
In: Proc. 19th International Conference on Logic Programming (ICLP 2003), LNCS,
c
�

2003 Springer.

Efficient Evaluation of Logic Programs for Querying
Data Integration Systems �

Thomas Eiter � , Michael Fink � , Gianluigi Greco � , and Domenico Lembo �
�

Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria
eiter@kr.tuwien.ac.at, michael@kr.tuwien.ac.at�

DEIS University of Calabria, Via Pietro Bucci 41C, I-87036 Rende, Italy
ggreco@si.deis.unical.it�

DIS University of Roma “La Sapienza”, Via Salaria 113, I-00198 Roma, Italy
lembo@dis.uniroma1.it

Abstract. Many data integration systems provide transparent access to heteroge-
neous data sources through a unified view of all data in terms of a global schema,
which may be equipped with integrity constraints on the data. Since these con-
straints might be violated by the data retrieved from the sources, methods for
handling such a situation are needed. To this end, recent approaches model query
answering in data integration systems in terms of nonmonotonic logic programs.
However, while the theoretical aspects have been deeply analyzed, there are no
real implementations of this approach yet. A problem is that the reasoning tasks
modeling query answering are computationally expensive in general, and that a
direct evaluation on deductive database systems is infeasible for large data sets. In
this paper, we investigate techniques which make user query answering by logic
programs effective. We develop pruning and localization methods for the data
which need to be processed in a deductive system, and a technique for the recom-
bination of the results on a relational database engine. Experiments indicate the
viability of our methods and encourage further research of this approach.

1 Introduction

Data integration is an important problem, given that more and more data are dispersed
over many data sources. In a user friendly information system, a data integration system
provides transparent access to the data, and relieves the user from the burden of having
to identify the relevant data sources for a query, accessing each of them separately, and
combining the individual results into the global view of the data.

Informally, a data integration system � may be viewed as system 	�
��������� that
consists of a global schema
 , which specifies the global (user) elements, a source
schema � , which describes the structure of the data sources in the system, and a map-
ping � , which specifies the relationship between the sources and the global schema.
There are basically two approaches for specifying the mapping [14]: the global-as-
view (GAV) approach, in which global elements are defined as views over the sources,
and the local-as-view (LAV), in which conversely source elements are characterized
�

This work has been partially be supported by the European Commission FET Programme
Projects IST-2002-33570 INFOMIX and IST-2001-37004 WASP.

���������
	�� :
��

Totti RM�
Beckham MU

� ������� :

���
Roma

��
���

Man. Utd. ����
Real Madrid

��
������� �!� : " Ferguson

���

Fig. 1. Global database for the football scenario as retrieved from the sources.

as views over the global schema. In this paper, we concentrate on the GAV approach
which is in general considered appropriate for practical purposes.

Usually, the global schema also contains information about constraints, # , such as
key constraints or exclusion dependencies issued on a relational global schema. The
mapping � is often defined by views on the sources � , in a language which amounts
to a fragment of stratified Datalog.

Example 1. As a running example, we consider a data integration system �%$'& 	�
($ � �)$ �
�*$ � , referring to the context of football teams. The global schema
+$ consists of the
relation predicates ,.-0/2143�57698;:�<>=43 ��8@?./BAC3 ��8@DE3�/BAGF , D�3�/2AH6>IJ:�<>=43 ��I)?K/2AG3 �LI%-M3�/4=N3O5NF ,
and :�<>/4:�PJ6OQR:�<�=N3 �4QS?K/2AG3 �NQSDE3�/2ATF . The associated constraints # $ are that the keys
of ,.-0/2143�5 , DE3�/2A , and :�<>/4:�P , are the attributes 8;:�<>=43 , IJ:�<�=N3 , and QR:�<�=N3 respectively,
and that a coach can neither be a player nor a team leader. The source schema � $
comprises the relations U � , V � , V � and V�W . Finally, the mapping � $ is defined by the
datalog program ,.-0/2143�5X6ZY �\[��]^F�_`U � 6ZY �
[��] �\abF�c�D�3�/2AH6ZY �
[��]'F�_`U � 6dY �
[��]'F�c
DE3�/2AH6dY �
[��]'FR_eU � 6dY �
[��]'F�c�:�<�/N:\PJ6dY �
[��]'Ff_gU W 6dY �
[��]'F . h

When the user issues a query i on the global schema, the global database is con-
structed by data retrieval from the sources and i is answered from it. However, the
global database might be inconsistent with the constraints # .

Example 2. Suppose the query i�6dYjFk_l,K-M/2143�5X6dY �
[��]'F�c;i�6ZYmFk_nD�3�/2AH6po �\a �
YjF
is issued in our scenario, which asks for the codes of all players and team
leaders. Assuming that the information content of the sources is given by the
database q�$ = rkU � 6 s�t � Totti � RM �Xu!vBF , U � 6pw � Beckham � MU �Xu4xNF , U � 6dy�z � Roma ��s�tNF ,
U � 6pz|{ � Man. Utd. �
x!F�} , U � 6py~z � Real Madrid ��s�t!F�}�U W 69v � Ferguson �\z|{�F�} , the global
database � in Fig. 1 is constructed from the retrieved data. It violates the key
constraint on D�3�/2A , witnessed by the facts D�3�/2AH6dy�z � Roma ��s>tNF and D�3�/2AH6dy�z �
Real Madrid ��s�t!F , which coincide on IJ:�<�=N3 but differ on I)?K/2AG3 . h

To remedy this problem, the inconsistency might be eliminated by modifying the
database and reasoning on the “repaired” database. The suitability of a possible repair
depends on the underlying semantic assertions which are adopted for the database; in
general, not a single but multiple repairs might be possible [2, 6].

Recently, several approaches to formalize repair semantics by using logic programs
have been proposed [3, 12, 4, 7, 5]. The common basic idea is to encode the constraints
of
 into a logic program, � , using unstratified negation or disjunction, such that the
stable models of this program yield the repairs of the global database. Answering a user
query, i , then amounts to cautious reasoning over the logic program � augmented with
the query, cast into rules, and the retrieved facts � .

2

An attractive feature of this approach is that logic programs serve as executable
logical specifications of repair, and thus allow to state repair policies in a declarative
manner rather than in a procedural way. However, a drawback of this approach is that
with current implementations of stable model engines, such as DLV or Smodels, the
evaluation of queries over large data sets quickly becomes infeasible because of lacking
scalability. This calls for suitable optimization methods that help in speeding up the
evaluation of queries expressed as logic programs [5].

In this paper, we face this problem and make the following contributions:

(1) We present a basic formal model of data integration via logic programming speci-
fication, which abstracts from several proposals in the literature [3, 12, 4, 7, 5]. Results
which are obtained on this model may then be inherited by the respective approaches.
(2) We foster a localization approach to reduce complexity, in which irrelevant rules
are discarded and the retrieved data is decomposed into two parts: facts which will
possibly be touched by a repair and facts which for sure will be not. The idea which is
at the heart of the approach is to reduce the usage of the nonmonotonic logic program
to the essential part for conflict resolution. This requires some technical conditions to
be fulfilled in order to make the part “affected” by a repair small (ideally, as much as
possible).
(3) We develop techniques for recombining the decomposed parts for query answering,
which interleave logic programming and relational database engines. This is driven by
the fact that database engines are geared towards efficient processing of large data sets,
and thus will help to achieve scalability. To this end, we present a marking and query
rewriting technique for compiling the reasoning tasks which emerge for user query
evaluation into a relational database engine.

In our overall approach, the attractive features of a nonmonotonic logic program-
ming system, such as DLV [15], can be fruitfully combined with the strengths of an
efficient relational database engine. The experimental results are encouraging and show
that this combination has potential for building advanced data integration systems with
reasonable performance. Moreover, our main results might also be transferred to other
logic programming systems (e.g., Smodels [17], possibly interfaced by XSB [20], or
Dislog [19]).

For space reason, the exposition is necessarily succinct and some details are omitted.
They are provided in an extended version of the paper [9].

2 Preliminaries

A Datalog ��� � rule � is a clause � � ���	�
��� ��C_�� � � �	�	� ����� ��������� � � �
�	� ����������� where��� t , � ���! t and � � � �
�	� ��� � ��� � � �
�	� ��� ���"� are function-free atoms. If � &bs then �
is a Datalog

�
rule, and if also �$#%� & t the rule is simply called fact. If � &bt and� &|s , then � is a plain Datalog (or simply, a Datalog) rule. A Datalog ��� � program &

is a finite set of Datalog ��� � rules; it is plain (or simply, a Datalog program), if all its
rules are plain. A Datalog

�
program with stratified negation is denoted by Datalog

�('
.

The model theoretic semantics assigns to any program & the set of its (disjunctive)
stable models [11, 18], denoted by)(* 6+& F . As well-known, ,)(* 6+& F	,N&bs for any plain

3

and Datalog
�('

program & . Given a set of facts q , the program & on input q , denoted
by &�� q�� , is the union &��Gq . For further background, see [11, 18, 10].

Databases. We assume a finite, fixed database domain � whose elements are referenced
by constants � � ,. . . , �	� under the unique name assumption, i.e., different constants de-
note different objects (we will briefly address infinite domains at the end of Section 4).
A relational schema (or simply schema) � � is a pair 		� ��# � , where:

– � is a set of relation (predicate) symbols, each with an associated arity that indicates
the number of its attributes;

– # is a set of integrity constraints (ICs), i.e., a set of assertions that are intended to be
satisfied by each database instance. We assume to deal with universally quantified
constraints [1], i.e., first order formulas of the form:

 6��fF
�

��� �
� ���

��
��� �

� � � ��
� � �

� � � (1)

where � # � � t , � �t , � is a list of distinct variables,
�
� �
�
�	� � � and

�
� �
�
�	� � � �

are positive literals, and
�
� �
�	�
� � � � are built-in literals.

Notice that many classical constraints issued on a relational schema can be expressed in
this format, as key and functional dependencies, exclusion dependencies, or inclusion
dependencies of the form

 6��fF	� � 6��RF � � � 6��RF .
Example 3. In our ongoing example, the global schema
+$ is the database schema
		� $ ��# $ � , where � $ consists of the ternary relation symbols ,.-M/B143O5 , D�3�/2A , and :�<>/4:�P ,
and #'$ can be formally defined as follows (quantifiers are omitted):

��� �"!$#&%('*) �&+ �-,/.10 ��� �"!$#&%�'*) �2+ � �2, � .435+ � + ��6 ���7�"!(#2%('�) �&+ �-,8.90 ���7�"!(#2%('�) �2+ � �2, � .435, � , �: #&�";<'*) �&+(�2,/.=0 : #&�";<'*) �2+ � �2, � .435+ � + ��6 : #&�";<'*) �2+ �2,/.=0 : #2�";<'�) �2+ � �2, � .435, � , �>&?"�@>2A4'*) �&+(�2,/.=0 >&?��@>2A4'*) �2+ � �2, � .435+ � + ��6 >&?��@>2A4'*) �&+ �-,/.10 >&?"�@>&AB'�) �2+ � �2, � .435, � , �>&?"�@>&AC'�) �&+ �2,/.=0 ���7�"!(#2%('�) � �2+ � �2, � .43)�D�) �E6 >&?"�@>&AC'�) �&+ �-,8.90 : #&�";<'*) � �2+ � �2, � .43)�D� , �
The first three rows encode the key dependencies, whereas the last row models the two
constraints stating that a coach cannot be a player or a team leader. h

A database instance (or simply database) qGF for a schema � � is a set of facts of
the form ��6	H F where � is a relation of arity � in � and H is an � -tuple of values from � .

Given a constraint IKJ # of the form

 6��fFML@6�� F , we denote by NB5\<BO�?.=)6�I)F the set of

all ground formulas L 6-� FQP , also called ground constraints, where P is any substitution
of values in � for � ; furthermore, N45
<4O�?.=+6E#CFR&SRGT9U1VWN45
<BO�?K=K6�I)F .

Given a schema � � & 		� ��# � and a database instance qGF for � � , we say that
IYXZJ[NB5
<4O�?.=K6E#CF is satisfied (resp., violated) in qGF , if I\X evaluates to true (resp.,
false) in q]F . Moreover, q]F is consistent with # if every I^J_N45
<4O�?.=+6E#CF is satisfied
in qGF .

3 A Logic Framework for Query Answering

In this section, we present an abstract framework for modeling query answering in data
integration systems using logic programs. We first adopt a more formal description of
data integration systems, and then we discuss how to compute consistent answers for
a user query to a data integration system where the global database, constructed by
retrieving data from the sources, might be inconsistent.

4

3.1 Data Integration Systems

Formally, a data integration system � is a triple 	
��������� , where:

1.
 is the global schema. We assume that
 is a relational schema, i.e.,
m& 		� ��# � .
2. � is the source schema, constituted by the schemas of the various sources that are

part of the data integration system. We assume that � is a relational schema of the
form ��& 		����� � � , i.e., there are no integrity constraints on the sources.

3. � is the mapping between
 and � . In our framework the mapping is given by
the GAV approach, i.e., each global relation in � is associated with a view, i.e., a
query, over the sources. The language used to express queries in the mapping is
Datalog

�('
.

We call any database q for the source schema � a source database for � . Based on
q , it is possible to compute database instances for
 , called global databases for � ,
according to the mapping specification. Given a data integration system � & 	�
���������
and a source database q , the retrieved global database, 5
3�D�6 � ��qkF , is the global database
obtained by evaluating each view of the mapping � over q .

Notice that 5
3ODO6 � ��qCF might be inconsistent with respect to # , since data stored
in local and autonomous sources need in general not satisfy constraints expressed on
the global schema. Hence, in case of constraint violations, we cannot conclude that
5
3ODO6 � ��qCF is a “legal” global database for � [14]. Following a common approach in
the literature on inconsistent databases [2, 12, 6], we define the semantics of a data
integration system � in terms of repairs of the database 5
3�DO6 � � qkF .
Repairs. Let us first consider the setting of a single database. Let � � & 		� ��# � be a
relational schema, qGF be a (possibly inconsistent) database for � � , and � � and � �
be two databases for � � consistent with # . We say that � �

��� � � if �m6 � � ��qkF��
�m6 � � � qkF , where �m6ZY �\[F denotes the symmetric difference between sets Y and [.
Furthermore, � �
	

� � � stands for � �
��� � �

� � �
���� � � . Then, a database �

is a repair for qGF w.r.t. # , if � is a database for � � consistent with # and � is
minimal w.r.t.

� �
, i.e., there exists no database �� for � � consistent with # such that

��� 	
� � . We refer to the set of all such repairs as 5\3E,f6 qGF;F wrt # ; when clear from

the context, # is omitted.

Definition 1. Let ��& 	�
� ��� ��� be a data integration system where
 & 		����# � , and
let q be a source database for � . A global database � for � is a repair for � w.r.t. q if
� is a repair for 5
3ODO6 � ��qCF w.r.t. # . The set of all repairs for � w.r.t. q is denoted by
5
3E,�� 6 qCF . h

Intuitively, each repair is obtained by properly adding and deleting facts from
5
3OD � 6 qkF in order to satisfy constraints in # , as long as we “minimize” such additions
and deletions.

Note that, in the above definition we have considered the mapping � as exact, i.e.,
we have assumed that the data retrieved from the sources by the views of the mapping
are exactly the data that satisfy the global schema, provided suitable repairing opera-
tions. Other different assumptions can be adopted on the mapping (e.g., soundness or

5

��� �"!(#2%���� : � $ Totti RM�
Beckham MU

: #&�";���� :
���

Roma � $�	�
Man. Utd.

>&?��@>2A���� : � Ferguson
�	�

��� �"!(#2%��� : � $ Totti RM�
Beckham MU

: #&�";��� :
�	�

Man. Utd.
���
Real Madrid � $

>&?��@>2A��� : � Ferguson
�	�

Fig. 2. Repairs of � $ w.r.t. q $.

completeness assumptions [14]). Roughly speaking, such assumptions impose some re-
strictions or preferences on the possibility of adding or removing facts from 5
3OD�6 � � qkF
to repair constraint violations, leading to different notions of minimality (see, e.g., [6,
8]).

We stress that dealing only with exact mappings is not an actual limitation for the
techniques presented in the paper; in fact, in many practical cases, the computation
of the repairs under other mapping assumptions can be modeled by means of a logic
program similar to the computation of repairs under the exactness assumption.

Query. A query over the global schema
 is a non-recursive Datalog
�

program that
is intended to extract a set of tuples over � ; note that in real integration applications,
typically a language subsumed by non-recursive Datalog is adopted. For any query
i�6ZY � �

�	�	� � Y �7F , we call the set /2?7U!6di ��� ��qkF & r>i�6�� � �
�	�
� �E���7F ,Gi�6�� � �

�
�	� �E���7F J
)(* 6di � � �ZF for each � Jj5\3E,�� 6ZqkF } the consistent answers to i .

Example 4. Recall that in our scenario, the retrieved global database 5
3ODO6 �%$ ��q�$>F shown
in Figure 1 violates the key constraint on D�3�/2A , witnessed by D�3\/BAH6dy�z � Roma ��s�t!F
and D�3�/2AH6dy�z � Real Madrid ��s�tNF . A repair results by removing exactly one of
these facts; hence, 5
3�, ���B6Zq�$>F & r�� � ��� � } , where � � and � � are as shown in
Figure 2. For the query i�6ZYmF _ ,.-M/B143O576dY �
[��]'F�cmi�6ZYjF _ D�3�/2AH6po �\a � YjF ,
we thus obtain that /2?XUN6di � �+$ � q~$�F & r>i�6pxNF �\i�6dw!F �
i�6 s�t!F�} . If we consider the
query i �96d[kF _ D�3�/2AH6ZY �\[��]^F , we have that /2?7U!6di � ���K$ � q�$�F & r>i �96 Man. Utd. F�} ,
while considering i � � 6dY ��]'F|_ D�3�/2AH6ZY �\[��]^F , we have that /2?XUN6di � � � �K$ � q�$>F|&
r>i � �p6 RM ��s>tNF �\i � �p6 MU �\xNF�} . h

3.2 Logic Programming for Consistent Query Answering

We now describe a generic logic programming framework for computing consistent
answers to queries posed to a data integration system in which inconsistency possibly
arises.

According to several proposals in the literature [13, 4, 7, 5], we provide answers to
user queries by encoding the mapping assertions in � and the constraints in # in a
Datalog program enriched with unstratified negation or disjunction, in such a way that
the stable models of this program map to the repairs of the retrieved global database.

Definition 2. Let � & 	�
��������� be a data integration system where
j& 		� ��# � , q is
a source database for � , and i is a non-recursive Datalog

�
query over
 . Then, a logic

specification for querying � is a Datalog ��� � program � � 6piBF & ��� � � V � �	� such
that

6

1. 5
3OD�6 � � qkF��)(* 6d��� � � �ZF , where ��� is a Datalog
�('

program,
2. 5
3E,�� 6ZqkF F��)(* 6p� V �M5
3�D�6 � � qkF&�ZF , and
3. /2?7U!6di ��� ��qkF�� r>i�6�H F ,+i�6	H F J z for each z J)(* 6
6d� � � � V F$�M5
3OD�6 � � qkF&�ZF�} ,

where � � is a non-recursive Datalog
�

program,

where � denotes a polynomial-time computable correspondence between two sets. h
This definition establishes a connection between the semantics of � � 6piBF and the

consistent answers to a query posed to � (Item 3) provided some syntactic transforma-
tions, which typically are simple encodings such that � is a linear-time computable
bijection. In particular, � � 6piBF is composed by three modules that can be hierarchically
evaluated, i.e., �	���;� V �;�	� [10], using Splitting Sets [16]:
� � � is used for retrieving data from the sources: the retrieved global database can

be derived from its unique stable model (Item 1);
� � V is used for enforcing the constraints on the retrieved global database, whose

repairs can be derived from the stable models of � V � 5
3�D�6 � ��qkFQ� (Item 2);
� finally, �	� is used for encoding the user query i .

Our framework generalizes logic programming formalizations proposed in differ-
ent integration settings, such as the ones recently proposed in [13, 4, 7, 5]. In this re-
spect, the precise structure of the program � � 6diBF depends on the form of the mapping,
the language adopted for specifying mapping views and user queries, and the nature
of constraints expressed on the global schema. We point out that, logic programming
specifications proposed in the setting of a single inconsistent database [12, 3] are also
captured by our framework. Indeed, a single inconsistent database can be conceived
as the retrieved global database of a GAV data integration system in which views of
the mapping are assumed exact. The logic programs for consistently querying a single
database are of the form � � 6piBFR& � V � �	� .
4 Optimization of Query Answering

The source of complexity in evaluating the program � � 6piBF defined in the above section,
actually lies in the conflict resolution module � V , and in the evaluation of � � . Indeed,
� � is a Datalog

� '
program that can be evaluated in polynomial time over the source

database q for constructing 5\3OD�6 � ��qCF , whereas � � is a non-recursive Datalog
�

pro-
gram that has to be evaluated over each repair of the retrieved global database, and � V
is in general a Datalog ��� � program whose evaluation complexity over varying databases
is at the second level of the polynomial hierarchy [12]. Furthermore, also evaluating pro-
grams with lower complexity over large data sets by means of stable models solvers,
such as DLV [15] or Smodels [17], quickly becomes infeasible. This calls for suitable
optimization methods speeding up the evaluation (as recently stated in [5]).

Concentrating on the most relevant and computational expensive aspects of the op-
timization, we focus here on � V , assuming that 5
3�DO6 � � qkF is already computed, and
devise intelligent techniques for the evaluation of � � .

Roughly speaking, in our approach we first localize in the retrieved global database
5
3ODO6 � ��qCF the facts that are not “affected” (formally specified below) by any violation.
Then, we compute the repairs by taking into account only the affected facts, and finally
we recombine the repairs to provide answers to the user query. Since in practice, the

7

size of the set of the affected facts is much smaller than the size of the retrieved global
database, the computation of the stable models of � V , i.e., repairs of 5
3OD�6 � � qkF (Item
2 in Def. 2), over the affected facts is significantly faster than the naive evaluation of
� � 6diBF on the whole retrieved global database.

In a nutshell, our overall optimization approach comprises the following steps:
Pruning: We first eliminate from � � 6diBF the rules that are not relevant for computing

answers to a user query i . This can be done by means of a static syntactic analysis
of the program � � 6diBF . However, this is not a crucial aspect in our technique, and
due to space limits we do not provide further details on it.

Decomposition: We localize inconsistency in the retrieved global database, and com-
pute the set of facts that are affected by repair. Finally, we compute repairs,
� � �

�	�
� ��� � , of this set.
Recombination: We suitably recombine the repairs � � �

�	�
� � � � for computing the
answers to i .

In the rest of this section, we describe in detail the last two steps.

4.1 Decomposition

We start with some concepts for a single database. Let � � & 	�� ��# � be a relational
schema. We call two facts � � 6 � � � �	�	� ��� � F and � � 6 � � � �
�	� ��� � F , where � � ��� � J � and
each � � ��� � is in the domain � , constraint-bounded in � � , if they occur in the same
ground constraint I X JZNB5
<4O�?.=+6E#CF . Furthermore, for any I X JZN45
<BO�?K=+69#CF , we use� /4:�DdUN6-IYX4F to denote the set of all facts � 6�H F , � J � , which occur in I\X .

Let qGF be a database for � � . Then, the conflict set for qGF w.r.t. � � is the set of
facts �������� & rE� 6	H F ,	� IYXWJ_N45
<4O�?.=K69#CF � �J6	H F J � /4:�DpUN6�IYX4F � IYX is violated in qGF'} ,
i.e., the set of facts occurring in the constraints of NB5
<4O�?.=K6E#CF that are violated in qGF .

Definition 3. Let � �;& 		� ��# � be a relational schema and qGF a database for � � . Then,
the conflict closure for qGF , denoted by �
�������� , is the least set such that H]J���������� if
either H J��������� , or H is constraint-bounded in � � with a fact H � J��������� � . Moreover, we
call �������� & qGF����������� � and

� ������ & q]F����������� � the safe database and the affected
database for qGF , respectively. h

We drop the superscript � � if it is clear from the context. Intuitively, � ���� contains
all facts involved in constraint violations, i.e., facts belonging to � ��� , and facts which
possibly must be changed in turn to avoid new inconsistency with # by repairing.

We now consider the following two subsets of all ground constraints.

(i) #����� consists of all the ground constraints in which at least one fact from � ����
occurs, i.e., #����� &br IYX�J N45
<BO�?K=K69#CF , � /4:�DdUN6-IYXBF���� ���� �& � } , and

(ii) #����� consists of all the ground constraints in which at least one fact occurs which
is not in � ���� , i.e., # ���� & r IYXGJ N45
<BO�?K=+69#CF , � /N:ODpU!6-IYXBF ���� ���� } .

We first show that #����� and # ���� form a partitioning of N45
<4O�?.=K69#CF .
Proposition 1. (Separation) Let � �b& 	�� ��# � be a relational schema, and let q]F a
database for � � . Then,
1. R T � U1V�!"$# � /N:ODpU!6-IYXBF ��� ���� ;

8

2. R T � U1V��"$# � /N:ODpU!6-IYXBF���� ���� & � ;
3. #����� �H# ���� & � and #����� �H# ���� & NB5
<4O�?.=+6E#CF .

Proof. 1. All facts occurring in a ground constraint I\X J #����� must belong to � ���� .
Indeed, by definition of #����� , IYX contains at least one fact H in � ���� ; each other fact in
IYX is constraint-bounded in � � with H , and hence it also is in � ���� .
2. Assume by contradiction that some I\X J # ���� with

� /N:ODpUN6-IYX4F�� � ���� �& �
exists.

Then, Definition 3 implies
� �9�$H VN6-I X F � � ���� , which contradicts I X J #����� . Part 3 is

straightforward from Part 1 and Part 2. h
The separation property allows us to shed light on the structure of repairs:

Proposition 2. (Safe Database) Let � � & 		� ��# � be a relational schema, and let q]F
be a database for � � . Then, for each repair � J 5
3�,f6ZqGF;F w.r.t. # , � ��� &�� ��� ���� .

Prior to the main result of this section, we note the following lemma:

Lemma 1. Let � � & 		� ��# � be a relational schema, and let qGF be a database for
� � . Then, for each � � � ��� , we have that

1. for each � Jm5\3E,R6 � � � ��� F w.r.t. # , 6Z� � � ���� F Jm5
3�,f6 � ��� F w.r.t. # ���� ;
2. for each ���]Jm5
3E,R6 � ��� F w.r.t. #����� , there exists some set of facts � � , � � ��� ���� &�

, such that 6Z��� ��� � F Jm5\3E,f6 � � � ���� F w.r.t. # .

Armed with the above concepts and results, we now turn to the data integration set-
tings in which we have to repair the retrieved global database 5
3�D�6 � ��qkF . The following
theorem shows that its repairs can be computed by looking only at

� %&# : ' � �
�

. .
Theorem 1. (Main) Let � & 	
 � ��� ��� be a data integration system, where
*&
		� ��# � , and let q be a source database for � . Then,

1.

 � J 5
3�, � 6 qkF , �!��� J 5
3E,f6 � %&# : ' � �

�
. F w.r.t. # such that � & �� � � �%&# : ' � �

�
. �

� %&# : ' � �
�

. ;
2.

 ��� J 5
3�,S6 � %&# : ' � �
�

. F , �!� J 5
3�, � 6ZqkF w.r.t. # such that � & �� � � �%&# : ' � �
�

. �
� %&# : ' � �

�
. .

Proof. Recall that 5
3�DO6 � � qkF & � %&# : ' � �
�

. � � %&# : ' � �
�

. and that 5\3E, � 6ZqkF coincides with
5
3E,R6�5\3ODO6 � ��qkF
F w.r.t. # . Thus, applying Lemma 1, first Part 1 for � & � %Q# : ' � �

�
. and

then Part 2 for � & �
, we obtain that for every � J�5
3�, � 6 qCF , there exists some �� J

5
3E,R6 � %&# : ' � �
�

. F w.r.t. # of form ����& 6 � ��� �%&# : ' � �
�

. F ��� � , where � � ��� �%&# : ' � �
�

. &
�
.

Hence, ��� � � �%Q# : ' � �
�

. & y � � �%&# : ' � �
�

. . By Prop. 2, every � JR5
3�, � 6 �TF is of form
� &k6 � ��� �%Q# : ' � �

�
. F ��� %&# : ' � �

�
. . Therefore, � &j6Z��� � � �%&# : ' � �

�
. F\��� %&# : ' � �

�
. .

Similarly, applying Lemma 1, first Part 1 for � & �
and then Part 2 for � &

� %&# : ' � �
�

. , we obtain that for every �� J 5
3�,S6 � %&# : ' � �
�

. F w.r.t. # , there exists some
� J 5
3�, � 6ZqkF w.r.t. # such that � &b6Z��� � � �%Q# : ' � �

�
. F � � � , where � � � � �%&# : ' � �

�
. & � .

Moreover, Prop. 2 implies � �(& � %&# : ' � �
�

. , which proves 2. h

9

As a consequence, for computing the stable models of the retrieved global database
5
3E,�� 6 qCF , it is sufficient to evaluate the program � V on

� %&# : ' � �
�

. , i.e., to exploit the
correspondence 5
3�, � 6 qkF �) * 6d� V � � %&# : ' � �

�
. �ZF , intersect with � �%Q# : ' � �

�
. , and unite

with � %&# : ' � �
�

. . Nonetheless, computing
� %&# : ' � �

�
. is expensive in general since it re-

quires computing the closure of � %&# : ' � �
�

. . Furthermore, in repairs of
� %&# : ' � �

�
. many

facts not in � �%&# : ' � �
�

. might be computed which are stripped off subsequently. Fortu-
nately, in practice, for many important cases this can be avoided: repairs can be made
fully local and even focused just on the immediate conflicts in the database.

Proposition 3. Let �|& 	
 � ��� ��� be a data integration system, where
 & 	�� ��# � ,
and let q be a source database for � . Then,

1. if each I Jm# is of the form (1) with � � t , then each � � repair of
� %&# : ' � �

�
. w.r.t.

satisfies �� � � �%&# : ' � �
�

. ;2. if each I JH# is of the form (1) with � & t , then
i) each ��� repair of

� %&# : ' � �
�

. w.r.t. # satisfies �� �� %Q# : ' � �
�

. ,
ii) � %&# : ' � �

�
. � 5\3ODO6 � ��qkF , and

ii) 5
3�,f6 � %&# : ' � �
�

. F w.r.t. # coincides with 5
3E,f6 � %&# : ' � �
�

. F w.r.t. # . h
This proposition allows us to exploit Theorem 1 in a constructive way for many

significant classes of constraints, for which it implies a bijection between the repairs of
the retrieved global database, 5
3�DO6 � � qkF , and the repairs of its affected part

� %&# : ' � �
�

.
w.r.t. the constraints # . In particular, Condition 1 is satisfied by all constraints that do
not unconditionally enforce inclusion of some fact in every repair, while Condition 2
is satisfied by constraints that can be repaired by just deleting facts from the database,
such as key constraints, functional dependencies, and exclusion dependencies.

According to Theorem 1, in case of Condition 2 the set 5
3�, � 6ZqkF can be obtained by
simply computing the repairs of the conflicting facts, � %&# : ' � �

�
. , in place of

� %&# : ' � �
�

.
and by adding � %&# : ' � �

�
. to each repair. We also point out that the computation of the

set � %&# : ' � �
�

. can be carried out very efficiently, by means of suitable SQL statements.
The following corollary formalizes the above discussion for Condition 2.

Corollary 1. Let � & 	
 � ��� ��� be a data integration system, where
 & 		����# � ,
and let q be a source database for � . Assume each constraint in # has form (1) with
�`& t . Then, there exists a bijection ���;5
3�, � 6 qCF��n5\3E,f6 � %&# : ' � �

�
. F , such that for

each � J 5
3E,�� 6ZqkF , � &��R6Z� F"� � %Q# : ' � �
�

. (where � %&# : ' � �
�

. � 5
3�DO6 � � qkF). h

4.2 Recombination

Let us turn our attention to the evaluation of a user query i . According to the def-
inition of consistent answers (Section 3.1), we need to evaluate i over each repair
� J 5
3E, � 6 qCF , and by Theorem 1 we can exploit the correspondence 5
3�, � 6ZqkF �
)(* 6d� V � � %&# : ' � �

�
. �ZF for computing each such � . More precisely, we need to recom-

bine the repairs of
� %Q# : ' � �

�
. with � %Q# : ' � �

�
. computed in the decomposition step as

stated by the following theorem.

10

Theorem 2. Let � & 	�
��������� be a data integration system, let q be a source
database for � , and let i be a query over
 . Then,

/2?7U!6di ��� ��qkF &
�

� U %Q#	�4'���������� 	�
 "� .
�	�4� � � � �%&# : ' � �

�
. � � %&# : ' � �

�
. � (2)

Note that the number of repairs of
� %&# : ' � �

�
. is exponential in the number of violated

constraints, and hence efficient computation of the intersection in (2) requires some
intelligent strategy. Clearly, the overall approach is beneficial only if the recombination
cost does not compensate the gain of repair localization. In the next section, we present
an efficient technique for the recombination step.

We close this section with briefly addressing databases over infinite domains. Here,
usually a safety condition is imposed on constraints and queries in order to assure finite
database instances and query results. Namely, a constraint of the form (1) is safe, if each
variable occurring in some

� � or
� � also occurs in some

� � , and a query i�6-� F is safe,
if each variable in � is recursively bound to some value occurring in the database. Note
that important types of constraints such as key, functional and exclusion dependencies
are safe. It appears that under safe constraints and queries, database repairs fully lo-
calize to the active domain,

�
� 6 q]F�F , of a database qGF , i.e., the values occurring in

qGF . As for repair, the (finite or infinite) domain can thus be equivalently replaced with�
� 6ZqGF�F , and for query answering, by

�
� 6ZqGF�F plus the constants in i�6��RF . Together

with further domain pruning, this may lead to considerable savings.

5 A Technique for Efficient Recombination

In this section, we describe a technique for implementing the recombination step
in a way which circumvents the evaluation of � � on each repair of 5
3�D�6 � ��qkF sep-
arately. For the sake of simplicity, we deal here with constraints of the form (1),
when � � t and �n& t . In this case, according to Proposition 3, 5\3E,R6 � %&# : ' � �

�
. F

coincide with 5\3E,R6 � %&# : ' � �
�

. F , and � � � %&# : ' � �
�

. � 5
3�DO6 � � qkF for each � J
5
3E,R6 � %&# : ' � �

�
. F . Furthermore, thesis in Theorem 2 can be rewritten as /B?7UN6pi ��� � qkF�&�

� U %&#	�1'�� ������� 	�
 "� . �	�4� � ��� %Q# : ' � �
�

. � .
The basic idea of our approach is to encode all repairs into a single database over

which �	� can be evaluated by means of standard database techniques.
More precisely, for each global relation � , we construct a new relation � � by adding

an auxiliary attribute mark. The mark value is a string � � � �
�	� � �� of bits � � J r�t ��sB}
such that, given any tuple H , � � & s if and only if H belongs to the � -th repair � � J
5
3E,R6 � %&# : ' � �

�
. F & r�� � �

�
�	� � � �K} , for every � J rNs � �	�
� � � } (indexing the repairs is
easy, e.g. using the order in which the deductive database system computes them). The
set of all marked relations constitutes a marked database, denoted by z %&# : ' � �

�
. . Note

that the facts in � %&# : ' � �
�

. (the bulk of data) can be marked without any preprocessing, as
they belong to every repair � � ; hence, their mark is �ps4s �
�	� s � . For our running example,
the marked database derived from the repairs in Figure 2 is shown in Figure 3.

We next show how the original query i can be reformulated in a way such that
its evaluation over the marked database computes the set of consistent answers to i .
Before proceeding, we point out that our recombination technique also applies in the

11

��� �"!$#&%�� ��������	 �
 " � � : � $ Totti RM
�
���
�

�
Beckham MU

�
���
� : #&�";�� ������� 	 �
 " � � :

���
Roma � $

�
� $
�

�	�
Man. Utd.

�
���
�

���
Real Madrid � $

� $ � �>&?"�@>&A�� ��������	 �
 " � � : � Ferguson
�	� �

���
�

Fig. 3. The retrieved global database of our running example after marking.

presence of constraints of general form. In such a case, the source of complexity lies in
the computation of � �%&# : ' � �

�
. .

5.1 Query Reformulation

We next focus on non-recursive Datalog queries and provide a technique for rewriting
them into SQL. The extension to non-recursive Datalog

�
queries is straightforward, and

is omitted due to space limits.
Let a query i�6��RF , where �b& Y � �

�	�
� Y � , be given by the rules i�6-�RFk_li � 6 � � F ,
s ��� � � , where each i � 6 � � F is a conjunction of atoms � � � � 6 � � � � F �

� � � ��� � � � 6 � � � � F ,
where � � & R ���� � � � � � . Moreover, let us call each variable [such that [J � � � � and
[J � � � � a join variable of � � � � and � � � � .

In query reformulation, we use the following functions 	�
������� and ���������� :

– 	�
������� is a binary function that takes as its input two bit strings � � � �
�	� � �� and
� � � �	�
� � �� and returns � 6 � � � � � F �
�	� 6 � � � � � F � , where

�
is boolean and;

– ���������� is an aggregate function such that given � strings of form � � � � � �	�
� � �� � � , it
returns �E6 � � � � ���	�
�
� ��� � � F �
�	� 6 � � � � ���	�
�
� ��� � ��F � , where

�
is boolean or.

Then, each i�6��RFR_ i � 6 � � F can be translated in the SQL statement ��������� of the form
 "!�#�!%$'&)(+*%,�-�-.-/(+0�,.132�465 * - 798�:";�<>=�?�@�A"&B-�-�-/<>=�?�@�A"&C2�465 DE- 798�:";GFH<% C798�:>;I'JLK"M 2N*O-�-�-/2 DP�Q ! J !)2 465 R - SUTC2 465 V - S 1

for each join variable
S

of
2 4W5 R

and
2 465 V ,)XZY ,6[X]\ F^-

In addition to the answers to i�6-�RF@_ei � 6 � � F , the statement computes the marks of the
repairs in which an answer holds by applying the 	�
������� operator to the mark attributes
of the joined relations. The results of all ���E� ��� can be collected into a view O`_ ; by
the SQL statement ���E� � � ��
��LaL
������ � �	�
� ��
���aL

���E� �cb . Finally, ���E� � is

 "!�#�!�$>&)(d*�,�-.-�-6(e0�,W gf M @LA"&�1h798�:";`F
I'JLK"Mji�k Dl JLK f%mC@�n)(* ,�-.-o-6(0Q <'p�Ag=%l) gf M @LA"&�1h798�:";HFqTCr -�-�- rs-

It computes query answers by considering only the facts that belong to all repairs.

Proposition 4. Given a data integration system � & 	
 � ��� ��� , a source database q
and a query i over
 , the set /2?XU46di � � ��qkF coincides with the set computed by executing
���E� � over the marked database z %&# : ' � �

�
. .

12

Example 5. For i�6ZYjFR_ �8� ��������6ZY �\[��]^FOc%i�6ZYjFR_ H���� � 6po �\a �
YjF , ���E� � is
$ J !%<'&'!)p�Ag! Pji�k D 1 (U,�798�:";HF`<� "!�#�!%$'&�� �����2� ,W7 8�:"; I'JLK"M �L�����2�
	f%=�A K = "!�#�!%$'&
	 � �����2�
	 ,^798�:>; I>JLK"M � ������

 "!�#�!�$>&)(U,6 gf M @�Ag&`1h7 8�:";`FI'JLK"M iGk Dl JLK f%mC@�n)(Q <'p�Ag=%l) gf M @LA"&�1h798�:";`F T r > r �
It is easy to see that the answers consist of the codes 8, 9, 10. h

Since there may be exponentially many repairs in the number of violated con-
straints, the marking string can be of considerable length. In [9] we refine our technique
to mark only the affected database part; the query is then rewritten using a split of each
global relation � into a “safe” part and an “affected” part.

6 Experimental Results

In this section, we present experimental results obtained by means of a prototype im-
plementation that couples the DLV deductive database system [15] with Postgresql, a
relational DBMS which allows for a convenient encoding of the 	�
�����'� and ��������'�
operators. Notice that DLV supports disjunction, which is needed for encoding univer-
sal constraints into programs � V , since computing consistent answers in this setting
is ���� -complete [12]. The experiments have been carried out on a sun4u sparc SUNW
ultra-5 10 with 256MB memory and processor working at 350MHz, under Solaris SUN
operating system.

Football Teams. For our running example, we built a synthetic data set q��� � , in which
the facts in :�<>/4:�P and DE3�/2A satisfy the key constraints, while facts in ,.-M/B143O5 violate it.
Each violation consists of two facts that coincide on the attribute 8;:�<>=43 but differ on the
attributes 8@?K/2AG3 or 8@D�3�/2A ; note that these facts constitute

� %&# : ' � � �
� '�� b . . For the query

i�6ZYjF�_ ,.-M/B143O576dY �
[��]'F�cfi�6dYjF@_ D�3�/2A 6po �\a � YjF , we measured the execution time
of the program � � � 6diBF in DLV depending on , � %&# : ' � � �

� '�� b . , for different fixed values
of , � %&# : ' � � �

� '�� b . , , viz. (i) 0, (ii) 4000, and (iii) 8000. The results are shown in Fig. 4.(a).
We point out that in Case (i), in which � ��� 6piBF is evaluated only on the affected part,

the execution time scales well to a significant number of violations. On the other hand,
the evaluation of � � � 6piBF on the whole database is significantly slower; in fact, a small
database of 8000 facts requires up to 40 seconds for 50 violated constraints.

Figure 4.(b) shows a comparison (in log scale) between the consistent query answer-
ing by a single DLV program and the optimization approach proposed in this paper. In-
terestingly, for a fixed number of violations (10 in the figure) the growth of the running
time of our optimization method under varying database size is negligible. In fact, a
major share (� 20 seconds) is used for computing repairs of the affected database, plus
marking and storing them in Postgresql; the time for query evaluation itself is negligi-
ble. In conclusion, for small databases (up to 5000 facts), consistent query answering by
straight evaluation in DLV may be considered viable; nonetheless, for larger databases,
the asymptotic behavior shows that our approach outperforms a naive implementation

Further experiments are reported in [9]. We stress that the results can be signifi-
cantly improved since our implementation is not optimized. Nonetheless, its advantage
over the standard technique is evident.

13

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

Size of the affected part (number of violations)

T
im

e
 [

s
] 0 facts

4000 facts

8000 facts

Safe Part

10 violations

1

10

100

1000

10000

0 10000 20000 30000 40000 50000

Size of the retrieved database

T
im

e
 [

s
]

Execution in DLV

Optimization

(a) (b)

Fig. 4. (a) Execution time in DLV system w.r.t. � ��������� 	 � 5
 ' � b�� � , for different sizes of ������� 	 � 5
 ' � b � . (b) Comparison with the optimization method.

7 Conclusion

We have described an approach to speed up the evaluation of non-monotonic logic
programs modeling query answering in data integration systems. To this end, we have
provided theoretical results that allow for repairing an inconsistent retrieved database
by localizing the computation of repairs to its affected part. As we have shown, for
important classes of constraints such as key constraints, functional dependencies, and
exclusion dependencies, repairs can be restricted to the facts in the database violating
the constraints, which may be only a small fragment of a large database. Furthermore,
we have developed a technique for recombining such repairs to provide answers for
user queries. Finally, we have experimented the viability of our approach.

We point out that our method, which is built upon repair by selection in terms of
a particular preference ordering, is based on abstract properties and may be adapted to
other logic programming systems as well. Furthermore, it can be generalized to other
preference based repair semantics for an inconsistent database q]F . In particular, all
repair semantics in which �m6 � ��q]F�F�� �m6Z�� � qGF�F , i.e., � is closer to database qGF
than ��� in terms of symmetric difference, implies that � is preferred to � � can be dealt
with using our method. We point out that, for instance, cardinality-based and weighted-
based repair semantics satisfy this condition.

Notice that the logic formalization of LAV systems proposed in [4, 5] might be
captured by our logic framework under suitable adaptations. Actually, given a source
extension, several different ways of populating the global schema according to a LAV
mapping may exist, and the notion of repair has to take into account a set of such
global database instances. Nonetheless, analogously to our GAV framework, in [4, 5]
the repairs are computed from the stable models of a suitable logic program.

On the other hand, [13, 7] address the repair problem in GAV systems with exis-
tentially quantified inclusion dependencies and key constraints on the global schema.
They present techniques for suitably reformulating user queries in order to eliminate
inclusion dependencies, which leads to a rewriting that can be evaluated on the global

14

schema taking into account only key constraints. We point out that, provided such a
reformulation, the logic specifications proposed in [13, 7] perfectly fit our framework.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
2. M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent

databases. In Proc. 18th ACM Symposium on Principles of Database Systems (PODS-99),
pp. 68–79, 1999.

3. M. Arenas, L. E. Bertossi, and J. Chomicki. Specifying and querying database repairs using
logic programs with exceptions. In Proc. 4th Int’l Conference on Flexible Query Answering
Systems (FQAS 2000), pp. 27–41. Springer, 2000.

4. L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez. Consistent answers from integrated
data sources. In T. Andreasen et al., editors, Proc. 5th Int’l Conference on Flexible Query
Answering Systems (FQAS 2002), LNCS 2522, pp. 71–85, 2002.

5. L. Bravo and L. Bertossi. Logic programming for consistently querying data integration
systems. In Proc. 18th Int’l Joint Conference on Artificial Intelligence (IJCAI 2003), pp.
10–15, 2003.

6. A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity of query answering
over inconsistent and incomplete databases. In Proc. 22nd ACM Symposium on Principles
of Database Systems (PODS-03), pp. 260–271, 2003.

7. A. Calı̀, D. Lembo, and R. Rosati. Query rewriting and answering under constraints in data
integration systems. In Proc. 18th Int’l Joint Conference on Artificial Intelligence (IJCAI
2003), pp. 16–21, 2003.

8. J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple dele-
tions. Technical Report arXiv:cs.DB/0212004v1, arXiv.org, 2002.

9. T. Eiter, M. Fink, G. Greco, and D. Lembo. Efficient evaluation of logic programs for query-
ing data integration systems. Extended Manuscript, July 2003.

10. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Trans. on Database Systems,
22(3):364–417, 1997.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
Fifth Logic Programming Symposium, pp. 1070–1080. MIT Press, 1988.

12. G. Greco, S. Greco, and E. Zumpano. A logic programming approach to the integration,
repairing and querying of inconsistent databases. In P. Codognet, editor, Proc. 17th Int’l
Conference on Logic Programming (ICLP 2001), LNCS 2237, pp. 348–364. Springer, 2001.

13. D. Lembo, M. Lenzerini, and R. Rosati. Source inconsistency and incompleteness in data
integration. In Proc. KRDB 2002. http://ceur-ws.org/Vol-54/, 2002.

14. M. Lenzerini. Data integration: A theoretical perspective. In Lucian Popa, editor, Proc. 21st
ACM Symposium on Principles of Database Systems (PODS-02), pp. 233–246, 2002.

15. Nicola Leone et al. DLV homepage, since 1996. http://www.dbai.tuwien.ac.at/
proj/dlv/.

16. V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck, editor,
Proc. 11h Int’l Conference on Logic Programming (ICLP-94), pp. 23–38, 1994. MIT-Press.

17. Ilkka Niemelä et al. Smodels homepage, since 1999. http://www.tcs.hut.fi/
Software/smodels/.

18. T. Przymusinski. Stable semantics for disjunctive programs. New Generation Computing,
9:401–424, 1991.

19. D. Seipel. DisLog - a disjunctive deductive database prototype (system description). In
F. Bry, B. Freitag, and D. Seipel, editors, Proc. 12th Workshop on Logic Programming (WLP
’97). LMU München, September 1997.

20. David S. Warren et al. XSB homepage, since 1997. http://xsb.sourceforge.net/.

15

