Adaptive Multi-Agent Programming in GTGolog

Alberto Finzi2 and Thomas Lukasiewiéz'

L Institut fur Informationssysteme, Technische Univéisitvien
Favoritenstraf3e 9-11, A-1040 Vienna, Austria

2 Dipartimento di Informatica e Sistemistica, Univeasiti Roma “La Sapienza”
Via Salaria 113, 1-00198 Rome, Italy
{finzi, lukasiew cz}@is.uniroml.it

Abstract. We present a novel approach to adaptive multi-agent programming,
which is based on an integration of the agent programming language I6J Go
with adaptive dynamic programming techniques. GTGolog combines @xplic
agent programming in Golog with multi-agent planning in stochastic games.
A drawback of this framework, however, is that the transition probabildies
reward values of the domain must be known in advance and then camanoge
anymore. But such data is often not available in advance and may asgeh
over the time. The adaptive generalization of GTGolog in this paper is ditecte
towards letting the agents themselves explore and adapt these data, whigh is
useful for realistic applications. We use high-level programs for igeimg both
abstract states and optimal policies, which benefits from the deep integbatio
tween action theory and high-level programs in the Golog framework.

1 Introduction

In the recent years, the development of controllers forrmatmous agents has become
increasingly important in Al. One way of designing such colirs is the program-
ming approach, where a control program is specified througdnguage based on
high-level actions as primitives. Another way is the plamgnapproach, where goals
or reward functions are specified and the agent is given anpigrability to achieve
a goal or to maximize a reward function. An integration oftbapproaches for multi-
agent systems has recently been proposed through the @iEGolog [7] (gener-
alizing DTGolog [3]), which integrates explicit agent pragiming in Golog [20] with
game-theoretic multi-agent planning in stochastic gamé$. [It allows for partially
specifying a high-level control program (for a system of wampeting agents or two
competing teams of agents) in a high-level language as wdbraoptimally filling in
missing details through game-theoretic multi-agent glagnn

However, a drawback of GTGolog (and also of DTGolog) is thatttansition prob-
abilities and reward values of the domain must be known iraade and then can-
not change anymore. But such data often cannot be providadviance in the model.
It would thus be more useful for realistic applications token¢ghe agents themselves
capable of estimating, exploring, and adapting these data.

This is the main motivating idea behind this paper. We preaemovel approach
to adaptive multi-agent programming, which is an integratf GTGolog with rein-
forcement learning as in [13]. We use high-level programgyémerating both abstract

states and policies over these abstract states. The genesdabstract states exploits
the structured encoding of the domain in a basic action thatwng with the high-level
control knowledge in a Golog program. A learning process inerementally adapts
the model to the executive context and instantiates théaparspecified behavior.

To our knowledge, this is the first adaptive approach to Goltgrpreting. Differ-
ently from classical Golog, here the interpreter genenatgnly complex sequences
of actions, but also an abstract state space for each masthiee Similarly to [2,11], we
rely on the situation calculus machinery for state abstyacbut in our system the state
generation is driven by the program structure. Here, we ake &dvantage from the
deep integration between the action theory and progranvida by Golog: deploying
the Golog semantics and the domain theory, we can produdéeethstate abstrac-
tion for each program state. In this way, we can extend thpesad programmable
learning techniques [4,17,5,1,14] to a logic-based adgehD,21] and multi-agent [6]
programming framework: the choice points of partially sped programs are associ-
ated with a set of state formulas and are instantiated throeigforcement learning and
dynamic programming constrained by the program structure.

2 Preliminaries

In this section, we recall the basics of the situation calsand Golog, matrix games,
stochastic games, and reinforcement learning.

2.1 The Situation Calculus and Golog

The situation calculus [15,20] is a first-order languagerépresenting dynamically
changing worlds. Its main ingredients aetions situations andfluents An actionis

a first-order term of the form(uy, ..., u,), where the function symbal is its name
and theu;’s are itsargumentsAll changes to the world are the result of actions. For
example, the actiomoveTo(r, z,y) may stand for moving the agento the position
(x,y). A situationis a first-order term encoding a sequence of actions. It ieeia
constant symbol or of the forndo(a, s), wheredo is a distinguished binary function
symbol,a is an action, and is a situation. The constant symhg) is theinitial situa-
tion and represents the empty sequence, while:, s) encodes the sequence obtained
from executinga after the sequence af For example, the situatiodo(moveTo(r,
1,2), do(moveTo(r,3,4), Sp)) stands for executingnoveTo(r,1,2) after executing
moveTo(r,3,4) in the initial situationS, . We write Poss(a, s), wherePoss is a distin-
guished binary predicate symbol, to denote that the aetisipossible to execute in the
situations. A (relational) fluentrepresents a world or agent property that may change
when executing an action. It is a predicate symbol whose ngist argument is a sit-
uation. For exampleyt(r, z, y, s) may express that the agents at the position(z, y)

in the situations. In the situation calculus, a dynamic domain is represebyeabasic
action theoryAT = (X, Dyna, Ps,, Dssas Dap), Where:

e Y is the set of (domain-independent) foundational axiomsitorations [20].
e D,.. is the set of unique names axioms for actions, which exprestsdifferent
actions are interpreted in a different way.

e Dg, is a set of first-order formulas describing the initial statéhe domain (repre-
sented byS,). For exampleat(r, 1,2, S9) A at(r’,3,4, Sy) may express that the
agents andr’ are initially at the position$él, 2) and(3, 4), respectively.

e D, is the set ofsuccessor state axionj0]. For each fluenf'(z, s), it con-
tains an axiom of the forn¥'(x, do(a, s)) = ®r(x,a,s), wherePp(x,a,s) is a
formula with free variables among, a, s. These axioms specify the truth of the
fluent ' in the next situationio(a, s) in terms of the current situatios) and are a
solution to the frame problem (for deterministic actiori®)r example, the axiom
at(r,x,y,do(a, s)) = a=moveTo(r,x,y) V (at(r,z,y,s) AN =3z’ ,y' (a = move-
To(r,2’,y"))) may express that the agenis at the positionz, y) in the situa-
tion do(a, s) iff either » moves to(x, y) in the situations, or r is already at the
position(x, y) and does not move away i

e D,, is the set ofaction precondition axiomsFor each actiom, it contains an
axiom of the formPoss(a(x), s) = II(x, s), which characterizes the preconditions
of the actiona. For example Poss(moveTo(r, x,y),s) = =3 at(r', x,y, s) may
express that it is possible to move the agetut the position(z, y) in the situatiors
iff no other agent”’ is at(z, y) in s.

We use the concurrent version of the situation calculuslQwhich is an exten-
sion of the standard situation calculus by concurrent astié concurrent actiorc is a
set of standard actions, which are concurrently executeshwis executed.

Theregressiorof a formulag through an action, denotedRegr(¢), is a formulag’
that holds before executing given thaty holds after executing. The regression af
whose situations are all of the fort(«a, s) is defined inductively using the successor
state axiomd’(xz, do(a, s)) = Pr(x,a, s) as follows:

Regr(F(z,do(a, s))) = Pr(x,a,s), Regr(~¢)=—Regr(¢),
Regr(¢1 A ¢2) = Regr(¢1) A Regr(¢2), and Regr(3z ¢) = 3x (Regr(6)) .

Golog [12,20] is an agent programming language that is baséke situation calculus.
It allows for constructing complex actions from the primétiactions defined in a basic
action theoryAT', where standard (and not so standard) Algol-like controlstmcts
can be used, in particular, (i) sequenpe:ps; (ii) test action:¢?; (iii) nondetermin-
istic choice of two programg(p; | p2); (iv) nondeterministic choice of an argument:
7z (p(x)); and (v) conditional, while-loop, and procedure. For extmihe Golog pro-
gramwhile —at(r,1,2) do wz,y (moveTo(r, z,y)) repeats moving the agentto a
nondeterministically chosen positidm, y) while r is not at(1, 2). The semantics of
a Golog progranmp is specified by a situation-calculus formula (p, s, s"), which en-
codes that’ is a situation which can be reached frenby executingp. That is, Do
represents a macro expansion to a situation calculus farrfior example, the action
sequence is defined throudbo(p;;ps, s, s’) = 3s”(Do(p1,s,s") A Do(pa,s”,s")).
For more details on the core situation calculus and Gologefer the reader to [20].

2.2 Matrix Games

Matrix games from classical game theory [23] describe thesibbe actions of two
agents and the rewards that they receive when they simoliaheexecute one action

each. Formally, anatrix gameG = (4, O, R,, R,) consists of two nonempty finite
sets ofactionsA andO for two agentsz ando, respectively, and tweeward functions
Ry, Ryo: Ax O — R for a ando. The matrix gamé- is zero-suniff R, = —R,; we
then often omitR, and abbreviaté, by R.

A pure(resp. mixed strategyspecifies which action an agent should execute (resp.,
which actions an agent should execute with which probghillf the agentsa and o
play the pure strategiesc A ando € O, respectively, then they receive thevards
R, (a,0) andR,(a, o), respectively. If the agenisando play the mixed strategies, €
PD(A) andm, € PD(O), respectively, then thexpected rewartb agent: € {a, o} is
Ri(ma; 7o) =E[Ry(a, 0)|mqa, mo| = ZaGA, oco Ta(a) - mo(0) - Ri(a,0).

We are especially interested in pairs of mixed strategigsr,), called Nash equi-
libria, where no agent has the incentive to deviate from &k of the pair, once the
other agent plays the other halft,, 7,) is aNash equilibriun(or Nash pai) for G iff
() Ra(mh,m0) < Ry(ma,mo) for any mixedn?,,, and (i) R, (7, 7)) < Ro(mq, 7o) for
any mixedr’ . Every two-player matrix gamé&' has at least one Nash pair among its
mixed (but not necessarily pure) strategy pairs, and mawg haultiple Nash pairs.

2.3 Stochastic Games

Stochastic games [16], or also called Markov games [22d&}eralize both matrix
games [23] and (fully observable) Markov decision proce¢sDPs) [19].

They consist of a set of stat€sa matrix game for every statec .S, and a transition
function that associates with every state S and combination of actions of the agents
a probability distribution on future state$< S. Formally, a(two-player) stochastic
gameG =(S,A,0, P,R,, R,) consists of a finite nonempty set of statggwo finite
nonempty sets of actiond and O for two agentse and o, respectively, a transition
functionP: S x Ax O — PD(S), and tworeward functionR,, R,: SxAxO — R
for a ando. The stochastic gam@ is zero-sumff R,= — R, ; we then often omiRz,,.

Assuming a finite horizod{ > 0, apure(resp.,mixed time-dependenpolicy asso-
ciates with every statec S and number of steps to doc {0,..., H} a pure (resp.,
mixed) matrix-game strategy. ThE-step rewardto agentk € {a, o} under a start
states € S and the pure policies andw, denoted=(H, s, o, w), is Gi(0, s, a,w) =
Ry(s,a(s,0),w(s,0)) andGr(H, s, o, w) = Ry(s,a(s, H),w(s, H))+>, cgP(s']s,
a(s,H),w(s,H)) - G,(H-1,5,a,w) for H> 0. The notions of arexpectedH-step
reward for mixed policies and of &lash paircan then be defined in a standard way.
Every two-player stochastic gande has at least one Nash pair among its mixed (but
not necessarily pure) policy pairs, and it may have expoalntnany Nash pairs.

2.4 Learning Optimal Palicies

Q-learning [24] is a reinforcement learning technique,alibdllows to solve an MDP
without a model (that is, transition and reward functions) aan be used on-line. The
valueQ(s, a) is the expected discounted sum of future payoffs obtaineeeguting
a from the states and following an optimal policy. After being initialized tarbitrary
numbers, the Q-values are estimated through the agentiesper For each execution
of an actiornu leading from the state to the state’, the agent receives a rewargdand

the Q-value update iQ(s,a) := (1 —) - Q(s,a) + a - (r+v - maxyeca Q(s',d")),
where~ (resp.,«) is the discount factor (resp., the learning rate). Thiatgm con-
verges to the correct Q-values with probabilitgssuming that every action is executed
in every state infinitely many times amdis decayed appropriately.

Littman [13] extends Q-learning to learning an optimal ndixgolicy in a zero-
sum two-player stochastic game. Here, the Q-value updafgdsa,o0) := (1 —a) -
Q(s,a,0) + - (r+7v -maxyecppa) MiNyrco) peq Q(s',a’,0") - m(a’)), where the
“maxmin”-term gives the expected reward of a Nash pair foe@zsum matrix game.

3 Adaptive GTGolog (AGTGolog)

In this section, we first define the domain theory behind AdapGTGolog (AGT-
Golog) and then the syntax of AGTGolog.

3.1 Domain Theory of AGTGolog

A domain theoryDT = (AT, ST, OT) of AGTGolog consists of a basic action the-
ory AT, astochastic theoryy 7', and aroptimization theoryOT', as defined below.

We first give some preliminaries. We assume two zero-sum etingp agentsa
and o (called agentand opponent respectively, where the former is under our con-
trol, while the latter is not). The set of primitive actiorsspartitioned into the sets of
primitive actionsA andO of agentsa and o, respectively. Awo-player actions any
concurrent actiom over AU O such thajcn A| <1 and|cn O] < 1. For example, the
concurrent action§moveTo(a, 1,2)} C A, {moveTo(0,2,3)} C O, and{moveTo(a,
1,2), moveTo(0,2,3)} C AUO are all two-player actions. We often write o, and
allo to abbreviatda} C A, {o} C O, and{a, 0} C AU O, respectively.

A state formulaoverz, s is a formulag(x, s) in which all predicate symbols are flu-
ents, and the only free variables are the non-situatiombbasx and the situation vari-
ables. A state partitionoverx, s is a nonempty set of state formul®&$x, s) = {¢;(x,
s)|ie{l,...,m}} such that (ilVe, s (¢:(x, s) = —¢,(x, s)) is valid for all , j € {1,
-..,m}with j >4, (i) Ve, s (]~ ¢i(x, s)) is valid, and (iii) every3z, s (¢;(x, s)) is
satisfiable. For state partitiod§ and P, we define theiproductas follows:

P @Py={y1 ANba |1 € Py, o € Po, 1 Npa # L},

We often omit the arguments of a state formula when they aa étom the context.
We next define the stochastic theory. As usual [3,10,2],hstsiic actions are ex-
pressed by a finite set of deterministic actions. When a ssbichaction is executed,
then “nature” chooses and executes with a certain probaleikactly one of its de-
terministic actions. We use the predicatechastic(a, s,n) to associate the stochastic
actiona with the deterministic action in situations. We also specify a state partition
P, s) ={¢;" (z,5)]| j €{1,...,m}} to group together situationswith common
psuch that “nature” choosesin s with probabilityp, denotedrob(a(x), n(x), s) =p:

1, Dm (/\;'L:l(é?"(w, s) < prob(a(zx),n(x), s) =p;)) .

A stochastic action is indirectly represented by providingsaccessor state axiofar
each associated nature choiceThus, AT is extended to a probabilistic setting in a
minimal way. We assume that the domairfufly observable For this reason, we in-
troduceobservability axiomswvhich disambiguate the state of the world after executing
a stochastic action. For example, after executingeS(a, x,y), we testat(a, z,y, s)
andat(a,z,y + 1, s) to see which of the deterministic actions was executed {ghat
moveTo(a,x,y) or moveTo(a, x,y+ 1)). This condition is denotedondSta(a, n, s).
For examplecondSta(moveS(a, z,y), moveTo(a,z,y + 1),s) = at(a,z,y + 1,).
Similar axioms are introduced to observe which actionswitedgents have chosen.

As for the optimization theory, for every two-player actiarnwe specify a state par-
tition P2, (x, s) = {¢¢(x,s) | k€{1,...,q}} to group together situationswith com-
monr such that:(x) ands assign the reward to a, denotedreward(a(x), s) =r:

1, .., rq (ANfoy (5, s) < reward (a(x), s) =14)) .

Moreover, a utility function associates with every rewarhd success probabilipy a
real-valued utilityutility (v, pr). We assume thattility (v, 1) = v andutility(v,0) =0
for all v. An example of such a function igtility (v, pr) =v - pr.

Example 3.1 (Stratagus DomainConsider the following scenario inspired by [14].
The stratagus field consists®k 9 positions (see Fig. 1). There are two agents, denoted
a ando, which occupy one position each. The stratagus field hagigsd areas rep-
resenting twayold-minesoneforest and oneébasefor each agent (see Fig. 1). The two
agents can move one step in one of the directdnS E, andW, or remain stationary.
Each of the two agents can also pick up one unit of wood (regpd) at the forest
(resp., gold-mines), and drop these resources at its bash.detion of the two agents
can fail, resulting in a stationary move. Any carried objéicips when the two agents
collide. After each step, the agenisand o receive the (zero-sum) rewards — r,,
andr, — rq, respectively, wherey, for k € {a, 0} is 0, 1, and2 whenk brings nothing,
one unit of wood, and one unit of gold to its base, respegtivel

The domain theoryDT = (AT, ST, OT) for the above stratagus domain is de-
fined as follows. As for the basic action theadyl’, we assume the deterministic ac-
tionsmove(a, m) (agentw performsm amongN, S, E, W, andstand), pickUp(c, o)
(agenta picks up the objecd), and drop(«, o) (agenta drops the object), as well
as the relational fluentst(q, =, y, s) (agent or objecy is at the positior(z, y) in the
situations), andholds(«, o, s) (agenta holds the object in the situations), which are
defined through the following successor state axioms:

at(q, x,y, do(c, s)) = agent(q) A (at(q, z,y,s) A move(q, stand) € ¢V
',y (at(q, ',y s) A Im (move(a,m) € ¢ A p(x,y, 2’ y',m)))) V
object(q) A (at(q,z,y,s) N —Ja (pickUp(a, q) € ¢) V
Ja ((drop(a, q) € ¢V collision(c, s)) A at(a, z,y,s) A holds(a, q, $))) ;
holds(c, 0, do(c, s)) = holds(a, 0,8) A
drop(a, 0) & ¢ A —collision(c, s) V pickUp(a, 0) € c.

Here,¢(x,y,2’,y', m) represents the coordinate change duef@nd collision(c, s)
encodes that the concurrent actionauses a collision between the agemtand o in

)
(2)

a’s base

gold

Fig. 1. Stratagus Domain

the situations. The deterministic actionsiove(«, m), drop(c, o), andpickUp(«, o)
are associated with precondition axioms as follows:

Poss(move(a,m),s) =T ;
Poss(drop(a,0),s) = holds(a, 0, s) ;
Poss(pickUp(a, 0),s) = =3z holds(a, z, s) .

Furthermore, we assume the following additional precaonlibxiom, which encodes
that two agents cannot pick up the same object at the saméduihezea # [3):

Poss({pickUp(a, o), pickUp(B3,0)}, s) =
3z, y, 2’y (at(a, z,y,s) A at(B,2',y',s) ANz £ 2" Vy#y')).

As for the stochastic theor§ T, we assume the stochastic actionsveS(a, m)
(agenta executesn amongN, S, E, W, andstand), pickUpS(«a, o) (agenta picks
up the objecb), dropS(«, o) (agenta drops the object), which may succeed or fail.
We assume the state partitiéty,” = { T } for each pair consisting of a stochastic action
and one of its deterministic components:

p (prob(pickUpS(a, o), pickUp(a, 0),s) = p);
p (prob(pickUpS(«, 0), move(a, stand), s) =
p (prob(dropS (., 0), drop(a, 0),s) = p);

(prob(
(prob(p);
(prob(

dp EpmbgdmpS(a ,0), move(a, stand), s) = p);
(prob(
(prob(a

)

p (prob(moveS(a, d), move(a, d), s) = p);

Jp (prob moveS(),move(a stand), s) =p);

Ip (prob ||0 a'llo’,s) = p = 3p1,p2 (prob(a,a’, s) = p1A
prob(o,0',s) = pa /\p p1-p2)).

As for the optimization theorny) T', we use the product as the utility functiaitility.
Furthermore, we define the reward functieward as follows:

reward (o, a,s) =r = 3rq, g (rewAg(o, a,s) =rq A
308 (rewAg(B,a,s)=rg) AT =rq —13);
iy (AJ2y (057 (5) & rewAg(a, a,s) = 1y)) .
Here, ¢} “(x, s) belongs toPy,*, which is defined as follows. i = moveS(a, z,y),

thenP2,* ={T},; if a=pickUpS(«,0), thenP%:* = {=h A atg, ~h A atw, =h A ato,
h};if a=dropS(a, o), thenP%:* = {hw A atb, hg A ath, ~athb A h, —~h}, whereh, atg,
atw, atb, hg, hw, ato are formulas that stand far holding something, being at the
gold-mine, being at the wood, being at the base, holding,daittiing wood, and be-

ing close to an object, respectively.

3.2 Syntax of AGTGolog

AGTGolog has the same syntax as standard GTGolog: Giverctloma specified by a
domain theoryDT', aprogramp in AGTGolog has one of the following forms (whete
is a two-player actiong is a condition,p, p1, po are programs, andy,...,a, and
o1,...,0n, are actions of agenis ando, respectively):

1. Deterministic or stochastic action:. Do «.
2. Nondeterministic action choice af. choice(a: a1]- - |ay,).

Do an optimal action (for agent) amongay, . . . , a,.
3. Nondeterministic action choice of choice(o: o1 - - |om).
Do an optimal action (for agent) amongoy, . . ., 0,.

4. Nondeterministic joint action choice:
choice(a: ay|---|a,) | choice(o: o1 - |om).
Do any actior; ||o; with an optimal probabilityr; ;.
5. Test action¢?. Test the truth of) in the current situation.
6. Sequencep;;ps. Do p; followed byp,.
7. Nondeterministic choice of two programgi | p2). Do p; or ps.
8. Nondeterministic choice of an argument: (p(x)). Do anyp(x).
9. Nondeterministic iterationp*. Do p zero or more times.
10. Conditionatl if ¢ then p; else ps.
11. While-loop while ¢ do p.
12. Procedures, including recursion

Example 3.2 (Stratagus Domain cont’dyVe define some AGTGolog programs rela-
tive to the domain theorpT = (AT, ST, OT) of Example 3.1. The following AGT-
Golog procedurearryToBase describes a partially specified behavior where agent
is trying to move to its base in order to drop down an object:

proc carryToBase
choice(a: moveS(a, N) | moveS(a,S)|moveS(a, E) | moveS(a,W));
if atBase then 7z (dropS(a,x))
else carryToBase
end.

The subsequent procedupéckProc(z) encodes that if the two agenssand o are at
the same location, then they have to compete in order to gickruobject, otherwise
agenta can directly use the primitive actignckUpS(a, x):

proc pickProc(x)

if atSameLocation(a, o) then tryToPickUp(z)
else pickUpS(a, x)

end.

Here, the joint choices of the two ageisindo when they are at the same location are
specified by the following procedurey ToPickUp(z) (which will be instantiated by a
mixed policy:

proc tryToPickUp(x)

choice(a: pickUpS(a,x)|moveS(a, stand)) ||
choice(o: pickUpS(o,x)| moveS(o, stand))

end.

4 Learning Optimal Policies

We now define state partitions for finite-horizon AGTGolog programs. We then
show how to learn an optimal policy fer Intuitively, given a horizorh > 0, anh-step
policy 7 of p relative to a domain theory is obtained from théorizon part ofp by
replacing every single-agent choice by a single action,exedy multi-agent choice by
a collection of probability distributions, one over theiant of each agent.

4.1 State Partition Generation

Given a GTGolog program, a machine stateonsists of a subprograpi of p and a
horizonh. A joint state(¢, p/, h) consists of a state formutaand a machine stafe’,).
Note that the joint state represents both the state of thiecemaent and the executive
state of the agent. Every machine stateh) is associated with a state partition, denoted
SE(p,h)={p1(x,s),...,pm(x,s)}, which is inductively defined relative to the main
constructs of AGTGolog (and naturally extended to all tHeeotonstructs) by:

1. Null program or zero horizon:
SF(nil,h)=SF(p,0)={T}.

At the program or horizon end, the state partition is giver{ By.
2. Deterministic first program action:

SE(a;p',h) = P, (x,s) ® {Regr(¢(zx, do(a, s)) A Poss(a, s) |
¢(x,s) € SF(p',h— 1)} U{=Poss(a,s)} \ {L}.
Here, the state partition far; p’ with horizonh is obtained as the product of the

reward partitionP?, (z, s), the state partitiorfF'(p’, h — 1) of the next machine
state(p’, h — 1), and the executability partitiofi-Poss(a, s), Poss(a,s)}.

3. Stochastic first program action (nature choice):
SF(a;p',h) = @i, (SF (nisp/,h) ® Py (@,)),

whereng,...,n; are the deterministic components @f That is, the partition

for a; p in h, wherea is stochastic, is the product of the state partitiSagn;; p’, h)

relative to the deterministic componentsof « combined with the partitions,;,™:.
4. Nondeterministic first program action (choice of agent

SF(choice(k: a1| - |an);p',h) = @iy SF(ai;p', h),

whereay,...,a, are two-player actions. That is, the state partition forreylei

choice of actions is the product of the state partitionstergossible choices. Note

that the state partition for the joint choice of both agestidfined in a similar way.
5. Nondeterministic choice of two programs:

SF((p1|p2);p',h) = SF(p1;p', h) @ SF(pa; p', h).

The state partition for a nondeterministic choice of twogpeans is obtained as the
product of the state partitions associated with the pasgifigrams.
6. Test action:

SF(¢?;p/’ h) = {¢a ﬁ(b} ® SF(p/, h)

The partition for(¢?; p’, h) is obtained by composing the partiti¢p, —¢} induced
by the test? with the state partition fofp’, h).

4.2 Learning Algorithm

The main learning algorithm iBearn in Algorithm 1. For each joint state= (¢, p, h),
where(p, h) is a machine state antle SF'(p, h), it generates an optimakstep policy
of p in ¢, denotedr (o). We use a hierarchical version of Q-learning.

More concretely, the algorithm takes as input a prograne stat.) and generates as
output an optimal policy: for each associated joint st&te, p,). In line 1, we initial-
ize thelearning ratea to 1; it decays at each learning cycles accordingdeuy. In line
2, we also initialize to(1, 1) the variablegv, pr) representing the curremtlue func-
tion (or v-function). At each cycle, the current statec SF(p, h) is estimated (that is,
the agent evaluates which of the state formulas descrileesutinent state of the world).
Then, from the joint state = (¢, p, h), the proceduréipdate (s, p, h) (see Section 4.3)
executes the programpwith horizonh, and updates and refines the v-functienpr)
and the policyr. At the end of the execution dfipdate, if the learning rate is greater
than a suitable threshotd then the current stateis estimated and a new learning cycle
starts. At the end of the algorithitearn, for suitabledecay ande, each possible execu-
tion of (p, k), from eachy, is performed often enough to obtain the convergency. That
is, the agent executes the progrgmh) several times refining its v-functiofv, pr)
and policyr until an optimal behavior is reached.

Algorithm 1 Learn(p, h)

Require: AGTGolog progranp and finite horizorh.

Ensure: optimal policyn (¢, p, h) for all ¢ € SF(p, h).
1. «oa:=1,

2: for each joint states do (v, pr)(o) := (1,1);

3: repeat

4 estimatep € SF(p, h);

5: Update(¢, p, h);

6:

2

8

o=« - decay
until a < ¢;
return (m(é, p, h)) gesr(p,h)-

4.3 Updating Step

The procedurd/pdate (o, p, h) in Algorithms 2 and 3 (parts 1 and 2, respectively) im-
plements the execution and update step of a Q-learningitdgorHere, each joint
states of the program is associated with a variabibepr) (o), which stores the current
value of the v-function, and the variabit¢o), which contains the current optimal policy
ato. Notice here thatv, pr)(o) collects the cumulated rewatdand probabilitypr of
successful execution ef, andutility({v, pr)) is the associated utility. The procedure
Update (o, p, h) updates these value during an execution of a prograith horizonh,
from a statey € SF(p, h). Itis recursive, following the structure of the program.

Algorithm 2 describes the first part of the procedurgdate(¢, p, h). Lines 1-4
encode the base of the induction: if the program is empty @htirizon is0, then we
set the v-function td0, 1), that is, reward) and success probability In lines 5-8, we
consider the nonexecutable cases: if a primitive acti@not executable in the current
state (herenPoss(a, ¢) abbreviatedDT U ¢ = —Poss(a, s)) or a test failed in the cur-
rent situation (here;w)[¢] stands forDT U ¢ = —1)(s)), then we have the rewafdand
the success probability. In lines 9—-15, we describe the execution of a primitiveacti
a from (¢, a;p, h) (here,Poss(a, ¢) is a shortcut fotDT U ¢ |= Poss(a, s)): after the
execution, the agent receives@vard from the environment. Here, the update of the
v-function and of the policyr is postponed to the executidipdate(do(a, ¢),p’, h—1)
of the rest of the prograntp’, h—1), from the next state formuldo(a, ¢), that is, the
state formulap’ € SF(p’, h—1) such thatRegr(¢’'(do(a, s))) equals tap(s) relative to
DT. Then, the v-functiorqu, pr) is updated as for Q-learning(do(a, ¢),p’, h) is for
a Q-value fora in o), while the success probabilify- is inherited from the next joint
state. In lines 16-22, we consider the stochastic actiooutiom: after the execution,
we observe a reward and the executed deterministic compeggethen we update as
in the deterministic case. The generated strategy is a tondli plan where each pos-
sible execution is considered. Hetg,are the conditions to discriminate the executed
component (represented by thleservability axioms

The core of the learning algorithm (lines 24-55) is in Alglom 3, where we
show the second part of the procedurgdate(, p, h). This code collects the agent
choice constructs and describes how the agent learns amadptiobability distribution
over the possible options in the choice points. Here, therdlgn selects one possible

Algorithm 2 Update(¢, p, h): Part 1

Require: state formulap, AGTGolog progranp, and finite horizorh.
Ensure: updatesv, pr)(o) andr (o), whereo = (¢, p, h).
1. if p=nil vV h=0then
(v, pry(o) :=(0,1);
7(o) := stop
end if;
if p=a;p’'A—Poss(a, p) Vp=97;p'\=¢[¢] then
(v, pr)(0) := (0,0);
7(o) := stop
end if;
if p=a;p’ A Poss(a, @) anda is deterministichen
10: executer and observeeward;
11 Update(do(a, ¢),p’, h—1);
12: (v, pry(o) == (1 —a) -v(o) + a - (reward +
13: v v(do(a, ¢)7p/7 h_l))> pr(do(a, ¢)7p/7 h’_l))!
14: 7(o) = a;7'(do(a, d),p’, h—1)
15: end if;
16: if p=a;p’ A Poss(a,) anda is stochasti¢hen
17 “nature” selects any deterministic actiop of the actioru;
18: Update(p,ng;p', h);
19: (v, pr)(o) := (v, pr)(¢,ng; p', h);
20: (o) := a;if ¢ then w(p,ny;p', h) ...
21: eseif ¢y then m(¢p, ny;p', h)
22: end if;
23: > The algorithm is continued in Alg. 3, where the agent choaresdescribed.

n

choice with the exploration strategxplore with probability «, the agent selects ran-
domly, and with probability —«, the agent selects according to the current patigy).
Upon the execution of the selected action through the proeetipdate, the v-func-
tion (v, pr)(o) is updated. In the case of an agent (resp., opponent) chegeelifes
24-30 (resp., 31-38)), the current polieyr) selects the current maximal (resp., min-
imal) choice; in the case of joint choices (see lines 39-#fpwing [13], an optimal
current mixed policy is given by the Nash pair computed by alNgelection function
selectNash from the matrix game defined by the possible joint choicegnTlklepend-
ing on the case, the v-function is updated accordingly. £ #®-55 encode the agent
choice among programs. Finally, lines 55-60 define the sisfuktest execution.

44 Example
We now illustrate the learning algorithm in the Stratagusiam.

Example 4.1 (Stratagus Domain cont'd)et the AGTGolog progranp and the hori-
zonh be given byp = PickProc(x); carryToBase andh = 3, respectively. The learning

Algorithm 3 Update(¢, p, h): Part 2

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45;
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

if p=choice(a: a1]---|ay);p’ then
select any; € {1, ..., n} with strategyexplore
Update(¢, azaq;p’, h);
ki=argmaxe yutility((v, pr)(¢, a:a;p', h));
(v, pry(o) := (v, pr)(d, a:ar; p’, h);
(o) == 7w(¢, a:ar;p’, h)

end if;

if p=choice(o: o1]---|om);p’ then
selectany; € {1,...,m} with strategyexplore

Update(¢p, 0:04; ', h);
ke=argming yutility((v, pr)(¢, o:0;p', h));
(v, pr)(o) := (v, pr) (¢, 0:0k;p’, h);
7(o) = if ¢1 then w(¢, 0:01;p', h) ...
else if ¢, then w(¢, 0:0,,,;9', h)
end if;
if p=choice(a: a1]---|ay) || choice(o: o1]- - |om,);p’ then

selectany-€{1,...,n}ands e {1,..., m} with strategyexplore
Update(¢, a:a,||0:0s;p', h);
(Ta, o) = selectNash({r; ; = utility((v, pr) (¢, a:a;||0:05;p", h)) | i, j};
(0,57)(0) = X0y S Talas) - 7ol05) - (0, pr)(@, asasloiogs ', b
(o) = Ta||7o; if p1AY1 then w(¢, a:aq]|0:01;p',). ..
eseif ¢, A\, then w(¢, a:a,||0:0p;p', h)
end if;
if p=(p1|p2); ¢’ then
select anyi € {1, 2} with strategyexplore
Update(¢,pi;p', h);
k := argmax, y oy utility((v, pr)(¢, pi; p', h));
<2),p7‘>(0) = <var>(¢>pk;p/a h)’
W(U) = 7T((]5,pk;pl, h)
end if;
if p=17;p" A1p[¢] then
Update(o,p', h);
(v, pr)(o) = (v, pr)(¢,p", h);
(o) :=m(¢,p', h)
end if.

algorithm for this input (that isLearn(p, 3)) then works as follows. The agent runs sev-
eral timesp with horizon3, playing against the opponent, until the learning ends and
the variablegv, pr) are stabilized for each joint state, p, h) associated witt{p, 3)
obtaining the relative policies(¢, p, h).

The state partition ofp, 3) is given bySF'(p, 3) = SF (p1, 3) ®{asl} USF (p},3)®
{—asl}, wherep; = tryToPickUp(z); carryToBase andp) = pickUpS(a, x); carry—
ToBase. In the machine staté;, 3), we have the joint choiced!||ck, wherect? =
pickUpS(a, z) and B = moveS (a, stand), and the agent is to learn the probability
distributions of the relative mixed policies. The choieég§ck are associated with the
programspy, i, = cl||ck; po, whereps = carryToBase. In the machine states, 2), we
have another choice point over the possible mowés) = moveS(a, ¢) towards the
base. Each choice:(q) is associated with the prograpy =m(q); p3, whereps = if
atb then dropS(a, x) elseps (atb abbreviatesit Base). Here, the partition iSF (p,, 2)
= {atb? A hw, atb? A hg, —~atb?, —h}, whereatb? representatb afterm(q) obtained
form Regr(ab,m(q)). If —atb is represented bytb®, andatb? A ... A ath™ is repre-
sented byath? %, thenSF (ps,2) = ®, SF(py,2) = {—h, atb® "} U {atb*1F+ A
hg|3i: ki #0}U{atb™ "4 A hw|3i : k; #0}. For each state formulac SF(ps, 2),
the algorithmLearn(p, 3) continuously refines, through thE€pdate step, the proba-
bility distribution over the policies (¢, p2, 2). For example, training the agent against
a random opponent, in the state= atb>%%° A hg, the algorithm produces a policy
(¢, p2, 2) assigning probability for the component = S, and probability) for ¢ # S.
Analogously, in the choice poifip1, 3), Learn(p, 3) defines a mixed policy (¢, p1, 3)
for each state) € SF(p1,3) = Qnx SF(pni,3). For example, giver; € SF(p1, 3)
equal tonasl A ag A atb™ % A=h, A h,, we get probabilityt for the choicer,;, , in
(1, p1,3), instead, forp, € SF(p1,3) equal toasl A ag A atb* 4 A =hg A=h,,
we get probabilityd for cp. s, ¢s,pk,s Cpi,pi, @and probabilityl for ¢, .

5 Summary and Outlook

We have presented a framework for adaptive multi-agentraroming, which inte-
grates high-level programming in GTGolog with adaptive alyiic programming. It
allows the agent to on-line instantiate a partially spedifiehavior playing against an
adversary. Differently from the classical Golog approdwdre the interpreter generates
not only complex sequences of actions (the policy), but tigostate abstraction in-
duced by the program at the different executive stages (imasiates). In this way, we
show how the Golog integration between action theory andraras allows to naturally
combine the advantages of symbolic techniques [2,11] \wittstrength of hierarchical
reinforcement learning [17,5,1,14]. This work aims at g the gap between pro-
grammable learning and logic-based programming appreadioeour knowledge, this
is the first work exploring this very promising direction.

An interesting topic of future research is to explore whethe presented approach
can be extended to the partially observable case.

Acknowledgments. This work was supported by the Austrian Science Fund Project
P18146-N04 and by a Heisenberg Professorship of the GerreaealRch Foundation
(DFG). We thank the reviewers for their comments, which éel improve this work.

References

1. D. Andre and S. J. Russell. State abstraction for programmablemnfient learning
agents. IrProceedings AAAI-200pp. 119-125.
2. C. Bouitilier, R. Reiter, and B. Price. Symbolic dynamic programmimgifst-order MDPs.
In Proceedings IJCAI-20Qp. 690-700.
3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-#ténrhigh-level agent
programming in the situation calculus. Rroceedings AAAI-20Q®p. 355-362.
. P.Dayan and G. E. Hinton. Feudal reinforcement learninBrde. NIPS-1993pp. 271-278.
. T. G. Dietterich. The MAXQ method for hierarchical reinforcemeantteng. InProceedings
ML-1998 pp. 118-126.
6. A. Ferrein, C. Fritz, and G. Lakemeyer. Using Golog for deliberadiat team coordination
in robotic soccerKunstliche Intelligenz1:24—-43, 2005.
7. A. Finzi and T. Lukasiewicz. Game-theoretic agent programmingoilo@ In Proceedings
ECAI-2004 pp. 23-27.
8. A. Finzi and T. Lukasiewicz. Relational Markov games. Rroceedings JELIA-2004
Vol. 3229 of LNCS/LNA] pp. 320-333.
9. A. Finziand T. Lukasiewicz. Game-theoretic Golog under partia¢ifadility. In Proceed-
ings AAMAS-2005p. 1301-1302.
10. A. Finzi and F. Pirri. Combining probabilities, failures and safety wotacontrol. InPro-
ceedings IJCAI-2001pp. 1331-1336.
11. C. Gretton and S. Thiebaux. Exploiting first-order regression incidripolicy selection.
In Proceedings UAI-2004p. 217-225.
12. H. J. Levesque, R. Reiter, Y. Léspnce, F. Lin, and R. Scherl. GOLOG: A logic program-
ming language for dynamic domain.Logic Program,.31(1-3):59-84, 1997.
13. M. L. Littman. Markov games as a framework for multi-agent reicément learning. In
Proceedings ICML-1994p. 157-163.
14. B. Marthi, S. J. Russell, D. Latham, and C. Guestrin. Concuriierdfthical reinforcement
learning. InProceedings IJCAI-20Q%p. 779-785.
15. J. McCarthy and P. J. Hayes. Some philosophical problems frestandpoint of Artificial
Intelligence. InMachine IntelligencgeVvol. 4, pp. 463-502. Edinburgh University Press, 1969.
16. G. Owen.Game Theory: Second EditioAcademic Press, 1982.
17. R. Parrand S. J. Russell. Reinforcement learning with hierarohieachines. IrProceed-
ings NIPS-1997Vol. 10, pp. 1043-1049.
18. J. Pinto. Integrating discrete and continuous change in a logicatifvark. Computational
Intelligence 14(1):39-88, 1998.
19. M. L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming
Wiley, 1994.
20. R. Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementiyng D
namical SystemavlIT Press, 2001.
21. Michael Thielscher. Programming of reasoning and planningtagéth FLUX. In Pro-
ceedings KR-20Q2p. 435-446.
22. J.van der WalStochastic Dynamic Programmingol. 139 of Mathematical Centre Tracts
Morgan Kaufmann, 1981.
23. J.von Neumann and O. MorgensteFhe Theory of Games and Economic BehaviRsince-
ton University Press, 1947.
24. C. Watkins.Learning from Delayed Reward®hD thesis, King's College, Cambridge, UK,
1989.

(G208

