
Game-Theoretic Reasoning about Actions in
Nonmonotonic Causal Theories

Alberto Finzi1,2 and Thomas Lukasiewicz1,2

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{finzi,lukasiewicz}@kr.tuwien.ac.at
2 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Rome, Italy
{finzi,lukasiewicz}@dis.uniroma1.it

Abstract. We present the action language GC+ for reasoning about actions
in multi-agent systems under probabilistic uncertainty and partial observability,
which is an extension of the action language C+ that is inspired by partially ob-
servable stochastic games (POSGs). We provide a finite-horizon value iteration
for this framework and show that it characterizes finite-horizon Nash equilibria.
We also describe how the framework can be implemented on top of nonmono-
tonic causal theories. We then present acyclic action descriptions in GC+ as a
special case where transitions are computable in polynomial time. We also give
an example that shows the usefulness of our approach in practice.

1 Introduction

There are several important problems that we have to face in reasoning about actions
for mobile agents in real-world environments. First and foremost, we have to deal with
uncertainty, both about the initial situation of the agent’s world and about the results
of the actions taken by the agent (due to noisy effectors and/or sensors). Second, a
closely related problem is that the properties of real-world environments are in general
not fully observable (due to noisy and inaccurate sensors, or because some relevant
parts of the environment simply cannot be sensed), and thus we also have to deal with
partial observability. One way of adding uncertainty and partial observability to reason-
ing about actions is based on qualitative models in which all possible alternatives are
equally taken into consideration. Another way is based on quantitative models where
we have a probability distribution on the set of possible alternatives, and thus can nu-
merically distinguish between the possible alternatives.

Well-known first-order formalisms for reasoning about actions such as the situation
calculus [24] easily allow for expressing qualitative uncertainty about the effects of ac-
tions and the initial situation of the world through disjunctive knowledge. Furthermore,
there are generalizations of the action language A [12] that allow for qualitative uncer-
tainty in the form of nondeterministic actions. An important recent formalism in this
family is the action language C+ [13], which is based on the theory of nonmonotonic
causal reasoning presented in [18], and has evolved from the action language C. In

addition to allowing for conditional and nondeterministic effects of actions, C+ also
supports concurrent actions as well as indirect effects and preconditions of actions
through static causal laws. Closely related to it is the recent planning language K [7].

There are a number of formalisms for probabilistic reasoning about actions. In par-
ticular, Bacchus et al. [1] propose a probabilistic generalization of the situation calculus,
which is based on first-order logics of probability, and which allows to reason about an
agent’s probabilistic degrees of belief and how these beliefs change when actions are
executed. Poole’s independent choice logic [22] is based on acyclic logic programs un-
der different “choices”. Each choice along with the acyclic logic program produces a
first-order model. By placing a probability distribution over the different choices, we
then obtain a distribution over the set of first-order models. Boutilier et al. [5] introduce
and explore an approach to first-order (fully observable) Markov decision processes
(MDPs) [23] that are formulated in a probabilistic generalization of the situation cal-
culus. A companion paper [6] presents a generalization of Golog, called DTGolog,
that combines agent programming in Golog with decision-theoretic planning in MDPs.
Probabilistic extensions of the action language A and its most recent variant C+ have
especially been proposed by Baral et al. [2] and Eiter and Lukasiewicz [8].

Many of the above logical formalisms for reasoning about actions under proba-
bilistic uncertainty take inspiration from decision-theoretic planning in fully observ-
able Markov decision processes (MDPs) [23] and the more general partially observ-
able Markov decision processes (POMDPs) [16]. Such logical formalisms for reasoning
about actions that are inspired by decision-theoretic planning are also appealing from
the perspective of decision-theoretic planning, since they allow for [11,14] (i) com-
pactly representing MDPs and POMDPs without explicitly referring to atomic states
and state transitions, (ii) exploiting such compact representations for efficiently solving
large-scale problems, and (iii) nice properties such as modularity (parts of the specifi-
cation can be easily added, removed, or modified) and elaboration tolerance (solutions
can be easily reused for similar problems with few or no additional effort).

The above generalizations of A and C+ in [2,8] assume that the model of the world
consists of a single agent that we want to control and the environment summarized in
“nature”. In realistic applications, however, we often encounter multiple agents, which
may compete or cooperate with each other. Here, the optimal actions of one agent gen-
erally depend on the actions of all the other agents. In particular, there is a bidirectional
dependence between the actions of two agents, which generally makes it inappropriate
to model enemies and friends of the controlled agent simply as a part of “nature”.

There are generalizations of MDPs and POMDPs to multi-agent systems with coop-
erative agents, called multi-agent MDPs [4] and decentralized POMDPs [3,20], respec-
tively. Similarly, there are also generalizations of MDPs and POMDPs to multi-agent
systems with competing (that is, not necessarily cooperative) agents, called stochas-
tic games [21] (or Markov games [25,17]) and partially observable stochastic games
(POSGs) [15,9], respectively. Multi-agent MDPs (resp., decentralized POMDPs) and
stochastic games (resp., POSGs) are similar to MDPs (resp., POMDPs), except that ac-
tions (and decisions) are distributed among multiple agents, where the optimal actions
of each agent may depend on the actions of all the other agents. Stochastic games (resp.,
POSGs) generalize both normal form games [26] and MDPs (resp., POMDPs).

In this paper, we present the language GC+ for reasoning about actions in multi-
agent systems under probabilistic uncertainty and partial observability, which is an ex-
tension of the language C+ that takes inspirations from partially observable stochastic
games (POSGs) [15]. The main contributions of this paper are as follows:

– We present the action language GC+ for reasoning about actions in multi-agent
systems under probabilistic uncertainty and partial observability, which is an ex-
tension of both the action language C+ and POSGs. We consider the very general
case in which the agents may have different rewards, and thus may be competitive.
Here, we assume that planning and control are centralized as follows. All agents
transmit their local belief states and/or observations to a central agent, which then
computes and returns the optimal local action for each agent.

– Under the above assumption, the high worst-case complexity of POSGs (NEXP-
completeness for the special case of decentralized POMDPs [3]) is avoided, since
the POSG semantics of GC+ can be translated into a belief state stochastic game
semantics. We use the latter to define a finite-horizon value iteration for GC+, and
show that it characterizes finite-horizon Nash equilibria.

– We show that the GC+ framework can be implemented on top of reasoning in
nonmonotonic causal theories. We present acyclic action descriptions in GC+ as a
special case where transitions are computable in polynomial time. We also provide
an example that shows the usefulness of our approach in practice.

Note that further technical details are given in the extended paper [10].

2 Preliminaries

In this section, we recall the basic concepts of the action language C+, normal form
games, and partially observable stochastic games.

2.1 The Action Language C+

We first recall the main concepts of the action language C+; see especially [13] for
further details, motivation, and background.

Syntax. Properties of the world are represented by rigid variables, simple fluents, and
statically determined fluents, while actions are expressed by action variables. The values
of rigid variables do not change when actions are performed, while the ones of simple
(resp., statically determined) fluents may directly (resp., indirectly) change through ac-
tions. The knowledge about the latter is encoded through dynamic (resp., static) causal
laws over formulas, which are Boolean combinations of atomic assignments.

Formally, we thus assume a finite set V of variables, which are divided into rigid
variables, simple fluents, statically determined fluents, and action variables. Every vari-
able X ∈V may take on values from a nonempty finite domain D(X), where ev-
ery action variable has the Boolean domain {⊥,>}. We define formulas inductively
as follows. False and true, denoted ⊥ and >, respectively, are formulas. If X ∈V
and x∈D(X), then X =x is a formula (called atom). If φ and ψ are formulas, then

also ¬φ and (φ∧ψ). A literal is an atomX =x or a negated atom ¬X =x (abbreviated
as X 6=x). We often abbreviate X => (resp., X =⊥) as X (resp., ¬X).

Static causal laws express static knowledge about fluents and rigid variables. They
are expressions of the form

caused ψ if φ , (1)

where ψ and φ are formulas such that either (a) every variable in ψ is a fluent, and no
variable in φ is an action variable, or (b) every variable in ψ and φ is rigid. Informally,
(1) encodes that every state of the world that satisfies φ should also satisfy ψ. If φ=>,
then (1) is abbreviated by caused ψ. Dynamic causal laws express how simple fluents
change when actions are performed. They have the form

caused ψ if φ after θ , (2)

where ψ, φ, and θ are formulas such that every variable in ψ is a simple fluent, and no
variable in φ is an action variable. Informally, (2) encodes that every next state of the
world satisfying φ should also satisfy ψ, if the current state and the executed action sat-
isfy θ. If φ=>, then (2) is abbreviated by caused φ after θ. If also θ= a1∧· · ·∧ak ∧ δ,
where every ai is an assignment of > to an action variable, then (2) is abbreviated
by a1, . . . , ak causes ψ if δ. Informally, if the current state of the world satisfies δ, then
the next state after concurrently executing a1, . . . , ak satisfies ψ. If ψ=⊥ and φ=>,
then (2) is an execution denial and abbreviated by

nonexecutable θ . (3)

Informally, if a state s and an action α satisfy θ, then α is not executable in s. If θ =
a1 ∧ · · · ∧ ak ∧ δ, then (3) is abbreviated by nonexecutable a1, . . . , ak if δ. Informally,
a1, . . . , ak cannot be concurrently executed in a state satisfying δ. The expression in-
ertial X , where X ∈V , abbreviates the set of all laws (2) such that φ=ψ= θ=X=x
and x∈D(X). Informally, the value of X remains unchanged when actions are exe-
cuted, as long as this does not produce any inconsistencies.

A causal law (or axiom) is a static or dynamic causal law. An action description D
is a finite set of causal laws. An initial database φ is a formula without action variables.

Semantics. An action description D represents a system of transitions from states to
sets of possible successor states, while an initial database φ encodes a set of possible
initial states. We now define states and actions, the executability of actions in states, and
the above transitions through actions.

An interpretation I of a set of variables V ′ ⊆V assigns to every X ∈V ′ an element
of D(X). We say I satisfies an atom Y = y, where Y ∈V ′, denoted I |=Y = y, iff
I(Y)= y. Satisfaction is extended to all formulas over V ′ as usual.

Let s be an interpretation of all rigid variables and fluents in V . Let Ds be the set of
all ψ such that either (a) s |=φ for some caused ψ if φ inD, or (b) s |=ψ and ψ=X=x
for some simple fluent X ∈X and x∈D(X). A state s of D is an interpretation s
as above that is a unique model of Ds. An action α is an interpretation of all action
variables in V . The action α is executable in a state s, denoted Poss(α, s), iff s∪α
satisfies ¬θ for every nonexecutable θ in D.

An action transition is a triple (s, α, s′), where s and s′ are states of D such that
s(X)= s′(X) for every rigid variable X ∈V , and α is an action that is executable in s.
A formula ψ is caused in (s, α, s′) iff either (a) s′ |=φ for some caused ψ if φ in D,

or (b) s∪α |= θ and s′ |=φ for some caused ψ if φ after θ in D. The triple (s, α, s′)
is causally explained iff s′ is the only interpretation that satisfies all formulas caused
in (s, α, s′). For every state s and action α, define Φ(s, α) as the set of all states s′ such
that (s, α, s′) is causally explained. Note that Φ(s, α)= ∅ if no such (s, α, s′) exists, in
particular, if α is not executable in s. We say that D is consistent iff Φ(s, α) 6= ∅ for all
actions α and states s such that α is executable in s. Informally, Φ(s, α) is the set of all
possible successor states after executing α in s.

2.2 Normal Form Games

Normal form games from classical game theory [26] describe the possible actions
of n> 2 agents and the rewards (or utilities) that the agents receive when they simul-
taneously execute one action each. For example, in two-finger Morra, two players E
and O simultaneously show one or two fingers. Let f be the total numbers of fingers
shown. If f is odd, then O gets f dollars from E, and if f is even, then E gets f dollars
from O. Formally, a normal form game G= (I, (Ai)i∈I , (Ri)i∈I) consists of a set of
agents I = {1, . . . , n}, n> 2, a nonempty finite set of actions Ai for each agent i∈ I ,
and a reward (or utility) functionRi : A→R for each agent i∈ I , which associates with
every joint action a∈A= ×i∈I Ai a reward (or utility) Ri(a) to agent i.

A pure (resp., mixed) strategy specifies which action an agent should execute (resp.,
which actions an agent should execute with which probability). Formally, a pure strat-
egy for agent i∈ I is any action ai ∈Ai. A pure strategy profile is any joint action a∈A.
If the agents play a, then the reward to agent i∈ I is Ri(a). A mixed strategy for agent
i∈ I is any probability distribution πi over Ai. A mixed strategy profile π= (πi)i∈I

consists of a mixed strategy πi for each agent i∈ I . If the agents play π, then the ex-
pected reward to agent i∈ I , denoted E[Ri(a) |π] (or Ri(π)), is defined as

P

a=(aj)j∈I∈A
Ri(a) ·Πj∈Iπj(aj) .

We are especially interested in mixed strategy profiles π, called Nash equilibria,
where no agent has the incentive to deviate from its part, once the other agents play
their parts. A mixed strategy profile π= (πi)i∈I is a Nash equilibrium for G iff for ev-
ery agent i∈ I , it holds that Ri(π

′

i ◦π−i)6Ri(π) for every mixed strategy π′

i, where
π−i (resp., π′

i ◦π−i) is obtained from π by removing πi (resp., replacing πi by π′

i).
Every normal form game G has at least one Nash equilibrium among its mixed (but
not necessarily pure) strategy profiles, and many have multiple Nash equilibria. A Nash
selection function f associates with every normal form game G a unique Nash equilib-
rium f(G). The expected reward to agent i∈ I under f(G) is denoted by vi

f (G).

2.3 Partially Observable Stochastic Games

We will use POSGs [15] to define the semantics of the action language GC+, where we
assume that planning and control are centralized as follows. There exists a central agent,
which (i) knows the local belief state of every other agent, (ii) computes and sends them
their optimal local actions, and (iii) thereafter receives their local observations. Hence,
we assume a transmission of local belief states and local observations to a central agent
from all other agents, and of the optimal local actions in the reverse direction. Using

this assumption, we can translate POSGs into belief state stochastic games, and then
perform a finite-horizon value iteration.

Roughly, a POSG consists of a nonempty finite set of states S, a normal form game
for each state s∈S, a set of joint observations of the agents O, and a transition function
that associates with every state s∈S and joint action of the agents a∈A a probability
distribution on all combinations of next states s′ ∈S and joint observations o∈O. For-
mally, a partially observable stochastic game (POSG) G= (I, S, (Ai)i∈I , (Oi)i∈I , P,
(Ri)i∈I) consists of a set of agents I = {1, . . . , n}, n> 2, a nonempty finite set of
states S, two nonempty finite sets of actions Ai and observations Oi for each agent
i∈ I , a transition function P : S×A→ PD(S×O), which associates with every state
s∈S and joint action a∈A=×i∈IAi a probability distribution over S×O, where
O=×i∈IOi, and a reward function Ri : S×A→R for each agent i∈ I , which asso-
ciates with every state s∈S and joint action a∈A a reward Ri(s, a) to agent i.

Since the actual state s∈S of the POSG G is not fully observable, every agent i∈ I
has a belief state bi that associates with every state s∈S the belief of agent i about
s being the actual state. Formally, a belief state b= (bi)i∈I of G consists of a proba-
bility function bi over S for each agent i∈ I . The POSG G then defines probabilistic
transitions between belief states as follows. The new belief state ba,o =(ba,o

i)i∈I after
executing the joint action a∈A in b= (bi)i∈I and jointly observing o∈O is given by:

ba,o
i (s′) =

P

s∈S P (s′, o | s, a) · bi(s) / Pb(b
a,o
i | bi, a), where

Pb(b
a,o
i | bi, a) =

P

s′∈S

P

s∈S
P (s′, o | s, a) · bi(s)

is the probability of observing o after executing a in bi. These probabilistic transitions
define the fully observable stochastic game over belief states G′ = (I,B, (Ai)i∈I , Pb,
(Ri)i∈I), where B is the set of all belief states of G.

We next define finite-horizon pure and mixed policies and their rewards and ex-
pected rewards, respectively, using the above fully observable stochastic game over be-
lief states. Assuming a finite horizon H > 0, a pure (resp., mixed) time-dependent pol-
icy associates with every belief state b of G and number of steps to go h∈{0, . . . , H}
a pure (resp., mixed) normal form game strategy. Formally, a pure policy α assigns to
each belief state b and number of steps to go h∈{0, . . . , H} a joint action from A. A
mixed policy is of the form π= (πi)i∈I , where every πi assigns to each belief state b
and number of steps to go h∈{0, . . . , H} a probability function πi[b, h] over Ai. The
H-step reward (resp., expected H-step reward) for pure (resp., mixed) policies can now
be defined as usual. In particular, the expected H-step reward to agent i∈ I under a
start belief state b=(bi)i∈I and the mixed policy π, denoted Gi(H, b, π), is defined as

8

>

<

>

:

P

a∈A
(Πj∈Iπj [b, 0](aj))·

P

s∈S
bi(s)Ri(s, a) if H = 0;

P

a∈A(Πj∈Iπj [b,H](aj))·(
P

s∈S bi(s)Ri(s, a)+
P

o∈O P (ba,o
i |bi, a) ·Gi(H−1, ba,o, π)) otherwise.

The notion of a finite-horizon Nash equilibrium for a POSG G is then defined as
follows. A policy π is a Nash equilibrium of G under a belief state b iff for every agent
i∈ I , it holds that Gi(H, b, π

′

i ◦π−i)6Gi(H, b, πi ◦π−i) for all policies π′

i. A policy
π is a Nash equilibrium of G iff it is a Nash equilibrium of G under every belief state b.

Nash equilibria of G can be characterized by finite-horizon value iteration from
local Nash equilibria of normal form games as follows. Let f be an arbitrary Nash

selection function for normal form games with the action sets (Ai)i∈I . For every belief
state b=(bi)i∈I and number of steps to go h ∈ {0, . . . , H}, let G[b, h] = (I, (Ai)i∈I ,
(Qi[b, h])i∈I), where Qi[b, h](a) is defined as follows (for all a∈A and i∈ I):

(

P

s∈S bi(s)Ri(s, a) if h= 0;
P

s∈S
bi(s)Ri(s, a) +

P

o∈O
P (ba,o

i |bi, a) · v
i
f (G[ba,o, h−1]) otherwise.

Let the mixed policy π=(πi)i∈I for the POSG G be defined by πi(b, h)= fi(G[b, h])
for all i∈ I , belief states b, and number of steps to go h∈{0, . . . , H}. Then, π is a Nash
equilibrium of G, and Gi(H, b, π)= vi

f (G[b,H]) for every i∈ I and belief state b.

3 The Action Language GC+

In this section, we define the action language GC+, which generalizes both the action
language C+ and POSGs.

Syntax. We extend C+ by formulas that express probabilistic transitions and agent
rewards as in POSGs as well as formulas that encode the initial belief state of the agents.

We assume a set of n> 2 agents I = {1, . . . , n}. Each agent i∈ I has (i) a nonempty
set of action variables AV i, where AV 1, . . . ,AV n partitions the set of all action vari-
ables AV ⊆V , and (ii) a nonempty set of possible observations Oi. Every o∈O =
×i∈IOi is a joint observation. A probabilistic dynamic causal law is of the form

caused [(ψ1 if φ1; o1) : p1, . . . , (ψk if φk; ok) : pk] after δ , (4)

where every caused ψj if φj after δ with j ∈{1, . . . , k} is a dynamic causal law, every
oj is a joint observation, p1, . . . , pk > 0, p1+ · · ·+pk =1, and k> 1. Informally, if
an action α is executed in a state s, where s∪α |= δ, then with the probability pj the
successor states satisfy caused ψj if φj and the agents observe oj . We omit “if φj”
in (4), when φj =>. A reward law for agent i∈ I is of the form

reward i : r after δ , (5)

where r is a real. Informally, if an action α is executed in a state s, where s∪α |= δ, then
agent i receives the reward r. A probabilistic initial database law for i∈ I is of form

i : [ψ1 : p1, . . . , ψk : pk] , (6)

where each ψj with j ∈{1, . . . , k} is a formula without action variables, p1, . . . , pk > 0,
p1+ · · ·+pk =1, and k> 1. Informally, the initial belief of agent i is that the set of
states satisfying ψj holds with the probability pj .

A probabilistic action description P is a finite set of causal, probabilistic dynamic
causal, and reward laws. A probabilistic initial database Ψ =(Ψi)i∈I consists of a prob-
abilistic initial database law Ψi for every agent i∈ I .

Semantics. A probabilistic action description P represents a transition system, where
every state s and action α executable in s is associated with a reward to every agent and
a probability distribution over possible successor states. A probabilistic initial database
Ψ =(Ψi)i∈I encodes each agent’s probabilistic belief about the possible initial states.

The set of all states and actions of P and the executability of an action in a state are
defined as in Section 2.1. An action for agent i∈ I is any interpretation over AV i. The
set of all actions for agent i is denoted byAi. We next define the probabilistic transitions
and the rewards encoded in P .

Let s be a state, and let α be an action executable in s. Suppose that P contains
exactly one law F of the form (4) such that s∪α |= δ. For every j ∈{1, . . . , k}, let
Pj be obtained from P by replacing F by caused ψj if φj after δ. Let Φj(s, α)
be the set of all states s′ such that (s, α, s′) is causally explained relative to Pj . For
each state s′ and o∈O, let Pj(s

′, o|s, α)= pj / |Φj(s, α)|, if s′ ∈Φj(s, α) and o= oj ,
and Pj(s

′, o|s, α)= 0, otherwise. Informally, pj is uniformly distributed among all
s′ ∈Φj(s, α). For each state s′ and o∈O, the probability of moving to the successor
state s′ along with jointly observing o, when executing α in s, denoted P (s′, o|s, α), is
defined as

∑k

j=1
Pj(s

′, o|s, α).
Let s be a state, and let α be an action executable in s. Suppose for every agent i∈ I ,

exactly one law reward i : r after δ with s∪α |= δ belongs to P . Then, the reward to i
when executing α in s, denoted Ri(s, α), is defined as r.

We next define the initial probabilistic belief of every agent i∈ I , which is encoded
in the law Ψi of the form (6). For each j ∈{1, . . . , k}, let Φj be the set of all states
satisfying ψj . For each state s, let Pj(s)= pj / |Φj |, if s∈Φj , and Pj(s)= 0, otherwise.
Agent i’s belief about s being the initial state, denoted b0i (s), is defined as

∑k

j=1
Pj(s).

In the sequel, we implicitly assume that all P and Ψ are consistent: We say that P
is consistent iff for each state s and action α executable in s, (i) there is exactly one
law (4) in P with s∪α |= δ, (ii) each Φj(s, α) as above is nonempty, and (iii) for every
agent i∈ I , there is exactly one law reward i : r after δ in P with s∪α |= δ. We say
that Ψ is consistent iff, for every i∈ I , each Φj as above is nonempty.

Example 3.1 (Two Robots). We consider the scenario shown in Fig. 1: There are two
robots a1 and a2 in a room looking for an object o1, and trying to bring it out through
the only door d1. Both robots can pick up the object, and also pass it to another robot.
A pass attempt is only possible if the two robots are facing in adjacent positions. If the
receiving robot is not expecting the object, then it falls down. If the two robots are in
the same location, then they both cannot perform any pick up and door crossing action.
We assume that the reward for the robot bringing out the object is a bit higher. Hence,
there is an additional individual payoff for the robot able to accomplish the goal.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

a1a1

a2 a2

o1 o1

o1
??

o1

Fig. 1. Initial belief states of a2 and a1, respectively.

Let L= {l1,1, . . . , l2,3, d1,nil} be the set of possible locations of the robots and
the object, where li,j encodes the field (i, j), and d1 represents the door. For loca-
tions L and L′, let close(L,L′) be true iff L and L′ are adjacent. We assume the sim-
ple fluents at(X), where X ∈{a1, a2, o1}, with the domain L, as well as holds(R),
where R∈{a1, a2}, with the domain {o1,nil}. Let the action variables be given by
goTo(R,L), pickUp(R), passTo(R,R′), receive(R), whereR,R′ ∈{a1, a2},R 6=R′,
and L∈L. Each robot’s set of observations is {obs(holds), obs(notHolds)}. Infor-
mally, each robot can only check if it is carrying something or not after a pick up. We
assume the following static causal law:

caused at(O) = nil if holds(R) = O .

We introduce the following dynamic causal laws for the action variables passTo(R,R′),
receive(R), and goTo(R,L) (they abbreviate probabilistic causal laws (4) with k=1):

caused holds(R) = nil after passTo(R,R′) with R 6= R′ ,
caused holds(R) = O after holds(R′) = O ∧ passTo(R′, R)∧

receive(R) with R 6= R′ ,
caused at(O) = L after holds(R) = O ∧ passTo(R,R′)∧

¬receive(R′) ∧ at(R,L) with R 6= R′ ,
caused at(R) = L after goTo(R,L) .

Here, if R fails to pass the object O, the latter remains in the location of R. For
pickUp(R), we introduce the following probabilistic causal law, assuming pickUp(R)
can fail, and obs(notHolds) can give incorrect positive results:

caused [(holds(R) = O ; obs(holds)) : 0.7,
(holds(R) = O ; obs(notHolds)) : 0.1,
(holds(R) = nil ; obs(notHolds)) : 0.2]

after pickUp(R) ∧ at(R) = L ∧ at(O) = L ,

We assume the following execution denials:

nonexecutable pickUp(R) ∧ holds(R) 6= nil ,
nonexecutable pickUp(R) ∧ at(R) = L ∧ at(o1) 6= L ,
nonexecutable pickUp(R) ∧ at(R′) = L ∧ at(R) = L ,
nonexecutable goTo(R,L) ∧ at(R) = L′ ∧ ¬close(L,L′) ,
nonexecutable goTo(R, d1) ∧ at(R) = L ∧ at(R′) = L ,
nonexecutable passTo(R,R′) ∧ at(R)=L ∧ at(R′)=L′ ∧ ¬close(L,L′) .

where R′ 6=R and L′ 6=L. Furthermore, every robot can execute only one action at a
time, that is, for any two distinct actions α and α′ of either robot a1 or a2:

nonexecutable α ∧ α′ .

For every simple fluent X , we assume the inertial law inertial X . Finally, the reward
function is defined as follows:

reward ai : 100 after αi ∧ holds(ai, O) ,
reward ai : 90 after αi ∧ holds(aj , O) with i 6= j ,
reward ai : 10 after α ∧ holds(ai, O) with α 6= αi ,
reward ai : 0 after α ∧

V

i=1,2 ¬holds(ai, O) with α 6= αi.

where αi = goTo(ai, d1). The robot achieving the goal receives a high reward, the other
one a bit less. If a robot moves carrying something, it also receives a small payoff.

4 Finite-Horizon Value Iteration

In this section, we define finite-horizon Nash equilibria for probabilistic action descrip-
tions P in GC+ and provide a finite-horizon value iteration for computing them.

Nash Equilibria. We first define belief states and probabilistic transitions between
them. A belief state of P is of the form b= (bi)i∈I , where every bi is a probability
function over the set of states of P . An action α is executable in b= (bi)i∈I iff for
every i∈ I the action α is executable in some state s with bi(s)> 0. Then, the new
belief state bα,o = (bα,o

i)i∈I after executing α in b and observing o∈O is given by:

bα,o
i (s′)=

P

s∈S,Poss(α,s) P (s′, o|s, α)·bi(s)/P (bα,o
i |bi, α), where

P (bα,o
i | bi, α) =

P

s′∈S

P

s∈S, Poss(α,s) P (s′, o | s, α) · bi(s)

is the probability of observing o after executing α in bi.
A mixed policy is of the form π=(πi)i∈ I , where each πi assigns to every belief

state b and number of steps to go h∈{0, . . . , H} a probability function over Ai. The
expected H-step reward to i∈ I under an initial belief state b=(bi)i∈I and the mixed
policy π, denoted Gi(H, b, π), is defined as

8

>

<

>

:

P

α
(Πj∈Iπj [b, 0](αj))·

P

s∈S,Poss(α,s) bi(s)Ri(s, α) if H = 0;
P

α(Πj∈Iπj [b,H](αj))·(
P

s∈S,Poss(α,s) bi(s)Ri(s, α)+
P

o∈O P (bα,o
i |bi, α) ·Gi(H−1, bα,o, π)) otherwise.

A policy π is a Nash equilibrium ofG iff for each agent i∈ I and each belief state b,
it holds that Gi(H, b, π

′

i ◦π−i) 6 Gi(H, b, πi ◦π−i) for all π′

i. We are especially inter-
ested in partial Nash equilibria, which are only defined for an initial belief state and all
future belief states within a fixed horizon.

Algorithm. We characterize Nash equilibria of P by finite-horizon value iteration
from local Nash equilibria of normal form games. We assume an arbitrary Nash se-
lection function f for normal form games with action set (Ai)i∈I . For every belief state
b=(bi)i∈I and number of steps to go h∈{0, . . . , H}, we consider the normal form
game G[b, h] = (I, (Ai)i∈I , (Qi[b, h])i∈I), where Qi[b, h](α) is defined as follows (for
all actions α and agents i∈ I):

(

P

s∈S, Poss(α,s) bi(s)Ri(s, α) if h= 0;
P

s∈S, Poss(α,s) bi(s)Ri(s, α) +
P

o∈O
P (bα,o

i |bi, α) · vi
f (G[bα,o, h−1]) otherwise.

The next result shows that the above finite-horizon value iteration computes a Nash
equilibrium for consistent probabilistic action descriptions P in GC+.

Theorem 4.1. Let P be a consistent probabilistic action description in GC+, and
π= (πi)i∈ I be defined by πi(b, h)= fi(G[b, h]) for all agents i∈ I , belief states b,
and number of steps to go h∈{0, . . . , H}. Then, π is a Nash equilibrium of G, and
Gi(H, b, π) = vi

f (G[b,H]) for all i∈ I and b.

The following theorem shows that every POSG can be encoded as a consistent prob-
abilistic action description in GC+.

Theorem 4.2. LetG= (I, S, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) be a POSG. Then, there ex-
ists a consistent probabilistic action description D in GC+ that encodes G.

Example 4.1 (Two Robots cont’d). Suppose the initial belief of robot a1 (resp., a2)
is as in Fig. 1, right (resp., left) side. In particular, a1 initially believes that o1 is at
l1,2 or l2,2, while a2 initially believes that o1 is at l2,3 or l2,2. Given the three possible
states s1,2, s2,2, and s2,3 such that si,j |= at(o1)=li,j , let the probabilities be given by
b1(s1,2)= 0.2 and b1(s2,2)= 0.8 for a1, and by b2(s2,3)= 0.4 and b2(s2,2)= 0.6 for a2.

How should the two robots act in such an initial situation? We now apply our
finite-horizon value iteration algorithm to compute a partial Nash equilibrium. No-
tice that pickUp(a1, l2,3) and pickUp(a2, l1,2) are not executable in the initial belief
states of a2 and a1, respectively. Hence, pickUp can only be executed in l2,2. In this
case, each agent wants to get to l1,2 first, execute pickUp, and cross the door. Assum-
ing a 3-step horizon, we obtain two pure partial policies αi, one for each agent ai:
(1) at 3 steps to go, αi assigns the action a= goTo(ai, l2,2) to bi, while any exe-
cutable action bj except for goTo(aj , l2,2) is assigned to bj ; (2) at 2 steps to go, ai

executes pickUpi(ai, l2,2) from bai , while aj avoids goTo(aj , l2,2) from bbj ; (3) at 1
step to go, ai performs goTo(ai, d1) in any reached belief state (both after obs(holds)
and obs(notHolds)), while aj can execute any action. Both α1 and α2 represent a
pure partial Nash equilibrium, where the expected 3-step reward of α1 and α2 for the
robot pair (a1, a2) is (70.4, 43.2) and (52.8, 57.6), respectively. Another Nash equi-
librium can be obtained form the previous policies by randomizing the first action se-
lection with π1(b1, a)= 0.55 for a= goTo(a1, l2,2) (Σβπ1(b1, β)= 0.45 with β 6= a),
and π2(b2, a)= 0.56 for a= goTo(a2, l2,2) (Σβπ2(b2, β)= 0.44 with β 6= a). Depend-
ing on the first action execution, the remaining policy is defined as in α1 or α2. In this
case, the expected 3-step reward is G1(3, b1, π)= 30.67 and G2(3, b2, π)= 25.70.

5 Reductions and Special Cases

Computing partial Nash equilibria for a probabilistic action description P and an ini-
tial belief state requires the following computations: (i) computing the set of all states
for P , (ii) deciding whether an action α is executable in a state s, (iii) computing all
probabilistic transitions P (s′, o | s, α), and (iv) computing Nash equilibria of normal
form games. Here, (ii) can be easily done in polynomial time on P , while (iv) can be
done with standard technology from game theory (see especially [19]). Finally, (i) and
(iii) can be reduced to reasoning in causal theories as follows.

Reduction to Causal Theories. We first recall the main concepts of causal theo-
ries [13]. A (causal) rule has the form ψ⇐φ with formulas ψ and φ, called its head
and body, respectively. A causal theory T is a finite set of rules. Let I be an interpre-
tation of the variables in T . The reduct of T relative to I , denoted T I , is defined as
{ψ |ψ⇐φ∈T, I |=φ}. We say I is a model of T iff I is the unique model of T I .

The following result shows that the tasks (i) and (iii) above can be reduced to com-
puting the set of all models of a causal theory. It follows from the original semantics of
C+ based on causal theories [13]. In the case of definite causal laws, where all law heads
ψ in (1) and (2) are literals, the set of all models of the corresponding causal theories
can be computed using the Causal Calculator and answer set programming [13].

Proposition 5.1. Let D be an action description.

(a) Let T be the set of all rules ψ⇐φ such that either (i) caused ψ if φ∈D, or
(ii) φ=ψ=X=x for some simple fluent X∈X and x∈I(X). Then, an interpretation s
of all fluents and rigid variables is a state of D iff it is a model of T .

(b) Let α be an action executable in state s. Let Ts∪α be the set of all ψ⇐φ such that
either (i) caused ψ if φ∈D, or (ii) s∪α |= θ for some caused ψ if φ after θ∈D. Then,
Φ(s, α) is the set of all models s′ of Ts∪α that coincide with s on all rigid variables.

Acyclic Action Descriptions. The action description of Section 3 is acyclic, which
allows for polynomial-time computations, as we now show. A causal theory T is acyclic
relative to W ⊆V iff (i) every rule head is a literal, and (ii) there is a mapping κ from
W to the non-negative integers such that κ(X)>κ(Y) for all X,Y ∈W such that X
(resp., Y) occurs in the head (resp., body) of some rule in T . An action description D is
acyclic iff (i) the set of all rules ψ⇐φ with caused ψ if φ∈D is acyclic relative to all
statically determined fluents and rigid variables, and (ii) for each state s and action α
executable in s, it holds that Ts∪α is acyclic relative to all fluents.

The following result shows that, in the acyclic case, every interpretation of the sim-
ple fluents produces at most one state, which is computable in polynomial time. Simi-
larly, the Φ(s, α)’s contain at most one state, and are computable in polynomial time.

Theorem 5.1. Let D be an acyclic action description. Then: (a) Every interpretation f
of the set of all simple fluents can be extended to at most one state s of D. (b) Deciding
whether such s exists and computing it can be done in polynomial time. (c) If s is
a state and α an action executable in s, then Φ(s, α) is either empty or a singleton,
and it is computable in polynomial time.

6 Summary and Outlook

We have presented the action language GC+ for reasoning about actions in multi-agent
systems under probabilistic uncertainty and partial observability, which is an extension
of the action language C+ that is inspired by partially observable stochastic games
(POSGs). We have provided a finite-horizon value iteration algorithm and shown that
it characterizes finite-horizon Nash equilibria. We have also given a reduction to non-
monotonic causal theories and identified the special case of acyclic action descriptions
in GC+, where transitions are computable in polynomial time.

An interesting topic of future research is to define similar action languages for more
general classes of POSGs and decentralized POMDPs.

Acknowledgments. This work has been supported by the Austrian Science Fund Project
P18146-N04 and a Heisenberg Professorship of the German Research Foundation. We
thank the reviewers for their constructive comments, which helped to improve our work.

References

1. F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors
in the situation calculus. Artif. Intell., 111(1-2):171–208, 1999.

2. C. Baral, N. Tran, and L.-C. Tuan. Reasoning about actions in a probabilistic setting. In
Proceedings AAAI-2002, pp. 507–512, 2002.

3. D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control
of Markov decision processes. In Proceedings UAI-2000, pp. 32–37, 2000.

4. C. Boutilier. Sequential optimality and coordination in multiagent systems. In Proceedings
IJCAI-1999, pp. 478–485, 1999.

5. C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs.
In Proceedings IJCAI-2001, pp. 690–700, 2001.

6. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. In Proceedings AAAI-2000, pp. 355–362, 2000.

7. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning, II: The DLVK system. Artif. Intell., 144(1-2):157–211, 2003.

8. T. Eiter and T. Lukasiewicz. Probabilistic reasoning about actions in nonmonotonic causal
theories. In Proceedings UAI-2003, pp. 192–199, 2003.

9. R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game theoretic control for
robot teams. In Proceedings ICRA-2005, pp. 1175–1181, 2005.

10. A. Finzi and T. Lukasiewicz. Game-theoretic reasoning about actions in nonmonotonic
causal theories. Report Nr. 1843-05-04, Institut für Informationssysteme, TU Wien, 2005.

11. N. H. Gardiol and L. P. Kaelbling. Envelope-based planning in relational MDPs. In Pro-
ceedings NIPS-2003, 2003.

12. M. Gelfond and V. Lifschitz. Representing action and change by logic programs. J. Logic
Program., 17:301–322, 1993.

13. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theo-
ries. Artif. Intell., 153(1-2):49–104, 2004.

14. C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments
in relational MDPs. In Proceedings IJCAI-2003, pp. 1003–1010, 2003.

15. E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially ob-
servable stochastic games. In Proceedings AAAI-2004, pp. 709–715, 2004.

16. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially ob-
servable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

17. M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings ICML-1994, pp. 157–163, 1994.

18. N. McCain and H. Turner. Causal theories of action and change. In Proceedings AAAI-1997,
pp. 460–465, 1997.

19. R. McKelvey and A. McLennan. Computation of equilibria in finite games. In Handbook of
Computational Economics, pp. 87–142. Elsevier, 1996.

20. R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings
IJCAI-2003, pp. 705–711, 2003.

21. G. Owen. Game Theory: Second Edition. Academic Press, 1982.
22. D. Poole. Decision theory, the situation calculus and conditional plans. Electronic Transac-

tions on Artificial Intelligence, 2(1-2):105–158, 1998.
23. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.
24. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, 2001.
25. J. van der Wal. Stochastic Dynamic Programming, volume 139 of Mathematical Centre

Tracts. Morgan Kaufmann, 1981.
26. J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior. Prince-

ton University Press, 1947.

