thomas Lukasiewicz2, 1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

2 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

{finzi,lukasiewicz}@dis.uniroma1.it

Abstract. We present a novel approach to adaptive multi-agent programming,
which is based on an integration of the agent programming language GTGolog
with adaptive dynamic programming techniques. GTGolog combines explicit
agent programming in Golog with multi-agent planning in stochastic games.
A drawback of this framework, however, is that the transition probabilitiesand
reward values of the domain must be known in advance and then cannotchange
anymore. But such data is often not available in advance and may also change
over the time. The adaptive generalization of GTGolog in this paper is directed
towards letting the agents themselves explore and adapt these data, which ismore
useful for realistic applications. We use high-level programs for generating both
abstract states and optimal policies, which benefits from the deep integration be-
tween action theory and high-level programs in the Golog framework.

1 Introduction

In the recent years, the development of controllers for autonomous agents has become
increasingly important in AI. One way of designing such controllers is the program-
ming approach, where a control program is specified through alanguage based on
high-level actions as primitives. Another way is the planning approach, where goals
or reward functions are specified and the agent is given a planning ability to achieve
a goal or to maximize a reward function. An integration of both approaches for multi-
agent systems has recently been proposed through the language GTGolog [7] (gener-
alizing DTGolog [3]), which integrates explicit agent programming in Golog [20] with
game-theoretic multi-agent planning in stochastic games [16]. It allows for partially
specifying a high-level control program (for a system of twocompeting agents or two
competing teams of agents) in a high-level language as well as for optimally filling in
missing details through game-theoretic multi-agent planning.

However, a drawback of GTGolog (and also of DTGolog) is that the transition prob-
abilities and reward values of the domain must be known in advance and then can-
not change anymore. But such data often cannot be provided inadvance in the model.
It would thus be more useful for realistic applications to make the agents themselves
capable of estimating, exploring, and adapting these data.

This is the main motivating idea behind this paper. We present a novel approach
to adaptive multi-agent programming, which is an integration of GTGolog with rein-
forcement learning as in [13]. We use high-level programs for generating both abstract

states and policies over these abstract states. The generation of abstract states exploits
the structured encoding of the domain in a basic action theory, along with the high-level
control knowledge in a Golog program. A learning process then incrementally adapts
the model to the executive context and instantiates the partially specified behavior.

To our knowledge, this is the first adaptive approach to Gologinterpreting. Differ-
ently from classical Golog, here the interpreter generatesnot only complex sequences
of actions, but also an abstract state space for each machinestate. Similarly to [2,11], we
rely on the situation calculus machinery for state abstraction, but in our system the state
generation is driven by the program structure. Here, we can take advantage from the
deep integration between the action theory and programs provided by Golog: deploying
the Golog semantics and the domain theory, we can produce a tailored state abstrac-
tion for each program state. In this way, we can extend the scope of programmable
learning techniques [4,17,5,1,14] to a logic-based agent [12,20,21] and multi-agent [6]
programming framework: the choice points of partially specified programs are associ-
ated with a set of state formulas and are instantiated through reinforcement learning and
dynamic programming constrained by the program structure.

2 Preliminaries

In this section, we recall the basics of the situation calculus and Golog, matrix games,
stochastic games, and reinforcement learning.

2.1 The Situation Calculus and Golog

The situation calculus [15,20] is a first-order language forrepresenting dynamically
changing worlds. Its main ingredients areactions, situations, andfluents. An action is
a first-order term of the forma(u1, . . . , un), where the function symbola is its name
and theui’s are itsarguments. All changes to the world are the result of actions. For
example, the actionmoveTo(r, x, y) may stand for moving the agentr to the position
(x, y). A situation is a first-order term encoding a sequence of actions. It is either a
constant symbol or of the formdo(a, s), wheredo is a distinguished binary function
symbol,a is an action, ands is a situation. The constant symbolS0 is theinitial situa-
tion and represents the empty sequence, whiledo(a, s) encodes the sequence obtained
from executinga after the sequence ofs. For example, the situationdo(moveTo(r,
1, 2), do(moveTo(r, 3, 4),S0)) stands for executingmoveTo(r, 1, 2) after executing
moveTo(r, 3, 4) in the initial situationS0 . We writePoss(a, s), wherePoss is a distin-
guished binary predicate symbol, to denote that the actiona is possible to execute in the
situations. A (relational) fluentrepresents a world or agent property that may change
when executing an action. It is a predicate symbol whose mostright argument is a sit-
uation. For example,at(r, x, y, s) may express that the agentr is at the position(x, y)
in the situations. In the situation calculus, a dynamic domain is representedby abasic
action theoryAT =(Σ,Duna ,DS0

,Dssa ,Dap), where:

• Σ is the set of (domain-independent) foundational axioms forsituations [20].
• Duna is the set of unique names axioms for actions, which express that different

actions are interpreted in a different way.

• DS0
is a set of first-order formulas describing the initial stateof the domain (repre-

sented byS0). For example,at(r, 1, 2,S0) ∧ at(r′, 3, 4,S0) may express that the
agentsr andr′ are initially at the positions(1, 2) and(3, 4), respectively.

• Dssa is the set ofsuccessor state axioms[20]. For each fluentF (x, s), it con-
tains an axiom of the formF (x, do(a, s))≡ΦF (x, a, s), whereΦF (x, a, s) is a
formula with free variables amongx, a, s. These axioms specify the truth of the
fluentF in the next situationdo(a, s) in terms of the current situations, and are a
solution to the frame problem (for deterministic actions).For example, the axiom
at(r, x, y, do(a, s))≡ a=moveTo(r, x, y) ∨ (at(r, x, y, s) ∧ ¬∃x′, y′ (a=move-
To(r, x′, y′))) may express that the agentr is at the position(x, y) in the situa-
tion do(a, s) iff either r moves to(x, y) in the situations, or r is already at the
position(x, y) and does not move away ins.

• Dap is the set ofaction precondition axioms. For each actiona, it contains an
axiom of the formPoss(a(x), s) ≡ Π(x, s), which characterizes the preconditions
of the actiona. For example,Poss(moveTo(r, x, y), s) ≡ ¬∃r′ at(r′, x, y, s) may
express that it is possible to move the agentr to the position(x, y) in the situations
iff no other agentr′ is at(x, y) in s.

We use the concurrent version of the situation calculus [20,18], which is an exten-
sion of the standard situation calculus by concurrent actions. Aconcurrent actionc is a
set of standard actions, which are concurrently executed whenc is executed.

Theregressionof a formulaφ through an actiona, denotedRegr(φ), is a formulaφ′

that holds before executinga, given thatφ holds after executinga. The regression ofφ
whose situations are all of the formdo(a, s) is defined inductively using the successor
state axiomsF (x, do(a, s)) ≡ ΦF (x, a, s) as follows:

Regr(F (x, do(a, s))) = ΦF (x, a, s), Regr(¬φ)=¬Regr(φ),
Regr(φ1 ∧φ2)=Regr(φ1) ∧ Regr(φ2), and Regr(∃xφ)= ∃x (Regr(φ)) .

Golog [12,20] is an agent programming language that is basedon the situation calculus.
It allows for constructing complex actions from the primitive actions defined in a basic
action theoryAT , where standard (and not so standard) Algol-like control constructs
can be used, in particular, (i) sequence:p1; p2; (ii) test action:φ?; (iii) nondetermin-
istic choice of two programs:(p1 | p2); (iv) nondeterministic choice of an argument:
πx (p(x)); and (v) conditional, while-loop, and procedure. For example, the Golog pro-
gram while ¬at(r, 1, 2) do πx, y (moveTo(r, x, y)) repeats moving the agentr to a
nondeterministically chosen position(x, y) while r is not at(1, 2). The semantics of
a Golog programp is specified by a situation-calculus formulaDo(p, s, s′), which en-
codes thats′ is a situation which can be reached froms by executingp. That is,Do

represents a macro expansion to a situation calculus formula. For example, the action
sequence is defined throughDo(p1; p2, s, s

′) = ∃s′′(Do(p1, s, s
′′)∧Do(p2, s

′′, s′)).
For more details on the core situation calculus and Golog, werefer the reader to [20].

2.2 Matrix Games

Matrix games from classical game theory [23] describe the possible actions of two
agents and the rewards that they receive when they simultaneously execute one action

each. Formally, amatrix gameG= (A,O,Ra , Ro) consists of two nonempty finite
sets ofactionsA andO for two agentsa ando, respectively, and tworeward functions
Ra , Ro : A×O→R for a ando. The matrix gameG is zero-sumiff Ra = −Ro ; we
then often omitRo and abbreviateRa byR.

A pure(resp.,mixed) strategyspecifies which action an agent should execute (resp.,
which actions an agent should execute with which probability). If the agentsa ando

play the pure strategiesa∈A ando∈O, respectively, then they receive therewards
Ra(a, o) andRo(a, o), respectively. If the agentsa ando play the mixed strategiesπa∈
PD(A) andπo ∈PD(O), respectively, then theexpected rewardto agentk∈{a ,o} is
Rk(πa , πo)=E[Rk(a, o)|πa , πo] =

∑
a∈A, o∈O πa(a) · πo(o) ·Rk(a, o).

We are especially interested in pairs of mixed strategies(πa , πo), called Nash equi-
libria, where no agent has the incentive to deviate from its half of the pair, once the
other agent plays the other half:(πa , πo) is aNash equilibrium(or Nash pair) for G iff
(i) Ra(π′

a
, πo)≤Ra(πa , πo) for any mixedπ′

a
, and (ii)Ro(πa , π

′
o
)≤Ro(πa , πo) for

any mixedπ′
o
. Every two-player matrix gameG has at least one Nash pair among its

mixed (but not necessarily pure) strategy pairs, and many have multiple Nash pairs.

2.3 Stochastic Games

Stochastic games [16], or also called Markov games [22,13],generalize both matrix
games [23] and (fully observable) Markov decision processes (MDPs) [19].

They consist of a set of statesS, a matrix game for every states∈S, and a transition
function that associates with every states∈S and combination of actions of the agents
a probability distribution on future statess′ ∈S. Formally, a(two-player) stochastic
gameG= (S,A,O, P,Ra , Ro) consists of a finite nonempty set of statesS, two finite
nonempty sets of actionsA andO for two agentsa ando, respectively, a transition
functionP : S×A×O → PD(S), and tworeward functionsRa , Ro : S×A×O → R

for a ando. The stochastic gameG is zero-sumiff Ra=−Ro ; we then often omitRo .
Assuming a finite horizonH ≥ 0, apure(resp.,mixed) time-dependentpolicyasso-

ciates with every states∈S and number of steps to goh∈{0, . . . ,H} a pure (resp.,
mixed) matrix-game strategy. TheH-step rewardto agentk∈{a ,o} under a start
states∈S and the pure policiesα andω, denotedGk(H, s, α, ω), isGk(0, s, α, ω) =
Rk(s, α(s, 0), ω(s, 0)) andGk(H, s, α, ω) = Rk(s, α(s,H), ω(s,H))+

∑
s′∈SP (s′|s,

α(s,H), ω(s,H)) · Gk(H−1, s′, α, ω) for H > 0. The notions of anexpectedH-step
reward for mixed policies and of aNash paircan then be defined in a standard way.
Every two-player stochastic gameG has at least one Nash pair among its mixed (but
not necessarily pure) policy pairs, and it may have exponentially many Nash pairs.

2.4 Learning Optimal Policies

Q-learning [24] is a reinforcement learning technique, which allows to solve an MDP
without a model (that is, transition and reward functions) and can be used on-line. The
valueQ(s, a) is the expected discounted sum of future payoffs obtained byexecuting
a from the states and following an optimal policy. After being initialized toarbitrary
numbers, the Q-values are estimated through the agent experience. For each execution
of an actiona leading from the states to the states′, the agent receives a rewardr, and

the Q-value update isQ(s, a) := (1−α) · Q(s, a) + α · (r+ γ · maxa′∈AQ(s′, a′)),
whereγ (resp.,α) is the discount factor (resp., the learning rate). This algorithm con-
verges to the correct Q-values with probability1 assuming that every action is executed
in every state infinitely many times andα is decayed appropriately.

Littman [13] extends Q-learning to learning an optimal mixed policy in a zero-
sum two-player stochastic game. Here, the Q-value update isQ(s, a, o) := (1−α) ·
Q(s, a, o) + α · (r+ γ ·maxπ∈PD(A) mino′∈O

∑
a′∈AQ(s′, a′, o′) · π(a′)), where the

“maxmin”-term gives the expected reward of a Nash pair for a zero-sum matrix game.

3 Adaptive GTGolog (AGTGolog)

In this section, we first define the domain theory behind Adaptive GTGolog (AGT-
Golog) and then the syntax of AGTGolog.

3.1 Domain Theory of AGTGolog

A domain theoryDT =(AT ,ST ,OT) of AGTGolog consists of a basic action the-
ory AT , astochastic theoryST , and anoptimization theoryOT , as defined below.

We first give some preliminaries. We assume two zero-sum competing agentsa
ando (called agentand opponent, respectively, where the former is under our con-
trol, while the latter is not). The set of primitive actions is partitioned into the sets of
primitive actionsA andO of agentsa ando, respectively. Atwo-player actionis any
concurrent actionc overA∪O such that|c∩A| ≤ 1 and|c∩O| ≤ 1. For example, the
concurrent actions{moveTo(a , 1, 2)}⊆A, {moveTo(o, 2, 3)}⊆O, and{moveTo(a ,
1, 2), moveTo(o, 2, 3)}⊆A∪O are all two-player actions. We often writea, o, and
a‖o to abbreviate{a}⊆A, {o}⊆O, and{a, o}⊆A∪O, respectively.

A state formulaoverx, s is a formulaφ(x, s) in which all predicate symbols are flu-
ents, and the only free variables are the non-situation variablesx and the situation vari-
ables. A state partitionoverx, s is a nonempty set of state formulasP (x, s)= {φi(x,
s) | i∈{1, . . . ,m}} such that (i)∀x, s (φi(x, s)⇒¬φj(x, s)) is valid for all i, j ∈{1,
. . . ,m} with j > i, (ii) ∀x, s (

∨m

i=1 φi(x, s)) is valid, and (iii) every∃x, s (φi(x, s)) is
satisfiable. For state partitionsP1 andP2, we define theirproductas follows:

P1 ⊗P2 = {ψ1 ∧ψ2 |ψ1 ∈P1, ψ2 ∈P2, ψ1 ∧ψ2 6=⊥} .

We often omit the arguments of a state formula when they are clear from the context.
We next define the stochastic theory. As usual [3,10,2], stochastic actions are ex-

pressed by a finite set of deterministic actions. When a stochastic action is executed,
then “nature” chooses and executes with a certain probability exactly one of its de-
terministic actions. We use the predicatestochastic(a, s, n) to associate the stochastic
actiona with the deterministic actionn in situations. We also specify a state partition
P a,n

pr (x, s)= {φa,n
j (x, s) | j ∈{1, . . . ,m}} to group together situationsswith common

p such that “nature” choosesn in swith probabilityp, denotedprob(a(x), n(x), s)= p :

∃p1, . . . , pm (
∧m

j=1(φ
a,n
j (x, s)⇔ prob(a(x), n(x), s)= pj)) .

A stochastic actions is indirectly represented by providing asuccessor state axiomfor
each associated nature choicen. Thus,AT is extended to a probabilistic setting in a
minimal way. We assume that the domain isfully observable. For this reason, we in-
troduceobservability axioms, which disambiguate the state of the world after executing
a stochastic action. For example, after executingmoveS (a, x, y), we testat(a, x, y, s)
andat(a, x, y+1, s) to see which of the deterministic actions was executed (thatis,
moveTo(a, x, y) or moveTo(a, x, y+ 1)). This condition is denotedcondSta(a, n, s).
For example,condSta(moveS (a, x, y),moveTo(a, x, y + 1), s) ≡ at(a, x, y + 1, s).
Similar axioms are introduced to observe which actions the two agents have chosen.

As for the optimization theory, for every two-player actiona, we specify a state par-
tition P a

rw(x, s)= {φa
k(x, s) | k∈{1, . . . , q}} to group together situationss with com-

monr such thata(x) ands assign the rewardr to a , denotedreward(a(x), s)= r:

∃r1, . . . , rq (
∧q

k=1(φ
a
k(x, s)⇔ reward(a(x), s)= rk)) .

Moreover, a utility function associates with every rewardv and success probabilitypr a
real-valued utilityutility(v, pr). We assume thatutility(v, 1)= v andutility(v, 0)= 0
for all v. An example of such a function isutility(v, pr)= v · pr .

Example 3.1 (Stratagus Domain).Consider the following scenario inspired by [14].
The stratagus field consists of9× 9 positions (see Fig. 1). There are two agents, denoted
a ando, which occupy one position each. The stratagus field has designated areas rep-
resenting twogold-mines, oneforest, and onebasefor each agent (see Fig. 1). The two
agents can move one step in one of the directionsN, S, E, andW, or remain stationary.
Each of the two agents can also pick up one unit of wood (resp.,gold) at the forest
(resp., gold-mines), and drop these resources at its base. Each action of the two agents
can fail, resulting in a stationary move. Any carried objectdrops when the two agents
collide. After each step, the agentsa ando receive the (zero-sum) rewardsra − ro
andro − ra , respectively, whererk for k∈{a ,o} is 0, 1, and2 whenk brings nothing,
one unit of wood, and one unit of gold to its base, respectively.

The domain theoryDT =(AT ,ST ,OT) for the above stratagus domain is de-
fined as follows. As for the basic action theoryAT , we assume the deterministic ac-
tionsmove(α,m) (agentα performsm amongN , S,E,W , andstand), pickUp(α, o)
(agentα picks up the objecto), anddrop(α, o) (agentα drops the objecto), as well
as the relational fluentsat(q, x, y, s) (agent or objectq is at the position(x, y) in the
situations), andholds(α, o, s) (agentα holds the objecto in the situations), which are
defined through the following successor state axioms:

at(q, x, y, do(c, s)) ≡ agent(q) ∧ (at(q, x, y, s) ∧ move(q, stand) ∈ c∨
∃x′, y′ (at(q, x′, y′, s) ∧ ∃m (move(α,m) ∈ c ∧ φ(x, y, x′, y′,m))))∨
object(q) ∧ (at(q, x, y, s) ∧ ¬∃α (pickUp(α, q) ∈ c)∨
∃α ((drop(α, q) ∈ c ∨ collision(c, s)) ∧ at(α, x, y, s) ∧ holds(α, q, s))) ;

holds(α, o, do(c, s)) ≡ holds(α, o, s)∧
drop(α, o) 6∈ c ∧ ¬collision(c, s) ∨ pickUp(α, o) ∈ c.

Here,φ(x, y, x′, y′,m) represents the coordinate change due tom, andcollision(c, s)
encodes that the concurrent actionc causes a collision between the agentsa ando in

a

a ’s base

wood

o
’s

baseo

gold

gold

Fig. 1. Stratagus Domain

the situations. The deterministic actionsmove(α,m), drop(α, o), andpickUp(α, o)
are associated with precondition axioms as follows:

Poss(move(α,m), s) ≡ ⊤ ;
Poss(drop(α, o), s) ≡ holds(α, o, s) ;
Poss(pickUp(α, o), s) ≡ ¬∃x holds(α, x, s) .

Furthermore, we assume the following additional precondition axiom, which encodes
that two agents cannot pick up the same object at the same time(whereα 6=β):

Poss({pickUp(α, o), pickUp(β, o)}, s) ≡
∃x, y, x′, y′(at(α, x, y, s) ∧ at(β, x′, y′, s) ∧ (x 6= x′ ∨ y 6= y′)) .

As for the stochastic theoryST , we assume the stochastic actionsmoveS (α,m)
(agentα executesm amongN , S, E, W , andstand), pickUpS (α, o) (agentα picks
up the objecto), dropS (α, o) (agentα drops the objecto), which may succeed or fail.
We assume the state partitionP a,n

pr = {⊤} for each pair consisting of a stochastic action
and one of its deterministic components:

∃p (prob(pickUpS (α, o), pickUp(α, o), s) = p) ;
∃p (prob(pickUpS (α, o),move(α, stand), s) = p) ;
∃p (prob(dropS (α, o), drop(α, o), s) = p) ;
∃p (prob(dropS (α, o),move(α, stand), s) = p) ;
∃p (prob(moveS (α, d),move(α, d), s) = p) ;
∃p (prob(moveS (α, d),move(α, stand), s) = p) ;
∃p (prob(a‖o, a′‖o′, s) = p ≡ ∃p1, p2 (prob(a, a′, s) = p1∧

prob(o, o′, s) = p2 ∧ p = p1 · p2)) .

As for the optimization theoryOT , we use the product as the utility functionutility .
Furthermore, we define the reward functionreward as follows:

reward(α, a, s)= r ≡ ∃rα, rβ (rewAg(α, a, s)= rα ∧
∃β (rewAg(β, a, s)= rβ) ∧ r= rα − rβ) ;

∃r1, . . . , rm (
∧m

j=1(φ
α,a
j (s) ⇔ rewAg(α, a, s) = rj)) .

Here,φα,a
j (x, s) belongs toPα,a

rw , which is defined as follows. Ifa=moveS (α, x, y),
thenPα,a

rw = {⊤}; if a= pickUpS (α, o), thenPα,a
rw = {¬h∧ atg , ¬h∧ atw , ¬h∧ ato,

h}; if a= dropS (α, o), thenPα,a
rw = {hw ∧ atb, hg ∧ atb, ¬atb ∧h, ¬h}, whereh, atg ,

atw , atb, hg , hw , ato are formulas that stand forα holding something, being at the
gold-mine, being at the wood, being at the base, holding gold, holding wood, and be-
ing close to an object, respectively.

3.2 Syntax of AGTGolog

AGTGolog has the same syntax as standard GTGolog: Given the actions specified by a
domain theoryDT , aprogramp in AGTGolog has one of the following forms (whereα
is a two-player action,φ is a condition,p, p1, p2 are programs, anda1, . . . , an and
o1, . . . , om are actions of agentsa ando, respectively):

1. Deterministic or stochastic action:α. Doα.
2. Nondeterministic action choice ofa : choice(a : a1| · · · |an).

Do an optimal action (for agenta) amonga1, . . . , an.
3. Nondeterministic action choice ofo: choice(o : o1| · · · |om).

Do an optimal action (for agento) amongo1, . . . , om.
4. Nondeterministic joint action choice:

choice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om).
Do any actionai‖oj with an optimal probabilityπi,j .

5. Test action: φ?. Test the truth ofφ in the current situation.
6. Sequence: p1; p2. Do p1 followed byp2.
7. Nondeterministic choice of two programs:(p1 | p2). Do p1 or p2.
8. Nondeterministic choice of an argument:πx (p(x)). Do anyp(x).
9. Nondeterministic iteration: p⋆. Do p zero or more times.

10. Conditional: if φ then p1 else p2.
11. While-loop: while φ do p.
12. Procedures, including recursion.

Example 3.2 (Stratagus Domain cont’d).We define some AGTGolog programs rela-
tive to the domain theoryDT =(AT ,ST ,OT) of Example 3.1. The following AGT-
Golog procedurecarryToBase describes a partially specified behavior where agenta

is trying to move to its base in order to drop down an object:

proc carryToBase

choice(a : moveS (a , N) |moveS (a , S) |moveS (a , E) |moveS (a ,W));
if atBase then πx (dropS (a , x))

else carryToBase

end.

The subsequent procedurepickProc(x) encodes that if the two agentsa ando are at
the same location, then they have to compete in order to pick up an object, otherwise
agenta can directly use the primitive actionpickUpS (a , x):

proc pickProc(x)
if atSameLocation(a ,o) then tryToPickUp(x)

else pickUpS (a , x)
end.

Here, the joint choices of the two agentsa ando when they are at the same location are
specified by the following proceduretryToPickUp(x) (which will be instantiated by a
mixed policy):

proc tryToPickUp(x)
choice(a : pickUpS (a , x) |moveS(a , stand)) ‖

choice(o : pickUpS (o, x) |moveS (o, stand))
end.

4 Learning Optimal Policies

We now define state partitionsSF for finite-horizon AGTGolog programsp. We then
show how to learn an optimal policy forp. Intuitively, given a horizonh≥ 0, anh-step
policy π of p relative to a domain theory is obtained from theh-horizon part ofp by
replacing every single-agent choice by a single action, andevery multi-agent choice by
a collection of probability distributions, one over the actions of each agent.

4.1 State Partition Generation

Given a GTGolog programp, a machine stateconsists of a subprogramp′ of p and a
horizonh. A joint state(φ, p′, h) consists of a state formulaφ and a machine state(p′, h).
Note that the joint state represents both the state of the environment and the executive
state of the agent. Every machine state(p, h) is associated with a state partition, denoted
SF (p, h)= {φ1(x, s), . . . , φm(x, s)}, which is inductively defined relative to the main
constructs of AGTGolog (and naturally extended to all the other constructs) by:

1. Null program or zero horizon:

SF (nil , h)=SF (p, 0)= {⊤}.

At the program or horizon end, the state partition is given by{⊤}.
2. Deterministic first program action:

SF (a; p′, h) = P a
rw(x, s) ⊗ {Regr(φ(x, do(a, s))∧Poss(a, s) |

φ(x, s)∈SF (p′, h− 1)}∪ {¬Poss(a, s)} \ {⊥}.

Here, the state partition fora; p′ with horizonh is obtained as the product of the
reward partitionP a

rw(x, s), the state partitionSF (p′, h− 1) of the next machine
state(p′, h− 1), and the executability partition{¬Poss(a, s), Poss(a, s)}.

3. Stochastic first program action (nature choice):

SF (a; p′, h) =
⊗k

i=1(SF (ni; p
′, h) ⊗ P a,ni

pr (x, s)),

wheren1, . . . , nk are the deterministic components ofa. That is, the partition
for a; p′ in h, wherea is stochastic, is the product of the state partitionsSF (ni; p

′, h)
relative to the deterministic componentsni of a combined with the partitionsP a,ni

pr .
4. Nondeterministic first program action (choice of agentk):

SF (choice(k : a1| · · · |an); p′, h) =
⊗n

i=1 SF (ai; p
′, h),

wherea1, . . . , an are two-player actions. That is, the state partition for a single
choice of actions is the product of the state partitions for the possible choices. Note
that the state partition for the joint choice of both agents is defined in a similar way.

5. Nondeterministic choice of two programs:

SF ((p1 | p2); p
′, h) = SF (p1; p

′, h) ⊗ SF (p2; p
′, h).

The state partition for a nondeterministic choice of two programs is obtained as the
product of the state partitions associated with the possible programs.

6. Test action:

SF (φ?; p′, h)= {φ,¬φ} ⊗ SF (p′, h).

The partition for(φ?; p′, h) is obtained by composing the partition{φ,¬φ} induced
by the testφ? with the state partition for(p′, h).

4.2 Learning Algorithm

The main learning algorithm isLearn in Algorithm 1. For each joint stateσ=(φ, p, h),
where(p, h) is a machine state andφ∈SF (p, h), it generates an optimalh-step policy
of p in φ, denotedπ(σ). We use a hierarchical version of Q-learning.

More concretely, the algorithm takes as input a program state(p, h) and generates as
output an optimal policyπ for each associated joint state(φ, p, h). In line 1, we initial-
ize thelearning rateα to 1; it decays at each learning cycles according todecay . In line
2, we also initialize to〈1, 1〉 the variables〈v, pr〉 representing the currentvalue func-
tion (or v-function). At each cycle, the current stateφ∈SF (p, h) is estimated (that is,
the agent evaluates which of the state formulas describes the current state of the world).
Then, from the joint stateσ=(φ, p, h), the procedureUpdate(φ, p, h) (see Section 4.3)
executes the programp with horizonh, and updates and refines the v-function〈v, pr〉
and the policyπ. At the end of the execution ofUpdate, if the learning rate is greater
than a suitable thresholdε, then the current stateφ is estimated and a new learning cycle
starts. At the end of the algorithmLearn, for suitabledecay andε, each possible execu-
tion of (p, h), from eachφ, is performed often enough to obtain the convergency. That
is, the agent executes the program(p, h) several times refining its v-function〈v, pr〉
and policyπ until an optimal behavior is reached.

Algorithm 1 Learn(p, h)

Require: AGTGolog programp and finite horizonh.
Ensure: optimal policyπ(φ, p, h) for all φ∈SF (p, h).
1: α := 1;
2: for each joint stateσ do 〈v, pr〉(σ) := 〈1, 1〉;
3: repeat
4: estimateφ∈SF (p, h);
5: Update(φ, p, h);
6: α := α · decay
7: until α<ε;
8: return (π(φ, p, h))φ∈SF(p,h).

4.3 Updating Step

The procedureUpdate(φ, p, h) in Algorithms 2 and 3 (parts 1 and 2, respectively) im-
plements the execution and update step of a Q-learning algorithm. Here, each joint
stateσ of the program is associated with a variable〈v, pr〉(σ), which stores the current
value of the v-function, and the variableπ(σ), which contains the current optimal policy
atσ. Notice here that〈v, pr〉(σ) collects the cumulated rewardv and probabilitypr of
successful execution ofσ, andutility(〈v, pr〉) is the associated utility. The procedure
Update(φ, p, h) updates these value during an execution of a programpwith horizonh,
from a stateφ ∈ SF (p, h). It is recursive, following the structure of the program.

Algorithm 2 describes the first part of the procedureUpdate(φ, p, h). Lines 1–4
encode the base of the induction: if the program is empty or the horizon is0, then we
set the v-function to〈0, 1〉, that is, reward0 and success probability1. In lines 5–8, we
consider the nonexecutable cases: if a primitive actiona is not executable in the current
state (here,¬Poss(a, φ) abbreviatesDT ∪ φ |=¬Poss(a, s)) or a test failed in the cur-
rent situation (here,¬ψ[φ] stands forDT ∪φ |=¬ψ(s)), then we have the reward0 and
the success probability0. In lines 9–15, we describe the execution of a primitive action
a from (φ, a; p, h) (here,Poss(a, φ) is a shortcut forDT ∪ φ |=Poss(a, s)): after the
execution, the agent receives areward from the environment. Here, the update of the
v-function and of the policyπ is postponed to the executionUpdate(do(a, φ), p′, h−1)
of the rest of the program,(p′, h−1), from the next state formulado(a, φ), that is, the
state formulaφ′ ∈SF (p′, h−1) such thatRegr(φ′(do(a, s))) equals toφ(s) relative to
DT . Then, the v-function〈v, pr〉 is updated as for Q-learning (v(do(a, φ), p′, h) is for
a Q-value fora in σ), while the success probabilitypr is inherited from the next joint
state. In lines 16–22, we consider the stochastic action execution: after the execution,
we observe a reward and the executed deterministic component nq, then we update as
in the deterministic case. The generated strategy is a conditional plan where each pos-
sible execution is considered. Here,φi are the conditions to discriminate the executed
component (represented by theobservability axioms).

The core of the learning algorithm (lines 24–55) is in Algorithm 3, where we
show the second part of the procedureUpdate(φ, p, h). This code collects the agent
choice constructs and describes how the agent learns an optimal probability distribution
over the possible options in the choice points. Here, the algorithm selects one possible

Algorithm 2 Update(φ, p, h): Part 1
Require: state formulaφ, AGTGolog programp, and finite horizonh.
Ensure: updates〈v, pr〉(σ) andπ(σ), whereσ = (φ, p, h).
1: if p=nil ∨h=0 then
2: 〈v, pr〉(σ) := 〈0, 1〉;
3: π(σ) := stop

4: end if;
5: if p= a; p′∧¬Poss(a, φ)∨ p=ψ?; p′∧¬ψ[φ] then
6: 〈v, pr〉(σ) := 〈0, 0〉;
7: π(σ) := stop

8: end if;
9: if p= a; p′ ∧Poss(a, φ) anda is deterministicthen

10: executea and observereward ;
11: Update(do(a, φ), p′, h−1);
12: 〈v, pr〉(σ) := 〈(1 − α) · v(σ) + α · (reward +
13: γ · v(do(a, φ), p′, h−1)), pr(do(a, φ), p′, h−1)〉;
14: π(σ) := a;π′(do(a, φ), p′, h−1)
15: end if;
16: if p= a; p′ ∧Poss(a, φ) anda is stochasticthen
17: “nature” selects any deterministic actionnq of the actiona;
18: Update(φ, nq; p

′, h);
19: 〈v, pr〉(σ) := 〈v, pr〉(φ, nq; p

′, h);
20: π(σ) := a; if φ1 then π(φ, n1; p

′, h) . . .
21: else if φk then π(φ, nk; p′, h)
22: end if;
23: ⊲ The algorithm is continued in Alg. 3, where the agent choicesare described.

choice with the exploration strategyexplore: with probabilityα, the agent selects ran-
domly, and with probability1−α, the agent selects according to the current policyπ(σ).
Upon the execution of the selected action through the procedureUpdate, the v-func-
tion 〈v, pr〉(σ) is updated. In the case of an agent (resp., opponent) choice (see lines
24–30 (resp., 31–38)), the current policyπ(σ) selects the current maximal (resp., min-
imal) choice; in the case of joint choices (see lines 39–48),following [13], an optimal
current mixed policy is given by the Nash pair computed by a Nash selection function
selectNash from the matrix game defined by the possible joint choices. Then, depend-
ing on the case, the v-function is updated accordingly. Lines 49–55 encode the agent
choice among programs. Finally, lines 55–60 define the successful test execution.

4.4 Example

We now illustrate the learning algorithm in the Stratagus Domain.

Example 4.1 (Stratagus Domain cont’d).Let the AGTGolog programp and the hori-
zonh be given byp=PickProc(x); carryToBase andh= 3, respectively. The learning

Algorithm 3 Update(φ, p, h): Part 2

24: if p= choice(a : a1| · · · |an); p′ then
25: select anyq ∈{1, . . . , n} with strategyexplore;
26: Update(φ,a :aq; p

′, h);
27: k := argmaxi∈{1,...,n}utility(〈v, pr〉(φ,a :ai; p

′, h));
28: 〈v, pr〉(σ) := 〈v, pr〉(φ,a :ak; p′, h);
29: π(σ) := π(φ,a :ak; p′, h)

30: end if;
31: if p= choice(o : o1| · · · |om); p′ then
32: select anyq ∈{1, . . . ,m} with strategyexplore;
33: Update(φ,o:oq; p

′, h);
34: k := argmini∈{1,...,m}utility(〈v, pr〉(φ,o:oi; p

′, h));
35: 〈v, pr〉(σ) := 〈v, pr〉(φ,o:ok; p′, h);
36: π(σ) := if φ1 then π(φ,o:o1; p

′, h) . . .

37: else if φm then π(φ,o:om; p′, h)

38: end if;
39: if p= choice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om); p′ then
40: select anyr∈{1, . . . , n} ands∈{1, . . . ,m} with strategyexplore;
41: Update(φ,a :ar‖o:os; p

′, h);
42: (πa , πo) := selectNash({ri,j = utility(〈v, pr〉(φ,a :ai‖o:oj ; p

′, h)) | i, j};
43: 〈v, pr〉(σ) :=

∑n

i=1

∑m

j=1 πa(ai) · πo(oj) · 〈v, pr〉(φ,a :ai‖o:oj ; p
′, h);

44: π(σ) := πa‖πo ; if φ1∧ψ1 then π(φ,a :a1‖o:o1; p
′, h) . . .

45: else if φn∧ψm then π(φ,a :an‖o:om; p′, h)

46: end if;
47: if p= (p1 | p2); p

′ then
48: select anyi∈{1, 2} with strategyexplore;
49: Update(φ, pi; p

′, h);
50: k := argmaxi∈{1,2}utility(〈v, pr〉(φ, pi; p

′, h));
51: 〈v, pr〉(σ) := 〈v, pr〉(φ, pk; p′, h);
52: π(σ) := π(φ, pk; p′, h)

53: end if;
54: if p=ψ?; p′ ∧ψ[φ] then
55: Update(φ, p′, h);
56: 〈v, pr〉(σ) := 〈v, pr〉(φ, p′, h);
57: π(σ) := π(φ, p′, h)
58: end if.

algorithm for this input (that is,Learn(p, 3)) then works as follows. The agent runs sev-
eral timesp with horizon3, playing against the opponent, until the learning ends and
the variables〈v, pr〉 are stabilized for each joint state(φ, p, h) associated with(p, 3)
obtaining the relative policiesπ(φ, p, h).

The state partition of(p, 3) is given bySF (p, 3)=SF (p1, 3)⊗{asl}∪SF (p′1, 3)⊗
{¬asl}, wherep1 = tryToPickUp(x); carryToBase andp′1 = pickUpS (a , x); carry−
ToBase. In the machine state(p1, 3), we have the joint choicesch

a
‖ck

o
, wherecpk

α =
pickUpS (α, x) andcpk

α =moveS (α, stand), and the agent is to learn the probability
distributions of the relative mixed policies. The choicesch

a
‖ck

o
are associated with the

programsph,k = ch
a
‖ck

o
; p2, wherep2 = carryToBase. In the machine state(p2, 2), we

have another choice point over the possible movesm(q)=moveS (a , q) towards the
base. Each choicem(q) is associated with the programpq =m(q); p3, wherep3 = if
atb then dropS (a , x) else p2 (atb abbreviatesatBase). Here, the partition isSF (pq, 2)
= {atbq ∧ hw , atbq ∧ hg , ¬atbq, ¬h}, whereatbq representsatb afterm(q) obtained
form Regr(ab,m(q)). If ¬atb is represented byatb0, andatbq1 ∧ . . . ∧ atbq4 is repre-
sented byatbq1,...,q4 , thenSF (p2, 2) = ⊗q SF (pq, 2)= {¬h, atb0...0} ∪ {atbk1...k4 ∧

hg | ∃i : ki 6=0}∪{atbh1...h4 ∧ hw | ∃i : ki 6=0}. For each state formulaφ∈SF (p2, 2),
the algorithmLearn(p, 3) continuously refines, through theUpdate step, the proba-
bility distribution over the policiesπ(φ, p2, 2). For example, training the agent against
a random opponent, in the stateφ= atbS,0,0,0 ∧hg, the algorithm produces a policy
π(φ, p2, 2) assigning probability1 for the componentq=S, and probability0 for q 6=S.
Analogously, in the choice point(p1, 3), Learn(p, 3) defines a mixed policyπ(φ, p1, 3)
for each stateφ∈SF (p1, 3)= ⊗h,k SF (ph,k, 3). For example, givenφ1 ∈SF (p1, 3)

equal to¬asl ∧ ag ∧ atbk1,...,k4 ∧¬ha ∧ho , we get probability1 for the choicecpk ,s in
π(φ1, p1, 3), instead, forφ2 ∈SF (p1, 3) equal toasl ∧ ag ∧ atbk1,...,k4 ∧¬ha ∧¬ho ,
we get probability0 for cpk ,s, cs,pk , cpk ,pk , and probability1 for cs,s.

5 Summary and Outlook

We have presented a framework for adaptive multi-agent programming, which inte-
grates high-level programming in GTGolog with adaptive dynamic programming. It
allows the agent to on-line instantiate a partially specified behavior playing against an
adversary. Differently from the classical Golog approach,here the interpreter generates
not only complex sequences of actions (the policy), but alsothe state abstraction in-
duced by the program at the different executive stages (machine states). In this way, we
show how the Golog integration between action theory and programs allows to naturally
combine the advantages of symbolic techniques [2,11] with the strength of hierarchical
reinforcement learning [17,5,1,14]. This work aims at bridging the gap between pro-
grammable learning and logic-based programming approaches. To our knowledge, this
is the first work exploring this very promising direction.

An interesting topic of future research is to explore whether the presented approach
can be extended to the partially observable case.

Acknowledgments. This work was supported by the Austrian Science Fund Project
P18146-N04 and by a Heisenberg Professorship of the German Research Foundation
(DFG). We thank the reviewers for their comments, which helped to improve this work.

References

1. D. Andre and S. J. Russell. State abstraction for programmable reinforcement learning
agents. InProceedings AAAI-2002, pp. 119–125.

2. C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs.
In Proceedings IJCAI-2001, pp. 690–700.

3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. InProceedings AAAI-2000, pp. 355–362.

4. P. Dayan and G. E. Hinton. Feudal reinforcement learning. InProc. NIPS-1993, pp. 271–278.
5. T. G. Dietterich. The MAXQ method for hierarchical reinforcement learning. InProceedings

ML-1998, pp. 118–126.
6. A. Ferrein, C. Fritz, and G. Lakemeyer. Using Golog for deliberationand team coordination

in robotic soccer.Künstliche Intelligenz, 1:24–43, 2005.
7. A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog. InProceedings

ECAI-2004, pp. 23–27.
8. A. Finzi and T. Lukasiewicz. Relational Markov games. InProceedings JELIA-2004,

Vol. 3229 ofLNCS/LNAI, pp. 320–333.
9. A. Finzi and T. Lukasiewicz. Game-theoretic Golog under partial observability. InProceed-

ings AAMAS-2005, pp. 1301–1302.
10. A. Finzi and F. Pirri. Combining probabilities, failures and safety in robot control. InPro-

ceedings IJCAI-2001, pp. 1331–1336.
11. C. Gretton and S. Thiebaux. Exploiting first-order regression in inductive policy selection.

In Proceedings UAI-2004, pp. 217–225.
12. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic program-

ming language for dynamic domains.J. Logic Program., 31(1–3):59–84, 1997.
13. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In

Proceedings ICML-1994, pp. 157–163.
14. B. Marthi, S. J. Russell, D. Latham, and C. Guestrin. Concurrent hierarchical reinforcement

learning. InProceedings IJCAI-2005, pp. 779–785.
15. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial

Intelligence. InMachine Intelligence, Vol. 4, pp. 463–502. Edinburgh University Press, 1969.
16. G. Owen.Game Theory: Second Edition. Academic Press, 1982.
17. R. Parr and S. J. Russell. Reinforcement learning with hierarchiesof machines. InProceed-

ings NIPS-1997, Vol. 10, pp. 1043–1049.
18. J. Pinto. Integrating discrete and continuous change in a logical framework. Computational

Intelligence, 14(1):39–88, 1998.
19. M. L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.
20. R. Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, 2001.
21. Michael Thielscher. Programming of reasoning and planning agents with FLUX. In Pro-

ceedings KR-2002, pp. 435–446.
22. J. van der Wal.Stochastic Dynamic Programming, Vol. 139 ofMathematical Centre Tracts.

Morgan Kaufmann, 1981.
23. J. von Neumann and O. Morgenstern.The Theory of Games and Economic Behavior. Prince-

ton University Press, 1947.
24. C. Watkins.Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK,

1989.

