Specifying Update Policies for Nonmonotonic Knowledge Bases

Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits

Institut und Ludwig Wittgenstein Labotiif Informationssysteme,
Technische Universit Wien, Favoritenstraf3e 9-11, A-1040 Wien, Austria
{eiter,michael,giuliana,tompits }@kr.tuwien.ac.at

Abstract. Recently, several approaches for updating knowledge bases represented as logic programs
have been proposed. We present a generic framework for declarative specifications of update policies,
which is built upon such approaches. It extends the LUPS language for update specifications, and
incorporates the notion of events into the framework. An update policy allows an agent to flexibly
react upon new information, arriving as an event, and perform suitable changes of its knowledge base.
The framework compiles update policies to logic programs by means of generic translations, and can
be instantiated in terms of different concrete update approaches. It thus provides a flexible tool for
designing adaptive reasoning agents.

1 Introduction

Updating knowledge bases is an important issue for the realization of intelligent agents, since, in general,
an agent is situated in a changing environment, and has to adjust its knowledge base when new information
is available. While for classical knowledge bases this issue has been well-studied, approaches to update
nonmonotonic knowledge bases, like logic programs [1, 6, 18, 10] or default theories [17], are more recent.

The problem of updating logic programs, on which we focus here, deals with the incorporation of an
updateP, given by a rule or a set of rules, into the current knowledge Bé&8eAccordingly, sequences
Py, ..., P, ofupdates lead to sequendésB, P, . .., P,) of logic programs which are given a declarative
semantics. To broaden this approach, Alfertal. [2] have proposed the LUPS update language, in which
updates consist of sets gpdate commandSuch commands permit to specify change&# in terms of
adding or removing rules from it. For instance, a typical commangi®rt a <« b when ¢, which says
that rulea < b should be added t& B if cis currently true in it. Similarlyretract b states thab must
be eliminated fromK B, without any further condition.

However, a certain limitation of LUPS and the above formalisms is that while they haddmc
changes ofK B, they are not conceived for handlingyat unknowrupdate, which will arrive as the envi-
ronment evolves. In fact, these approaches lack the possibility to specify how an agent should react upon the
arrival of such an update. For example, we would like to express that, on arrival of thesiadty (shop;),
this should be added t& B, while best-buy information about other shops is removed fiahh

In this paper, we address this issue and present a declarative framework for specifying the update
behavior of an agent. The agent receives new information in terms of a set of rules, vieaxahpand
adjusts itsk B according to ampdate policywhich consists of statements in a declarative language.

Our main contributions are briefly summarized as follows:

(1) We present @enericframework for specifying update behavior, which can be instantiated with
different update approaches to logic programs. This is facilitatedlayeaed approachAt the top level,
the update policy is evaluated, given an event and the agent’s current belief set, to single out the update
commandg$/ which need to be performed diB. At the next layer[J is compiled to a seP of rules to be
incorporated td{B; at the bottom level, the updated knowledge base is represented as a sequence of logic
programs, serving as input for the underlying update semantics for logic programs, which determines the
new current belief set.

(2) We define a declarative language for update policies, which generalizes LUPS by various features.
Most importantly, access to incoming events is facilitated. For example, the statement

retract(best_buy(shop;))[E : best_buy(shops)]

expresses that ifest_buy(shopz) is told, thenbest_buy(shop;) is removed from the knowledge base.
Statements like this may involve further conditions on the current belief set, and other commands to be
executed (which is not possible in LUPS). The language thus enables the flexible handling of events,
such as simply recording changes in the environment, skipping uninteresting updates, or applying default
actions.

(3) We analyze some properties of the framework, using the update answer set semantics of [6] as
a representative of similar approaches. In particular, useful properties concéfBingaintenance are
explored, and the complexity of the framework is determined. Moreover, we describe a possible realization
of the framework in the agent system IMPACT [16], providing evidence that our approach can serve as a
viable tool supporting the development of adaptive reasoning agents.

2 Preliminaries

An extended logic progrartELP, or simplyprogran) is a finite setP of rulesr of the form
Lo« Ly,..., Ly, not Lipi1,...,n0t Ly, Q)

where eachl; is a literal, i.e., either an atom or a strongly negated atomA, andnot denotesveak(or
defaul) negation The literal L, is calledheadof r and is denoted byi (r). We allow the case wherk,
may be absent, in which caseés said to be @onstraint The set

B(r)={L1,...,Lm,not Lyyy1,...,n0t L,}

is thebodyof r. We defineB*(r) = {L1,..., Ly} andB~(r) = {Lyy1,---, Ln}. We callr afact if
B(r) = (. The complement of a literdl is A if L = -A and—A if L = A; the complement oL is
denoted by-L. For any sefS of literals,—S = {-L | L € S}. In particular,Lit 4 = AU —A is the set of
all literals overA. £ 4 denotes the set of all rules constructible from the literaliiry .

The notion of astratifiedlogic program is defined as usual (viedwJ —.4 as atoms and add constraints
— A,—-Aforall A € A). Anupdate progranis a sequence = (P, ..., P,) of ELPSP;, wheren > 1.

We adopt an abstract view of the semantics of ELPs and update programs, given as a mBappPjng
which associates with every sequerita setBel(P) C L 4 of rules; intuitively, Bel(P) are the conse-
quences oP. Different instantiations ofBel(-) are possible, according to various proposals for update
semantics in the literature (e.g., [1, 18, 10, 6, 13]). We only assume3i#iét) has some elementary prop-
erties which these or any other “reasonable” semantics satisfies. In part@ylar, Bel(P) must hold,
and the following property must be satisfied: givan— € Bel(P) and A € B(r), thenr € Bel(P)
iff H(r) «— B(r)\ {A} € Bel(P). As usual, the semantics of prograr'sand update sequences
with variables is defined in terms of their grounded versig(®) andG(P) over the Herbrand universe,
respectively.

We use here for illustration the answer set semantics for update programs from [6], which coincides
with the semantics of inheritance programs in [4]. iiterpretationis any set/ C A which contains no
complementary pair of literals. A literdl istruein I if L € I. Aswell,not Listrueinl if L ¢ I. A setS
of literals or weakly negated literals is trueiinif any element inS is true inI. A rule r is true in[if either
H(r) € I or some element fromB(r) is not true inI. A programP is true inI ifany r € Pistrue inI (/
is calledmodelof P). We write |= « to express that is true in/, wherea is one of the objects above.

An interpretationS C Lit 4 is a (consistentinswer sebf an ELP P [9] iff it is a minimal model of
thereduct P%, defined by

PS ={H(r) — BT (r)|r € PandB~(r) NS = 0}.

AS(P) denotes the collection of all answer setsrof

Answer sets for an update progrdn= (Py,..., P,) are defined in terms of the answers sets of a
single ELP as follows. Theejection set Rej (S, P), of P with respect to the interpretatiot is given by
Rej(S,P) = Ui, Rej;(S,P), whereRej, (S,P) = 0, and, forn > i > 1, Rej,;(S,P) contains every
ruler € P; such thatd (r') = —H(r) andS |= B(r) U B(r'), for somer’ € P; \ Rej;(S,P) with

Bel(KSi-1) Belief set at step — 1

KBE,...E;_ E; Knowledge staté(s;

lJu update policy

KBU;...U;1 U; Executable commands

[l tr compilation

Py Py... P4 P; Update sequence

|| Bel update semantics

Bel(KS;) = Bel((Po, ..., P;)) Belief set at step

Fig. 1. From knowledge state to belief set at step

j > i. That is, Rej (S, P) contains the rules fror® which are rejected on the basis of unrejected rules
from later updates. Ther; C Lit 4 is ananswer sebf P = (Py,..., B,) iff S is an answer set of the
programP = | J, P; \ Rej(S,P). We denote the set of all answer set®dfy AS(P). Sincen = 1 implies
Rej(S,P) = 0, the semantics properly extends the answer set semantics. A syntactic transformBtion of
into an ELP realizing this semantics is given in [6].

Example 2.1.Let Py = {b <« nota,a «— }, P, = {-a «— ,c+« },andP, = {-c <« }. Then, P
has the single answer s&§ = {a} with Rej(So, Po) = 0; (P, P1) has answer sef; = {—a, ¢,b} with
Rej(S1, (Po, P1)) = {a < }; and (P, Py, P») possesseSy = {—a, ¢, b} as unique answer set with
Rej(Sg, (Po,P1, PQ)) = {C —,a <—}

Thebelief setBel 4 (P) is the set of all rules entailed under cautious answer set semantics, i.e.,
Bela(P)={reL4s|SErforalsSec AS(P)}.

We shall drop the subscriptd” if no ambiguity can arise. With a slight abuse of notation, for a litdral
we write L € Bel4(P) if L < € Bel 4(P).

3 Update Policies

We first describe our generic framework for event-based updating, and afterwakRR| laeguage (“the
language around”) for specifyingpdate policies

3.1 Basic Framework

We start with the formal notion adventand of theknowledge statef an agent.

Definition 3.1. Anevent classs a collection£C C 2£4 of finite sets of rules. The membdise £C are
calledevents

Informally, £C describes the possible events an agent may witness. For example, the colfection
all sets of facts from a subsgf C A of atoms may be an event class. In what follows, we assume that an
event clasgC has been fixed.

stat) (comm) [if (condl) | [[{cond2)] ;

(

(ccname) = assert[event| | retract[_event] | always[_event] | cancel | ignore ;
(r_id) = (rule) | {rvar);

(lit_id) := (literal) | (lit_var);

(comm) = (cname)((rzid)) ;

(condl) := [not] (comm) | [not] (comm) , {(condl) ;

(cond2) = (kb_conds) | E: (ev_conds) | (kb-conds) , E : (ev_conds);
(kb_conds) ::= (kb_cond) | (kb_cond) , (kb_conds});

(kb_cond) = (rud) | (lit-id) ;

(ev_conds) ::= (ev_cond) | (ev_cond) , (ev_conds);

(

ev_cond) = (lit_id) | (r-id) ;

Table 1. Syntax of an update statementHR|.

Definition 3.2. Aknowledge stat&S = (KB; Ey, ..., E,) consists of an ELXB (theinitial knowledge
base)and a sequencey, ..., E, ofevents; € EC,i € {1,...,n}. Fori >0, KS; = (KB; E:, ..., E;)
is the projection ofS to the firsti events.

Intuitively, K'S describes a concrete evolution of the agent’s knowledge, starting from its initial knowl-
edge base. When a new evdit occurs, the current knowledge stak&; 1 = (KB; F1,...,E;—1)
changes tokKS; = (KB; Es,...,E;_1, E;), which requests the agent to incorporate the event into its
knowledge base and adapt its belief set.

The procedure for adapting the belief de#l(K.S;_1) on arrival of E; is illustrated in Figure 1. In-
formally, at step of the knowledge evolution, given the belief d8¢/(K'S;_;) and the knowledge state
KS,_1 =(KB;F,,...,E;_1), together with the new eveifi;, the new belief seBel(KS;) is computed
in terms of the update policy/. First, a setl/; of executable commands determined froni{. After-
wards, given the previously computed séts . .., U;_1, the sequencéKB; Uy, ..., U;) is compiled by
the transformatiomr into the update sequenBe= (P, P, ..., P;). Then,Bel(KS;) is given byBel(P).

3.2 LanguageEPI: Syntax

The languag€&PI generalizes the update specification language LUPS [2], by allowing update statements
to depend on other update statements in the dePh@rogram, and more complex conditions on both the
current belief set and the actual event (note that LUPS has no notion of external event).

The syntax oEPI is given in Table 1. In what follows, we use:d to denote update commands and
may stand for rules or rule variables. In generalE&h statement may have the form

emdy (p1) if [not]emds(p2), . . ., [notlemd,, (pm)[c1, E :c2]

which expresses conditional assertion or retraction of gaulexpressed bymd; (p1), depending on other
commandsnot]emda(p2), . . . [not]emd,, (p.), @and conditioned with the proviso whethgrbelongs to

the current belief set and whether is in the actual event. The basi®| commands are the same as

in LUPS (for their meaning, see also [2]), plus the additional comnigndre, which allows to skip
unintended updates from the environment, which otherwise would be incorporated into the knowledge
base. Each condition ift]], both of the forme; andE :¢5, can be substituted by a list of such conditions.

Note thatin LUPS no conditions on rules and external events can be explicitly expressed, nor dependencies
between update commands. We also extend the language by permitting variables for rules and literals in
the update commands, ranging over the universe of the current belief set and of the current event (syntactic
safety conditions can be easily checked). By convention, variable names start with capital letters.

Definition 3.3. Anupdate policy/ is a finite set oEPI statements.

For instance, th&PI statement
assert(R) if not ignore(R)[E : R] 2

means that all rules in the event have to be incorporated into the new knowledge base, except if it is explicit
specified that the rule is to be ignored. Similarly, the comnratidct forces a rule to be deactivated. The
optioneventstates that an assertion or retraction has only temporary value and is not supposed to persist
by inertia in subsequent steps. The exact meaning of the different update commands will be made clear in
the next section.

Example 3.1.Consider a simple agent selecting Web shops in search for some specific merchandise. Sup-
pose its knowledge bas&.B, contains the rules

r1: query(S) «— sale(S), up(S), not ~query(S);
ro 1 try_query «— query(S);
r3 notify <« not try_query;

and a factry : date(0) is an initial time stamp. Here;; expresses that a shdfy which has a sale and
whose web site is up, is queried by default, apdr; serve to detect that no site is queried, which causes
‘notify’ to be true. Assume that an evert, might be any consistent sets of facts or ground rules of the
form sale(s) < date(t), stating that shop has a sale on date such thatF' contains at most one time
stampdate(-).

An update policy/ might be defined as follows. Assume it contains the incorporate-by-default state-
ment(2), as well as:

always(sale(S) — date(T)) if assert(sale(S) «— date(T));
cancel(sale(S) — date(T))[date(T), T # T, E: date(T")];
retract(sale(S) « date(T))[date(T),T # T',E: date(T")].

Informally, the first statement repeatedly confirms the information about a future sale, which guarantees
that it is effective on the given date, while the second statement revokes this. The third one removes infor-
mation about a previously ended séssuming the time stamps increadeurthermorel/ includes also

the following statements:

retract(date(T))[date(T), T # T',E : date(T")]};
ignore(sale(s1))[E : sale(s1)];
ignore(sale(s1) < date(T))[E : sale(s1) < date(T)].

The first statement keeps the time staige(¢) in KB unique, and removes the old value. The other
statements simply state that sales information about shapignored.

3.3 LanguageEPI: Semantics

According to the overall structure of the semanticsE®fl, as depicted in Figure 1, at stépwe first
determine the executable commaliggiven the current knowledge statéS;, 1 = (KB; F1,...,E;—1)
and its associated belief sBel(KS;_1) = Bel(P;—1), whereP;_; = (Fy,...,P;_1). To this end, we
evaluate the update poliéy over the new evenE; and the belief seBel(P;_1).

Let G(U) be the grounded version &f over the languagel underlying the given update sequence and
the received events. Then, the §¢t/)* of reduced update statements at stepgiven by

GU)" = {emd(p) if C1 | emd(p) if C1[[Co]] € G(U), where Cy = c1,...,c;, BEiry, ... T,
and such thaBel(Pl_l) ': Cly...,C| andT‘l, o,y € El}

The update statementsdi/)? are thus of the form

emdy(p1) if [not] emda(p2), . . ., [not] emd,, (pm).

Semantically, we interpret them as ordinary logic program rules
emdy(p1) < [notlemda(p2), . . ., [not Jemd, (pm)-

The programi7¥ is the collection of all these rules, giveiii/)?, together with the following constraints,
which exclude contradictory commands:

— assert[_event|(R), retract[_event|(R);
— always[_event]|(R), cancel(R).

Definition 3.4. Let KS = (KB; Ey, ..., E,) be a knowledge state adlan update policy. Therj; is a
set of executable update commands at stép < n) iff U; is an answer set of the groundigg(17¢) of
Y.

Since update statements do not contain strong negation, executable update commands ataldhefact
modelsof G(I1%) [8]. Furthermore, since programs may in general have more than one answer set, or no
answer set at all, we assume a suitatBéection functionSel(-), returning a particulat/; if an answer
set exists, or, otherwise, returniig = {assert(l; <)}, where_l; is a special atom not occurring
elsewhere. These atoms are used for signaling that the update policy encountered inconsistency. They can
easily be filtered out fronBel(-), if needed, restricting the outcomes of the update to the original language.

Next we compile the executable commarids. . ., U; into an update sequen¢é&,, ..., P;), serving
as input for the belief functioBel(-). This is realized by means of a transformatiet-), which is a
generic and adapted version of a similar mapping introduced by Altdras [2]. In what follows, we
assume a suitable naming function for rules in the update sequence, enforcing that eachas$®ociated
with a unique name,,..

Definition 3.5. Let KS = (KB; Fy, ..., E,) be a knowledge state ardd an update policy. Then, for
i >0,tr(KB;Uy,...,U;) = (Po, P1,..., P;) is inductively defined as follows, whdg, ..., U; are the
executable commands according to Definition 3.4:

i=0: SetPy = {H(r) — B(r),on(n,) | r € KB} U {on(n,) — | »r € KB}, whereon(-) are new
atoms. Furthermore, initialize the sef&’|, of persistent commandmd EC) of effective commands
to 0.

i1>1: PC;, EC; and P; are as follows:

EC; ={emd(r) | emd(r) € U; Aignore(r) ¢ U;}

PC; = PC;_1 U{always(r) | always(r) € EC;}
U {always_event(r) | always_event(r) € EC; A always(r) ¢ EC; U PC;_1}
\ ({always_event(r) | always(r) € EC;} U {always[_event|(r) | cancel(r) € EC;});

P, ={on(n,) — ,H(r) — B(r),on(n,) |
assert[_event|(r) € EC; V always[_event|(r) € PC;}
U {on(n,) < | retract_event(r) € EC;_; A retract|_event|(r) ¢ EC;}
U {-on(n,) < | (retract|_event|(r) € EC; A always|_event|(r) ¢ PC;)
V (cancel(r) € EC; A always_event(r) € PC;_; A assert[_event|(r) ¢ EC;)
V (assert_event(r) € EC;_; A always|_event|(r) ¢ PC;
A assert[_event](r) ¢ EC;)}.

On the basis of this compilation, we can define the belief set for a knowledgd&iate

Definition 3.6. Let KS and U/ be as in Definition 3.5, and Idt/,...,U, be the corresponding exe-
cutable commands obtained from Definition 3.4. Then,ltekef setof KS is given byBel(KS) =
Bel(tr(KB; Uy, ..., Up)).

Example 3.2.Reconsider Example 3.1 and suppose the elgnt {sale(sp), date(1)} occurs atk'S =
(KB). Then,

G(U)! = {assert(sale(sp)) if not ignore(sale(sy)),
assert(date(1)) if not ignore(date(1)), retract(date(0))}.

The corresponding prograiit! has the single answer set
{assert(sale(sp)), assert(date(1)), retract(date(0))},

which is compiled, viar(-), to PC; = PCy \ {assert_[event|(date(0))} = 0 and P, = {sale(sg) «—
on(ry); on(ry) «— ; date(l) «— on(rh); on(rh) «— ; —on(rg) «— }. As easily seen, the belief set
Bel({KB, E)) = Bel((Po, P1)) containssale(sg) andquery(so).

4 Properties

In this section, we discuss some propertiesBef(K.S) for particular update policies, using the defini-
tion of Bel(-) based on the update answer sets approach of [6], as explained in Section 2. We stress that
the properties given below are also satisfied by similar instantiatiod®et(f), like e.g., dynamic logic
programming [1].

First, we note some basic properties:

— If U = () (empty policy, then KB will never be updated; the belief set is independenkgf. .., F,,
and thusstatic. Hence,Bel(KS;) = Bel(KB), foreachi = 1,...,n.

— If U = {assert(R)[E :R]]} (unconditional assert poligy then all rules contained in the received
events are directly incorporated into the update sequence. Baug(S;) = Bel((KB, Ex, ..., E;)),
foreachi =1,...,n.

— If U, is empty, then the knowledge is not updated, i.= 0. Thus,Bel(KS;) = Bel(KS;_1).

— Similarly, if U; = {assert(L;) < }, thenBel(KS;) = Bel(KS;_1).

Physical removal of rules An important issue is the growth of the agent’s knowledge base, as the modular
construction of the update sequence through transformatiencauses some rules and facts to be repeat-
edly inserted. This is addressed next, where we discuss the physical removal of rules from the knowledge
base.

Lemma4.l. LetP = (Py,...,P,) be an update sequence. For everye P;,r’" € P; with i < j,
the following holds: if(i) » = +/, or (i) r = L « andr’ = —L « , or (iii) ¥ = L <« such
that no ruler” € P, with H(r") = —L exists, wherék € {; + 1,...,n}, and—-L € B(r), then
BGZA(P) = BBZA(P(), ey Pi—la Pz \ {T},PH_l, e ,Pn)

The following property holds:

Theorem 4.1. Let K'S be a knowledge state arf8lel(K.S) = Bel(P), whereP = (P, ..., P,). Further-
more, letP* result fromP after repeatedly removing rules as in Lemma 4.1, an®let= (P, ,..., P,),
where

P~ = {H(r) < B(r)\ {on(n.)} | r € P}, on(n,) — € P*}\ {on(ns) —| on(n,) —€ P}.
Then,Bel4(KS) = Bela(P~).

Thus, we can purge the knowledge base and remove duplicates of rules, as well as all deactivated
(retracted) rules.

History Contraction Another relevantissue is the possibility, for some special caseriwact the agent's
update historyand compute its belief set at stemerely based on information at stép- 1. Let us call
U afactual assert policyf all asser{_even{ and alwayq_evenf statements ird/ involve only facts. In
this case, the compilatiotr(-) for a knowledge stat&'S = (KB; E\,..., E,) can be simplified: (1)
P, = KB, and (2) the construction of eadh involves factsL — and—L — instead ofon(n,) «— and
—on(n,) < , respectively.

For such sequences, the following holds:

Lemma4.2. LetP = (P,,..., P,) be an update sequence such tifatontains only facts, fot < i < n.
Then,Bel 4(P) = Bel 4(Py, P.,), whereP,, = P;,andP,,,, = P 1U(P,, \{L «— | ~L «— € Pi;1}).

We can thus assert the following proposition for history contraction:

Theorem 4.2. Let be a factual assert policy arfd = (P, ..., P,,) be the compiled sequence obtained
from KS by the simplified method described above. Tl 4 (KS) = Bel 4((KB, Py,)), whereP, is
asinLemma4.2.

Computational Complexity Finally, we briefly address the complexity of reasoning about a knowledge
state K'S. An update policyl/ is calledstratified if for all EPI statementgmd(p) if C1[Cs]] € U, the
associated ruleand; (p) «— C] form a stratified logic program, wherg; results fromC; by replacing
the EPI declaratiomot by default negatiomot .

For stratified/, any IT¥ has at most one answer set, thus the selection funéiéf) is redundant.
Otherwise, the complexity cost dfel(-) must be taken into account. Hel(-) is unknown, we consider
all possible return values (i.e., all answer setgi$f) and thus, in a cautious reasoning mode, all possible
Bel(KS) = Bel((Py,...,P,)) from Figure 1. Clearly, deciding’ € Bel((Qo, . ..,Q.)) is for update
answer sets in coNP; it is polynomial,df, is stratified and eac®;, 1 < i < m, contains only facts.

Theorem 4.3. Let Bel(-) be the update answer set semantics, deld-) polynomial-time computable with
an NP oracle. Then, given a ground ruleand a ground knowledge staféS = (KB; Es,..., E,), the
problem of deciding whetherc Bel(KS) isI15-hard. If the update policy is stratified, then the problem
is PNP-hard. Moreover, if the update policy is factual and stratified, and the initial knowledge K#&sis
stratified as well, then the problem is polynomial.

Similar results hold, e.g., for dynamic logic programming.

The results can be intuitively explained as follows. E&ghand P; as in Figure 1 can be computed
iteratively, where at steppolynomially many problems’ € Bel((P,, ..., P;_1)) must be solved to con-
struct IT¥. FromU; = Sel(IT¥) and previous results?; can be computed in polynomial time. Sinfe
contains at mogt/| rules, step is feasible in polynomial time with an NP oracle. ThRs= (P, ..., P,)
is polynomially computable with an NP oracle, and Bel(P) is decided with another oracle call. Updat-
ing a stratifiedP, such that only sets of facig,, P, ... may be added preserves polynomial decidability
of v’ € Bel((Py, ..., Pi_1)); this explains the polynomial result. Otherwig&!"-hard problems such as
computing the lexicographically maximal model of a CNF formula [15] are easily reduced to the problem.

For general update policies, multiple answer sets are possible, and each possible s30T can
be nondeterministically guessed and verified in polynomial time. This lead&t®™" = I, complexity.

5 Implementational Issues

An elegant and straightforward realization of update policies is possible through IMPACT agent programs.
IMPACT [16] is a platform for developing software agents, which allows to build agents on top of legacy
code, i.e., existing software packages, that operates on arbitrary data structures. Thus, in accordance with
our approach, we can desigganeric implementatioof our framework, without committing to a particular
update semanticBel(-).

In fact, since every update poli¢¥ is semantically reduced to a logic program, the corresponding
executable commands can be computed using well-known logic programming engirsesdittels [14],

DLV [7] or DeRes [5]. Hence, we may assume that a software pack&ge,for updating and querying
a knowledge bas& B is available, and thak'B can be accessed through a functiesi () which returns
the current belief seBel(KS). Moreover, assume th&P (or another package) has a functievent(),
which lists all rules of a current event. Then, an update péfican be represented in IMPACT as follows.

(1) Conditions on the belief set and the event can be modeled through IMEAGS call atomsi.e.,
atomsin(t,bel()), not_in(t,bel()), andin(t,event()), wheret is a constant or a variableR. In
IMPACT, in(r, £()) is true if constant is in the result returned bf(); a variableR is bound to all- such
thatin(r, £()) is true; not_in’ is negation.

(2) Update commands can be easily represented as IMR&EB®Ns An action is implemented by a
body of code in any programming language (e.g., C); its effects are specified in terms of add and delete
lists (sets of code call atoms). Thus, actions liksert(R), retract(R), etc., whereR is a parameter, are
introduced.

(3) EPI statements are represented as IMPACT action rules

Do(cmdi(p1)) < [-]Do(emda(p’)),. .., [m]Do(emdy,(p')), code_call_atoms(cond),

wherecode_call_atoms(cond) is the list of the code call atoms for the conditions on the belief set and the
event incond as described above.

The semantics of IMPACT agent programs is defined in ternssadfis setsThe notion of aeasonable
status seb is equivalent to a stable model of a logic program, and prescribes the agent to perform all actions
a whereDo(a) is in S. Thus,S represents the executable commab@dsn Figure 1 according t&/, and
the respective action execution affects the computatia® ofa tr(-).

6 Related Work and Conclusion

Our approach is similar in spirit to the work in active databases (ADBs), where the dynamics of a database
is specified througkvent-condition-action ruletsiggered by events. In contrast to our context, ADBs have

in general no declarative semantics, and only one rule at a time fires, maybe causing successive events. In
[3], a declarative characterization of ADBs is given, in terms of a reduction to logic programs, by using
situation calculus notation.

Our language for update policies is also relatedd¢tion languageswhich can be compiled to logic
programs as well (cf., e.g., [11]). A change to the knowledge base may be considered as an action, where the
execution of actions may depend on other actions and conditions. However, action languages are tailored
for planning and reasoning about actions, rather than reactive behavior specification. Furthermore, a state
is, essentially, a set of literals rather than a belief set as we define it. Investigating the relationship of our
framework to these languages in detail, and in particular concerning embeddings, is an interesting issue for
further research.

A development in the area of action languages, with purposes similar to thdd&l,as the policy
description languag@DL, introduced by Lobet al. [12]. PDL is a declarative language which extends
traditional action languages with the notion of sequences of events, and offers the possibility of specifying
actions as reactive behavior in response to such external eve®Apolicy is a collection ofevent-
condition-action rulesinterpreted as a function associating a sequence of events with a set of actions. The
relation between the semanticskR| and that ofPDL is worth being further investigated.

The EPI language could be extended with several features:

(1) Special atomin(r) telling whether- is actually part ofKB (i.e., activated byn(n,.)), which allow
to access the “extensional” part A13.

(2) Rule terms involving literal constants and variables, e .« up(s1), B”, where H, B are vari-
ables and:p(s;) is a fixed atom, providing access to the structure of rules. Combined with (1), commands
such as “remove all rules involvingp(s;)” can then be conveniently expressed.

(3) More expressive conditions on the knowledge base are conceivable, requesting for more complex
reasoning tasks, and possibly taking temporal evolution into account. Big:y{a)” expressing that
was true at the previous stage.

Our generic framework, which extends approaches to logic program updates, represents a convenient
platform for declarative update specifications and could also be fruitfully used in several applications.
Exploring these issues is part of our ongoing research.

Acknowledgments. This work was partially supported by the Austrian Science Fund (FWF) under grants
P13871-INF and N Z29-INF.

References

1.

2.

3.

10.

11.

12.

13.
14.

15.
16.

17.

18.

J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and T. Przymusinski. Dynamic Updates of Non-Monotonic
Knowledge Basesl. of Logic Programming45(1-3):43—70, 2000.

J. Alferes, L. Pereira, H. Przymusinska, and T. Przymusinski. LUPS - A Language for Updating Logic Programs.
In Proc. LPNMR’99 volume 1730 of.NAI, pages 162-176. Springer, 1999.

C. Baral and J. Lobo. Formal Characterization of Active Databases. In D. Pedreschi and C. Zaniolo, editors,
Workshop of Logic on Databases (LID '9&plume 1154 of_ecture Notes in Computer Scienpages 175-195,

San Miniato, Italy, 1996.

. F. Buccafurri, W. Faber, and N. Leone. Disjunctive Logic Programs with Inheritancerotm ICLP’99 pages

79-93. MIT Press, 1999.

. P. Cholewinski, W. Marek, and M. Trus#tgki. Default Reasoning System DeReS Phoc. KR-96 pages 518—

528, 1996.

. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on Updates of Logic PrograPmcIrJELIA

200Q volume 1919 of NAI, pages 2—-20. Springer, 2000.

. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A Deductive System for Non-monotonic Reasoning. In

Proc. LPNMR-97pages 363-374, 1997.

. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic ProgrammindPrdn. ICSLP’88 pages

1070-1080. MIT Press, 1988.

. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive DatalldeesGeneration

Computing 9(3—4):365-386, 1991.

K. Inoue and C. Sakama. Updating Extended Logic Programs through AbductiBrodnLPNMR’99 volume
1730 ofLNAI, pages 147-161. Springer, 1999.

V. Lifschitz and H. Turner. Representing Transition Systems by Logic Progranirotn LPNMR’99 volume
1730 ofLNAI, pages 92—-106. Springer, 1999.

J. Lobo, R. Bhatia, and S. Naqvi. A Policy Description Languag®@rda. AAAI/IAAI'99 pages 291-298. AAAI
Press / MIT Press, 1999.

W. Marek and M. Truszchgki. Revision Programming-heoretical Computer Scienc#0:241-277, 1998.

I. Nieme& and P. Simons. Smodels: An Implementation of the Stable Model and Well-Founded Semantics for
Normal Logic Programs. Ifroc. LPNMR-97 pages 420-429, 1997.

C. H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

V. Subrahmanian, J. Dix, T. Eiter, P. Bonatti, S. Kraus, F. Ozcan, and R. Reesogeneous Agent SystergT
Press, 2000.

M.-A. Williams and G. Antoniou. A Strategy for Revising Default Theory ExtensionsProc. KR'98 pages
24-35. Morgan Kaufmann, 1998.

Y. Zhang and N. Foo. Updating Logic ProgramsPhc. ECAI'98 pages 403—-407. Wiley, 1998.

