
The mcs-ie System for Explaining Inconsistency
in Multi-Context Systems?

Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller

Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 11, A-1040 Vienna, Austria
markus.boegl@student.tuwien.ac.at, {eiter,fink,schueller}@kr.tuwien.ac.at

Abstract. The Multi-Context System Inconsistency Explainer allows
for evaluation of semantics and explanation of inconsistencies in systems
where heterogeneous knowledge bases are linked via nonmonotonic rules.
The implementation is based on the dlvhex tool, which is an extension of
answer set programming with external atoms and higher order features.

1 Introduction

Nonmonotonic multi-context systems (MCSs) were introduced in [1], mainly but
not exclusively as an extension of [5, 2]. They are a formalism for interlinking
heterogeneous knowledge bases (called contexts), whose semantics is defined via
(possibly non-unique) belief sets, via bridge rules that may be non-monotonic.
For example, (2 : b)← (1 : a), not(3 : a) expresses that context 2 should add b to
its knowledge base, if context 1 has a in its belief set while context 3 has not.
The semantics of MCSs is then defined in terms of belief states, which contain
one belief set per context, that satisfy a stability condition (called equilibria).

Inconsistency is the absence of such equilibria. An inconsistent MCS yields
no information, therefore our aim is to explain reasons for inconsistency in MCSs
in order to support users in dealing with inconsistency. For this purpose, the
notions of diagnosis and inconsistency explanation were introduced in [3].

A diagnosis (D1, D2) points out a set of bridge rules D1 which must be
removed from an MCS M , and a set of bridge rules D2 whose unconditional
form (i.e., α← for α← β) must be added to M to restore consistency in M . An
explanation (E1, E2) points out a set of bridge rules E1 which is required in M ,
and a set of bridge rules E2 whose unconditional forms must not be added to
M to ensure inconsistency in M . Diagnoses allow to find overall system repairs,
whereas inconsistency explanations separate individual sources of inconsistency.

A method for evaluating these notions by a rewriting to logic programming
was introduced in [3]. This work describes the MCS Inconsistency Explainer
system mcs-ie, which realizes and extends the implementation concepts of [3].1

? This work was supported by the Vienna Science and Technology Fund (WWTF)
under grant ICT08-020.

1 http://www.kr.tuwien.ac.at/research/systems/mcsie/

extract
D± and EQ ′

⊆-min

calculate E±

dlv

⊆-min

D±, EQ ′

D±
m

E±

D±

EQ ′

D±
m

EQ ′

E±

E±
m

hex
evaluation

dlv answer
sets

mcs-ie input
converter

hex
program

mcs-ie
input file

user
defined
contexts

builtin
contexts

context
input files
(kbi)

refers
to

individual kbi formats

dlvhex Output Rewriter

dlvhex external atom API

data flow
control flow

external
atoms:

Fig. 1. Data flow between mcs-ie components, dlvhex and dlv.

Our system uses the dlvhex solver2 and hex programs, which are an extension
of answer set programs (ASPs) with external atoms [4]. We use external atoms
for capturing context semantics, since each context of an MCS can be based on
its own logic, and in general cannot be rewritten to ASPs.

The mcs-ie system provides the following features:

• computation of MCS semantics (output projected equilibria),
• computation of diagnoses, explanations, and their subset-minimal notions,
• support for contexts formalized in ASP (specifically: dlv programs), and
• an API in C++ for integrating user-defined contexts.

2 System Architecture

Figure 1 shows the architecture of the mcs-ie system. It is implemented as a
plugin to dlvhex, therefore dlvhex controls all mcs-ie components.

To analyze inconsistency in an MCS, a master input file which describes the
MCS topology (bridge rules and contexts) must be provided by the user. dlvhex

rewrites the master file into a hex program using the mcs-ie input converter. For
space reasons, we refer to the mcs-ie website for details of this rewriting.1 The
main idea is to guess a diagnosis using auxiliary predicates, to guess a belief state,
and to evaluate bridge rule semantics based on the guesses. Context semantics
are then evaluated using dlvhex external atoms, which may require additional
context input files (e.g., ASP program files, or databases).
2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Each answer set of the rewritten hex program describes a diagnosis of the given
MCS and a corresponding equilibrium. The mcs-ie output rewriter component
extracts this information and converts it into a human readable format (see the
example below). For the conversion of diagnoses to inconsistency explanations the
output converter generates an answer set program from the extracted diagnosis,
and evaluates it using dlv. Depending on command-line parameters,1 sets of
(subset-minimal) explanations for inconsistency in the MCS are displayed.

3 Example

In the following, we give an example MCS along with its encoding for mcs-ie.
Our MCS is a health care decision support system, which consists of a database

of lab test results C1, a patient record database C2, an ontology C3 for disease
classification, and an expert system C4 suggesting suitable treatments.

The MCS topology is specified in file master.hex, contexts C1, C2, and C4

are realized in corresponding dlv program files:

master.hex: #context(1,"dlv_asp_context_acc", "kb1.dlv").

#context(2,"dlv_asp_context_acc", "kb2.dlv").

#context(3,"ontology_context3_acc", "").

#context(4,"dlv_asp_context_acc", "kb4.dlv").

r1: (3:pneum) :- (2:xraypneum).

r2: (3:marker) :- (2:marker).

r3: (4:need_ab) :- (3:pneum).

r4: (4:need_strong) :- (3:atyppneum).

r5: (4:allow_strong_ab) :- not (1:allergystrong).

kb1.dlv: allergystrong.

kb2.dlv: marker. xraypneum.

kb4.dlv: give_strong v give_weak :- need_ab.

give_strong :- need_strong.

give_nothing :- not need_ab, not need_strong.

:- give_strong, not allow_strong_ab.

Intuitively, C1 and C2 provide information that the patient is allergic to strong
antibiotics, that a certain blood marker is present, and that pneumonia was
detected in an X-ray examination. C4 suggests a treatment which is either a
strong antibiotic, a weak antibiotic, or no medication at all.

Context C3 is implemented in C++ and uses the mcs-ie API. The following
source code (namespaces and includes are omitted) builds into a dlvhex plugin:

DLVHEX_MCSEQUILIBRIUM_PLUGIN(MedExamplePluginContext3,0,1,0)

DLVHEX_MCSEQUILIBRIUM_CONTEXT(Context3,"ontology_context3_acc")

set<set<string> > Context3::acc(

const string& param, const set<string>& input) {

set<set<string> > ret;

set<string> s(input.begin(), input.end());

if(input.count("pneum") == 1 && input.count("marker") == 1)

s.insert("atyppneum");

ret.insert(s); return ret;

}

void MedExamplePluginContext3::registerAtoms()

{ registerAtom<Context3>(); }

The first two lines creates a dlvhex plugin and an external atom usable in
#context(...). Context semantics is implemented in function acc, which gets
bridge rule heads as input and returns accepted belief sets. Finally, the external
atom is registered in the plugin using registerAtoms.

Roughly, C3 specifies that presence of pneumonia together with a blood
marker (stemming from r2) yields atypical pneumonia in the belief state.

Note that this system is inconsistent, as the expert system concludes that a
patient must be given a special drug, but the patient record states that she is
allergic to that drug, a counter-indication. This inconsistency can be explained
using mcs-ie as follows (assuming the mcs-ie plugin in the current directory):
$ dlvhex --plugindir=./ --ieenable --ieexplain=Dm,Em master.hex

mcs-ie calculates the following output, containing minimal diagnoses plus wit-
nessing equilibria (Dm:EQ:), and minimal inconsistency explanations (Em):
Dm:EQ:({r1},{}):({allergystrong},{marker,xraypneum},{})

Dm:EQ:({r2},{}):({allergystrong},{marker,xraypneum},{pneum},{})

Dm:EQ:({r4},{}):({allergystrong},{marker,xraypneum},{atyppneum,pneum},{})

Dm:EQ:({},{r5}):({allergystrong},{marker,xraypneum},{atyppneum,pneum},{})

Em:({r1,r2,r4},{r5})

Accordingly, deactivating r1, or r2, or r4, or adding r5 unconditionally, will restore
consistency, and there is a single inconsistency involving all rules except for r3.

4 Conclusions

The mcs-ie system may serve as a valuable tool for analyzing inconsistencies
in MCSs. It is geared towards functionality, not (yet) towards efficiency. An
interactive demo is available.1 Future work will be the implementation of further
external atoms, e.g., for accessing DBMS.

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: AAAI. pp. 385–390 (2007)

2. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI. pp.
268–273 (2007)

3. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency
in nonmonotonic multi-context systems. In: KR. pp. 329–339 (2010)

4. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI. pp.
90–96 (2005)

5. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do
without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

