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Abstract. We present the agent programming language POGTGolog, which in-
tegrates explicit agent programming in Golog with game-theoretic multi-agent
planning in partially observable stochastic games. It deals with the case of one
team of cooperative agents under partial observability, where the agents may have
different initial belief states and not necessarily the same rewards. POGTGolog
allows for specifying a partial control program in a high-level logical language,
which is then completed by an interpreter in an optimal way. To this end, we de-
fine a formal semantics of POGTGolog programs in terms of Nash equilibria, and
we specify a POGTGolog interpreter that computes one of these Nash equilibria.
We illustrate the usefulness of POGTGolog along a rugby scenario.

1 Introduction

During the recent years, the development of controllers forautonomous agents has be-
come increasingly important in AI. One way of designing suchcontrollers is the pro-
gramming approach, where a control program is specified through a language based
on high-level actions as primitives. Another way is the planning approach, where goals
or reward functions are specified and the agent is given a planning ability to achieve a
goal or to maximize a reward function. An integration of bothapproaches has recently
been proposed through the seminal language DTGolog [3], which integrates explicit
agent programming in Golog [16] with decision-theoretic planning in (fully observ-
able) Markov decision processes (MDPs) [15]. It allows for partially specifying a con-
trol program in a high-level language as well as for optimally filling in missing details
through decision-theoretic planning, and it can thus be seen as a decision-theoretic ex-
tension to Golog, where choices left to the agent are made by maximizing expected
utility. From a different perspective, it can also be seen asa formalism that gives advice
to a decision-theoretic planner, since it naturally constrains the search space.

DTGolog has several other nice features, since it is closelyrelated to first-order
extensions of decision-theoretic planning (see especially [2,19,8]), which allow for (i)
compactly representing decision-theoretic planning problems without explicitly refer-
ring to atomic states and state transitions, (ii) exploiting such compact representations
for efficiently solving large-scale problems, and (iii) nice properties such asmodularity



(parts of the specification can be easily added, removed, or modified) andelaboration
tolerance(solutions can be easily reused for similar problems with few or no extra cost).

As a serious drawback, however, DTGolog is designed only forthe single-agent
framework. That is, the model of the world essentially consists of a single agent that we
control by a DTGolog program and the environment summarizedin “nature”. But there
are many applications where we encounter multiple agents, which may compete against
each other, or which may also cooperate with each other. For example, inrobotic soc-
cer, we have two competing teams of agents, where each team consists of cooperating
agents. Here, the optimal actions of one agent generally depend on the actions of all
the other (“enemy” and “friend”) agents. In particular, there is a bidirected dependence
between the actions of two different agents, which generally makes it inappropriate to
model enemies and friends of the agent that we control simplyas a part of “nature”. As
an example for an important cooperative domain, inrobotic rescue, mobile agents may
be used in the emergency area to acquire new detailed information (such as the loca-
tions of injured people in the emergency area) or to perform certain rescue operations. In
general, acquiring information as well as performing rescue operations involves several
and different rescue elements (agents and/or teams of agents), which cannot effectively
handle the rescue situation on their own. Only the cooperative work among all the res-
cue elements may solve it. Since most of the rescue tasks involve a certain level of risk
for humans (depending on the type of rescue situation), mobile agents can play a major
role in rescue situations, especially teams of cooperativeheterogeneous mobile agents.

This is the motivation behind GTGolog [5], which is a generalization of DTGolog
that integrates agent programming in Golog with game-theoretic multi-agent planning
in (fully observable) stochastic games [14], also called Markov games [17,11].

Example 1.1.Consider a rugby playera1, who is deciding his nextn> 0 moves and
wants to cooperate with a team matea2. He has to deliberate about if and when it is
worth to pass the ball. His options can be encoded by the following GTGolog program:

proc step(n)
if (haveBall(a1)∧n> 0) then

πx (πy (choice(a1 :moveTo(x) | passTo(a2)) ‖
choice(a2 :moveTo(y) | receive(a1))));

step(n−1)
end.

This program encodes that whilea1 is the ball owner andn> 0, the two agentsa1

anda2 perform a parallel action choice in whicha1 (resp.,a2) can either go somewhere
or pass (resp., receive) the ball. Here, the preconditions and effects of the actions are to
be formally specified in a suitable action theory. Given thishigh-level program and the
action theory fora1 anda2, the program interpreter then fills in the best moves fora1

anda2, reasoning about all the possible interactions between thetwo agents.

Another crucial aspect of real-world environments, however, is that they are typi-
cally only partially observable, due to noisy and inaccurate sensors, or because some
relevant parts of the environment simply cannot be sensed. For example, especially in
the robotic rescue domain described above, every agent has generally only a very partial
view on the environment. However, both DT- and GTGolog assume full observability,
and have not been generalized to the partially observable case so far.



In this paper, we try to fill this gap. We present the agent programming language
POGTGolog, which extends GTGolog and thus also DTGolog by partial observability.
The main contributions of this paper can be summarized as follows:

• We present the agent programming language POGTGolog, whichintegrates explicit
agent programming in Golog with game-theoretic multi-agent planning in partially
observable stochastic games [9]. POGTGolog allows for modeling one team of
cooperative agents under partial observability, where theagents may have different
initial belief states and not necessarily the same rewards (and thus in some sense
the team does not necessarily have to be homogeneous).

• POGTGolog allows for specifying a partial control program in a high-level lan-
guage, which is then completed in an optimal way. To this end,we associate with
every POGTGolog program a set of (finite-horizon) policies,which are possible
(finite-horizon) instantiations of the program where missing details are filled in.
We then define a semantics of a POGTGolog program in terms of Nash equilibria,
which are optimal policies (that is, optimal instantiations) of the program.

• We define a POGTGolog interpreter and show that it computes a Nash equilibrium
of POGTGolog programs. We also prove that POGTGolog programs can represent
partially observable stochastic games, and that the POGTGolog interpreter can be
used to compute one of their (finite-horizon) Nash equilibria. Furthermore, we il-
lustrate the usefulness of the POGTGolog approach along a rugby scenario.

2 Preliminaries

In this section, we first recall the main concepts of the situation calculus and of the agent
programming language Golog; for further details see especially [16]. We then recall the
basics of normal form games and of partially observable stochastic games (POSGs).

2.1 The Situation Calculus

The situation calculus [12,16] is a first-order language forrepresenting dynamically
changing worlds. Its main ingredients areactions, situations, andfluents. An action
is a first-order term of the forma(u1, . . . , un), where the function symbola is its
nameand theui’s are itsarguments. All changes to the world are the result of ac-
tions. For example, the actionmoveTo(r, x, y) may stand for moving the agentr to
the position(x, y). A situation is a first-order term encoding a sequence of actions. It
is either a constant symbol or of the formdo(a, s), wheredo is a distinguished bi-
nary function symbol,a is an action, ands is a situation. The constant symbolS0 is
the initial situation and represents the empty sequence, whiledo(a, s) encodes the se-
quence obtained from executinga after the sequence ofs. For example, the situation
do(moveTo(r, 1, 2), do(moveTo(r, 3, 4), S0 )) stands for executingmoveTo(r, 1, 2)
after executingmoveTo(r, 3, 4) in the initial situationS0 . We writePoss(a, s), where
Poss is a distinguished binary predicate symbol, to denote that the actiona is possible
to execute in the situations. A (relational) fluentrepresents a world or agent property
that may change when executing an action. It is a predicate symbol whose most right



argument is a situation. For example,at(r, x, y, s) may express that the agentr is at
the position(x, y) in the situations. In the situation calculus, a dynamic domain is
represented by abasic action theoryAT =(Σ,Duna ,DS0

,Dssa ,Dap), where:

• Σ is the set of (domain-independent) foundational axioms forsituations [16].
• Duna is the set of unique names axioms for actions, which express that different

actions are interpreted in a different way.
• DS0

is a set of first-order formulas describing the initial stateof the domain (repre-
sented byS0 ). For example,at(r, 1, 2,S0 ) ∧ at(r′, 3, 4,S0 ) may express that the
agentsr andr′ are initially at the positions(1, 2) and(3, 4), respectively.

• Dssa is the set ofsuccessor state axioms[16]. For each fluentF (x, s), it con-
tains an axiom of the formF (x, do(a, s))≡ΦF (x, a, s), whereΦF (x, a, s) is a
formula with free variables amongx, a, s. These axioms specify the truth of the
fluentF in the next situationdo(a, s) in terms of the current situations, and are a
solution to the frame problem (for deterministic actions).For example, the axiom
at(r, x, y, do(a, s))≡ a=moveTo(r, x, y) ∨ (at(r, x, y, s) ∧ ¬∃x′, y′ (a=move-
To(r, x′, y′))) may express that the agentr is at the position(x, y) in the situa-
tion do(a, s) iff either r moves to(x, y) in the situations, or r is already at the
position(x, y) and does not move away ins.

• Dap is the set ofaction precondition axioms. For each actiona, it contains an
axiom of the formPoss(a(x), s) ≡ Π(x, s), which characterizes the preconditions
of the actiona. For example,Poss(moveTo(r, x, y), s) ≡ ¬∃r′ at(r′, x, y, s) may
express that it is possible to move the agentr to the position(x, y) in the situations
iff no other agentr′ is at(x, y) in s.

We use the concurrent version of the situation calculus [16], which is an extension
of the standard situation calculus by concurrent actions. Aconcurrent actionc is a set
of standard actions, which are concurrently executed whenc is executed.

2.2 Golog

Golog is an agent programming language that is based on the situation calculus. It al-
lows for constructingprogramsfrom primitive actions that are defined in a basic action
theoryAT , where standard (and not so standard) Algol-like control constructs can be
used. More precisely,programsp in Golog have one of the following forms (wherec is
a primitive action,φ is a condition, which is obtained from a situation calculus for-
mula over fluents by suppressing all situation arguments,p, p1, p2, . . . , pn are programs,
P1, . . . , Pn are procedure names, andx,x1, . . . ,xn are arguments):

1. Primitive action: c. Do c.

2. Test action: φ?. Test the truth ofφ in the current situation.

3. Sequence: [p1; p2]. Do p1 followed byp2.

4. Nondeterministic choice of two programs: (p1 | p2). Do eitherp1 or p2.

5. Nondeterministic choice of program argument: πx (p(x)). Do anyp(x).

6. Nondeterministic iteration: p⋆. Do p zero or more times.

7. Conditional: if φ then p1 else p2. If φ is true, then dop1 else dop2.



8. While-loop: while φ do p. Whileφ is true in the current situation, dop.

9. Procedures: proc P1(x1) p1 end ; . . . ; proc Pn(xn) pn end ; p.

For example, the Golog programwhile ¬at(r, 1, 2) do πx, y (moveTo(r, x, y)) stands
for “while the agentr is not at the position(1, 2), mover to a nondeterministically
chosen position(x, y)”. Golog has a declarative formal semantics, which is defined
in the situation calculus. Given a Golog programp, its execution is represented by
a situation calculus formulaDo(p, s, s′), which encodes that the situations′ can be
reached by executing the programp in the situations.

2.3 Normal Form Games

Normal form games from classical game theory [18] describe the possible actions of
n≥ 2 agents and the rewards that the agents receive when they simultaneously execute
one action each. For example, intwo-finger Morra, two playersE andO simultaneously
show one or two fingers. Letf be the total numbers of fingers shown. Iff is odd,
thenO getsf dollars fromE, and if f is even, thenE getsf dollars fromO. More
formally, a normal form gameG= (I, (Ai)i∈I , (Ri)i∈I) consists of a set ofagents
I = {1, . . . , n} with n≥ 2, a nonempty finite set ofactionsAi for each agenti∈ I, and
a reward functionRi : A→R for each agenti∈ I, which associates with everyjoint
action a∈A=×i∈IAi a rewardRi(a) to agenti. If n= 2, thenG is called atwo-
player normal form game(or simplymatrix game). If additionallyR1 =−R2, thenG is
azero-sum matrix game; we then often omitR2 and abbreviateR1 byR.

The behavior of the agents in a normal form game is expressed through the notions
of pure and mixed strategies, which specify which of its actions an agent should execute
and which of its actions an agent should execute with which probability, respectively.
For example, in two-finger Morra, a pure strategy for playerE (or O) is to show two
fingers, and a mixed strategy for playerE (or O) is to show one finger with the prob-
ability 7/12 and two fingers with the probability5/12. Formally, apure strategyfor
agenti∈ I is any actionai ∈Ai. A pure strategy profileis any joint actiona∈A. If
the agents playa, then thereward to agenti∈ I is given byRi(a). A mixed strategy
for agenti∈ I is any probability distributionπi over its set of actionsAi. A mixed
strategy profileπ=(πi)i∈I consists of a mixed strategyπi for each agenti∈ I. If the
agents playπ, then theexpected rewardto agenti∈ I, denotedE[Ri(a) |π] (orRi(π)),
is defined as

∑
a=(aj)j∈I∈ARi(a) ·Πj∈Iπj(aj).

Towards optimal behavior of the agents in a normal form game,we are especially
interested in mixed strategy profilesπ, called Nash equilibria, where no agent has the
incentive to deviate from its part, once the other agents play their parts. Formally, given
a normal form gameG = (I, (Ai)i∈I , (Ri)i∈I), a mixed strategy profileπ= (πi)i∈I

is aNash equilibriumof G iff for every agenti∈ I, it holds thatRi(π
′
i ◦π−i)≤Ri(π)

for every mixed strategyπ′
i, whereπ′

i ◦π−i is obtained fromπ by replacingπi by π′
i.

For example, in two-finger Morra, the mixed strategy profile where each player shows
one finger resp. two fingers with the probability7/12 resp.5/12 is a Nash equilibrium.
Every normal form gameG has at least one Nash equilibrium among its mixed (but
not necessarily pure) strategy profiles, and many have multiple Nash equilibria. In the



two-player case, they can be computed by linear complementary programming and lin-
ear programming in the general and the zero-sum case, respectively. A Nash selection
functionf associates with every normal form gameG a unique Nash equilibriumf(G).
The expected reward to agenti∈ I underf(G) is denoted byvi

f (G).

2.4 Partially Observable Stochastic Games

Partially observable stochastic games [9] generalize normal form games, partially obser-
vable Markov decision processes (POMDPs) [10], and decentralized POMDPs [7,13].
A partially observable stochastic game consists of a set of statesS, a normal form
game for each states∈S, a set of joint observations of the agentsO, and a tran-
sition function that associates with every states∈S and joint action of the agents
a∈A a probability distribution on all combinations of next statess′ ∈S and joint ob-
servationso∈O. Formally, apartially observable stochastic game (POSG)G= (I, S,
(Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) consists of a set ofagentsI = {1, . . . , n}, n≥ 2, a non-
empty finite set ofstatesS, two nonempty finite sets ofactionsAi andobservationsOi

for eachi∈ I, a transition functionP : S×A→PD(S×O), which associates with ev-
ery states∈S and joint actiona∈A=×i∈IAi a probability distribution overS×O,
whereO=×i∈IOi, and areward functionRi : S×A→R for eachi∈ I, which asso-
ciates with every states∈S and joint actiona∈A a rewardRi(s, a) to i.

Since the actual states∈S of the POSGG is not fully observable, every agent
i∈ I has a belief statebi that associates with every states∈S the belief of agenti
abouts being the actual state. Abelief stateb= (bi)i∈I of G consists of a probabil-
ity function bi over S for each agenti∈ I. The POSGG then defines probabilistic
transitions between belief states as follows. The new belief stateba,o = (ba,o

i )i∈I af-
ter executing the joint actiona∈A in b= (bi)i∈I and jointly observingo∈O is given
by ba,o

i (s′) =
∑

s∈S P (s′, o | s, a) · bi(s) / Pb(b
a,o
i | bi, a), wherePb(b

a,o
i | bi, a) =∑

s′∈S

∑
s∈SP (s′, o|s, a) · bi(s) is the probability of observingo after executinga in bi.

The notions of finite-horizon pure (resp., mixed) policies and their rewards (resp.,
expected rewards) can now be defined as usual using the above probabilistic transitions
between belief states. Informally, given a finite horizonH ≥ 0, a pure (resp., mixed)
time-dependent policy associates with every belief stateb of G and number of steps to
goh∈{0, . . . ,H} a pure (resp., mixed) normal form game strategy.

Finally, the notion of a finite-horizon Nash equilibrium fora POSGG is then de-
fined as follows. A policyπ is aNash equilibriumof G under a belief stateb iff for ev-
ery agenti∈ I, it holds thatGi(H, b, π

′
i ◦π−i)≤Gi(H, b, πi ◦π−i) for all policiesπ′

i,
whereGi(H, b, α) denotes theH-step rewardto agenti∈ I under an initial belief
stateb= (bi)i∈I and the policyα. A policy π is a Nash equilibriumof G iff it is a
Nash equilibrium ofG under every belief stateb.

3 Partially Observable GTGolog (POGTGolog)

In this section, we present the agent programming language POGTGolog, which is a
generalization of GTGolog [5] that allows for partial observability. We first describe
the domain theory and the syntax and semantics of POGTGolog programs.



We focus on the case of one team of cooperative agents under partial observability,
where the agents may have different initial belief states and not necessarily the same
rewards (and so may also be heterogeneous). We assume that (i) each agent knows the
initial local belief state of every other agent, and (ii) after each action execution, each
agent can observe the actions of every other agent and receives their local observations.

3.1 Domain Theory

POGTGolog programs are interpreted relative to a domain theory, which extends a basic
action theory by stochastic actions, reward functions, andutility functions. Formally, in
addition to a basic action theoryAT , adomain theoryDT =(AT ,ST ,OT ) consists of
astochastic theoryST and anoptimization theoryOT , which are both defined below.

We assume a teamI = {1, . . . , n} consisting ofn≥ 2 cooperative agents1, . . . , n.
The finite nonempty set of primitive actionsA is partitioned into nonempty sets of
primitive actionsA1, . . . , An of agents1, . . . , n, respectively. Asingle-agent actionof
agenti∈ I (resp.,multi-agent action) is any concurrent action overAi (resp.,A). We
assume a finite nonempty set of observationsO, which is partitioned into nonempty sets
of observationsO1, . . . , On of agents1, . . . , n, respectively. Asingle-agent observation
of agenti∈ I is anyoi ∈Oi. A multi-agent observationis anyo∈×i∈IOi.

A stochastic theoryST is a set of axioms that define stochastic actions. We repre-
sent stochastic actions through a finite set of deterministic actions, as usual [6,3]. When
a stochastic action is executed, then with a certain probability, “nature” executes ex-
actly one of its deterministic actions and produces exactlyone possible observation. We
use the predicatestochastic(c, s, n, o, µ) to encode that when executing the stochastic
actionc in the situations, “nature” chooses the deterministic actionn producing the
observationo with the probabilityµ. Here, for every stochastic actionc and situations,
the set of all(n, o, µ) such thatstochastic(c, s, n, o, µ) is a probability function on the
set of all deterministic componentsn and observationso of c in s. We also use the no-
tationprob(c, s, n, o) to denote the probabilityµ such thatstochastic(c, s, n, o, µ). We
assume thatc and all its nature choicesn have the same preconditions. A stochastic ac-
tion c is indirectly represented by providing asuccessor state axiomfor every associated
nature choicen. The stochastic actionc is executablein a situationswith observationo,
denotedPoss(co, s), iff prob(c, s, n, o)> 0 for somen.

The optimization theoryOT specifies a reward and a utility function. The former
associates with every situations and multi-agent actionc, a reward to every agenti∈ I,
denotedreward(i, c, s). The utility function maps every reward and success probability
to a real-valued utilityutility(v, pr). We assumeutility(v, 1)= v andutility(v, 0)= 0
for all v. An example isutility(v, pr)= v · pr . The utility function suitably mediates
between the agent reward and the failure of actions due to unsatisfied preconditions.

Example 3.1 (Rugby Domain).Consider the following rugby domain, which is inspired
by the soccer domain in [11]. The rugby field consists of 22 rectangles, which are di-
vided into a4× 5 grid of 20 squares and two goal rectangles (see Fig. 1). We assume
a team of two agentsa = {a1,a2} against a (static) team of two agentso = {o1,o2},
wherea1 ando1 are thecaptainsof a ando, respectively. Each agent occupies a
square and is able to do one of the following actions on each turn:N , S, E,W , stand ,
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Fig. 1. Rugby Domain: Initial belief states ofa1 anda2, respectively

passTo(α), andreceive (move up, move down, move right, move left, no move, pass,
and receive the ball, respectively). The ball is represented by an oval and also occupies
a square. An agent is aball owneriff it occupies the same square as the ball. The ball
follows the moves of the ball owner, and we have a goal when theball owner steps
into the adversary goal. An agent can also pass the ball to another agent of the same
team, but this is possible only if the receiving agent is not closer to the opposing end of
the field than the ball, otherwise, an offside fault is calledby the referee, and the ball
possession goes to the captain of the opposing team. When the ball owner goes into the
square occupied by the other agent, if the other agent stands, possession of ball changes.
Thus, a good defensive maneuver is to stand where the other agent wants to go.

We define the domain theoryDT =(AT ,ST ,OT ) as follows. Concerning the ba-
sic action theoryAT , we assume the deterministic actionmove(α,m) (encoding that
agentα executesm), whereα∈a ∪o,m∈{N,S,E,W, stand , passTo(α′), receive},
andα′ is a team mate ofα, and the fluentsat(α, x, y, s) (encoding that agentα is at
position(x, y) in situations) andhaveBall(α, s) (encoding that agentα has the ball in
situations). They are defined by the following successor state axioms:

at(α, x, y, do(c, s)) ≡ ∃x′, y′ (at(α, x′, y′, s) ∧ ∃m (move(α,m)∈ c ∧
((m= stand ∨m= receive ∨ ∃β (m= passTo(β))) ∧ x=x′ ∧ y= y′) ∨
(m=N ∧ x=x′ ∧ y= y′+1) ∨ (m=S ∧ x=x′ ∧ y= y′−1) ∨
(m=E ∧ x=x′+1 ∧ y= y′) ∨ (m=W ∧ x=x′−1 ∧ y= y′))) ;

haveBall(α, do(c, s)) ≡ ∃β (haveBall(β, s) ∧ (α = β ∧ ¬∃β′(cngBall(β′, c, s) ∨
rcvBall(β′, c, s))) ∨ (α 6= β ∧ (cngBall(α, c, s) ∨ rcvBall(α, c, s)))) .

Here, cngBall(α, c, s) is true iff the ball possession changes toα after an actionc
in s (in the case of either an adversary block or an offside ball passage). The predicate
rcvBall(α, c, s) is true iff agentα receives the ball from the ball owner or is in offside.

As for the stochastic theoryST , we assume the stochastic actionmoveS (α,m),
which represents agentα’s attempt in doingm amongN , S,E,W , stand , passTo(β),
and receive. It can either succeed, and then the deterministic actionmove(α,m) is
executed, or it can fail, and then the deterministic actionmove(α, stand) (that is, no
change) is executed. Furthermore, after each execution ofmoveS (α,m), agentα can
observe the presence of a team mateα′ in the direction of the movement, given that



agentα′ is visible, that is, not covered by another agent:

stochastic({moveS(α,m)}, s, {a}, {obs(β, out)}, µ) ≡
∃µ1, µ2 ((a=move(α,m) ∧ (out = succ ∧ µ1 = 0.8 ∨ out = fail ∧ µ1 = 0.1) ∨

a=move(α, stand) ∧ (out = succ ∧ µ1 = 0.01 ∨ out = fail ∧ µ1 = 0.09)) ∧
(visible(α, α′, a, s)∧ (β=α′ ∧µ2 = 0.7∨β=none ∧µ2 = 0.1)∨
¬visible(α, α′, a, s)∧ (β=α′ ∧µ2 = 0∨β=none ∧µ2 = 0.2))∧µ=µ1·µ2) ;

stochastic({moveS(α,m),moveS(α′,m′)}, s, {aα, aα′}, {oα, oα′}, µ) ≡
∃µ1, µ2 (stochastic({moveS(α,m)}, s, {aα}, {oα}, µ1) ∧

stochastic({moveS(α′,m′)}, s, {aα′}, {oα′}, µ2) ∧ µ = µ1 · µ2) .

Here, visible(α, α′, a, s) is true if α can observeα′ after the execution ofa in s.
The stochastic actionmoveS (α,m) is associated with the observationsobs(β, out),
whereβ ∈{α′,none} and r∈{succ, fail}. That is, after the execution of the action
move(α,m), agentα can observe both whether its team mateα′ is present or not (first
argument) and the success or failure of the action (second argument). Note that we as-
sume thatobs(α′, out) has the probability zero, ifα′ is not visible. Notice also that in
the last axiom, we assume the independence of the observations.

As for the optimization theoryOT , the reward function for the agents is defined by:

reward(α, c, s) = r ≡ ∃α′(goal(α′, do(c, s))∧ (α′ ∈a ∧ r=M ∨
α′ ∈o ∧ r=−M))∨¬∃α′ (goal(α′, do(c, s)) ∧ evalTeamPos(c, r, s)) .

Here, the reward of agentα is very high (that is,M stands for a “big” integer), if a team
mate scores a goal. Otherwise, the reward depends onevalTeamPos(c, r, s), that is, the
position of its team relative to the adversary team as well asthe ball possession.

3.2 Belief States

We next introduce belief states over situations, and define the semantics of actions in
terms of transitions between belief states. Abelief state (over situations)has the form
b= (bi)i∈I , where everybi is a set of pairs(s, µ) consisting of a standard situations
and a realµ∈ (0, 1] such that allµ sum up to1. Informally, everybi represents the
belief of agenti∈ I expressed as a probability distribution over ordinary situations.
Theprobability of a fluent formulaφ(s) in b= (bi)i∈I , denotedφ(b), is the probability
vectorpr =(pr i)i∈I , where everypr i with i∈ I is the sum of allµ such thatφ(s) is true
and(s, µ)∈ bi. Similarly, reward(c, b) denotes the vectorr= (ri)i∈I , where everyri
with i∈ I is the sum of allreward(i, c, s) ·µ such that(s, µ)∈ bi.

Given a deterministic actionc and a belief stateb =(bi)i∈I , the successor belief
stateafter executingc in b, denoteddo(c, b), is the belief stateb′ = (b′i)i∈I , where
b′i = {(do(c, s), µ/Poss(c, b)) | (s, µ)∈ bi,Poss(c, s)} for everyi∈ I. Given a stochas-
tic actionc, an observationo of c, and a belief stateb = (bi)i∈I , thesuccessor belief state
after executingc in b and observingo, denoteddo(co, b), is the belief stateb′ =(b′i)i∈I ,
whereb′i is obtained from all pairs(do(n, s), µ ·µ′) such that(s, µ)∈ bi, Poss(c, s),
andµ′ = prob(c, s, n, o)> 0 by normalizing the probabilities to sum up to1.

The probability of observingo after executing the stochastic actionc in the belief
stateb =(bi)i∈I , denotedprob(c, b, o), is the vectorpr =(pr i)i∈I , where everypr i

with i∈ I is the sum of allµ · µ′ such that(s, µ)∈ bi andµ′ = prob(c, s, n, o)> 0.



Example 3.2 (Rugby Domain cont’d).Consider the following scenario relative to the
domain theory of Example 3.1 (see Fig. 1). We focus only on controlling the members
of the teama , which cooperate to score a goal against the (static) teamo. The captain
a1 of a has a complete view of the situation, and its belief stateba1

is shown in Fig. 1,
upper part: There is only the situations1 with probability1 such thatat(a1, 2, 1, s1),
at(a2, 2, 4, s1), at(o2, 1, 1, s1), at(o1, 5, 2, s1), andhaveBall(a1, s1) are true. That
is, the captaino1 of o is very close to the goal ofa . From the perspective ofa1, the
goal seems quite done:a1 can pass toa2, which has a paved way towards the goal.
But a1 has to cooperate witha2, whose vision of the situation is more confused and
expressed by the belief stateba2

in Fig. 1, lower part:a2 could be either at (a)(1, 1) or
at (b)(1, 2), anda1 could be either at (c)(2, 1) or at (d)(3, 1). Hence,a2’s belief state
may e.g. be given byba2

= {(sa,c, 0.5), (sa,d, 0.3), (sb,c, 0.1), (sb,d, 0.1)}.

3.3 Syntax

Given the actions specified by a domain theoryDT , a programp in POGTGolog has
one of the following forms (whereα is a multi-agent action,φ is a condition,p, p1, p2

are programs,ai,1, . . . , ai,ni
are actions of agentsi∈ I, andJ ⊆ I with |J | ≥ 2):

1. Deterministic or stochastic action:α. Doα.
2. Nondeterministic action choice of agenti∈ I: choice(i : ai,1| · · · |ai,ni

).
Do an optimal action (for agenti∈ I) amongai,1, . . . , ai,ni

.
3. Nondeterministic joint action choice:‖j∈Jchoice(j : aj,1| · · · |j : aj,nj

).
Do any action‖j∈Jaj,ij

with an optimal probabilityπ=Πj∈Jπj,ij
.

4. Test action: φ?. Test the truth ofφ in the current situation.
5. Action sequence: [p1; p2]. Do p1 followed byp2.
6. Nondeterministic choice of two programs:(p1 | p2). Do p1 or p2.
7. Nondeterministic choice of an argument:πx (p(x)). Do anyp(x).
8. Nondeterministic iteration: p⋆. Do p zero or more times.
9. Conditionals: if φ then p1 else p2.

10. While-loops: while φ do p.
11. Procedures, including recursion.

Hence, compared to Golog, we now also have multi-agent actions and stochastic actions
(instead of only primitive resp. deterministic actions). Furthermore, we now addition-
ally have different kinds of nondeterministic action choices for the agents in 2 and 3,
where one or any subset of the agents inI can choose among a finite set of single-agent
actions. The formal semantics of 2 and 3 is defined in such a waythat an optimal action
is chosen for the agents (see Section 3.4). As usual, the sequence operator “;” is asso-
ciative (for example,[[p1; p2]; p3] and [p1; [p2; p3]] have the same semantics), and we
often use “p1; p2” to abbreviate “[p1; p2]” when there is no danger of confusion.

Example 3.3 (Rugby Domain cont’d).Consider again the scenario (and its belief states
ba1

andba2
) of Example 3.2 relative to the domain theory of Example 3.1 (see Fig. 1).

Both agentsa1 anda2 have to decide when (and if) it is worth to pass the ball, consid-
ering that ifa1 tries to pass whilea2 is in offside (for example, insa,d or sb,d), then the



ball goes to the captaino1 of the adversary teamo, which is in a very good position to
score a goal. The subsequent POGTGolog program, denotedschema, represents a way
of acting ofa1 anda2 in this scenario, where the agentsa1 anda2 have two possible
chances to coordinate themselves in order to pass the ball, and thereafter both of them
have to run towards the goal (with or without the ball).

choice(a1 : moveS(a1, E) |moveS(a1, stand) |moveS(a1, passTo(a2))) ‖
choice(a2 : moveS(a2, S) |moveS(a2, E) |moveS(a2, receive));

choice(a1 : moveS(a1, E) |moveS(a1, stand) |moveS(a1, passTo(a2))) ‖
choice(a2 : moveS(a2, E) |moveS(a2, receive));

{moveS(a1, E),moveS(a2, E)};
{moveS(a1, E),moveS(a2, E)} .

3.4 Semantics

We now define the formal semantics of POGTGolog programsp relative to a domain
theoryDT = (AT , ST ,OT ) in terms of Nash equilibria. We first associate with every
POGTGolog programp, a belief stateb, and horizonH ≥ 0, a set of executableH-step
policiesπ along with their expected utilityUi to every agenti∈ I. We then define the
notion of a Nash equilibrium to characterize a subset of optimal such policies, which is
the natural semantics of a POGTGolog program relative to a domain theory.

Intuitively, given a horizonH ≥ 0, anH-step policyπ of a POGTGolog programp
relative to a domain theory is obtained from theH-horizon part ofp by replacing every
single-agent choice by a single action, and every multi-agent choice by a collection of
probability distributions, one over the actions of each agent. Formally, for every POGT-
Golog programp, we define thenil -terminated variantof p, denoted̂p, by p̂= [p1; p̂2],
if p= [p1; p2], andp̂= [p;nil ], otherwise. Given a POGTGolog programp relative to a
domain theoryDT , a horizonH ≥ 0, and a start belief stateb, we say thatπ is anH-step
policy of p in b iff DT |=G(p̂, b,H, π, 〈v, pr〉), wherev= (vi)i∈I andpr =(pr i)i∈I .
The expectedH-step utilityof π in b to i∈ I, denotedUi(H, b, π), is utility(vi, pri).
Here, we define the macroG(p̂, b, h, π, 〈v, pr〉) by induction as follows:

• Null program (̂p=nil ) or zero horizon (h=0):

G(bp, b, h, π, 〈v, pr〉) =def π= stop ∧ v =0∧ pr =1 .

Intuitively, p ends when it is null or at the horizon end.
• First program actionc is deterministic (resp., stochastic with observation):

G([c ; p′], b, h, π, 〈v, pr〉) =def

(Poss(c, b) =0 ∧ π= stop ∧ v =0∧ pr =1) ∨
(Poss(c, b)>0 ∧ ∃π′, v′, pr ′ (G(p′, do(c, b), h−1, π′, 〈v′, pr ′〉) ∧

π= c ;π′ ∧ v= v′ + reward(c, b) ∧ pr = pr ′ · Poss(c, b)) .

Here,(si)i∈I op (ti)i∈I = (si op ti)i∈I for op ∈ {+, · }. Informally, suppose
that p̂= [c ; p′], wherec is a deterministic action (resp., stochastic action with ob-
servation). Ifc is not executable in the belief stateb, thenp has only the policy
π= stop along with the expected rewardv=0 and the success probabilitypr =0.
Otherwise, the optimal execution of[c ; p′] in the belief stateb depends on that one
of p in do(c, b). Observe thatc is executable inb with the probabilityPoss(c, b),
which affects the overall success probabilitypr.



• Stochastic first program actionc (choice of nature):

G([c ; p′], b, h, π, 〈v, pr〉) =def

∃πq, vq, prq (
Vl

q=1
G([coq ; p′], b, h, coq ;πq, 〈vq, prq〉) ∧

π= coq ; for q= 1 to l do if oq then πq ∧

v=
Pl

q=1
vq · prob(c, b, oq) ∧ pr =

Pl

q=1
prq · prob(c, b, oq)) .

Here,o1, . . . , ol are the possible observations. The generated policy is a conditional
plan in which every such observationoq is considered.

• Nondeterministic first program action (choice of agenti∈ I):

G([choice(i : a1| · · · |an) ; p′], b, h, π, 〈v, pr〉) =def

∃πq, vq, prq, k (
Vn

q=1
G([aq ; p′], b, h, aq ;πq, 〈vq, prq〉) ∧

k∈{1, . . . , n} ∧ π= ak ; for q= 1 to n do if ψq then πq ∧
v= vk ∧ pr = prk) .

Here, theψq ’s denote conditions that the other agents inI test to observej’s choice.
• Nondeterministic first program action (joint choice of the agents inJ):

G([ ‖j∈Jchoice(j : aj,1| · · · |aj,nj
); p′], b, h, π, 〈v, pr〉) =def

∃πa, va, pra, πa (
V

a∈A G([
S

j∈J aj ; p
′], b, h,

S
j∈J aj ;πa, 〈va, pra〉)∧V

j∈J(πj ∈PD({aj,1, . . . , aj,nj
})) ∧

π= ‖j∈Jπj ; for each a∈A do if φa then πa ∧
v=

P
a∈A

va ·Πj∈Jπj(aj) ∧ pr =
P

a∈A
pra ·Πj∈Jπj(aj) .

Here,A=×j∈J{aj,1, . . . , aj,nj
}, and eachπj with j ∈ J is a probability distribu-

tion over{aj,1, . . . , aj,nj
}. Informally, we compute the joint policy for each pos-

sible combination of actionsa∈A. The conditionsφa with a∈A are to observe
what the agents have actually executed.

• Nondeterministic choice of two programs:

G([(p1 | p2); p
′], b, h, π, 〈v, pr〉) =def

∃πq, vq, prq, k (
V

q∈{1,2}G([pq; p
′], b, h, πq, 〈vq, prq〉) ∧

k∈{1, 2} ∧ π=πk ∧ v= vk ∧ pr = prk) .

• Test action:

G([φ? ; p′], b, h, π, 〈v, pr〉) =def (φ[b] =0 ∧ π= stop ∧ v =0∧ pr =0) ∨
∃pr ′(φ[b]>0 ∧G(p′, b, h, π, 〈v, pr ′〉) ∧ pr = pr ′ · φ[b]) .

Informally, let p= [φ? ; p′]. If φ is false inb, thenp has only the policyπ= stop

along with the expected rewardv=0 and the success probabilitypr =0. Other-
wise,π is a policy ofp with the expected rewardv and success probabilitypr ′ ·φ[b]
iff π is a policy ofp′ with the expected rewardv and success probabilitypr ′.

• The macroG is naturally extended to nondeterministic choices of action arguments,
nondeterministic iterations, conditionals, while-loops, and procedures.

We are now ready to define the notion of a Nash equilibrium as follows. AnH-step
policy of a POGTGolog programp in a belief stateb is anH-step Nash equilibrium
of p in b iff, for every agenti∈ I, it holds thatUi(H, b, π)≤Ui(H, b, π

′) for all H-step
policiesπ′ of p in b obtained fromπ by modifying only actions of agenti.



Example 3.4 (Rugby Domain cont’d).Consider again the scenario (and its belief states
ba1

andba2
) of Example 3.2 relative to the domain theory of Example 3.1 (see Fig. 1).

Assuming the horizonH =4, a 4-step policyπ of the POGTGolog programschema
of Example 3.3 is given byDT |=G([schema;nil ], (ba1

, ba2
), 4, π, 〈(v1, v2), (pr1,

pr2)〉). For agenta1, an optimal way of acting is to pass the ball as soon as possi-
ble, which can be encoded by the following (pure)4-step policyπa1

= c ; π1
a1

, where
c= {moveS (a1, passTo(a2)),moveS (a2, receive)}, andπ1

a1
is an optimal3-step pol-

icy of schema ′ in the belief state(do(c, ba1
), do(c, ba2

)). Here,schema ′ is obtained
from schema by removing the first nondeterministic joint action choice.The policy
πa1

gives to agenta2 threemoveS (a2, E) attempts to achieve the touch-line. From the
standpoint ofa2, instead, it is worth to do amoveS (a2, S) to observe if agenta1 is
aligned, trying to minimize the likelihood of a wrong passage. In this case,a1 has to
delay the passage waiting for the move ofa2. The resulting (pure)4-step policyπa2

is
more favorable toa2’s belief state:

πa2
= c ; if obs(a1, succ) then π1,o1

a2

else if obs(a1, fail) then π1,o2
a2

else if obs(none, succ) then π2,o3
a2

else if obs(none, fail) then π2,o4
a2

,

wherec= {moveS (a1, S),moveS (a2, stand)} andπk,oi
a2

is an optimal3-step policy
of schema ′, when observingoi after the execution ofc from (ba1

, ba2
). Given this

conflict of opinions, an optimal compromise for botha1 anda2 is a Nash equilibrium.

4 A POGTGolog Interpreter

In this section, we define an interpreter for POGTGolog programs relative to domain
theories and provide optimality and representation results.

We define an interpreter for POGTGolog programsp relative to a domain theory
DT by specifying the macroDoG(p̂, b,H, π, 〈v, pr〉), which takes as input thenil -
terminated variant̂p of a POGTGolog programp, a belief stateb =(bi)i∈I , and a finite
horizonH ≥ 0, and which computes as output an optimalH-step policyπ and the
vectorsv=(vi)i∈I andpr =(pr i)i∈I , respectively, wherevi is the expectedH-step
reward ofπ to i, andpr i ∈ [0, 1] is theH-step success probability ofπ for i.

We define the macroDoG(p̂, b, h, π, 〈v, pr〉) in nearly the same way as the macro
G(p̂, b, h, π, 〈v, pr〉) in Section 3.4, except for the following modifications:

• Nondeterministic first program action (choice of agenti∈ I): The characterization
of DoG is obtained from the one ofG by replacing the condition “k∈{1, . . . , n}”
by the condition “k= argmaxq∈{1,...,n} utility(vq,i, prq,i)”, wherevq =(vq,i)i∈I

andprq = (prq,i)i∈I . Informally, given the possible actionsa1, . . . , an for agent
i∈ I, we select an optimal one fori, that is, one with greatestutility(vq,i, prq,i).

• Nondeterministic first program action (joint choice of the agents inJ): The char-
acterization ofDoG is obtained from the one ofG by replacing “

∧
j∈J(πj ∈

PD({aj,1, . . . , aj,nj
}))” by “ (πj)j∈J = selectNash({utility(va, pra)|J | a∈A})”,

whereutility((si)i∈I , (ti)i∈I)= (utility(si, ti))i∈I , ands|J is the restriction ofs
to J , for s= (si)i∈I andJ ⊆ I. Informally, we compute a local Nash equilibrium



(πj)j∈J from a normal form game using the Nash selection functionselectNash.
Note that we assume that all agents have the same Nash selection functions, and
thus they automatically select a common unique Nash equilibrium.

• Nondeterministic choice of two programs: The characterization ofDoG is obtained
from the one ofG by replacing “k∈{1, 2}”. by “k= argmaxq∈{1,2} utility(vq,j ,
prq,j)”. Informally, given two possible programsp1 andp2, we select an optimal
one for agentj, that is, one with greatestutility(vq,j , prq,j).

The following theorem shows the important result that the macro DoG is optimal
in the sense that, for every horizonH ≥ 0, among the set of allH-step policiesπ of a
POGTGolog programp relative to a domain theoryDT in a belief stateb, it computes
anH-step Nash equilibrium and its expectedH-step utility.

Theorem 4.1. Let DT = (AT ,ST ,OT ) be a domain theory, and letp be a POGT-
Golog program relative toDT . Let b be a belief state (over situations), letH ≥ 0 be
a horizon, and letDT |=DoG(p̂, b,H, π, 〈v, pr〉). Then,π is anH-step Nash equilib-
rium ofp in b, andutility(vi, pr i) is its expectedH-step utility to agenti∈ I.

The next theorem shows that, given any horizonH ≥ 0, every POSG can be en-
coded as a programp in POGTGolog, such thatDoG computes one of itsH-step Nash
equilibria and its expectedH-step reward.

Theorem 4.2. LetG= (I, Z, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) be a POSG, letH ≥ 0 be a
horizon, and letb0 be a belief state ofG. Then, there exists a domain theoryDT =
(AT ,ST ,OT ), and a set of POGTGolog programs{p̂h |h∈{0, . . . ,H}} relative to
DT such thatδ=(δi)i∈I is anH-step Nash equilibrium forG, where every(δi(b,
h))i∈I =(πi)i∈I is given byDT |=DoG(p̂h, Bb, h+1, ‖i∈Iπi ;π′, 〈v, pr〉), for every
belief stateb reachable fromb0 and everyh∈{0, . . . ,H}, whereBb is the belief state
over situations associated with the belief stateb ofG. Furthermore, the expectedH-step
rewardGi(H, b, δ) to agenti∈ I is given byutility(vi, pri), whereDT |=DoG(p̂H ,
Bb,H+1, π, 〈v, pr〉), for every belief stateb reachable fromb0.

5 Summary and Outlook

We have presented the agent programming language POGTGolog, which combines ex-
plicit agent programming in Golog with game-theoretic multi-agent planning in POSGs,
and which allows for modeling one team of cooperative agentsunder partial observabil-
ity, where the agents may have different initial belief states and not necessarily the same
rewards. It allows for specifying a partial control programin a high-level logical lan-
guage, which is then completed by an interpreter in an optimal way. To this end, we
have defined a formal semantics of POGTGolog programs in terms of Nash equilibria,
and specified a POGTGolog interpreter that computes one of these Nash equilibria. We
have illustrated the usefulness of this approach along a rugby scenario.

An interesting topic of future research is to generalize POGTGolog to the case in
which we can give up the assumption that every agent knows theinitial local belief
states of all the other agents, their locally executed actions, and their local observations.



This may, for example, be achieved by explicit communication between the agents or
by independence assumptions between the local actions and observations of different
agents. A further direction of future research is to generalize POGTGolog to the case
of two competing teams of cooperative agents under partially observability.
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