Game-Theoretic Agent Programming in Golog
under Partial Observability

Alberto Finzi" 2 and Thomas Lukasiewiéz'

L Institut fir Informationssysteme, Technische Univéisitvien
FavoritenstrafRe 9-11, A-1040 Vienna, Austria

2 Dipartimento di Informatica e Sistemistica, Univeasiti Roma “La Sapienza”
Via Salaria 113, 1-00198 Rome, Italy
{finzi, lukasiew cz}@lis.uniromal.it

Abstract. We present the agent programming language POGTGolog, which in-
tegrates explicit agent programming in Golog with game-theoretic multitagen
planning in partially observable stochastic games. It deals with the caseeof o
team of cooperative agents under partial observability, where thésagey have
different initial belief states and not necessarily the same rewardsTBOIBg
allows for specifying a partial control program in a high-level logicablaage,
which is then completed by an interpreter in an optimal way. To this end, we de
fine a formal semantics of POGTGolog programs in terms of Nash edajldd

we specify a POGTGolog interpreter that computes one of these Nasibéau

We illustrate the usefulness of POGTGolog along a rugby scenario.

1 Introduction

During the recent years, the development of controlleraf@onomous agents has be-
come increasingly important in Al. One way of designing saohtrollers is the pro-
gramming approach, where a control program is specifiedugir@a language based
on high-level actions as primitives. Another way is the piag approach, where goals
or reward functions are specified and the agent is given aapigrability to achieve a
goal or to maximize a reward function. An integration of bafiproaches has recently
been proposed through the seminal language DTGolog [3fctwinitegrates explicit
agent programming in Golog [16] with decision-theoretiarmpling in (fully observ-
able) Markov decision processes (MDPs) [15]. It allows fartjally specifying a con-
trol program in a high-level language as well as for optimélling in missing details
through decision-theoretic planning, and it can thus be ssea decision-theoretic ex-
tension to Golog, where choices left to the agent are made dyimizing expected
utility. From a different perspective, it can also be seea ftgmalism that gives advice
to a decision-theoretic planner, since it naturally canies the search space.

DTGolog has several other nice features, since it is clossbted to first-order
extensions of decision-theoretic planning (see espgdiall9,8]), which allow for (i)
compactly representing decision-theoretic planning l@mls without explicitly refer-
ring to atomic states and state transitions, (ii) explgittuch compact representations
for efficiently solving large-scale problems, and (iii) @iproperties such asodularity

(parts of the specification can be easily added, removed pdifiad) andelaboration
tolerance(solutions can be easily reused for similar problems withdeno extra cost).

As a serious drawback, however, DTGolog is designed onltHersingle-agent
framework. That is, the model of the world essentially cstssof a single agent that we
control by a DTGolog program and the environment summatizédature”. But there
are many applications where we encounter multiple agerighamay compete against
each other, or which may also cooperate with each other.X@ngle, inrobotic soc-
cer, we have two competing teams of agents, where each teanstokcooperating
agents. Here, the optimal actions of one agent generallgrdkepn the actions of all
the other (“enemy” and “friend”) agents. In particular, thés a bidirected dependence
between the actions of two different agents, which generalikes it inappropriate to
model enemies and friends of the agent that we control siexply part of “nature”. As
an example for an important cooperative domairrpimotic rescuemobile agents may
be used in the emergency area to acquire new detailed inflam@uch as the loca-
tions of injured people in the emergency area) or to perfartam rescue operations. In
general, acquiring information as well as performing resgperations involves several
and different rescue elements (agents and/or teams ofggetiich cannot effectively
handle the rescue situation on their own. Only the cooperatbrk among all the res-
cue elements may solve it. Since most of the rescue taskivénaaertain level of risk
for humans (depending on the type of rescue situation), imalgients can play a major
role in rescue situations, especially teams of cooperatterogeneous mobile agents.

This is the motivation behind GTGolog [5], which is a genation of DTGolog
that integrates agent programming in Golog with game-#tgomulti-agent planning
in (fully observable) stochastic games [14], also calledkda games [17,11].

Example 1.1.Consider a rugby playead, who is deciding his next >0 moves and
wants to cooperate with a team matg. He has to deliberate about if and when it is
worth to pass the ball. His options can be encoded by theWoip GTGolog program:

proc step(n)
if (haveBall(a1) An>0)then
mx (my (choice(a: : moveTo(x) | passTo(az)) ||
choice(as : moveTo(y) | receive(a1))));

step(n—1)

end.
This program encodes that white, is the ball owner andi > 0, the two agentsi;
anda, perform a parallel action choice in whieh (resp.,a2) can either go somewhere
or pass (resp., receive) the ball. Here, the preconditindeé#ects of the actions are to
be formally specified in a suitable action theory. Given thgh-level program and the
action theory fora; anda,, the program interpreter then fills in the best movesdor
anda., reasoning about all the possible interactions betweetwbegents.

Another crucial aspect of real-world environments, howgigethat they are typi-
cally only partially observable, due to noisy and inacceirsgnsors, or because some
relevant parts of the environment simply cannot be sensmdeXample, especially in
the robotic rescue domain described above, every agentehnasaly only a very partial
view on the environment. However, both DT- and GTGolog asstuti observability,
and have not been generalized to the partially observabkesafar.

In this paper, we try to fill this gap. We present the agent gogning language
POGTGolog, which extends GTGolog and thus also DTGolog biigb@bservability.
The main contributions of this paper can be summarized &sifsi

e We present the agent programming language POGTGolog, witedrates explicit
agent programming in Golog with game-theoretic multi-agganning in partially
observable stochastic games [9]. POGTGolog allows for tragl@ne team of
cooperative agents under partial observability, wheratents may have different
initial belief states and not necessarily the same rewandd thus in some sense
the team does not necessarily have to be homogeneous).

e POGTGolog allows for specifying a partial control programai high-level lan-
guage, which is then completed in an optimal way. To this @aredassociate with
every POGTGolog program a set of (finite-horizon) policiebjch are possible
(finite-horizon) instantiations of the program where nrigsdetails are filled in.
We then define a semantics of a POGTGolog program in terms i Bquilibria,
which are optimal policies (that is, optimal instantiagdof the program.

e We define a POGTGolog interpreter and show that it computessé Kquilibrium
of POGTGolog programs. We also prove that POGTGolog progiean represent
partially observable stochastic games, and that the PO®GGterpreter can be
used to compute one of their (finite-horizon) Nash equéibFurthermore, we il-
lustrate the usefulness of the POGTGolog approach alonghsy/ iscenario.

2 Preliminaries

In this section, we first recall the main concepts of the sibmecalculus and of the agent
programming language Golog; for further details see eafig¢l6]. We then recall the
basics of normal form games and of partially observablehststic games (POSGs).

2.1 The Situation Calculus

The situation calculus [12,16] is a first-order languagerépresenting dynamically
changing worlds. Its main ingredients aaetions situations andfluents An action

is a first-order term of the forma(uy,...,u,), where the function symbat is its
nameand theu;’s are itsarguments All changes to the world are the result of ac-
tions. For example, the actiomoveTo(r, z,y) may stand for moving the agentto
the position(z, y). A situationis a first-order term encoding a sequence of actions. It
is either a constant symbol or of the foria(a, s), wheredo is a distinguished bi-
nary function symbolg is an action, and is a situation. The constant symhsy is
theinitial situation and represents the empty sequence, wiilg:, s) encodes the se-
guence obtained from executingafter the sequence af For example, the situation
do(moveTo(r,1,2),do(moveTo(r,3,4), Sp)) stands for executingnoveTo(r,1,2)
after executingnoveTo(r, 3, 4) in the initial situationS,. We write Poss(a, s), where
Poss is a distinguished binary predicate symbol, to denote thebttion: is possible
to execute in the situation A (relational) fluentrepresents a world or agent property
that may change when executing an action. It is a predicatdslywhose most right

argument is a situation. For examplér, z,y, s) may express that the agenis at
the position(z, y) in the situations. In the situation calculus, a dynamic domain is
represented by lasic action theorAT = (X, Dyna, Ds,, Dssa, Pap), Where:

e Y is the set of (domain-independent) foundational axiomsitorations [16].

e D,.. is the set of unique names axioms for actions, which expresgsdifferent
actions are interpreted in a different way.

e Dg, is a set of first-order formulas describing the initial staitéhe domain (repre-
sented bySy). For exampleat(r, 1,2, 59) A at(r’,3,4, Sy) may express that the
agents andr’ are initially at the position$l, 2) and(3, 4), respectively.

e D, is the set ofsuccessor state axionj&6]. For each fluent(x, s), it con-
tains an axiom of the forn#'(x, do(a, s)) = Pr(x, a, s), where®p(x, a, s) is a
formula with free variables among, a, s. These axioms specify the truth of the
fluent ' in the next situationio(a, s) in terms of the current situatio) and are a
solution to the frame problem (for deterministic actiori)r example, the axiom
at(r,x,y,do(a, s)) = a=moveTo(r,x,y) V (at(r,z,y,s) A =3z’ ,y' (a = move-
To(r,2',y’))) may express that the agenis at the positionz, y) in the situa-
tion do(a, s) iff either » moves to(z, y) in the situations, or r is already at the
position(z, y) and does not move away i

e D,, is the set ofaction precondition axiomsFor each actiom, it contains an
axiom of the formPoss(a(x), s) = II(x, s), which characterizes the preconditions
of the actiona. For example Poss(moveTo(r, z,y), s) = —3Fr' at(r', x,y, s) may
express that it is possible to move the agetat the positionz, y) in the situations
iff no other agent” is at(z, y) in s.

We use the concurrent version of the situation calculus, fi8]ch is an extension
of the standard situation calculus by concurrent actionsoécurrent actior is a set
of standard actions, which are concurrently executed whsmexecuted.

2.2 Golog

Golog is an agent programming language that is based onttraisn calculus. It al-
lows for constructingrogramsfrom primitive actions that are defined in a basic action
theory AT, where standard (and not so standard) Algol-like controkticts can be
used. More preciselprogramsp in Golog have one of the following forms (wherés

a primitive action,¢ is a condition which is obtained from a situation calculus for-
mula over fluents by suppressing all situation argumenis,, po, . . . , p, are programs,
Py, ..., P, are procedure names, andr, . .., x, are arguments):

1. Primitive action ¢. Do c.

Test action?. Test the truth of in the current situation.
Sequencep;; p2]. Dop; followed byp,.

Nondeterministic choice of two programi®; | p2). Do eitherp; or ps.
Nondeterministic choice of program argument (p(x)). Do anyp(z).
Nondeterministic iteratiorp*. Do p zero or more times.

Conditional if ¢ then p; elseps. If ¢ is true, then de; else daps.

No ok~ wdN

8. While-loop while ¢ do p. While ¢ is true in the current situation, ¢o
9. Proceduresproc Py (x1) p1 end; ... ; proc P, (x,) p, end; p.

For example, the Golog prograwhile —at(r, 1, 2) do 7, y (moveTo(r, x,y)) stands

for “while the agentr is not at the positior{1, 2), mover to a nondeterministically
chosen positior{z, y)". Golog has a declarative formal semantics, which is defined
in the situation calculus. Given a Golog programits execution is represented by
a situation calculus formul@®o(p, s, s’), which encodes that the situatiah can be
reached by executing the progranm the situations.

2.3 Normal Form Games

Normal form games from classical game theory [18] desctileepiossible actions of
n > 2 agents and the rewards that the agents receive when thelfasienusly execute
one action each. For example timo-finger Morra two playerst andO simultaneously
show one or two fingers. Lef be the total numbers of fingers shown.fifis odd,
thenO getsf dollars fromE, and if f is even, then gets f dollars fromO. More
formally, a normal form game& = (I, (A;)icr, (Ri)icr) consists of a set ohgents
I={1,...,n} withn>2, a nonempty finite set aictionsA; for each agentc I, and
areward functionR;: A — R for each agent € I, which associates with evejgint
actiona € A= X ,c;A; areward R;(a) to agenti. If n=2, thenG is called atwo-
player normal form gaméor simplymatrix gamé. If additionally R, = — Ry, thenG'is
azero-sum matrix gameve then often omif?, and abbreviatd?, by R.

The behavior of the agents in a normal form game is expressedgh the notions
of pure and mixed strategies, which specify which of its@wtian agent should execute
and which of its actions an agent should execute with whicigbility, respectively.
For example, in two-finger Morra, a pure strategy for plagefor O) is to show two
fingers, and a mixed strategy for player(or O) is to show one finger with the prob-
ability 7/12 and two fingers with the probability/12. Formally, apure strategyfor
agent; € I is any actiona; € A;. A pure strategy profilés any joint actiona € A. If
the agents play, then therewardto agenti € I is given byR;(a). A mixed strategy
for agenti € I is any probability distributionr; over its set of actionsi;. A mixed
strategy profiler = (m;);c; consists of a mixed strategy for each agente I. If the
agents playr, then theexpected rewartb agent € I, denotedE[R;(a) | 7] (or R;(m)),
isdefinedas,_,)., ca Rila) - Hjermj(a;).

Towards optimal behavior of the agents in a normal form gameeare especially
interested in mixed strategy profiles called Nash equilibria, where no agent has the
incentive to deviate from its part, once the other agentgthleir parts. Formally, given
a normal form game&r = (I, (A;)icr, (Ri)icr), @ mixed strategy profile = (7;)icr
is aNash equilibriunof G iff for every agenti € I, it holds thatR; (7} o 7_;) < R;(m)
for every mixed strategy;, wherer’ o w_; is obtained fromr by replacingr; by 7.
For example, in two-finger Morra, the mixed strategy profileene each player shows
one finger resp. two fingers with the probabilityl2 resp.5/12 is a Nash equilibrium.
Every normal form gamé& has at least one Nash equilibrium among its mixed (but
not necessarily pure) strategy profiles, and many have pheilash equilibria. In the

two-player case, they can be computed by linear complemeptagramming and lin-
ear programming in the general and the zero-sum case, taghecA Nash selection
function f associates with every normal form gae unique Nash equilibriunfi(G).
The expected reward to agert I underf(G) is denoted by;}(G).

2.4 Partially Observable Stochastic Games

Partially observable stochastic games [9] generalize ablionm games, partially obser-
vable Markov decision processes (POMDPs) [10], and deakrded POMDPs [7,13].
A partially observable stochastic game consists of a setatésS, a normal form
game for each statee S, a set of joint observations of the agerids and a tran-
sition function that associates with every state S and joint action of the agents
a € A a probability distribution on all combinations of next &=t’ € S and joint ob-
servation® € O. Formally, apartially observable stochastic game (POS&)- (1, S,
(Ai)ier, (0i)ier, P, (Ri):cr) consists of a set adgents/ ={1,...,n}, n>2, a non-
empty finite set obtatesS, two nonempty finite sets a@fctionsA; andobservation®);
for eachi € I, a transition functio?: S x A— PD(S x O), which associates with ev-
ery states € S and joint actiomn € A =X ;. ; A; a probability distribution oves x O,
whereO = X ;. ;0;, and areward functionR;: S x A — R for eachi € I, which asso-
ciates with every statec S and joint actiorn € A areward R; (s, a) to .

Since the actual statec S of the POSGG is not fully observable, every agent
1€ I has a belief staté; that associates with every state S the belief of agent
abouts being the actual state. Belief stateb= (b;);c; of G consists of a probabil-
ity function b; over S for each ageni € I. The POSGG then defines probabilistic
transitions between belief states as follows. The new bstaeb*° = (b)"?);c; af-
ter executing the joint actiome A in b= (b;),e; and jointly observing € O is given
by b;°(s") = Y ,cq P(s',0]s,a) - bi(s) / Py(by° | bi,a), where Py(b)° | bi,a) =
Yoves2scsP(s',0]s,a)-b;(s) is the probability of observing after executing: in b;.

The notions of finite-horizon pure (resp., mixed) policiesl &heir rewards (resp.,
expected rewards) can now be defined as usual using the atmhabpistic transitions
between belief states. Informally, given a finite horizdn> 0, a pure (resp., mixed)
time-dependent policy associates with every belief stateGG and number of steps to
gohe{0,...,H} apure (resp., mixed) normal form game strategy.

Finally, the notion of a finite-horizon Nash equilibrium farPOSGG is then de-
fined as follows. A policyr is aNash equilibriunof G under a belief statgiff for ev-
ery agent € I, it holds thatG; (H, b, 7, om_;) < G;(H,b, m; om_;) for all policies~?,
where G;(H, b, «) denotes thef{-step rewardto agenti € I under an initial belief
stateb = (b;);c; and the policya. A policy 7 is a Nash equilibriumof G iff it is a
Nash equilibrium ofZ under every belief state

3 Partially Observable GTGolog (POGTGolog)

In this section, we present the agent programming langu&@Tsolog, which is a
generalization of GTGolog [5] that allows for partial obgarility. We first describe
the domain theory and the syntax and semantics of POGTGotmgams.

We focus on the case of one team of cooperative agents undii paservability,
where the agents may have different initial belief states raot necessarily the same
rewards (and so may also be heterogeneous). We assume teath{iagent knows the
initial local belief state of every other agent, and (ii)esifeach action execution, each
agent can observe the actions of every other agent and esdéiir local observations.

3.1 Domain Theory

POGTGolog programs are interpreted relative to a domaoryhehich extends a basic
action theory by stochastic actions, reward functions,dititly functions. Formally, in
addition to a basic action theody/T", adomain theornyDT = (AT, ST, OT) consists of
astochastic theon'T' and anoptimization theoryO T', which are both defined below.

We assume a teah={1,...,n} consisting ofn > 2 cooperative agents ..., n.
The finite nonempty set of primitive action$ is partitioned into nonempty sets of
primitive actionsA4, ..., A,, of agentsl, ..., n, respectively. Asingle-agent actiomwf
agent; € I (resp.,multi-agent actiohis any concurrent action ovet; (resp.,A). We
assume a finite nonempty set of observatiOnsvhich is partitioned into nonempty sets
of observation®)q, ..., O, ofagentdl, ..., n, respectively. Asingle-agent observation
of agenti € I is anyo, € O;. A multi-agent observatiois anyo € X ;. ;O;.

A stochastic theonsT' is a set of axioms that define stochastic actions. We repre-
sent stochastic actions through a finite set of determiréstiions, as usual [6,3]. When
a stochastic action is executed, then with a certain préibalSnature” executes ex-
actly one of its deterministic actions and produces exaxil/possible observation. We
use the predicatetochastic(c, s, n, o,) to encode that when executing the stochastic
actionc in the situations, “nature” chooses the deterministic actiarproducing the
observatiorv with the probabilityu.. Here, for every stochastic actierand situations,
the set of all(n, o, 1) such thatstochastic(c, s, n, o, u) is a probability function on the
set of all deterministic componentsand observations of ¢ in s. We also use the no-
tation prob(c, s, n, 0) to denote the probability such thatstochastic(c, s, n, o,). We
assume that and all its nature choiceshave the same preconditions. A stochastic ac-
tion cis indirectly represented by providingaccessor state axiofor every associated
nature choicer. The stochastic actionis executablén a situations with observatior,
denotedPoss(c,, s), iff prob(c, s, n, 0) > 0 for somen.

The optimization theoryO T specifies a reward and a utility function. The former
associates with every situatierand multi-agent action, a reward to every agent I,
denotedreward (i, ¢, s). The utility function maps every reward and success praipabi
to a real-valued utilityutility (v, pr). We assumetility (v, 1) = v andutility (v,0) =0
for all v. An example isutility(v, pr) =v - pr. The utility function suitably mediates
between the agent reward and the failure of actions due tatigfied preconditions.

Example 3.1 (Rugby Domairgonsider the following rugby domain, which is inspired
by the soccer domain in [11]. The rugby field consists of 22amgles, which are di-
vided into a4 x 5 grid of 20 squares and two goal rectangles (see Fig. 1). Werass
a team of two agents = {a1, a2} against a (static) team of two agemts- {01, 02},
where a; and o, are thecaptainsof a and o, respectively. Each agent occupies a
square and is able to do one of the following actions on each N, S, E, W, stand,

®

b
r>00

D

r>00

Fig. 1. Rugby Domain: Initial belief states af; anda2, respectively

passTo(a), andreceive (Move up, move down, move right, move left, no move, pass,
and receive the ball, respectively). The ball is represkhyean oval and also occupies
a square. An agent iskaall owneriff it occupies the same square as the ball. The ball
follows the moves of the ball owner, and we have a goal wherb#ieowner steps
into the adversary goal. An agent can also pass the ball tthenagent of the same
team, but this is possible only if the receiving agent is naser to the opposing end of
the field than the ball, otherwise, an offside fault is calbgtthe referee, and the ball
possession goes to the captain of the opposing team. Whealtlmsviner goes into the
square occupied by the other agent, if the other agent stposisession of ball changes.
Thus, a good defensive maneuver is to stand where the otbet agnts to go.

We define the domain theo®T = (AT, ST, OT) as follows. Concerning the ba-
sic action theoryAT', we assume the deterministic actiove(«, m) (encoding that
agenty executesn), wherea € aU o, m € {N, S, E, W, stand, passTo(c’), receive },
andco’ is a team mate ofy, and the fluentsit(«, x, y, s) (encoding that agent is at
position(x, y) in situations) andhaveBall(«, s) (encoding that agent has the ball in
situations). They are defined by the following successor state axioms:

at(a, x,y, do(c, s)) = Iz’ (at(a, 2',y’,s) A Im (move(a,m) Ec A
((m = stand V m = receive V 33 (m = passTo(B))) Nz=x' ANy=y') V
(m=NAz=2'ANy=y'+1)V(m=SAz=2 Ay=y'-1)V
(m=EAz=2'41Ay=y)V(m=WAz=2'-1Ay=1v")));
haveBall(a, do(c, s)) = 3B (haveBall(8,s) A (o = B A =33 (engBall(§', ¢, s) V
revBall(B, ¢, 8))) V (a # B A (engBall(a, ¢, s) V rcvBall(a, ¢, 8)))) -

Here, cngBall(a, ¢, s) is true iff the ball possession changesdafter an actiorne
in s (in the case of either an adversary block or an offside balsage). The predicate
revBall(a, ¢, s) is true iff agentx receives the ball from the ball owner or is in offside.
As for the stochastic theor§T', we assume the stochastic actiomveS (o, m),
which represents ageats attempt in doingn amongN, S, E, W, stand, passTo(/3),
and receive. It can either succeed, and then the deterministic actione(a, m) is
executed, or it can fail, and then the deterministic actiafve(«, stand) (that is, no
change) is executed. Furthermore, after each executiomootS(«, m), agenta can
observe the presence of a team maten the direction of the movement, given that

agento’ is visible, that is, not covered by another agent:

stochastic({moveS(c, m)}, s, {a}, {obs(5, out)}, n) =
3y, p2 ((a=move(a,m) A (out = succ A 1 =0.8 V out = fail A p1 =0.1) vV
a = move(a, stand) A (out = succ A p1 =0.01 V out = fail A p1 =0.09)) A
(visible(a, & a, s) A (B=a' Apu2=0.7V B=none A uz =0.1) V
—wisible(a, o’y a,s) A (B=a’ Az =0V B=none A 2 =0.2)) A = p1-p12) ;
stochastic({moveS(a, m), moveS(a’,m’)}, s,{aa, @ }, {00, 00}, 1) =
p1, p2 (stochastic({moveS(a,m)}, s, {aa}, {0a}, p1) A
stochastic({moveS(a’,m’)}, s, {aa }, {0ar }, pt2) At = p1 - p2) .

Here, visible(a, o', a, s) is true if & can observex’ after the execution ofi in s.
The stochastic actiomoveS(a, m) is associated with the observationgs (3, out),
where € {o/, none} andr € {suce, fail}. That is, after the execution of the action
move(c, m), agenta can observe both whether its team matés present or not (first
argument) and the success or failure of the action (secapareent). Note that we as-
sume thabbs(a/, out) has the probability zero, it is not visible. Notice also that in
the last axiom, we assume the independence of the observatio

As for the optimization theory) T', the reward function for the agents is defined by:

reward(a, ¢, s) =r = 3a’(goal(a’, do(c,s)) AN(a' €anr=M V
o' €oANr=—M))V -3 (goal(c’,do(c,s)) A evalTeamPos(c, T, s)) .

Here, the reward of agentis very high (that is) stands for a “big” integer), if a team
mate scores a goal. Otherwise, the reward dependsdafieam Pos(c, r, s), thatis, the
position of its team relative to the adversary team as wettha$all possession.

3.2 Beédlief States

We next introduce belief states over situations, and defiaesemantics of actions in
terms of transitions between belief stateshélief state (over situationsjas the form
b= (b;)ic1, Where every; is a set of pairgs, ;) consisting of a standard situatien
and a realu € (0, 1] such that allx sum up tol. Informally, everyb; represents the
belief of agenti € I expressed as a probability distribution over ordinaryaditns.
Theprobability of a fluent formulap(s) in b= (b;).c1, denoteds(b), is the probability
vectorpr = (pr;)ic1, Where everyr, with ¢ € I is the sum of alls such that(s) is true
and (s,) € b;. Similarly, reward(c,b) denotes the vectar= (r;);cr, Where everyr;
with i € I is the sum of allreward(i, ¢, s) - 1 such that(s,) € b;.

Given a deterministic action and a belief staté = (b;);cs, the successor belief
stateafter executing: in b, denoteddo(c, b), is the belief staté’ = (]);c;, where
b; ={(do(c,s), i/ Poss(c,b)) | (s, 1) € b;, Poss(c, s)} foreveryi € I. Given a stochas-
tic actionc, an observation of ¢, and a belief staté= (b;);<, thesuccessor belief state
after executing: in b and observing, denotedio(c,, b), is the belief staté’ = (b/) <1,
where b, is obtained from all pair§do(n, s), pu- ') such that(s, u) € b;, Poss(c, s),
andy’ = prob(c, s,n, 0) >0 by normalizing the probabilities to sum upto

The probability of observing after executing the stochastic actioein the belief
stateb = (b;);cs, denotedprob(c, b, 0), is the vectorpr = (pr;)icr, Where everypr,
with i € I is the sum of allu - 1/ such that(s, u) € b; andy’ = prob(c, s,n, 0) > 0.

Example 3.2 (Rugby Domain cont'dJonsider the following scenario relative to the
domain theory of Example 3.1 (see Fig. 1). We focus only onrotiimg the members
of the teama, which cooperate to score a goal against the (static) eahhe captain
a1 of a has a complete view of the situation, and its belief skgtds shown in Fig. 1,
upper part: There is only the situatien with probability 1 such thatet(aq,2,1, s1),
at(as,2,4,s1), at(o2,1,1,5s1), at(01,5,2,s1), andhaveBall(a1, s1) are true. That
is, the captairp, of o is very close to the goal ad. From the perspective af,, the
goal seems quite done:; can pass tai,, which has a paved way towards the goal.
But a, has to cooperate withs, whose vision of the situation is more confused and
expressed by the belief stdtg, in Fig. 1, lower parta, could be either at (&)1, 1) or

at (b)(1,2), anda, could be either at (2, 1) or at (d)(3,1). Hence,a>'s belief state
may e.g. be given by, ={(sq.c,0.5), (Sa,d,0.3), (Sp,¢,0.1), (sp,4,0.1)}.

3.3 Syntax

Given the actions specified by a domain thedry’, a programp in POGTGolog has
one of the following forms (where is a multi-agent actionp is a conditionp, p1, p2
are programsg; 1, - - . , a;., are actions of agentsz I, and.JJ C I with |.J| > 2):

1. Deterministic or stochastic action:. Do a.

2. Nondeterministic action choice of agere I: choice(i: a; 1| - - |a;n,)-
Do an optimal action (for agert I) amonga; 1, . . ., G; n,-

3. Nondeterministic joint action choicd;cschoice(j: aj 1| -+ |j:ajn,).

Do any action| e sa;,;, With an optimal probabilityr = 1T y7;,; ;.

. Test action¢?. Test the truth ofy in the current situation.

. Action sequencéps; p2|. Do p; followed by ps.

. Nondeterministic choice of two program | p2). Do py or ps.

Nondeterministic choice of an argument: (p(z)). Do anyp(zx).

. Nondeterministic iterationp*. Do p zero or more times.

. Conditionals if ¢ then p; else p-.

10. While-loopswhile ¢ do p.

11. Procedures, including recursion

© N U A

Hence, compared to Golog, we now also have multi-agentractiod stochastic actions
(instead of only primitive resp. deterministic actionsjrthermore, we now addition-
ally have different kinds of nondeterministic action ctesidor the agents in 2 and 3,
where one or any subset of the agent$ oan choose among a finite set of single-agent
actions. The formal semantics of 2 and 3 is defined in such ahyan optimal action

is chosen for the agents (see Section 3.4). As usual, thesegwperator “;” is asso-
ciative (for example[[p1; p2]; p3] and[ps; [pe; ps]] have the same semantics), and we
often use $,; p2” to abbreviate fp;; p2]” when there is no danger of confusion.

Example 3.3 (Rugby Domain cont@onsider again the scenario (and its belief states
ba, andb,,) of Example 3.2 relative to the domain theory of Example 3ee(Fig. 1).
Both agentsi; anda, have to decide when (and if) it is worth to pass the ball, abnsi
ering that ifa; tries to pass while is in offside (for example, iB, 4 Or s 4), then the

ball goes to the captain; of the adversary team, which is in a very good position to
score a goal. The subsequent POGTGolog program, desdietha, represents a way
of acting ofa; anda in this scenario, where the agents and as have two possible
chances to coordinate themselves in order to pass the bdlthareafter both of them
have to run towards the goal (with or without the ball).

choice(a:: moveS (a1, E)| moveS (a1, stand) | moveS (a1, passTo(az))) ||
choice(az: moveS(az,S) | moveS(az, E) | moveS(az, receive));

choice(a:: moveS (a1, E) | moveS (a1, stand) | moveS (a1, passTo(az))) ||
choice(az: moveS(az, E) | moveS(az, receive));

{moveS (a1, E), moveS(az, E)};

{moveS (a1, E), moveS(az, E)}.

3.4 Semantics

We now define the formal semantics of POGTGolog programeative to a domain
theoryDT = (AT, ST, OT) in terms of Nash equilibria. We first associate with every
POGTGolog program, a belief staté, and horizonH > 0, a set of executablé -step
policiesw along with their expected utility/; to every agent € I. We then define the
notion of a Nash equilibrium to characterize a subset ofhogitsuch policies, which is
the natural semantics of a POGTGolog program relative tanaaitotheory.

Intuitively, given a horizon > 0, an H-step policyr of a POGTGolog program
relative to a domain theory is obtained from tHehorizon part ofp by replacing every
single-agent choice by a single action, and every multiaigboice by a collection of
probability distributions, one over the actions of eachrag€ormally, for every POGT-
Golog progranp, we define theuil-terminated varianbf p, denotedp, by p = [p1; p2],
if p=p1;p2], andp = [p; nil], otherwise. Given a POGTGolog programelative to a
domain theoryDT', a horizonH > 0, and a start belief state we say thatr is anH-step
policyof p in b iff DT =G(p,b, H, 7, (v, pr)), wherev = (v;);c; andpr = (pr;)icr.
The expectedH -step utilityof 7 in b to i € I, denotedU;(H, b,), is utility(v;, pr;).
Here, we define the maci®(p, b, h, 7, (v, pr)) by induction as follows:

e Null program = nil) or zero horizon § = 0):
G(D,b,h,m,(v,pr)) =aef T=stop N\v=0Apr=1.

Intuitively, p ends when it is null or at the horizon end.
e First program actiom is deterministic (resp., stochastic with observation):

G([e; 9], by hym, (v, pr)) =der
(Poss(c,b)=0Am=stop A\v=0Apr=1)V
(Poss(c,b) >0 A 3n’ v, pr' (G(p', do(c,b), h—1,7", {v', pr')) A
m=c;7 ANv=1v"+ reward(c,b) A pr =pr' - Poss(c,b)).

Here, (s;)icr op (ti)icr = (si op t;)ier for op € {+, - }. Informally, suppose
thatp = [c; p'], wherec is a deterministic action (resp., stochastic action with ob
servation). Ifc is not executable in the belief staigthenp has only the policy

m = stop along with the expected rewatd= 0 and the success probability: = 0.
Otherwise, the optimal execution ff; p’] in the belief staté depends on that one
of p in do(c, b). Observe that is executable irb with the probability Poss(c, b),
which affects the overall success probabifity

e Stochastic first program actianchoice of nature):

G([C;pl]zb, hvﬂ-z <1;7p7‘>) —def
Elﬂ-(h UQ7qu (/\q:l G([COq;p/L b7 h7 COq;ﬂ-(h <qup’rq>) /\
T =Co,;for g=1tol doif o, then m, A
v= Y4y Vg - prob(c, b,og) Apr= 3 _, pr, - prob(c, b,0,)) .

Here,oq, ..., 0; are the possible observations. The generated policy isditgamal

plan in which every such observatiop is considered.
e Nondeterministic first program action (choice of ageatl):

G([ehoice(i: as -~ |an) ;p'], b, by, (0, pr)) =acs
Imq, vg, prg, K (/\221 G(lag;p], b, hyaq ;g (vg, pry)) A
ke{l,...,n} Am=ay;for g=1tondoif ¢, then m; A
v=uvi A pr=pr;).

Here, they,'s denote conditions that the other agent$ test to observg’s choice.
e Nondeterministic first program action (joint choice of tlgeats inJ):

G([HjEJChOice(j: aj’1| o ‘a.i,"j)§p/]7 b, h,m, <U,p7’>) def
Elﬂ_avvavpra7 Ta (/\(LEA G([Ujej a]';pl]a b7 h? U]'eJ Aj;Ta, <Ua7pra>) A
Njes(mi€ PD({aj, ... ajn; 1)) A
m=|jesm;;for each a € A doif ¢, then o A
V=3 geaVa jesmi(a;) Npr=3_,capra - iesmj(a;).

Here,A= x;cs{a;1,...,a;n,}, and eachr; with j € .J is a probability distribu-
tion over{a; 1,...,a; ., }. Informally, we compute the joint policy for each pos-
sible combination of actiong € A. The conditionsp, with a € A are to observe

what the agents have actually executed.
e Nondeterministic choice of two programs:

G([(pl ‘p2)7p/}7 b7 h7 , <U,p7”>) —def
/
dmg, Vg PT g5 k (/\qe{l,2} G([pg; P'], b, hy g, <quprq>) A
ke{l,2} Am=mp Av=uvr A pr=pry).

e Test action:

G([¢7:;p'],b,h,m, (v, pr)) =aes (P[b]=0AT=stop ANv=0Apr=0)V
3pr’(o[b] >0 NG, b, by, (v, pr')) A pr=pr' - ¢[b]).

Informally, letp=[¢?;p']. If ¢ is false inb, thenp has only the policyr = stop
along with the expected reward= 0 and the success probabilipy = 0. Other-
wise, is a policy ofp with the expected rewardand success probabilipt’ - #[b]
iff 7 is a policy ofp’ with the expected rewardand success probabilify-’.

e The macrd5 is naturally extended to nondeterministic choices of acti@uments,
nondeterministic iterations, conditionals, while-lopped procedures.

We are now ready to define the notion of a Nash equilibrium bevs. An H-step
policy of a POGTGolog program in a belief stateh is an H-step Nash equilibrium
of p in b iff, for every agent € I, it holds thatl/; (H, b, 7) <U,;(H,b, ") for all H-step
policies7’ of p in b obtained fromr by modifying only actions of agernit

Example 3.4 (Rugby Domain cont@onsider again the scenario (and its belief states
ba, andb,,) of Example 3.2 relative to the domain theory of Example 3efe(Fig. 1).
Assuming the horizori =4, a 4-step policyr of the POGTGolog programachema

of Example 3.3 is given byDT = G([schema; nil], (ba,,ba,),4, 7, ((v1,v2), (pry,
pry))). For agenta;, an optimal way of acting is to pass the ball as soon as possi-
ble, which can be encoded by the following (pude3tep policyr,, =c; 7r}ll, where
c={moveS(a1, passTo(az)), moveS (as, receive)}, andry is an optimaB-step pol-

icy of schema’ in the belief staté do(c, ba,), do(c, ba,)). Here,schema’ is obtained
from schema by removing the first nondeterministic joint action choidée policy

Ta, Qives to agent, threemoveS (a2, E') attempts to achieve the touch-line. From the
standpoint ofa,, instead, it is worth to do awoveS (a2, S) to observe if agent; is
aligned, trying to minimize the likelihood of a wrong passatn this casega; has to
delay the passage waiting for the moveagf The resulting (purel-step policyr,, is
more favorable tai,’s belief state:

Tay = c; if 0bs(a, succ) then b2t
elseif obs(au, fail) then 77,11’202
elseif obs(none, succ) then 72,3
elseif obs(none, fail) then WZ’2°4 ,

wherec = {moveS(a1, S), moveS(as, stand)} andx}:*" is an optimal3-step policy
of schema’, when observing; after the execution of from (b,,,b,,). Given this
conflict of opinions, an optimal compromise for bath anda is a Nash equilibrium.

4 A POGTGolog Interpreter

In this section, we define an interpreter for POGTGolog oty relative to domain
theories and provide optimality and representation result

We define an interpreter for POGTGolog prograpneelative to a domain theory
DT by specifying the macrdoG(p, b, H, =, (v, pr)), which takes as input theil-
terminated variand of a POGTGolog program, a belief staté = (b;);cr, and a finite
horizon H >0, and which computes as output an optintéistep policyw and the
vectorsv = (v;);er and pr = (pr;);cr, respectively, where; is the expected-step
reward ofr to ¢, andpr, € [0, 1] is the H-step success probability affor i.

We define the macr®oG(p, b, h, 7, (v, pr)) in nearly the same way as the macro
G(p, b, h,7, (v, pry) in Section 3.4, except for the following modifications:

e Nondeterministic first program action (choice of ageatl): The characterization
of DoG is obtained from the one @ by replacing the conditionk‘c {1,...,n}"
by the condition % =argmax ., .,y utility(v,:, pry;)", where vy = (vg.i)ier
andpr, = (pr,;)ier. Informally, given the possible actions, ..., a, for agent
i€ I, we select an optimal one féythat is, one with greatesttility (vqq, pr, ;)-

e Nondeterministic first program action (joint choice of theeats in.J): The char-
acterization of DoG is obtained from the one aoff by replacing ‘y\jeJ(wj €
PD({aj1,...,ajn,}))" by “(7;)jcs = selectNash({utility(va, pr,)|s | a€A})",
whereutility ((s;)icr, (ti)ier) = (utility(s;, t;))icr, ands| s is the restriction ofs
to J, for s=(s;);er andJ C I. Informally, we compute a local Nash equilibrium

(m;)jes from a normal form game using the Nash selection functidactNash.
Note that we assume that all agents have the same Nash @elfaictions, and
thus they automatically select a common unique Nash eqjuitib

e Nondeterministic choice of two programs: The charactéionaof Do G is obtained
from the one ofG; by replacing % € {1,2}". by “k=argmax; »y utility(vg,;,
pr, ;)" Informally, given two possible programs andp., we select an optimal
one for agen, that is, one with greatestility (v, ;, pr, ;)-

The following theorem shows the important result that themmd@o G is optimal
in the sense that, for every horizéh> 0, among the set of all/-step policiesr of a
POGTGolog program relative to a domain theor 7' in a belief staté, it computes
an H-step Nash equilibrium and its expect&dstep utility.

Theorem 4.1. Let DT = (AT, ST, OT) be a domain theory, and let be a POGT-
Golog program relative taDT'. Letb be a belief state (over situations), &t >0 be

a horizon, and letDT = DoG(p, b, H, 7, (v, pr)). Then,r is an H-step Nash equilib-
rium of p in b, and utility (v;, pr;) is its expected? -step utility to agent € I.

The next theorem shows that, given any horizérn> 0, every POSG can be en-
coded as a programin POGTGolog, such thadoG computes one of ité/-step Nash
equilibria and its expecteHf -step reward.

Theorem 4.2. LetG = (1,7, (4;)icr, (0;)icr, P, (R;)icr) be aPOSG, leH >0 be a
horizon, and leth, be a belief state of. Then, there exists a domain theadyi’ =
(AT,ST,OT), and a set of POGTGolog programgg” | h € {0, ..., H}} relative to
DT such thaté = (6;);er is an H-step Nash equilibrium fotz, where every(d; (b,
h))ier = (7)ier is given byDT = DoG(p", By, h+1, ||icrmi ; 7', (v, pr)), for every
belief stateh reachable fronb, and everyh € {0, ..., H}, whereB, is the belief state
over situations associated with the belief staté G. Furthermore, the expectdd-step
reward G;(H, b, §) to agenti € [is given byutility(v;, pr;), where DT = DoG (p
By, H+1,m, (v, pr)), for every belief staté reachable fronby.

5 Summary and Outlook

We have presented the agent programming language POGT.®@dlath combines ex-
plicit agent programming in Golog with game-theoretic maljent planning in POSGs,
and which allows for modeling one team of cooperative agemtier partial observabil-
ity, where the agents may have different initial beliefasaind not necessarily the same
rewards. It allows for specifying a partial control progréma high-level logical lan-
guage, which is then completed by an interpreter in an optivasg. To this end, we
have defined a formal semantics of POGTGolog programs instefrilash equilibria,
and specified a POGTGolog interpreter that computes oneesétNash equilibria. We
have illustrated the usefulness of this approach alonglayragenario.

An interesting topic of future research is to generalize FGGlog to the case in
which we can give up the assumption that every agent knowsnttial local belief
states of all the other agents, their locally executed astiand their local observations.

This may, for example, be achieved by explicit communicatietween the agents or
by independence assumptions between the local actionskemsivations of different

agents. A further direction of future research is to gesed?OGTGolog to the case
of two competing teams of cooperative agents under parodiservability.

Acknowledgments. This work was supported by the Austrian Science Fund Project
P18146-N04 and by a Heisenberg Professorship of the Gerras@aRch Foundation
(DFG). We thank the reviewers for their comments, which éélp improve this work.

References

1. F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning abisy sensors and effectors
in the situation calculudArtif. Intell., 111:171-208, 1999.
2. C. Bouitilier, R. Reiter, and B. Price. Symbolic dynamic programmimdirfst-order MDPs.
In Proceedings IJCAI-20Qp. 690-700.
3. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-#tégrhigh-level agent
programming in the situation calculus. Rroceedings AAAI-20Q®p. 355-362.
4. A. Ferrein, C. Fritz, and G. Lakemeyer. Using Golog for deliberadioth team coordination
in robotic soccerKunstliche Intelligenz1:24-43, 2005.
5. A. Finzi and T. Lukasiewicz. Game-theoretic agent programmingoilo@ In Proceedings
ECAI-2004 pp. 23-27.
6. A. Finzi and F. Pirri. Combining probabilities, failures and safety irotatontrol. InPro-
ceedings IJCAI-2001pp. 1331-1336.
7. C.V.Goldman and S. Zilberstein. Decentralized control of cooperatistems: Categoriza-
tion and complexity analysisl. Artif. Intell. Res.22:143-174, 2004.
8. C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizinggdlanew environments
in relational MDPs. IrProceedings IJCAI-20Q3p. 1003—-1010.
9. E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic progiamfor partially ob-
servable stochastic games.Rroceedings AAAI-2004p. 709-715.
10. L. Pack Kaelbling, M. L. Littman, and A. R. Cassandra. Planningawtihg in partially
observable stochastic domaimstif. Intell., 101(1-2):99-134, 1998.
11. M. L. Littman. Markov games as a framework for multi-agent reicdément learning. In
Proceedings ICML-199%p. 157-163.
12. J. McCarthy and P. J. Hayes. Some philosophical problems frestaindpoint of Artificial
Intelligence. InMachine Intelligence, pp. 463-502. Edinburgh University Press, 1969.
13. R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsellamifg decentralized
POMDPs: Towards efficient policy computation for multiagent settings.Prisceedings
IJCAI-2003 pp. 705-711. 2003.
14. G. Owen.Game Theory: Second EditioAcademic Press, 1982.
15. M. L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming
Wiley, 1994.
16. R. Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementiig D
namical SystemaMIT Press, 2001.
17. J. van der Wal.Stochastic Dynamic Programmingolume 139 ofMathematical Centre
Tracts Morgan Kaufmann, 1981.
18. J.von Neumann and O. Morgensterhe Theory of Games and Economic Behavisince-
ton University Press, 1947.
19. S. W. Yoon, A. Fern, and B. Givan. Inductive policy selectionffst-order MDPs. In
Proceedings UAI-2002p. 569-576.

