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Abstract. We present a novel approach to fuzzy dl-programs under the answer
set semantics, which is a tight integration of fuzzy disjunctive programs under
the answer set semantics with fuzzy description logics. From a different perspec-
tive, it is a generalization of tightly integrated disjunctive dl-programs by fuzzy
vagueness in both the description logic and the logic program component. We
show that the new formalism faithfully extends both fuzzy disjunctive programs
and fuzzy description logics, and that under suitable assumptions, reasoning in
the new formalism is decidable. Furthermore, we present a polynomial reduction
of certain fuzzy dl-programs to tightly integrated disjunctive dl-programs. We
also provide a special case of fuzzy dl-programs for which deciding consistency
and query processing have both a polynomial data complexity.

1 Introduction

The Semantic Web [1,6] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and automation of
tasks. The main ideas behind it are to add a machine-readable meaning to Web pages, to
use ontologies for a precise definition of shared terms in Web resources, to use KR tech-
nology for automated reasoning from Web resources, and to apply cooperative agent
technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [29,11], is currently the highest layer
of sufficient maturity. OWL consists of three increasingly expressive sublanguages,
namely, OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially
very expressive description logics with an RDF syntax [11]. As shown in [9], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability
in the description logic SHIF(D) (resp., SHOIN (D)). As a next step in the devel-
opment of the Semantic Web, one aims especially at sophisticated representation and
reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic Web.
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In particular, there is a large body of work on integrating rules and ontologies, which
is a key requirement of the layered architecture of the Semantic Web. Significant re-
search efforts focus on hybrid integrations of rules and ontologies, called description
logic programs (or dl-programs), which are of the form KB =(L,P ), where L is a
description logic knowledge base and P is a finite set of rules involving either queries
to L in a loose integration (see especially [4,5,3]) or concepts and roles from L as unary
resp. binary predicates in a tight integration (see especially [21,22,16]).

Other works explore formalisms for handling uncertainty and vagueness / impreci-
sion in the Semantic Web. In particular, formalisms for dealing with uncertainty and
vagueness in ontologies have been applied in ontology mapping and information re-
trieval. Vagueness and imprecision also abound in multimedia information processing
and retrieval. Moreover, handling vagueness is an important aspect of natural language
interfaces to the Web. There are several recent extensions of description logics, ontology
languages, and dl-programs for the Semantic Web by probabilistic uncertainty and by
fuzzy vagueness. In particular, dl-programs under probabilistic uncertainty and under
fuzzy vagueness have been proposed in [14,13] and [27,28,15], respectively.

In this paper, we continue this line of research. We present tightly integrated fuzzy
description logic programs (or simply fuzzy dl-programs) under the answer set seman-
tics, which are a tight integration of fuzzy disjunctive programs under the answer set
semantics with fuzzy generalizations of SHIF(D) and SHOIN (D). Even though
there has been previous work on fuzzy positive dl-programs [27,28] and on loosely in-
tegrated fuzzy normal dl-programs [15], to our knowledge, this is the first approach to
tightly integrated fuzzy disjunctive dl-programs (with default negation in rule bodies).
The main contributions of this paper can be summarized as follows:

– We present a novel approach to fuzzy dl-programs, which is a tight integration of
fuzzy disjunctive programs under the answer set semantics with fuzzy description
logics. It is a generalization of the tightly integrated disjunctive dl-programs in [16]
by fuzzy vagueness in both the description logic and the logic program component.

– We show that the new fuzzy dl-programs have nice semantic features. In particular,
all their answer sets are also minimal models, and the cautious answer set semantics
faithfully extends both fuzzy disjunctive programs and fuzzy description logics.
Furthermore, the new approach also does not need the unique name assumption.

– As an important property, in the large class of fuzzy dl-programs that are defined
over a finite number of truth values, the problems of deciding consistency, cau-
tious consequence, and brave consequence are all decidable.

– In the extended report [17], we also present a polynomial reduction for certain
fuzzy dl-programs to the tightly integrated disjunctive dl-programs in [16]. Further-
more, we delineate a special case of fuzzy dl-programs where deciding consistency
and query processing have both a polynomial data complexity.

The rest of this paper is organized as follows. Section 2 recalls combination strategies
and fuzzy description logics. Section 3 introduces the syntax of fuzzy dl-programs and
defines their answer set semantics. In Section 4, we analyze some semantic properties
of fuzzy dl-programs under the answer set semantics. Section 5 summarizes our main
results and gives an outlook on future research. Note that further results and techni-
cal details are given in the extended report [17].



Table 1. Combination strategies of various fuzzy logics.

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)

a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a B b min(1− a + b, 1)

(
1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

	 a 1− a

(
1 if a = 0

0 otherwise

(
1 if a = 0

0 otherwise
1− a

2 Preliminaries

In this section, we illustrate the notions of combination strategies and fuzzy description
logics through some examples; more details are given in the extended report [17].

Combination Strategies. Rather than being restricted to an ordinary binary truth value
among false and true, vague propositions may also have a truth value strictly between
false and true. In the sequel, we use the unit interval [0, 1] as the set of all possi-
ble truth values, where 0 and 1 represent the ordinary binary truth values false and
true, respectively. For example, the vague proposition “John is a tall man” may be
more or less true, and it is thus associated with a truth value in [0, 1], depending on the
body height of John.

In order to combine and modify the truth values in [0, 1], we assume combination
strategies, namely, conjunction, disjunction, implication, and negation strategies, de-
noted⊗,⊕, B, and	, respectively, which are functions⊗,⊕, B : [0, 1]× [0, 1]→ [0, 1]
and	 : [0, 1]→ [0, 1] that generalize the ordinary Boolean operators ∧, ∨,→, and ¬, re-
spectively, to the set of truth values [0, 1]. As usual, we assume that combination strate-
gies have some natural algebraic properties [17]. Note that conjunction and disjunction
strategies are also called triangular norms and triangular co-norms [8], respectively.

Example 2.1. The combination strategies of various fuzzy logics are shown in Table 1.

Fuzzy Description Logics. We now illustrate fuzzy SHIF(D) and fuzzy SHOIN (D)
[25,26] (see also [23]) through an example. There also exists an implementation of
fuzzy SHIF(D) (the fuzzyDL system; see http://gaia.isti.cnr.it/∼straccia). Intuitive-
ly, description logics model a domain of interest in terms of concepts and roles, which
represent classes of individuals and binary relations between classes of individuals,
respectively. A description logic knowledge base encodes in particular subset relation-
ships between classes of individuals, subset relationships between binary relations be-
tween classes, the membership of individuals to classes, and the membership of pairs
of individuals to binary relations between classes. In fuzzy description logics, these
relationships and memberships then have a degree of truth in [0, 1].



(a) (b) (c) (d)

Fig. 1. (a) Tra-function, (b) Tri -function, (c) L-function, and (d) R-function.

Example 2.2 (Shopping Agent). The following axioms are an excerpt of the description
logic knowledge base L that conceptualizes a car selling web site:

Cars t Trucks tVans t SUVs v Vehicles ; (1)

PassengerCars t LuxuryCars v Cars ; (2)

CompactCars tMidSizeCars t SportyCars v PassengerCars ; (3)

Cars v (∃hasReview .Integer) u (∃hasInvoice.Integer)

u (∃hasResellValue.Integer) u (∃hasMaxSpeed .Integer)

u (∃hasHorsePower .Integer) u . . . ; (4)

MazdaMX5Miata : SportyCar u (∃hasInvoice.18883)

u (∃hasHorsePower .166) u . . . ; (5)

MitsubishiEclipseSpyder : SportyCar u (∃hasInvoice.24029)

u (∃hasHorsePower .162) u . . . . (6)

Eqs. 1–3 describe the concept taxonomy of the site, while Eq. 4 describes the datatype
attributes of the cars sold in the site. Eqs. 5–6 describe the properties of some sold cars.

We may then encode “costs at most about 22 000�” and “has a power of around
150 HP” in a buyer’s request through the following concepts C and D, respectively:

C = ∃hasInvoice.LeqAbout22000 and D = ∃hasHorsePower .Around150 ,

where LeqAbout22000 =L(22000, 25000) and Around150 =Tri(125, 150, 175) (see
Fig. 1). The latter two equations define the fuzzy concepts of “at most about 22 000�”
and “around 150 HP”. The former is modeled as a left shoulder function stating that if
the prize is less than 22 000�, then the degree of truth (degree of buyer’s satisfaction)
is 1, else the truth is linearly decreasing to 0 (reached at 25 000�). In fact, we are
modeling a case were the buyer would like to pay less than 22 000�, though may still
accept a higher price (up to 25 000�) to a lesser degree. Similarly, the latter models the
fuzzy concept “around 150 HP” as a triangular function with vertice in 150 HP.

The following fuzzy axioms are (tight) logical consequences of the above descrip-
tion logic knowledge base L (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) > 1.0 ; C(MitsubishiEclipseSpyder) > 0.32 ;

D(MazdaMX5Miata) > 0.36 ; D(MitsubishiEclipseSpyder) > 0.56 .



3 Fuzzy Description Logic Programs

In this section, we present a tightly integrated approach to fuzzy disjunctive descrip-
tion logic programs (or simply fuzzy dl-programs) under the answer set semantics.
We extend the tightly integrated disjunctive description logic programs in [16], which
have very nice features compared to other tightly integrated description logic programs;
see [16] for more details and a comparison to related works in the literature. Observe
that differently from [15] (in addition to being a tightly integrated approach to fuzzy dl-
programs), the fuzzy dl-programs here are based on fuzzy description logics as in [26].
Furthermore, they additionally allow for disjunctions in rule heads. We first introduce
the syntax of fuzzy dl-programs and then their answer set semantics.

The basic idea behind the tightly integrated approach in this section is as follows.
Suppose that we have a fuzzy disjunctive program P . Under the answer set seman-
tics, P is equivalent to its grounding ground(P ). Suppose now that some of the ground
atoms in ground(P ) are additionally related to each other by a fuzzy description logic
knowledge base L. That is, some of the ground atoms in ground(P ) actually represent
concept and role memberships relative to L. Thus, when processing ground(P ), we
also have to consider L. However, we only want to do it to the extent that we actually
need it for processing ground(P ). Hence, when taking a fuzzy Herbrand interpreta-
tion I ⊆HBΦ, we have to ensure that I represents a valid truth value assignment rela-
tive to L. In other words, the main idea behind the semantics is to interpret P relative
to Herbrand interpretations that also satisfy L, while L is interpreted relative to general
interpretations over a first-order domain. Thus, we modularly combine the standard se-
mantics of fuzzy disjunctive programs and of fuzzy description logics as in [15], which
allows for building on the standard techniques and the results of both areas. However,
our new approach here allows for a much tighter integration of L and P .

Syntax. We assume a function-free first-order vocabulary Φ with nonempty finite sets
of constant and predicate symbols. We use Φc to denote the set of all constant symbols
in Φ. We also assume pairwise disjoint (nonempty) denumerable sets A, RA, RD, I,
and M of atomic concepts, abstract roles, datatype roles, individuals, and fuzzy modi-
fiers, respectively; see [17]. We assume that Φc is a subset of I. This assumption guaran-
tees that every ground atom constructed from atomic concepts, abstract roles, datatype
roles, and constants in Φc can be interpreted in the description logic component. We do
not assume any other restriction on the vocabularies, that is, Φ and A (resp., RA ∪RD)
may have unary (resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n > 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. A disjunctive fuzzy rule (or simply fuzzy rule) r is of the form

a1 ∨⊕1 · · · ∨⊕l−1 al ←⊗0 b1 ∧⊗1 b2 ∧⊗2 · · · ∧⊗k−1 bk∧⊗k

not	k+1 bk+1 ∧⊗k+1 · · · ∧⊗m−1 not	m bm > v,
(7)

where l > 1, m > k > 0, a1, . . . , al, bk+1, . . . , bm are atoms, b1, . . . , bk are either atoms
or truth values from [0, 1], ⊕1, . . . ,⊕l−1 are disjunction strategies, ⊗0, . . . ,⊗m−1 are



conjunction strategies,	k+1, . . . ,	m are negation strategies, and v ∈ [0, 1]. We refer to
a1∨⊕1 · · ·∨⊕l−1 al as the head of r, while the conjunction b1∧⊗1 . . .∧⊗m−1 not	m bm

is the body of r. We define H(r) = {a1, . . . , al} and B(r) =B+(r) ∪ B−(r), where
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A disjunctive fuzzy program (or
simply fuzzy program P is a finite set of fuzzy rules of the form (7). We say P is a
normal fuzzy program iff l =1 for all fuzzy rules (7) in P . We say P is a positive fuzzy
program iff l =1 and m = k for all fuzzy rules (7) in P .

A disjunctive fuzzy description logic program (or simply fuzzy dl-program) KB =
(L,P ) consists of a fuzzy description logic knowledge base L and a disjunctive fuzzy
program P . It is called a normal fuzzy dl-program iff P is a normal fuzzy program. It is
called a positive fuzzy dl-program iff P is a positive fuzzy program.

Example 3.1 (Shopping Agent cont’d). A fuzzy dl-program KB =(L,P ) is given by
the fuzzy description logic knowledge base L in Example 2.2 and the set of fuzzy
rules P , which contains only the following fuzzy rule (where x⊗ y = min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) > 1 .

Informally, the predicate query collects all sports cars, and ranks them according to
whether they cost at most around 22 000� and have around 150 HP (such a car may be
requested by a car buyer with economic needs). Another fuzzy rule is given as follows
(where 	x=1− x and Around300 =Tri(250, 300, 350)):

query ′(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasMaxSpeed(x, y2)∧⊗
not	LeqAbout22000 (y1) ∧⊗ Around300 (y2) > 1 .

Informally, this rule collects all sports cars, and ranks them according to whether they
cost at least around 22 000� and have a maximum speed of around 300 km/h (such a
car may be requested by a car buyer with luxurious needs). Another fuzzy rule involving
also a disjunction in its head is given as follows (where x⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y) ∧⊗ not	GeqAbout15000 (y) > 0.7 .

This rule says that a car costing at most around 15 000� is either small or old. Observe
here that Small and Old may be two concepts in the fuzzy description logic knowledge
base L. That is, the tightly integrated approach to fuzzy dl-programs under the answer
set semantics also allows for using the rules in P to express relationships between
the concepts and roles in L. This is not possible in the loosely integrated approach to
fuzzy dl-programs under the answer set semantics in [15], since the dl-queries of that
framework can only occur in rule bodies, but not in rule heads.

Semantics. We now define the answer set semantics of fuzzy dl-programs via a gener-
alization of the standard Gelfond-Lifschitz transformation [7].

In the sequel, let KB =(L,P ) be a fuzzy dl-program. A ground instance of a
rule r∈P is obtained from r by replacing every variable that occurs in r by a con-
stant symbol from Φc. We denote by ground(P ) the set of all ground instances of



rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the set of all ground
atoms constructed with constant and predicate symbols from Φ. Observe that we de-
fine the Herbrand base relative to Φ and not relative to P . This allows for reasoning
about ground atoms from the description logic component that do not necessarily occur
in P . Observe, however, that the extension from P to Φ is only a notational simplifi-
cation, since we can always make constant and predicate symbols from Φ occur in P
by “dummy” rules such as constant(c)← and p(c)← p(c), respectively. We denote
by DLΦ the set of all ground atoms in HBΦ that are constructed from atomic concepts
in A, abstract roles in RA, concrete roles in RD, and constant symbols in Φc.

We define Herbrand interpretations and the truth of fuzzy dl-programs in them
as follows. An interpretation I is a mapping I : HBΦ→ [0, 1]. We write HBΦ to
denote the interpretation I such that I(a) = 1 for all a∈HBΦ. For interpretations I
and J , we write I ⊆J iff I(a) 6J(a) for all a∈HBΦ, and we define the intersection
of I and J , denoted I ∩J , by (I ∩J)(a) = min(I(a), J(a)) for all a∈HBΦ. Observe
that I ⊆HBΦ for all interpretations I . We say that I is a model of a ground fuzzy rule r
of the form (7), denoted I |= r, iff

I(a1)⊕1 · · · ⊕l I(al) > I(b1)⊗1 · · · ⊗k−1 I(bk) ⊗k

	k+1 I(bk+1)⊗k+1 · · · ⊗m−1 	mI(bm)⊗0 v .
(8)

Here, we implicitly assume that the disjunction strategies ⊕1, . . . ,⊕l and the conjunc-
tion strategies ⊗1, . . . ,⊗m−1,⊗0 are evaluated from left to right. Notice also that the
above definition implicitly assumes an implication strategy B that is defined by a B
b = sup {c∈ [0, 1] | a⊗0 c6 b} for all a, b∈ [0, 1] (and thus for n, m∈ [0, 1] and a=n,
it holds that aB b >m iff b >n⊗0 m, if we assume that the conjunction strategy ⊗0 is
continuous). Observe that such a relationship between the implication strategy B and
the conjunction strategy ⊗ (including also the continuity of ⊗) holds in Łukasiewicz,
Gödel, and Product Logic (see Table 1). We say that I is a model of a fuzzy program P ,
denoted I |=P , iff I |= r for all r∈ ground(P ). We say I is a model of a fuzzy de-
scription logic knowledge base L, denoted I |=L, iff L∪{a= I(a) | a∈HBΦ} is sat-
isfiable. An interpretation I ⊆HBΦ is a model of a fuzzy dl-program KB =(L,P ),
denoted I |=KB , iff I |=L and I |=P . We say KB is satisfiable iff it has a model.

The Gelfond-Lifschitz transform of a fuzzy dl-program KB =(L,P ) relative to an
interpretation I ⊆HBΦ, denoted KBI , is defined as the fuzzy dl-program (L,P I),
where P I is the set of all fuzzy rules obtained from ground(P ) by replacing all default-
negated atoms not	j

bj by the truth value 	jI(bj). We are now ready to define the
answer set semantics of fuzzy dl-programs as follows.

Definition 3.1. Let KB =(L,P ) be a fuzzy dl-program. An interpretation I ⊆HBΦ

is an answer set of KB iff I is a minimal model of KBI . We say that KB is consistent
(resp., inconsistent) iff KB has an (resp., no) answer set.

We finally define the notions of cautious (resp., brave) reasoning from fuzzy dl-
programs under the answer set semantics as follows.

Definition 3.2. Let KB =(L,P ) be a fuzzy dl-program. Let a∈HBΦ and n∈ [0, 1].
Then, a>n is a cautious (resp., brave) consequence of a fuzzy dl-program KB under
the answer set semantics iff I(a) >n for every (resp., some) answer set I of KB .



Example 3.2 (Shopping Agent cont’d). Consider again the fuzzy dl-program KB =
(L,P ) of Example 3.1. The following holds for the answer set M of KB :

M(query(MazdaMX5Miata)) = 0.36 ; M(query(MitsubishiEclipseSpyder)) = 0.32 .

4 Semantic Properties

In this section, we summarize some semantic properties (especially those relevant for
the Semantic Web) of fuzzy dl-programs under the above answer set semantics.

Minimal Models. The following theorem shows that, like for ordinary disjunctive pro-
grams, every answer set of a fuzzy dl-program KB is also a minimal model of KB , and
the answer sets of a positive fuzzy dl-program KB are the minimal models of KB .

Theorem 4.1. Let KB =(L,P ) be a fuzzy dl-program. Then, (a) every answer set
of KB is a minimal model of KB , and (b) if KB is positive, then the set of all answer
sets of KB is given by the set of all minimal models of KB .

Faithfulness. An important property of integrations of rules and ontologies is that they
are a faithful [18,19] extension of both rules and ontologies.

The following theorem shows that the answer set semantics of fuzzy dl-programs
faithfully extends its counterpart for fuzzy programs. That is, the answer set seman-
tics of a fuzzy dl-program KB =(L,P ) with empty fuzzy description logic knowledge
base L coincides with the answer set semantics of its fuzzy program P .

Theorem 4.2. Let KB =(L,P ) be a fuzzy dl-program such that L= ∅. Then, the set of
all answer sets of KB coincides with the set of all answer sets of the fuzzy program P .

The next theorem shows that the answer set semantics of fuzzy dl-programs also
faithfully extends the first-order semantics of fuzzy description logic knowledge bases.
That is, for a∈HBΦ and n∈ [0, 1], it holds that a>n is true in all answer sets of a
positive fuzzy dl-program KB =(L,P ) iff a>n is true in all fuzzy first-order models
of L∪ ground(P ). The theorem holds also when a is a ground formula constructed
from HBΦ using ∧ and ∨, along with conjunction and disjunction strategies ⊗ resp. ⊕.

Theorem 4.3. Let KB =(L,P ) be a positive fuzzy dl-program, and let a∈HBΦ and
n∈ [0, 1]. Then, a>n is true in all answer sets of KB iff a>n is true in all fuzzy
first-order models of L∪ ground(P ).

As an immediate corollary, we obtain that a>n is true in all answer sets of a fuzzy
dl-program KB =(L, ∅) iff a>n is true in all fuzzy first-order models of L.

Corollary 4.1. Let KB =(L,P ) be a fuzzy dl-program with P = ∅, and let a∈HBΦ

and n∈ [0, 1]. Then, a>n is true in all answer sets of KB iff a>n is true in all fuzzy
first-order models of L.



Unique Name Assumption. Another aspect that may not be very desirable in the Seman-
tic Web [10] is the unique name assumption (which says that any two distinct constant
symbols in Φc represent two distinct domain objects). It turns out that we actually do
not have to make this assumption, since the fuzzy description logic knowledge base of
a fuzzy dl-program may very well contain or imply equalities between individuals.

This result is included in the following theorem, which shows an alternative char-
acterization of the satisfaction of L in I ⊆HBΦ: Rather than being enlarged by a set
of axioms of exponential size, L is enlarged by a set of axioms of polynomial size.
This characterization essentially shows that the satisfaction of L in I corresponds to
checking that (i) I restricted to DLΦ satisfies L, and (ii) I restricted to HBΦ−DLΦ

does not violate any equality axioms that follow from L. In the theorem, an equivalence
relation ∼ on Φc is admissible with an interpretation I ⊆HBΦ iff I(p(c1, . . . , cn)) =
I(p(c′1, . . . , c

′
n)) for all n-ary predicate symbols p, where n > 0, and constant sym-

bols c1, . . . , cn, c′1, . . . , c
′
n ∈Φc such that ci∼ c′i for all i∈{1, . . . , n}.

Theorem 4.4. Let L be a fuzzy description logic knowledge base, and let I ⊆HBΦ.
Then, L ∪ {a= I(a) | a∈HBΦ} is satisfiable iff L ∪ {a= I(a) | a∈DLΦ} ∪ {c 6= c′ |
c 6∼ c′} is satisfiable for some equivalence relation ∼ on Φc admissible with I .

5 Summary and Outlook

We have presented an approach to tightly integrated fuzzy dl-programs under the answer
set semantics, which generalizes the tightly integrated disjunctive dl-programs in [16]
by fuzzy vagueness in both the description logic and the logic program component. We
have shown that the new formalism faithfully extends both fuzzy disjunctive programs
and fuzzy description logics, and that under suitable assumptions, reasoning in the new
formalism is decidable. Furthermore, in [17], we have presented a polynomial reduc-
tion for certain fuzzy dl-programs to tightly integrated disjunctive dl-programs. Finally,
in [17], we have also provided a special case of fuzzy dl-programs for which deciding
consistency and query processing have both a polynomial data complexity.

An interesting topic for future research is to analyze the computational complexity
of the main reasoning problems in fuzzy dl-programs, and to implement the approach.
Another interesting issue is to extend fuzzy dl-programs by classical negation.
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