
Strong and Uniform Equivalence in Answer-Set Programming:
Characterizations and Complexity Results for the Non-Ground Case∗

Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran
Institut für Informationssysteme 184/3,

Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

e-mail: {eiter, michael, tompits, stefan}@kr.tuwien.ac.at

Abstract

Recent research in nonmonotonic logic programming under
the answer-set semantics studies different notions of equiva-
lence. In particular, strong and uniform equivalence are pro-
posed as useful tools for optimizing (parts of) a logic pro-
gram. While previous research mainly addressed proposi-
tional (i.e., ground) programs, we deal here with the more
general case of non-ground programs, and provide semantical
characterizations capturing the essence of equivalence, gen-
eralizing the concepts of SE-models and UE-models, respec-
tively, as originally introduced for propositional programs.
We show that uniform equivalence is undecidable, and we
give decidability results and precise complexity bounds for
strong equivalence (thereby correcting a previous complexity
bound for strong equivalence from the literature) as well as
for uniform equivalence for finite vocabularies.

Introduction
Answer-set programming (ASP) has been recognized as a
promising declarative problem solving paradigm, in which
problems are encoded in nonmonotonic logic programs.
From their answer sets (models) computed with an answer-
set solver such as DLV (Leone et al. 2002), Smodels (Si-
mons, Niemelä, & Soininen 2002), ASSAT (Lin & Zhao
2002), the solutions to a given problem are then extracted.
This paradigm has been successfully applied to many areas
including planning, diagnosis, information integration, and
security analysis, to mention just a few.

As for comparing and optimizing (parts of logic) pro-
grams, recent research in ASP studies different notions of
equivalence, among which strong and uniform equivalence
are most prominent (Lifschitz, Pearce, & Valverde 2001;
Eiter & Fink 2003). Roughly, two programs P and Q are
strongly equivalent, if any extensions P ∪ R and Q ∪ R by
further rules R have the same answer sets; uniform equiva-
lence is similarly defined but R must consist of facts only.
While these notions have been studied for propositional
(ground) programs in several papers, the case of programs
with variables was only studied by Lin (2002), and recently

∗This work was supported by the Austrian Science Fund under
grant P18019, and by the EC via projects FET-2001-37004 WASP,
IST-2001-33570 INFOMIX, and IST-2001-33123 CologNeT.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

by Pearce & Valverde (2004), for strong equivalence so far.
The non-ground case, however, is for ASP the more impor-
tant one, since program encodings in practice use variables.

In the presence of variables, it is necessary to specify the
particular domain the variables are assumed to range over.
Here, we consider both the case of finite domains as well
as the case of infinite domains. Note that, when comparing
programs, taking infinite domains into account is desirable
from a practical point of view. Assume, for instance, pro-
grams implementing the 3-coloring problem of graphs. In
general, one wants to compare these programs with respect
to their behavior on any graph. This motivates results about
ground programs obtained from finite selections from a pos-
sibly infinite domain.

Our main contributions can be summarized as follows.

(1) We provide semantical characterizations capturing
the essence of strong and uniform equivalence. To this
end, we generalize the concepts of SE-models and UE-
models introduced for propositional programs (Turner 2003;
Eiter & Fink 2003).

(2) We give decidability results and precise complexity
bounds for strong equivalence. In that, we correct the previ-
ous result of coNP-completeness for deciding strong equiv-
alence (Lin 2002), which unfortunately is exponentially
harder (viz. co-NEXPTIME-complete) in the general case;
coNP-membership holds in case of a fixed upper bound on
the number of variables occurring in the rules of the pro-
gram.

(3) We show that uniform equivalence of programs is un-
decidable in general. This is rather bad news, since uniform
equivalence has been pointed out as a decidable relaxation
of the equivalence of two Horn datalog queries P and Q
on a database R (i.e., R is restricted to facts on input re-
lations) (Sagiv 1988). In fact, undecidability holds even if
only one negative literal occurs in the programs, while for
negation-free (possibly disjunctive) programs, the problem
is decidable.

(4) Finally, we show that for finite domains, uniform
equivalence is decidable, but has higher complexity than
strong equivalence.

Our results shed further light on strong and uniform
equivalence, and indicate that further efforts will be needed

to single out algorithms for decidable classes of uniform
equivalence, similar as for equivalence between datalog
queries (Halevy et al. 2001). Indeed, while strong equiv-
alence is decidable, it seems to be far too restrictive for ASP
practice.

Preliminaries
To begin, we introduce the basic concepts of logic programs
under the answer-set semantics.

Logic programs are formulated in a language L contain-
ing a set A of predicate symbols, a set V of variables, and a
set C of constants. Each predicate symbol has an associated
arity n ≥ 0; the set C is also referred to as the domain of L.

An atom (over L) is an expression of form p(t1, . . .,tn),
where p ∈ A is a predicate of arity n and ti ∈ C ∪ V , for
1 ≤ i ≤ n. An atom is ground if no variable occurs in
it. The set of all ground atoms over language L is called
the Herbrand base of L, denoted BL. For a set A ⊆ A
of predicate symbols and a set C ⊆ C of constants, we also
writeBA,C to denote the set of all ground atoms constructed
from the predicate symbols from A ⊆ A and the constants
from C.

A (disjunctive) rule (over L), r, is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm, (1)

where a1, . . . , an, b1, . . . , bm are atoms, with n ≥ 0, m ≥
k ≥ 0, and n + m > 0, and “not” is default negation.
The head of r is the set H(r) = {a1, . . . , an}, and the body
of r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. Fur-
thermore, we define B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}.

A rule r of form (1) is called (i) a fact, if m = 0 and
n = 1 (in which case the symbol← is usually omitted), (ii) a
constraint, if n = 0, (iii) normal, if n ≤ 1, (iv) positive, if
k = m, and (v) Horn, if k = m and n ≤ 1. A rule r is safe
if each variable occurring in H(r) ∪ B−(r) also occurs in
B+(r); r is ground, if all atoms occurring in it are ground.

By a program (over L) we understand a set of rules (over
L). Programs are normal (resp., positive, Horn, ground,
safe) if all of their rules enjoy this property.

To each program P we assign a language L(P) consist-
ing of all variables, constants, and predicates occurring in
P . We refer to the Herbrand base BL(P) of L(P) as the
Herbrand base of P , symbolically BP . Furthermore, the set
of all constants occurring in P is called the Herbrand uni-
verse of P , symbolically UP . If no constant appears in P ,
then UP = {c}, for an arbitrary constant c. The set of all
predicates occurring in P is denoted by AP .

Let L be a language with a set A of predicates and do-
main C, and let C ⊆ C. For any program P over L, we let
BP,C stand for BAP ,C , i.e., BP,C is the set of all ground
atoms constructed from the predicates occurring in P and
the constants in C. Furthermore, given a rule r over L, we
define grd(r, C) as the set of all rules obtained from r by all
possible substitutions of elements of C for the variables in
r. Moreover, for any program P over L, the grounding of P
with respect to C is given by grd(P,C) =

⋃
r∈P grd(r, C).

In particular, grd(P,UP) is referred to as the grounding of
P simpliciter, written grd(P).

By an interpretation we understand a set of ground atoms.
A ground rule r is satisfied by an interpretation I , symbol-
ically I |= r, iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and
B−(r) ∩ I = ∅. I satisfies a ground program P iff each
r ∈ P is satisfied by I . The Gelfond-Lifschitz reduct (Gel-
fond & Lifschitz 1991) of a ground program P (with respect
to an interpretation I) is given by

P I = {H(r)← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

A set I ⊆ BP is an answer set of P iff I is a subset-minimal
set satisfying grd(P)I . The set of all answer sets of P is
denoted byAS(P). Unless stated otherwise, from now we
assume that programs are finite and safe.

Notions of Equivalence
We now introduce the basic notions of equivalence which
will be relevant for our purposes. Besides the central con-
cepts of strong and uniform equivalence, we also make use
of the weaker concept of ordinary equivalence, the ancil-
lary notion of classical equivalence, and equivalence notions
studied in the context of datalog programs. We start with
classical equivalence.
Definition 1 Two programs, P andQ, are classically equiv-
alent, symbolically P ⇔ Q, iff grd(P) and grd(Q), inter-
preted as propositional formulas, are equivalent in classical
propositional logic.
Deciding whether two programs are classically equivalent
is well-known to be EXPTIME-complete for Horn pro-
grams and co-NEXPTIME-complete for general programs
(Dantsin et al. 2001).
Definition 2 Two programs, P and Q, are ordinarily equiv-
alent, symbolically P ≡ Q, iff AS(P) = AS(Q).

The complexity of deciding ordinary equivalence be-
tween two programs is known to range from EXPTIME-
completeness to co-NEXPTIMENP-completeness (Dantsin
et al. 2001), depending on the syntactical restrictions on the
considered programs.

As a strengthening of ordinary equivalence, Lifschitz,
Pearce, & Valverde (2001) proposed the notion of strong
equivalence for propositional programs under the answer-
set semantics. This concept was actually preceded by a
similar term introduced by Maher (1988) in the context of
negation-free datalog programs as “equivalence of programs
segments”. There are now different ways to define strong
equivalence for non-ground programs; we propose the fol-
lowing one:
Definition 3 Let L be a language and P,Q two programs
overL. Then, P andQ are strongly equivalent, symbolically
P ≡s Q, iff AS(P ∪ R) = AS(Q ∪ R), for any (possibly
infinite) program R over L.

A slightly different notion of strong equivalence for non-
ground programs has been discussed by Lin (2002)—we say
more on that notion later on.

In specializing the extension programs R of Definition 3
to programs containing facts only, we arrive at the notion of
uniform equivalence, originally studied by Sagiv (1988) for
datalog programs.

Definition 4 Let L be a language and P,Q two programs
over L. Then, P and Q are uniformly equivalent, symboli-
cally P ≡u Q, iff AS(P ∪ F) = AS(Q ∪ F), for any finite
set F ⊆ BL of ground facts.

As final equivalence notions, we introduce query equiva-
lence and program equivalence, which are the central equiv-
alence relations for datalog programs. To define these rela-
tions, the following concepts are required: Call a predicate
occurring in a program P extensional (in P) if it does not oc-
cur in any rule head (in P), and intensional otherwise. Let
EP be the set of all extensional predicates in P .

Definition 5 Let L be a language with domain C and P,Q
two programs over L. Then, P and Q are query equiva-
lent with respect to a predicate p iff, for any finite set S ⊆
BEP∪Q,C , {I ∩ B{p},C | I ∈ AS(P ∪ S)} = {I ∩ B{p},C |
I ∈ AS(Q ∪ S)}. Similarly, P and Q are program equiv-
alent iff, for any S as above, AS(P ∪ S) = AS(Q ∪ S)
holds.

Query equivalence was shown to be undecidable for Horn
programs over infinite domains (Shmueli 1987). This result
extends to program equivalence as follows: Define

P ∗ = P ∪Q′ ∪ {p∗(X)← p(X)} and

Q∗ = P ∪Q′ ∪ {p∗(X)← p′(X)},

whereQ′ results fromQ by replacing each intensional predi-
cate symbol i by i′, and p∗ is a fresh predicate which refers to
the query predicate p. Then, P ∗ and Q∗ are program equiv-
alent iff P and Q are query equivalent with respect to p.

Characterizations
In this section, we provide model-theoretic characterizations
of strong and uniform equivalence between non-ground pro-
grams, generalizing previous characterizations for proposi-
tional programs (Turner 2003; Eiter & Fink 2003). The
following definition is central:
Definition 6 Let L be a language with domain C and set A
of predicates, P a program over L, C ⊆ C, and let X,Y ⊆
BA,C be sets of ground atoms such that X ⊆ Y . Then,
(X,Y)C is an SE-model of P iff Y |= grd(P,C) and X |=
grd(P,C)Y . By SE (P) we denote the set of all SE-models
of P .
The next result rephrases the main result of Turner (2003).
Note that, for a ground program P , grd(P,C) = P , for
any C.
Proposition 7 Let P , Q be (possibly infinite) ground pro-
grams. Then, for any set of ground rules R, AS(P ∪ R) =
AS(Q ∪R) iff SE (P) = SE (Q).

A pendant to the concept of an SE-model for character-
izing uniform equivalence between propositional programs
has been put forth by Eiter & Fink (2003). We extend their
notion in the following way:
Definition 8 Let P be a program and (X,Y)C ∈ SE (P).
Then, (X,Y)C is a UE-model of P iff, for every SE-model
(X ′, Y)C of P , X ⊂ X ′ implies X ′ = Y . By UE (P) we
denote the set of all SE-models of P .

Proposition 9 Let P , Q be ground programs. Then, P ≡u

Q iff UE (P) = UE (Q).
Note that, in contrast to Proposition 7, the characterization
for uniform equivalence via UE-models does not apply to
infinite programs.

We now show that Propositions 7 and 9 can be extended
to non-ground programs as well. To begin with, we need
some technical prerequisites. From now on, we assume that
programs are defined over a language with domain C.
Lemma 10 Let P be a program, C,C ′ ⊆ C sets of con-
stants such that C ⊆ C ′, and Y ⊆ BP,C . Then, Y |=
grd(P,C) iff Y |= grd(P,C ′).

The following lemma is a consequence of this result:
Lemma 11 Let P be a program, C,C ′ ⊆ C sets of con-
stants such that C ⊆ C ′, and X ⊆ Y ⊆ BP,C . Then,
(i) (X,Y)C ∈ SE (P) iff (X,Y)C′ ∈ SE (P), and (ii) Y ∈
AS(grd(P,C)) iff Y ∈ AS(grd(P,C ′)).
Theorem 12 P ≡s Q iff SE (P) = SE (Q).
Proof. The proof is by a reduction to the propositional case.

First, suppose SE (P) 6= SE (Q). Without loss of gener-
ality, assume that (X,Y)C is an SE-model of P but not ofQ
with C ⊇ UP∪Q, and consider grd(P,C) and grd(Q,C).
By definition, (X,Y)C ∈ SE (grd(P,C)) and (X,Y)C /∈
SE (grd(Q,C)). By Proposition 7, there exists a set R of
ground rules with AS(grd(P,C)∪R) 6= AS(grd(Q,C) ∪
R). By Lemma 11, we can take C ′ = C ∪ UP∪Q∪R, and
R′ = R ∪ {d(c) | c ∈ C ′} with a fresh predicate d and get
AS(grd(P ∪R′, C ′)) 6= AS(grd(Q∪R′, C ′)). Since C ′ =
UP∪R′ = UQ∪R′ , we obtain AS(P ∪ R′) 6= AS(Q ∪ R′).
Hence, P 6≡s Q.

Suppose now P 6≡s Q, i.e., there exists a set R of
rules such that AS(grd(P ∪ R)) 6= AS(grd(Q ∪ R)).
One can show by Lemmata 10 and 11 that this implies
that AS(grd(P ∪ R,C)) 6= AS(grd(Q ∪ R,C)), for
C = UP∪Q∪R, and thus AS(grd(P,C) ∪ grd(R,C)) 6=
AS(grd(Q,C) ∪ grd(R,C)). By Proposition 7, SE (P) 6=
SE (Q). 2

An important result by Lifschitz, Pearce, & Valverde
(2001) shows that strong equivalence between ground pro-
grams P and Q reduces to the test whether, for all sets R of
unary rules,1 AS(P ∪ R) = AS(Q ∪ R). Inspecting the
proof of Theorem 12, it is easily checked that this property
also holds in the non-ground case.

An analogous characterization for uniform equivalence
can be obtained by a similar lifting from the propositional
case. For space reasons, we omit a proof of this result.
Theorem 13 Let P and Q be programs. Then, P ≡u Q
iff, for each finite C ⊆ C and every interpretation X , Y ,
(X,Y)C ∈ UE (P) iff (X,Y)C ∈ UE (Q).

Finally, we generalize an important result by Eiter &
Fink (2003).
Theorem 14 For positive programs P and Q, the following
propositions are equivalent: (i) P ≡s Q; (ii) P ≡u Q; and
(iii) P ⇔ Q.

1A unary rule is a Horn rule with exactly one atom in the head
and at most one atom in the body.

Finite Domains
In the case of a finite underlying domain C, we can as usual
view a program P as a compact representation of the propo-
sitional program grd(P, C). Note that, therefore, Theo-
rem 13 can be rephrased for finite domains as follows:
Theorem 15 Let P , Q be programs over L whose domain
is finite. Then, P ≡u Q iff UE (P) = UE (Q).

Compared to the propositional case, a Herbrand interpre-
tation has single-exponential size (i.e., size O(2p(n)) for
a polynomial p(n)) in the size of C, both if C is repre-
sented explicitly or implicitly by, say, a number n such that
C = {0, 1, . . . , n− 1}.

For strong and uniform equivalence, we thus obtain upper
complexity bounds which increase, compared to the propo-
sitional complexity, by one exponential: P to EXPTIME,
NP to NEXPTIME, co-NP to co-NEXPTIME, ΠP

2 to co-
NEXPTIMENP, etc. Given that the inference problem of
positive, disjunction-free datalog programs is EXPTIME-
complete (cf. Dantsin et al. (2001)), it is thus of no surprise
that the complexity of deciding strong and uniform equiv-
alence has lower bounds which match the exponential ana-
logues of the propositional case.
Theorem 16 Over a finite domain C, deciding P ≡s Q
between programs P and Q is co-NEXPTIME-complete.
Hardness holds even if P is positive and Q is Horn.

Proof (Sketch). We only show the hardness part. We re-
duce the problem of evaluating a given second-order sen-
tence Φ of the form ∀P∃xψ(x), where P = p1, . . . , pn is a
list of predicate variables and ψ(x) is a quantifier-free for-
mula in DNF over predicates P ∪ A, with A consisting of
predicate constants including special predicates succ, first ,
and last over a given first-order structureM forA in which
succ, first , and last are interpreted as a successor predi-
cate and the first and last element of a linear ordering of the
universe |M| ofM, respectively, to checking strong equiv-
alence. The former problem is co-NEXPTIME-complete,
which follows from normal form results for second-order
logic over successor structures (Leivant 1989; Eiter, Gott-
lob, & Gurevich 1996), and the fact that a conversion into
such a normal form is feasible in polynomial time.

Consider now a second-order sentence Φ = ∀P∃xψ(x)
over M as discussed above, where ψ(x) =

∨n

i=1 φi and
each φi is a conjunction of (possibly negated) predicate
atoms. For each p ∈ P we introduce a new symbol, p′,
and let φ∗ denote the disjunction over all predicate literals
in φ, but replacing ¬p(·) by p′(·). We define

P = {a ∨ φ∗i ←| 1 ≤ i ≤ n} ∪

{← p(X1, . . . , Xn), p′(X1, . . . , Xn) | p ∈ P},

Q = {a←} ∪

{← p(X1, . . . , Xn), p′(X1, . . . , Xn) | p ∈ P},

where a is a new atom, and, for SM = {succ(c, c′),
first(c), last(c) | c, c′ ∈ |M|}, define

PM = {ψ ∈ SM | M |= ψ}∪{← ψ | ψ ∈ SM,M 6|= ψ}.

Then, it can be shown that Φ is true iff (P ∪ PM) ≡s (Q ∪
PM). 2

Corollary 17 Over a finite domain C, deciding P ≡u Q
between positive programs P and Q is co-NEXPTIME-
complete. Hardness holds even if Q is Horn.

Applying above method to the ΠP
2 -result for uniform

equivalence in the ground case yields the following result:

Theorem 18 Over a finite domain C, deciding P ≡u Q be-
tween programs P and Q is co-NEXPTIMENP-complete.

Infinite Domains
Over infinite domains, decidability of equivalence problems
for non-ground programs is no longer guaranteed; recall that
e.g., query equivalence (cf. Definition 5) is undecidable.

The following proposition is important for strong equiva-
lence. Define, for Z ⊆ BA,C and C ⊆ C, Z|C = Z ∩BA,C .

Proposition 19 (SE submodels) For any program P , the
class of SE-models of P , SE (P), is closed under submod-
els, i.e., for any UP ⊆ C ′ ⊆ C, if (X,Y)C ∈ SE (P), then
(X|C′ , Y |C′)C′ ∈ SE (P).

Proof. Towards a contradiction, assume UP ⊆ C ′ ⊆ C,
(X,Y)C ∈ SE (P), and (X|C′ , Y |C′)C′ 6∈ SE (P). I.e.,
there is some r ∈ grd(P,C ′)Y |C′ such that X|C′ 6|= r.
Since grd(P,C ′) ⊆ grd(P,C), r ∈ grd(P,C), and
since r does not contain any atom from Y \ (Y |C′), r ∈
grd(P,C)Y . Moreover, since X|C′ ⊆ X and (X,Y)C ∈
SE (P), X |= B(r) and X |= H(r) follows. Thus,
X ∩ H(r) 6= ∅, and since r is a ground instance over C ′,
i.e., U{r} ⊆ C

′, X|C′ ∩H(r) 6= ∅ holds, a contradiction. 2

As a consequence, we can decide strong equivalence be-
tween programs P and Q using finite restrictions of the uni-
verse. Informally, the argument is that if (X,Y)C ∈ SE (P)
and (X,Y)C 6∈ SE (Q), for any (possibly infinite) C,
then there also exists a finite restriction C ′ of C such that
(X|C′ , Y |C′)C′ 6∈ SE (Q), while (X|C′ , Y |C′)C′ ∈ SE (P)
holds in view of the above result.

Theorem 20 For programs P and Q, deciding P ≡s Q is
co-NEXPTIME-complete, even if C is infinite.

Proof (Sketch). We only show the membership part. As-
sume P 6≡s Q. Then, without loss of generality, there is
some (X,Y)C ∈ SE (P) with (X,Y)C 6∈ SE (Q), for some
C. Due to Lemma 10, we can assume that UP∪Q ⊆ C. We
show that there exists a finite set C ′ of constants such that
(X|C′ , Y |C′)C′ ∈ SE (P) and (X|C′ , Y |C′)C′ 6∈ SE (Q).
Since (X,Y)C 6∈ SE (Q), there exists a ground rule r ∈
grd(Q,C) such that either Y 6|= r or X 6|= rY . Con-
sider C ′ = UP∪Q ∪ U{r}. Then, C ′ is finite. Moreover,
r ∈ grd(Q,C ′) and rY |C′ = rY , thus either Y |C′ 6|= r or
X|C′ 6|= rY |C′ . That is, (X|C′ , Y |C′)C′ 6∈ SE (Q), while
(X|C′ , Y |C′)C′ ∈ SE (P) by Proposition 19. As a conse-
quence, we can decide P ≡s Q by comparing SE-models
(X,Y)C , having C = UP∪Q ∪ CV , where CV is an arbi-
trary set of different new constants c1, . . . , cn for all vari-
ables X1, . . . , Xn occurring in P ∪Q. Since C is finite, the
result follows from Theorem 16. 2

This complexity result implies that it is possible to imple-
ment corresponding tests by reductions to answer-set pro-
gramming. We also remark that the SE-submodels property

continues to hold in the presence of certain built-in relations
which are preserved under submodels as well (e.g., inequal-
ities or a total orderings).

Unfortunately, a property similar to Proposition 19 cannot
hold for UE-models, which is a consequence of Theorem 26
below. However, this only comes into play for non-positive
programs, as witnessed by Theorem 14. We thus can imme-
diately state the following:
Corollary 21 For positive programs P and Q, P ≡u Q is
co-NEXPTIME-complete, even if C is infinite.

In what follows, we formally prove the undecidability of
checking uniform equivalence in the general case. To this
end, we shall construct, from a given Horn program P , a
disjunctive program that possesses certain SE-models of the
form (X,Y)C , X 6= Y , such that the interpretations X
amount to countermodels of P . Then, minimal models of
P correlate to certain maximal SE-models (X,Y)C of the
new program, i.e., to certain UE-models. Via this correspon-
dence, we then reduce program equivalence between Horn
programs to uniform equivalence. In what follows, we use
Dd in a rule to abbreviate the sequence d(X1), . . . , d(Xn),
where Xi occurs in the rule but not in its positive body (in
order to guarantee safety of rules).
Definition 22 Let P be a Horn program, E and APE

sets
of predicates, UPE

a set of constants, and d, w, Ē = {ē |
e ∈ E} new predicate symbols. The program PE(APE

, UPE
)

contains, for every r ∈ P , the rule

(1) w ← H(r), if r is a fact, or otherwise
(2)

∨
p(X1,...,Xn)∈B+(r) p(X1, . . . , Xn)← H(r), Dd.

Additionally, PE(APE
, UPE

) contains the following rules:

(3) {d(c) | c ∈ UPE
},

{d(Xi)← p(X1, . . . , Xn) | p ∈ APE
∪ Ē , 1 ≤ i ≤ n};

(4) {p(X1, . . . , Xn)← w,Dd | p ∈ APE
∪ Ē};

(5) {e(X1, . . . , Xn) ∨ ē(X1, . . . , Xn)← Dd | e ∈ E},
{w ← e(X1, . . . , Xn), ē(X1, . . . , Xn) | e ∈ E};

(6) w ← not w.

We first analyze the SE-models of PE(APE
, UPE

).

Lemma 23 Let P be a Horn program, E a subset of its ex-
tensional predicates, AP ⊆ APE

, UP ⊆ UPE
, C a set of

constants such that UPE
⊆ C, and PE(APE

, UPE
) as above.

Moreover, let X ⊆ Y ⊆ BAPE
,C , and X̄ = BP,C \X .

Then, (X,Y)C ∈ SE (PE(APE
, UPE

)) iff for someUPE
⊆

C ′′ ⊆ C ′ ⊆ C:
• Y = BAPE

,C′ ; and if X ⊂ Y , then either:
• X = BAPE

,C′′ and C ′′ ⊂ C ′; or
• the following conditions jointly hold: (a) w /∈ X ,

(b) d(c) ∈ X iff c ∈ C ′′, (c) for each e(c1, . . . , cn) ∈
BE,C′′ , either e(c1, . . . , cn) ∈ X or ē(c1, . . . , cn) ∈ X ,
and (d) X̄ |= grd(P,C).

Proof (Sketch). For all SE-models (X,Y)C of the program
PE(APE

, UPE
), Y is of the form BAPE

,C′ , and UPE
⊆ C ′ ⊆

C. This is due to Rule (6) (which implies w ∈ Y) and by
the Rules (3) and (4). Similarly, for X ⊂ Y , if w ∈ X ,

and, of course, for a C ′′ ⊂ C ′. For any other SE-model,
we conclude that w 6∈ X . Moreover, (b) and (c) are simple
consequences of the positive Rules (3) and Rules (5). To
see (d), note thatX satisfies all ground instances of Rules (1)
and (2) iff X̄ |= grd(P,C ′′), by construction (in particular
since the corresponding rules are safe). This can be shown
by a simple indirect argument. Since C ′′ ⊆ C, Lemma 10
yields X̄ |= grd(P,C). 2

We next show for certain UE-models (X,Y)C , X 6= Y ,
our intended property, i.e., that they correlate to minimal
models of P . In view of Lemma 11, we can fix Y , i.e.,
we consider SE-models having Y = BAPE

,C .

Lemma 24 Let P , E , APE
,UPE

, C, PE(APE
, UPE

), X ,
Y , and X̄ be as in Lemma 23. Furthermore, let w 6∈ X ,
Y = BAPE

,C , ĒX = {e(c1, . . . , cn) | ē(c1, . . . , cn) ∈ X},
and EX̄ ⊆ BE,C ∩ X̄ . Consider XE = ĒX ∪ EX̄ . Then,
(X,Y)C ∈ UE (PE(APE

, UPE
)) iff X̄ ∈ AS(P ∪XE).

Proof (Sketch). Let X and Y be as in the lemma and
(X,Y)C an SE-model of PE(APE

, UPE
). It is easily ver-

ified that (X,Y)C ∈ UE (PE(APE
, UPE

)) iff d(c) ∈ X
for all c ∈ C. Due to this, by Lemma 23 and the con-
struction of X̄ and XE , we get for the only-if direction
X̄ |= grd(P ∪ XE , C). It remains to show the minimal-
ity of X̄ . Towards a contradiction, suppose Z̄ ⊂ X̄ satisfies
grd(P ∪XE , C). If p(c1, . . . , cn) ∈ X̄ \ Z̄, for some p ∈ E ,
we arrive at a contradiction since neither p(c1, . . . , cn) ∈ X
nor p̄(c1, . . . , cn) ∈ X follows. If p 6∈ E , however, it
can be shown by Lemma 23 that (Z, Y)C is an SE-model
of PE(APE

, UPE
), for Z = (BP,C \ Z̄) ∪ {d(c) | c ∈

C}∪(X∩BĒ,C), again a contradiction. For the if direction,
assume (Z, Y)C ∈ SE (PE(APE

, UPE
)) and X ⊂ Z ⊂ Y .

It can be verified that for any p(c1, . . . , cn) ∈ (Z \ X), it
holds that p 6∈ E . Thus, X̄ and Z̄ coincide on BE,C and,
hence, Z̄ |= XE . Moreover, by Lemma 23, Z̄ satisfies
grd(P,C), contradicting X̄ ∈ AS(P ∪XE). 2

Lemma 25 For Horn programs P and Q sharing exten-
sional predicates E , let P̄ = PE(AP∪Q, UP∪Q) and Q̄ =
QE(AP∪Q, UP∪Q). Then, UE (P̄) = UE (Q̄), for any finite
C ⊆ C, iff P and Q are program equivalent.

Proof (Sketch). One can show that two Horn programs,
P and Q, are program equivalent iff, for each finite input
D ⊆ BE,C such that UP∪Q ⊆ C and E is the set of common
extensional predicates of P and Q, AS(P ∪D) = AS(Q∪
D). Thus, the lemma holds by the following arguments:

If part. Suppose P and Q are not program equivalent,
i.e., there exists a (finite) set XE ⊆ BE,C such that, say,
X̄ ⊆ BP,C , X̄ ∈ AS(P ∪ XE), but X̄ 6∈ AS(Q ∪ XE)
for a finite set of constants C. Note that UP∪Q ⊆ C holds.
Consider Y = BAP∪Q,C andX = (BP,C \X̄)∪{d(c) | c ∈
C} ∪ {ē(c1, . . . , cn) | e(c1, . . . , cn) ∈ X̄}. By Lemma 24,
(X,Y)C ∈ UE (P̄) but (X,Y)C 6∈ UE (Q̄) (otherwise X̄ ∈
AS(Q ∪XE)), i.e., UE (P̄) 6= UE (Q̄).

Only-if part. Suppose UE (P̄) 6= UE (Q̄), i.e., without
loss of generality, assume (X,Y)C ∈ UE (P̄) such that
(X,Y)C 6∈ UE (Q̄), for some X ⊆ Y ⊆ BAP∪Q,C and a
finite set of constants C. First, note that UP∪Q ⊆ C. Hence,

if w 6∈ X , then the claim follows by Lemma 24. Thus, it
remains to consider SE-models of form (X,Y)C such that
either X = Y or X = BAP∪Q,C′ , for some C ′ ⊂ C. By
construction, it holds that UP̄E

= UQ̄E
= UP∪Q ⊆ C ′.

Since, furthermore, AP̄E
= AQ̄E

= AP∪Q, it is easily veri-
fied that P̄ and Q̄ coincide on SE-models of the above form.
For all SE-models of different form, we have that w 6∈ X
and thus they have no influence on their maximality. That
is, UE (P̄) = UE (Q̄) for SE-models of form (Y, Y)C or
(BAP∪Q,C′ , Y)C . This proves that if UE (P̄) 6= UE (Q̄) for
finite C, then P and Q are not program equivalent. 2

Since program equivalence is undecidable for Horn pro-
grams over an infinite domain, as shown above, we obtain
the following result:

Theorem 26 Given programs P and Q, it is undecidable
whether P ≡u Q holds.

We remark that the programs PE(APE
, UPE

) constructed
above do not contain any constraints, and just a single rule
containing default negation (viz. w ← not w). For the pur-
pose of our construction, this rule can equivalently be re-
placed with the constraint ← not w. The undecidability
result of Theorem 26 thus applies to a minimal extension
of positive (disjunctive) programs, and reveals that positive
disjunctive programs are a maximal decidable class, while a
single use of negation might lead to undecidability.

Related Work
Lin (2002) defines a different notion of strong equivalence
between two non-ground programs P and Q over L (which
are not necessarily safe) as checking whether, for any set of
constants C in L, AS(grd(P,C) ∪R) = AS(grd(Q,C) ∪
R), for any finite set of ground rules R. Denote this test by
P ≡L Q. Although this is apparently a different concept, it
can be shown to coincide with our notion of strong equiva-
lence on the class of safe programs.

Proposition 27 For (safe) programs P , Q, P ≡s Q iff
P ≡L Q.

There are two basic differences between ≡s and ≡L. The
first one is that ≡L explicitly reduces a test on non-ground
programs to several tests on ground programs, while ≡s di-
rectly “lifts” the original definition of strong equivalence by
Lifschitz, Pearce, & Valverde (2001) to the non-ground case.
Therefore, ≡s allows for non-ground rules in the possible
extensions R, which seems to be more natural from an ASP
perspective. To this end, ≡s has to employ the notion of
answer sets as defined in non-ground ASP which are given
over the programs’ Herbrand universes. Roughly speak-
ing, this makes the safety condition necessary. For ≡L, one
can refrain from the safety condition, since the definition of
answer sets for non-ground programs is circumvented but
rather the entire test is reduced to the propositional case.

Lin (2002) showed decidability of P ≡L Q claiming
that the problem is coNP-complete. Our complexity anal-
ysis, together with Proposition 27, however, shows that the
complexity of P ≡L Q is one exponential higher, viz.
co-NEXPTIME-complete.

Finally, we note that a characterization of a notion of
strong equivalence, similar to ≡L, in terms of a first-order
variant of the logic of here-and-there has recently been dis-
cussed by Pearce & Valverde (2004). Extending an anal-
ogous situation for the propositional case, it holds that the
models in this first-order here-and-there logic, for constant
domains, correspond in fact to our concept of SE-models.

References
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Eiter, T., and Fink, M. 2003. Uniform equivalence of
logic programs under the stable model semantics. In Proc.
ICLP’03, 224–238.
Eiter, T.; Gottlob, G.; and Gurevich, Y. 1996. Normal
forms for second-order logic over finite structures, and
classification of NP optimization problems. Annals of Pure
and Applied Logic 78:111–125.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Halevy, A. Y.; Mumick, I. S.; Sagiv, Y.; and Shmueli, O.
2001. Static analysis in datalog extensions. Journal of the
ACM 48(5):971–1012.
Leivant, D. 1989. Descriptive characterizations of compu-
tational complexity. JCSS 39:51–83.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2002. The DLV system for
knowledge representation and reasoning. Technical Report
cs.AI/0211004, arXiv.org. To appear in ACM TOCL.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM ToCL 2(4):526–541.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers. In Proc. AAAI’02,
112–117.
Lin, F. 2002. Reducing strong equivalence of logic pro-
grams to entailment in classical propositional logic. In
Proc. KR’02, 170–176.
Maher, M. J. 1988. Equivalences of logic programs. In
Minker (1988). 627–658.
Minker, J., ed. 1988. Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann.
Pearce, D., and Valverde, A. 2004. Towards a first order
equilibrium logic for nonmonotonic reasoning. In Proc.
JELIA’04, 147–160.
Sagiv, Y. 1988. Optimizing datalog programs. In Minker
(1988). 659–698.
Shmueli, O. 1987. Decidability and expressiveness aspects
of logic queries. In Proc. PODS’87, 237–249.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial
Intelligence 138:181–234.
Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraints. TPLP 3(4-5):602–622.

