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Abstract. Recently, several approaches for updating knowledge bases represented as logic programs
have been proposed. We present a generic framework for declarative specifications of update policies,
which is built upon such approaches. It extends the LUPS language for update specifications, and
incorporates the notion of events into the framework. An update policy allows an agent to flexibly
react upon new information, arriving as an event, and perform suitable changes of its knowledge base.
The framework compiles update policies to logic programs by means of generic translations, and can
be instantiated in terms of different concrete update approaches. It thus provides a flexible tool for
designing adaptive reasoning agents.

1 Introduction

Updating knowledge bases is an important issue for the realization of intelligent agents, since, in general,
an agent is situated in a changing environment, and has to adjust its knowledge base when new information
is available. While for classical knowledge bases this issue has been well-studied, approaches to update
nonmonotonic knowledge bases, like logic programs [1, 6, 18, 10] or default theories [17], are more recent.

The problem of updating logic programs, on which we focus here, deals with the incorporation of an
updateP , given by a rule or a set of rules, into the current knowledge baseKB . Accordingly, sequences
P1, . . . , Pn of updates lead to sequences(KB , P1, . . . , Pn) of logic programs which are given a declarative
semantics. To broaden this approach, Alfereset al. [2] have proposed the LUPS update language, in which
updates consist of sets ofupdate commands. Such commands permit to specify changes toKB in terms of
adding or removing rules from it. For instance, a typical command isassert a ← b when c, which says
that rulea ← b should be added toKB if c is currently true in it. Similarly,retract b states thatb must
be eliminated fromKB , without any further condition.

However, a certain limitation of LUPS and the above formalisms is that while they handlead hoc
changes ofKB , they are not conceived for handling ayet unknownupdate, which will arrive as the envi-
ronment evolves. In fact, these approaches lack the possibility to specify how an agent should react upon the
arrival of such an update. For example, we would like to express that, on arrival of the factbest buy(shop1 ),
this should be added toKB , while best-buy information about other shops is removed fromKB .

In this paper, we address this issue and present a declarative framework for specifying the update
behavior of an agent. The agent receives new information in terms of a set of rules, viewed asevent, and
adjusts itsKB according to anupdate policy, which consists of statements in a declarative language.

Our main contributions are briefly summarized as follows:
(1) We present agenericframework for specifying update behavior, which can be instantiated with

different update approaches to logic programs. This is facilitated by alayered approach: At the top level,
the update policy is evaluated, given an event and the agent’s current belief set, to single out the update
commandsU which need to be performed onKB . At the next layer,U is compiled to a setP of rules to be
incorporated toKB ; at the bottom level, the updated knowledge base is represented as a sequence of logic
programs, serving as input for the underlying update semantics for logic programs, which determines the
new current belief set.

(2) We define a declarative language for update policies, which generalizes LUPS by various features.
Most importantly, access to incoming events is facilitated. For example, the statement

retract(best buy(shop1 ))[[E : best buy(shop2 )]]



expresses that ifbest buy(shop2 ) is told, thenbest buy(shop1 ) is removed from the knowledge base.
Statements like this may involve further conditions on the current belief set, and other commands to be
executed (which is not possible in LUPS). The language thus enables the flexible handling of events,
such as simply recording changes in the environment, skipping uninteresting updates, or applying default
actions.

(3) We analyze some properties of the framework, using the update answer set semantics of [6] as
a representative of similar approaches. In particular, useful properties concerningKB maintenance are
explored, and the complexity of the framework is determined. Moreover, we describe a possible realization
of the framework in the agent system IMPACT [16], providing evidence that our approach can serve as a
viable tool supporting the development of adaptive reasoning agents.

2 Preliminaries

An extended logic program(ELP, or simplyprogram) is a finite setP of rulesr of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (1)

where eachLi is a literal, i.e., either an atomA or a strongly negated atom¬A, andnot denotesweak(or
default) negation. The literalL0 is calledheadof r and is denoted byH(r). We allow the case whereL0

may be absent, in which caser is said to be aconstraint. The set

B(r) = {L1, . . . , Lm,not Lm+1, . . . ,not Ln}

is thebodyof r. We defineB+(r) = {L1, . . . , Lm} andB−(r) = {Lm+1, . . . , Ln}. We callr a fact if
B(r) = ∅. The complement of a literalL is A if L = ¬A and¬A if L = A; the complement ofL is
denoted by¬L. For any setS of literals,¬S = {¬L | L ∈ S}. In particular,LitA = A ∪ ¬A is the set of
all literals overA. LA denotes the set of all rules constructible from the literals inLitA.

The notion of astratifiedlogic program is defined as usual (viewA∪¬A as atoms and add constraints
← A,¬A for all A ∈ A). An update programis a sequenceP = (P1, . . . , Pn) of ELPsPi, wheren ≥ 1.

We adopt an abstract view of the semantics of ELPs and update programs, given as a mappingBel(·),
which associates with every sequenceP a setBel(P) ⊆ LA of rules; intuitively,Bel(P) are the conse-
quences ofP. Different instantiations ofBel(·) are possible, according to various proposals for update
semantics in the literature (e.g., [1, 18, 10, 6, 13]). We only assume thatBel(·) has some elementary prop-
erties which these or any other “reasonable” semantics satisfies. In particular,Pn ⊆ Bel(P) must hold,
and the following property must be satisfied: givenA ← ∈ Bel(P) andA ∈ B(r), thenr ∈ Bel(P)
iff H(r) ← B(r) \ {A} ∈ Bel(P). As usual, the semantics of programsP and update sequencesP
with variables is defined in terms of their grounded versionsG(P ) andG(P) over the Herbrand universe,
respectively.

We use here for illustration the answer set semantics for update programs from [6], which coincides
with the semantics of inheritance programs in [4]. Aninterpretationis any setI ⊆ A which contains no
complementary pair of literals. A literalL is true in I if L ∈ I. As well,not L is true inI if L /∈ I. A setS
of literals or weakly negated literals is true inI if any element inS is true inI. A rule r is true inI if either
H(r) ∈ I or some element fromB(r) is not true inI. A programP is true inI if any r ∈ P is true inI (I
is calledmodelof P ). We writeI |= α to express thatα is true inI, whereα is one of the objects above.

An interpretationS ⊆ LitA is a (consistent)answer setof an ELPP [9] iff it is a minimal model of
thereductPS , defined by

PS = {H(r)← B+(r) | r ∈ P andB−(r) ∩ S = ∅}.

AS(P ) denotes the collection of all answer sets ofP .
Answer sets for an update programP = (P1, . . . , Pn) are defined in terms of the answers sets of a

single ELP as follows. Therejection set, Rej (S, P), of P with respect to the interpretationS is given by
Rej (S, P) =

⋃n
i=1 Rej i(S, P), whereRejn(S, P) = ∅, and, forn > i ≥ 1, Rej i(S, P) contains every

rule r ∈ Pi such thatH(r′) = ¬H(r) andS |= B(r) ∪ B(r′), for somer′ ∈ Pj \ Rej j(S, P) with



Bel(KS i−1) Belief set at stepi − 1

KB E1 . . . Ei−1 Ei Knowledge stateKS iw� U update policy

KB U1 . . . Ui−1 Ui Executable commandsw� tr compilation

P0 P1 . . . Pi−1 Pi Update sequencew� Bel update semantics

Bel(KS i) = Bel((P0, . . . , Pi)) Belief set at stepi

Fig. 1.From knowledge state to belief set at stepi.

j > i. That is,Rej (S, P) contains the rules fromP which are rejected on the basis of unrejected rules
from later updates. Then,S ⊆ LitA is ananswer setof P = (P1, . . . , Pn) iff S is an answer set of the
programP =

⋃
i Pi \Rej (S, P). We denote the set of all answer sets ofP byAS(P). Sincen = 1 implies

Rej (S, P) = ∅, the semantics properly extends the answer set semantics. A syntactic transformation ofP
into an ELP realizing this semantics is given in [6].

Example 2.1.Let P0 = {b ← not a, a ← }, P1 = {¬a ← , c ← }, andP2 = {¬c ← }. Then,P0

has the single answer setS0 = {a} with Rej (S0, P0) = ∅; (P0, P1) has answer setS1 = {¬a, c, b} with
Rej (S1, (P0, P1)) = {a ←}; and(P0, P1, P2) possessesS2 = {¬a,¬c, b} as unique answer set with
Rej (S2, (P0, P1, P2)) = {c← , a←}.

Thebelief setBelA(P) is the set of all rules entailed under cautious answer set semantics, i.e.,

BelA(P) = {r ∈ LA | S |= r for all S ∈ AS(P)}.

We shall drop the subscript “A ” if no ambiguity can arise. With a slight abuse of notation, for a literalL,
we writeL ∈ BelA(P) if L←∈ BelA(P).

3 Update Policies

We first describe our generic framework for event-based updating, and afterwards theEPI language (“the
language around”) for specifyingupdate policies.

3.1 Basic Framework

We start with the formal notion ofeventand of theknowledge stateof an agent.

Definition 3.1. An event classis a collectionEC ⊆ 2LA of finite sets of rules. The membersE ∈ EC are
calledevents.

Informally, EC describes the possible events an agent may witness. For example, the collectionF of
all sets of facts from a subsetA′ ⊆ A of atoms may be an event class. In what follows, we assume that an
event classEC has been fixed.



〈stat〉 ::= 〈comm〉 [ if 〈cond1〉 ] [ [[ 〈cond2〉 ]] ];

〈c name〉 ::= assert[ event] | retract[ event] | always[ event] | cancel | ignore ;

〈r id〉 ::= 〈rule〉 | 〈r var〉;
〈lit id〉 ::= 〈literal〉 | 〈lit var〉;
〈comm〉 ::= 〈c name〉(〈r id〉) ;

〈cond1〉 ::= [not] 〈comm〉 | [not] 〈comm〉 , 〈cond1〉 ;

〈cond2〉 ::= 〈kb conds〉 | E : 〈ev conds〉 | 〈kb conds〉 , E : 〈ev conds〉;
〈kb conds〉 ::= 〈kb cond〉 | 〈kb cond〉 , 〈kb conds〉;
〈kb cond〉 ::= 〈r id〉 | 〈lit id〉 ;

〈ev conds〉 ::= 〈ev cond〉 | 〈ev cond〉 , 〈ev conds〉;
〈ev cond〉 ::= 〈lit id〉 | 〈r id〉 ;

Table 1.Syntax of an update statement inEPI.

Definition 3.2. A knowledge stateKS = 〈KB ;E1, . . . , En〉 consists of an ELPKB (theinitial knowledge
base)and a sequenceE1, . . . , En of eventsEi ∈ EC, i ∈ {1, . . . , n}. For i ≥ 0, KS i = 〈KB ;E1, . . . , Ei〉
is the projection ofKS to the firsti events.

Intuitively, KS describes a concrete evolution of the agent’s knowledge, starting from its initial knowl-
edge base. When a new eventEi occurs, the current knowledge stateKS i−1 = 〈KB ;E1, . . . , Ei−1〉
changes toKS i = 〈KB ;E1, . . . , Ei−1, Ei〉, which requests the agent to incorporate the event into its
knowledge base and adapt its belief set.

The procedure for adapting the belief setBel(KS i−1) on arrival ofEi is illustrated in Figure 1. In-
formally, at stepi of the knowledge evolution, given the belief setBel(KS i−1) and the knowledge state
KS i−1 = 〈KB ;E1, . . . , Ei−1〉, together with the new eventEi, the new belief setBel(KS i) is computed
in terms of the update policyU . First, a setUi of executable commandsis determined fromU . After-
wards, given the previously computed setsU1, . . . , Ui−1, the sequence(KB ;U1, . . . , Ui) is compiled by
the transformationtr into the update sequenceP = (P0, P1, . . . , Pi). Then,Bel(KS i) is given byBel(P).

3.2 LanguageEPI: Syntax

The languageEPI generalizes the update specification language LUPS [2], by allowing update statements
to depend on other update statements in the sameEPI program, and more complex conditions on both the
current belief set and the actual event (note that LUPS has no notion of external event).

The syntax ofEPI is given in Table 1. In what follows, we usecmd to denote update commands andρ
may stand for rules or rule variables. In general, anEPI statement may have the form

cmd1(ρ1) if [not]cmd2(ρ2), . . . , [not]cmdm(ρm)[[c1,E :c2]]

which expresses conditional assertion or retraction of a ruleρ1, expressed bycmd1(ρ1), depending on other
commands[not]cmd2(ρ2), . . . ,[not]cmdm(ρm), and conditioned with the proviso whetherc1 belongs to
the current belief set and whetherc2 is in the actual event. The basicEPI commands are the same as
in LUPS (for their meaning, see also [2]), plus the additional commandignore, which allows to skip
unintended updates from the environment, which otherwise would be incorporated into the knowledge
base. Each condition in[[·]], both of the formc1 andE :c2, can be substituted by a list of such conditions.
Note that in LUPS no conditions on rules and external events can be explicitly expressed, nor dependencies
between update commands. We also extend the language by permitting variables for rules and literals in
the update commands, ranging over the universe of the current belief set and of the current event (syntactic
safety conditions can be easily checked). By convention, variable names start with capital letters.

Definition 3.3. Anupdate policyU is a finite set ofEPI statements.



For instance, theEPI statement

assert(R) if not ignore(R)[[E : R]] (2)

means that all rules in the event have to be incorporated into the new knowledge base, except if it is explicit
specified that the rule is to be ignored. Similarly, the commandretract forces a rule to be deactivated. The
optioneventstates that an assertion or retraction has only temporary value and is not supposed to persist
by inertia in subsequent steps. The exact meaning of the different update commands will be made clear in
the next section.

Example 3.1.Consider a simple agent selecting Web shops in search for some specific merchandise. Sup-
pose its knowledge base,KB , contains the rules

r1 : query(S)← sale(S), up(S),not ¬query(S);
r2 : try query ← query(S);
r3 : notify ← not try query ;

and a factr0 : date(0) is an initial time stamp. Here,r1 expresses that a shopS, which has a sale and
whose web site is up, is queried by default, andr2, r3 serve to detect that no site is queried, which causes
‘notify ’ to be true. Assume that an event,E, might be any consistent sets of facts or ground rules of the
form sale(s) ← date(t), stating that shops has a sale on datet, such thatE contains at most one time
stampdate(·).

An update policyU might be defined as follows. Assume it contains the incorporate-by-default state-
ment(2), as well as:

always(sale(S)← date(T )) if assert(sale(S)← date(T ));
cancel(sale(S)← date(T ))[[date(T ), T 6= T ′,E :date(T ′)]];
retract(sale(S)← date(T ))[[date(T ), T 6= T ′,E :date(T ′)]].

Informally, the first statement repeatedly confirms the information about a future sale, which guarantees
that it is effective on the given date, while the second statement revokes this. The third one removes infor-
mation about a previously ended sale(assuming the time stamps increase). Furthermore,U includes also
the following statements:

retract(date(T ))[[date(T ), T 6= T ′,E : date(T ′)]];
ignore(sale(s1))[[E : sale(s1)]];
ignore(sale(s1)← date(T ))[[E : sale(s1)← date(T )]].

The first statement keeps the time stampdate(t) in KB unique, and removes the old value. The other
statements simply state that sales information about shops1 is ignored.

3.3 LanguageEPI: Semantics

According to the overall structure of the semantics ofEPI, as depicted in Figure 1, at stepi, we first
determine the executable commandUi given the current knowledge stateKS i−1 = 〈KB ;E1, . . . , Ei−1〉
and its associated belief setBel(KS i−1) = Bel(Pi−1), wherePi−1 = (P0, . . . , Pi−1). To this end, we
evaluate the update policyU over the new eventEi and the belief setBel(Pi−1).

Let G(U) be the grounded version ofU over the languageA underlying the given update sequence and
the received events. Then, the setG(U)i of reduced update statements at stepi is given by

G(U)i = {cmd(ρ) if C1 | cmd(ρ) if C1[[C2]] ∈ G(U), where C2 = c1, . . . , cl, E :r1, . . . , rm,
and such thatBel(Pi−1) |= c1, . . . , cl andr1, . . . , rm ∈ Ei}.

The update statements inG(U)i are thus of the form

cmd1(ρ1) if [not] cmd2(ρ2), . . . , [not] cmdm(ρm).



Semantically, we interpret them as ordinary logic program rules

cmd1(ρ1)← [not ]cmd2(ρ2), . . . , [not ]cmdm(ρm).

The programΠU
i is the collection of all these rules, givenG(U)i, together with the following constraints,

which exclude contradictory commands:

← assert[ event](R), retract[ event](R);
← always[ event](R), cancel(R).

Definition 3.4. LetKS = 〈KB ;E1, . . . , En〉 be a knowledge state andU an update policy. Then,Ui is a
set of executable update commands at stepi (i ≤ n) iff Ui is an answer set of the groundingG(ΠU

i ) of
ΠU

i .

Since update statements do not contain strong negation, executable update commands are in factstable
modelsof G(ΠU

i ) [8]. Furthermore, since programs may in general have more than one answer set, or no
answer set at all, we assume a suitableselection function, Sel(·), returning a particularUi if an answer
set exists, or, otherwise, returningUi = {assert(⊥i ← )}, where⊥i is a special atom not occurring
elsewhere. These atoms are used for signaling that the update policy encountered inconsistency. They can
easily be filtered out fromBel(·), if needed, restricting the outcomes of the update to the original language.

Next we compile the executable commandsU1, . . . , Ui into an update sequence(P0, . . . , Pi), serving
as input for the belief functionBel(·). This is realized by means of a transformationtr(·), which is a
generic and adapted version of a similar mapping introduced by Alfereset al. [2]. In what follows, we
assume a suitable naming function for rules in the update sequence, enforcing that each ruler is associated
with a unique namenr.

Definition 3.5. Let KS = 〈KB ;E1, . . . , En〉 be a knowledge state andU an update policy. Then, for
i ≥ 0, tr(KB ;U1, . . . , Ui) = (P0, P1, . . . , Pi) is inductively defined as follows, whereU1, . . . , Ui are the
executable commands according to Definition 3.4:

i = 0 : SetP0 = {H(r) ← B(r), on(nr) | r ∈ KB} ∪ {on(nr) ← | r ∈ KB}, whereon(·) are new
atoms. Furthermore, initialize the setsPC0 of persistent commandsandEC0 of effective commands
to ∅.

i ≥ 1 : PCi, ECi andPi are as follows:

ECi = {cmd(r) | cmd(r) ∈ Ui ∧ ignore(r) /∈ Ui}

PCi = PCi−1 ∪ {always(r) | always(r) ∈ ECi}
∪ {always event(r) | always event(r) ∈ ECi ∧ always(r) /∈ ECi ∪ PCi−1}
\ ({always event(r) | always(r) ∈ ECi} ∪ {always[ event](r) | cancel(r) ∈ ECi});

Pi = {on(nr)← ,H(r)← B(r), on(nr) |
assert[ event](r) ∈ ECi ∨ always[ event](r) ∈ PCi}

∪ {on(nr)← | retract event(r) ∈ ECi−1 ∧ retract[ event](r) /∈ ECi}
∪ {¬on(nr)← | (retract[ event](r) ∈ ECi ∧ always[ event](r) /∈ PCi)

∨ (cancel(r) ∈ ECi ∧ always event(r) ∈ PCi−1 ∧ assert[ event](r) /∈ ECi)
∨ (assert event(r) ∈ ECi−1 ∧ always[ event](r) /∈ PCi

∧ assert[ event](r) /∈ ECi)}.

On the basis of this compilation, we can define the belief set for a knowledge stateKS :

Definition 3.6. Let KS and U be as in Definition 3.5, and letU1, . . . , Un be the corresponding exe-
cutable commands obtained from Definition 3.4. Then, thebelief setof KS is given byBel(KS ) =
Bel(tr(KB ;U1, . . . , Un)).

Example 3.2.Reconsider Example 3.1 and suppose the eventE1 = {sale(s0), date(1)} occurs atKS =
〈KB〉. Then,



G(U)1 = {assert(sale(s0)) if not ignore(sale(s0)),
assert(date(1)) if not ignore(date(1)), retract(date(0))}.

The corresponding programΠU
1 has the single answer set

{assert(sale(s0)), assert(date(1)), retract(date(0))},

which is compiled, viatr(·), to PC1 = PC0 \ {assert [event](date(0))} = ∅ andP1 = {sale(s0) ←
on(r′1); on(r′1) ← ; date(1) ← on(r′2); on(r′2) ← ; ¬on(r0) ← }. As easily seen, the belief set
Bel(〈KB , E1〉) = Bel((P0, P1)) containssale(s0 ) andquery(s0).

4 Properties

In this section, we discuss some properties ofBel(KS ) for particular update policies, using the defini-
tion of Bel(·) based on the update answer sets approach of [6], as explained in Section 2. We stress that
the properties given below are also satisfied by similar instantiations ofBel(·), like e.g., dynamic logic
programming [1].

First, we note some basic properties:

– If U = ∅ (empty policy), thenKB will never be updated; the belief set is independent ofE1, . . . , En,
and thusstatic. Hence,Bel(KS i) = Bel(KB), for eachi = 1, . . . , n.

– If U = {assert(R)[[E :R]]} (unconditional assert policy), then all rules contained in the received
events are directly incorporated into the update sequence. Thus,Bel(KS i) = Bel((KB , E1, . . . , Ei)),
for eachi = 1, . . . , n.

– If Ui is empty, then the knowledge is not updated, i.e.,Pi = ∅. Thus,Bel(KS i) = Bel(KS i−1).
– Similarly, if Ui = {assert(⊥i)← }, thenBel(KS i) = Bel(KS i−1).

Physical removal of rules An important issue is the growth of the agent’s knowledge base, as the modular
construction of the update sequence through transformationtr(·) causes some rules and facts to be repeat-
edly inserted. This is addressed next, where we discuss the physical removal of rules from the knowledge
base.

Lemma 4.1. Let P = (P0, . . . , Pn) be an update sequence. For everyr ∈ Pi, r
′ ∈ Pj with i < j,

the following holds: if(i) r = r′, or (ii) r = L ← and r′ = ¬L ← , or (iii ) r′ = L ← such
that no ruler′′ ∈ Pk with H(r′′) = ¬L exists, wherek ∈ {j + 1, . . . , n}, and ¬L ∈ B(r), then
BelA(P) = BelA(P0, . . . , Pi−1, Pi \ {r}, Pi+1, . . . , Pn).

The following property holds:

Theorem 4.1. LetKS be a knowledge state andBel(KS ) = Bel(P), whereP = (P0, . . . , Pn). Further-
more, letP∗ result fromP after repeatedly removing rules as in Lemma 4.1, and letP− = (P−

0 , . . . , P−
n ),

where

P−
i = {H(r)← B(r) \ {on(nr)} | r ∈ P∗i , on(nr)←∈ P∗} \ {on(ns)←| on(ns)←∈ P}.

Then,BelA(KS ) = BelA(P−).

Thus, we can purge the knowledge base and remove duplicates of rules, as well as all deactivated
(retracted) rules.

History Contraction Another relevant issue is the possibility, for some special case, tocontract the agent’s
update history, and compute its belief set at stepi merely based on information at stepi − 1. Let us call
U a factual assert policyif all assert[ event] and always[ event] statements inU involve only facts. In
this case, the compilationtr(·) for a knowledge stateKS = 〈KB ;E1, . . . , En〉 can be simplified: (1)
P0 = KB , and (2) the construction of eachPi involves factsL ← and¬L ← instead ofon(nr) ← and
¬on(nr)← , respectively.

For such sequences, the following holds:



Lemma 4.2. LetP = (P0, . . . , Pn) be an update sequence such thatPi contains only facts, for1 ≤ i ≤ n.
Then,BelA(P) = BelA(P0, Pun

), wherePu1 = P1, andPui+1 = Pi+1∪ (Pui
\{L← | ¬L←∈ Pi+1}).

We can thus assert the following proposition for history contraction:

Theorem 4.2. LetU be a factual assert policy andP = (P0, . . . , Pn) be the compiled sequence obtained
fromKS by the simplified method described above. Then,BelA(KS ) = BelA((KB , Pun

)), wherePun
is

as in Lemma 4.2.

Computational Complexity Finally, we briefly address the complexity of reasoning about a knowledge
stateKS . An update policyU is calledstratified, if for all EPI statementscmd(ρ) if C1[[C2]] ∈ U , the
associated rulescmd1(ρ) ← C ′

1 form a stratified logic program, whereC ′
1 results fromC1 by replacing

theEPI declarationnot by default negationnot .
For stratifiedU , anyΠU

i has at most one answer set, thus the selection functionSel(·) is redundant.
Otherwise, the complexity cost ofSel(·) must be taken into account. IfSel(·) is unknown, we consider
all possible return values (i.e., all answer sets ofΠU

i ) and thus, in a cautious reasoning mode, all possible
Bel(KS ) = Bel((P0, . . . , Pn)) from Figure 1. Clearly, decidingr′ ∈ Bel((Q0, . . . , Qm)) is for update
answer sets in coNP; it is polynomial, ifQ0 is stratified and eachQi, 1 ≤ i ≤ m, contains only facts.

Theorem 4.3. LetBel(·) be the update answer set semantics, andSel(·) polynomial-time computable with
an NP oracle. Then, given a ground ruler and a ground knowledge stateKS = 〈KB ;E1, . . . , En〉, the
problem of deciding whetherr ∈ Bel(KS ) is ΠP

2 -hard. If the update policyU is stratified, then the problem
is PNP-hard. Moreover, if the update policy is factual and stratified, and the initial knowledge baseKB is
stratified as well, then the problem is polynomial.

Similar results hold, e.g., for dynamic logic programming.
The results can be intuitively explained as follows. EachUi andPi as in Figure 1 can be computed

iteratively, where at stepi polynomially many problemsr′ ∈ Bel((P0, . . . , Pi−1)) must be solved to con-
structΠU

i . FromUi = Sel(ΠU
i ) and previous results,Pi can be computed in polynomial time. SincePi

contains at most|U| rules, stepi is feasible in polynomial time with an NP oracle. Thus,P = (P0, . . . , Pn)
is polynomially computable with an NP oracle, andr ∈ Bel(P) is decided with another oracle call. Updat-
ing a stratifiedP0 such that only sets of factsP1, P2, . . . may be added preserves polynomial decidability
of r′ ∈ Bel((P0, . . . , Pi−1)); this explains the polynomial result. Otherwise,PNP-hard problems such as
computing the lexicographically maximal model of a CNF formula [15] are easily reduced to the problem.

For general update policies, multiple answer sets are possible, and each possible result ofSel(ΠU
i ) can

be nondeterministically guessed and verified in polynomial time. This leads tocoNPNP = ΠP
2 complexity.

5 Implementational Issues

An elegant and straightforward realization of update policies is possible through IMPACT agent programs.
IMPACT [16] is a platform for developing software agents, which allows to build agents on top of legacy
code, i.e., existing software packages, that operates on arbitrary data structures. Thus, in accordance with
our approach, we can design ageneric implementationof our framework, without committing to a particular
update semanticsBel(·).

In fact, since every update policyU is semantically reduced to a logic program, the corresponding
executable commands can be computed using well-known logic programming engines likesmodels [14],
DLV [7] or DeRes [5]. Hence, we may assume that a software package,SP, for updating and querying
a knowledge baseKB is available, and thatKB can be accessed through a functionbel() which returns
the current belief setBel(KS ). Moreover, assume thatSP (or another package) has a functionevent(),
which lists all rules of a current event. Then, an update policyU can be represented in IMPACT as follows.

(1) Conditions on the belief set and the event can be modeled through IMPACTcode call atoms, i.e.,
atomsin(t, bel()), not in(t, bel()), andin(t, event()), wheret is a constantr or a variableR. In
IMPACT, in(r, f()) is true if constantr is in the result returned byf(); a variableR is bound to allr such
thatin(r, f()) is true; ‘not in’ is negation.



(2) Update commands can be easily represented as IMPACTactions. An action is implemented by a
body of code in any programming language (e.g., C); its effects are specified in terms of add and delete
lists (sets of code call atoms). Thus, actions likeassert(R), retract(R), etc., whereR is a parameter, are
introduced.

(3) EPI statements are represented as IMPACT action rules

Do(cmd1(ρ1)) ← [¬]Do(cmd2(ρ′)), . . . , [¬]Do(cmdm(ρ′)), code call atoms(cond),

wherecode call atoms(cond) is the list of the code call atoms for the conditions on the belief set and the
event incond as described above.

The semantics of IMPACT agent programs is defined in terms ofstatus sets. The notion of areasonable
status setS is equivalent to a stable model of a logic program, and prescribes the agent to perform all actions
α whereDo(α) is in S. Thus,S represents the executable commandsUi in Figure 1 according toU , and
the respective action execution affects the computation ofPi via tr(·).

6 Related Work and Conclusion

Our approach is similar in spirit to the work in active databases (ADBs), where the dynamics of a database
is specified throughevent-condition-action rulestriggered by events. In contrast to our context, ADBs have
in general no declarative semantics, and only one rule at a time fires, maybe causing successive events. In
[3], a declarative characterization of ADBs is given, in terms of a reduction to logic programs, by using
situation calculus notation.

Our language for update policies is also related toaction languages, which can be compiled to logic
programs as well (cf., e.g., [11]). A change to the knowledge base may be considered as an action, where the
execution of actions may depend on other actions and conditions. However, action languages are tailored
for planning and reasoning about actions, rather than reactive behavior specification. Furthermore, a state
is, essentially, a set of literals rather than a belief set as we define it. Investigating the relationship of our
framework to these languages in detail, and in particular concerning embeddings, is an interesting issue for
further research.

A development in the area of action languages, with purposes similar to those ofEPI, is the policy
description languagePDL, introduced by Loboet al. [12]. PDL is a declarative language which extends
traditional action languages with the notion of sequences of events, and offers the possibility of specifying
actions as reactive behavior in response to such external events. APDL policy is a collection ofevent-
condition-action rules, interpreted as a function associating a sequence of events with a set of actions. The
relation between the semantics ofEPI and that ofPDL is worth being further investigated.

TheEPI language could be extended with several features:
(1) Special atomsin(r) telling whetherr is actually part ofKB (i.e., activated byon(nr)), which allow

to access the “extensional” part ofKB .
(2) Rule terms involving literal constants and variables, e.g., “H ← up(s1), B”, whereH,B are vari-

ables andup(s1) is a fixed atom, providing access to the structure of rules. Combined with (1), commands
such as “remove all rules involvingup(s1)” can then be conveniently expressed.

(3) More expressive conditions on the knowledge base are conceivable, requesting for more complex
reasoning tasks, and possibly taking temporal evolution into account. E.g., “prev(a)” expressing thata
was true at the previous stage.

Our generic framework, which extends approaches to logic program updates, represents a convenient
platform for declarative update specifications and could also be fruitfully used in several applications.
Exploring these issues is part of our ongoing research.
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