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Abstract. We present an agent monitoring approach, which aims at refuting
from (possibly incomplete) information at hand that a multi-agent system (MAS)
is implemented properly. In this approach, agent collaboration is abstractly de-
scribed in an action theory. Action sequences reaching the collaboration goal are
determined by a planner, whose compliance with the actual MAS behavior allows
to detect possible collaboration failures. The approach can be fruitfully applied
to aid offline testing of a MAS implementation, as well as online monitoring.
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1 Introduction

Multi-Agent systems have been recognized as a promising paradigm for distributed
problem solving, and numerous multi-agent platforms and frameworks have been pro-
posed, which allow to program agents in languages ranging from imperative over object-
oriented to logic-based ones [16]. A major problem which agent developers face with
many platforms is verifying that a suite of implemented agents collaborate well to reach
a certain goal (e.g., in supply chain management). Tools for automatic verification® are
rare. Thus, common practice is geared towards extensive agent testing, employing trac-
ing and simulation tools (if available).

In this paper, we present a monitoring approach which aids in automatically de-
tecting that agents do not collaborate properly. In the spirit of Popper’s principle of
falsification, it aims at refuting from (possibly incomplete) information at hand that an
agent system works properly, rather than proving its correctness. In our approach, agent
collaboration is described at an abstract level, and the single steps in runs of the sys-
tem are examined to see whether the agents behave “reasonable,” i.e., "compatible” to
a sequence of steps for reaching a goal.

Even if the internal structure of some agents is unknown, we may get hold of the
messages exchanged among them. A given message protocol allows us to draw conclu-
sions about the correctness of the agent collaboration. Our monitoring approach hinges
on this fact and involves the following steps:
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3 By well-known results, this is impossible in general but often also in simple cases if details of
some agents (e.g., in a heterogenous environment) are missing.



(1) The intended collaborative behavior of the agents is modelled as a planning prob-
lem. More precisely, knowledge about the agent actions (specifically, messaging) and
their effects is formalized in an action theory, T, which can be reasoned about to auto-
matically construct plans as sequences of actions to reach a given goal.

(2) From T and the collaborative goal G, a set of intended plans, I-Plans, for reaching
G is generated via a planner.

(3) The observed agent behavior, i.e., the message actions from a message log, is then
compared to the plans in I-Plans.

(4) Incase an incompatibility is detected, an error is flagged to the developer resp. user,
pinpointing to the last action causing the failure so that further steps might be taken.

Steps 2-4 can be done by a special monitoring agent, which is added to the agent
system providing support both in testing, and in the operational phase of the system.
Among the benefits of this approach are the following:

o It allows to deal with collaboration behavior regardless of the implementation lan-
guage(s) used for single agents.

e Depending on the planner used in step 2, different kinds of plans (optimal, confor-
mant, ...), might be considered, reflecting different agent attitudes and collaboration
objectives.

o Changes to the agent messaging by the system designer may be transparently incor-
porated to the action theory 7', without further need to adjust the monitoring process.

e Furthermore, T' adds to a formal system specification, which may be reasoned about
and used in other contexts.

e As a by-product, the method may also be used for automatic protocol generation,
i.e., determine the messages needed and their order, in a (simple) collaboration.

In the following, we detail the approach and illustrate it on an example derived from
an implemented agent system. The next section describes the basic agent framework
that we build upon and presents a (here simplified version) of a multi-agent system in
the postal services domain. After that, in Section 3 we describe how to model the in-
tended behavior of a multi-agent system as an abstract planning problem, and instantiate
this for our example system using the action language X [5, 4]. Our approach to agent
monitoring is then discussed in Section 4, where we also investigate some fundamental
properties. After a brief discussion of the implementation in Section 5 and a review of
related work in Section 6, we conclude in Section 7 with an outlook on further research.

2 Message Flow in a Multi-Agent System

In a multi-agent system (MAS), a set of autonomous agents are collaborating to reach a
certain goal. Our aim is to monitor (some aspects of) the behavior of the agents in order
to detect inconsistencies and help debugging the whole system.

As opposed to verification, monitoring a MAS does not require a complete speci-
fication of the behavior of the particular agents. Rather, we adopt a more general (and
in practice much more realistic) view: We do not have access to the (entire) internal



state of a single autonomous agent, but we are able fo observe the communication be-
tween agents of the system. By means of its communication capabilities, an agent can
potentially control another agent. Our aim is to draw conclusions about the state of a
multi-agent system by monitoring the message protocol.

2.1 Basic Framework

We consider multi-agent systems consisting of a finite set A = {ay,...,a,} of col-
laborating agents a;. Although agents may perform a number of different (internal) ac-
tions, we assume that only one action is externally observable, namely an action called
send msg(m), which allows an agent to send a message, m, to another agent in the
system. Every send msg action is given a timestamp and recorded in a message-log file
containing the history of messages sent. The following definitions do not assume a so-
phisticated messaging framework and apply to almost any MAS. Thus, our framework
is not bound to a particular MAS.

Definition 1 (Message, M, file). A message is a quadruple m = (s,r,c,d), where
S, T € A are the identifiers of the sending and the receiving agents, respectively; ¢ € C
is from a finite set C of message commands; d is a list of constants representing the mes-
sage data. A message-log file is an ordered sequence Myg = t1:my,t2:ma, ..., ty:my
of messages m; with timestamps t;, where t; < t;y1, i < k.

The set C constitutes a set of message performatives specifying the intended mean-
ing of a message. In other words, it is the type of a message according to speech act
theory: the illocutionary force of an utterance. These commands may range from ask/tell
primitives to application specific commands fixed during system specification.

Often, an agent a; will not send every kind of message, but use a message repertoire
C; C C. Moreover, only particular agents might be message recipients (allowing for
simplified formats). Given that the repertoires C; are pairwise disjoint and each message
type c has a unique recipient, we use {c, d) in place of m = (s, 1,c,d).

Finally, we assume a fixed bound on the time within the next action should happen
in the MAS, i.e., a timeout for each action (which may depend on previous actions),
which allows to see from M,, whether the MAS is stuck or still idle.

2.2 Gofish Post Office

We consider an example MAS called Gofish Post Office for postal services. Its goal is
to improve postal product areas by mail tracking, customer notifications, and advanced
quality control. The following scenario is our running example:

Example scenario: Pat drops a package, p1, for a friend, Sue, at the post office. In the
evening, Sue gets a phone call that a package has been sent. The next day, Sue decides
to pick up the package herself at the post office on her way to work. Unfortunately, the
clerk has to tell her that the package is already on a truck on its way to her home.

The overall design of the Gofish MAS is depicted in Figure 1. An event dispatcher
agent (disp) communicates system relevant (external) events to an event management
agent (em) which maintains an event database. Information about packages is stored
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Fig. 1. The Gofish post office system.

in a package database manipulated by a package agent (pa). The notification agent
(notify) notifies customers about package status and expected delivery time, for which
it maintains a statistics database. Finally, a zip agent (zip) informs responsible man-
agers, stored in a manager database, about zip codes not being well served.

Example 1 (Simple Gofish). For space reasons and to keep things simple and illustra-
tive, we restrict the Gofish MAS to the package agent, pa, the event management agent,
em, and the event dispatcher agent, disp; thus, A = {pa, em, disp}.

The event dispatcher informs the event manager agent about the drop off of a pack-
age (identified by a unique identifier), its arrival at the distribution center, its loading on
a truck, its successful delivery, or when a recipient shows up at the distribution center
to pick up a package by herself: Cqisp = {dropOff, distCenter, truck, delivery, pickup}.
The event manager agent instructs the package agent to add a package to the package
database after drop off, as well as to update the delivery time after delivery or customer
pickup: Cey = {addPackage, setDelivTime}. The package agent here only receives
messages, thus Cpq = {}.

Running scenario: The message-log M, contains the messages m; = (dropOff, p1),
my = (addPackage, p1), mg = {distCenter, p1), m4 = (truck, p1), and ms = {pickup,
p1). The entries are 0:(disp, em, dropOff,p1), 5:(em,pa,addPackage,p;),
13:(disp, em, distCenter, p1 ), 19:(disp, em, truck, p1 ), and 20:(disp, em, pickup, p1).

3 Modelling Agent Behavior via Declarative Planning

We now discuss how to formalize the intended collaborative agent behavior as an action
theory for planning, which encodes the legal message flow. In it, actions correspond to
messages and fluents represent assumptions about the current state of the world.

Under suitable encodings, we could use planning formalisms like STRIPS [8],
PDDL [9] or HTN [7] based planners to model simple agent environments. In fact,
HTN planning has recently been incorporated in a MAS [3] and formulated as action
theories in logic programming [2]. Another powerful language suitable for modeling



control knowledge and plans for agents is GOLOG [15]. However, due to its high ex-
pressive power (loop, conditionals) automated plan generation is limited in this formal-
ism. In Subsection 3.1 we give a generic formulation of our approach, independent of
a particular planning mechanism. Then, in Subsection 3.2 we instantiate this high-level
description using the action language K [5,4]. While our approach does not rely on
K, we have chosen it because of its declarative nature and its capabilities to deal with
incomplete knowledge and nondeterminism.

3.1 Modelling Intended Behavior of a MAS

Our approach to formalize the intended collaborative behavior of a MAS consisting of
agents A = {ai,...,a,} as a planning problem P comprises three steps:

Step 1: Actions (Act). Declare a corresponding action for each message m = (s,7,c,d)
in our domain, i.e., we have c(s,r,d) € Act (see Def. 1). Again, if the message reper-
toires C; are pairwise disjoint and each message type ¢ has a unique recipient, we use
in short c(d ). These actions might have effects on the states of the agents involved and
will change the properties that hold on them.

Step 2: Fluents (Fl). Define properties, fluents, of the “world” that are used to describe
action effects. We distinguish between the sets of internal fluents, F'l,, of a particu-
lar agent a* and external fluents, Fl,.;, which cover properties not related to specific
agents. These fluents are often closely related to the message performatives C; of the
agents.

Step 3: Theory (T) and Goal (G). Using the fluents and actions from above, state vari-
ous axioms about the collaborative behavior of the agents as a planning theory T'. The
axioms describe how the various actions change the state and under which assump-
tions they are executable. Finally, state the ultimate Goal G (in the running scenario: to
deliver the package) suitable for the chosen planning formalism.

We end up with a planning problem P = (Act, FI, T, G), where FI = J ca FlaUFley,
whose solutions are a set of P-Plans. Note that the precise formulation of these notions
depends on the underlying planning formalism. For example, in HTN planning one has
to specify operators and methods and their effects (this is closely related to Act and Fl
above), as well as a domain description and a task list (which corresponds to T and G
above): we refer to [2] for a full discussion. The above is a generic formulation suitable
for many planning frameworks.

3.2 Using Action Language K

In this section, we instantiate the planning problem P described above to a problem
PX formulated in the action language K. Due to space constraints, we only give the
key features and refer to [5, 4] for further details. L

Declarations of the type p(X) requires bki(Y1),...,bky (Yy,) define actions and
Sfluents pin K (X = X3,..., X, are parameters that must be typed by some predicates

* Internal fluents especially can describe private values which might be inaccessible by an ex-
ternal observer.



bkq,..., bk, defined in the so called background knowledge BK, which specifies a
finite set of static facts in a function-free first-order language). In addition, K allows to
state axioms of the following form:>

(1) caused f if a after f.
(2) total f if a after f.
(3) inertial f.

(4) executable a if f.

(5) nonexecutable a if f§.

(1) means that fluent f is caused whenever a holds after 8. (2) simulates nondeter-
ministic effects: its meaning is that fluent f is either true or false if « holds after £.
(3) models inertia of a fluent f: it is a macro for caused f if not —.f afterf, where
not is default negation and — is strong negation. Furthermore, with (4) and (5) we can
express under which circumstances an action is executable or nonexecutable.

A planning problem PX may then be formalized as a tuple (Act, FI, T, G), where
Act defines the actions, FI the fluents, T comprises BK and all axioms (of the sort
introduced above), and G is the goal, i.e. a set of ground fluent literals.

The semantics of K is defined through legal rransitions t = (s, A, s') from states s
to states s’ by simultaneous execution of actions A, where a state s is any consistent set
of ground fluent literals.% A trajectory T'r is any initial state sy or sequence t1, ... ,t,
of legal transitions ¢; = (s;_1, A, $;), ¢ € {1, ..., n}, starting in an initial state sq.
An (optimistic) plan for goal G is P =(), resp. the projection P=(A4;,...,A4,) of a
trajectory T'r, such that G holds in sq resp. sy.

Example 2 (Simple Gofish cont’d). In the Gofish example, the following X actions
(corresponding to the possible messages) and fluents are defined (in DLVX notation [4]):
actions : dropOff(P) requires pkg(P).
addPkg(P) requires pkg(P).
distCenter(P) requires pkg(P).
truck(P) requires pkg(P). Act
delivery(P) requires pkg(P).
pickup(P) requires pkg(P).
setDelivTime(P) requires pkg(P).
fluents : pkgAt(P,Loc) requires pkg(P),loc(Loc).
delivered(P) requires pkg(P).
recipAtHome(P) requires pkg(P). Fl
added(P) requires pkg(P).
delivTimeSet(P) requires pkg(P).
The first three external fluents describe the current location of a package, whether it has
successfully been delivered, and whether its recipient is at home, respectively. The last
two fluents are internal fluents about the state of agent pa; whether the package has
already been added to the package database resp. whether the delivery time has been
set properly.

> In all the statements below, f is a fluent literal, a is an action, « is a set of (possibly default
negated) fluent literals, and 3 is a set of (possibly default negated) actions and fluent literals.
® Note that in K states are not “total”, i.e., a fluent f can be neither true nor false in a state.



A possible package (e.g., a generic p; ) and its locations are background knowledge
represented by the set of facts BK={pkg(p1), loc(drop), loc(dist), loc(truck)}. Now
we specify further axioms for T (in DLVX notation) as follows:

initially : recipAtHome(p1).

always : noConcurrency.

inertial pkgAt(P,L). inertial delivered(P).
inertial recipAtHome(P). inertial added(P).

executable drop0ff(P) if not added(P).
caused pkgAt(P,drop) after dropOff(P).
nonexecutable drop0ff(P) if pkgAt(P,drop).

executable addPkg(P) if pkgAt(P,drop),not added(P).
caused added(P) after addPkg(P).

executable distCenter(P) if added(P),pkgAt(P,drop).
caused pkgAt(P,dist) after distCenter(P).
caused -pkgAt(P,drop) after distCenter(P).

executable truck(P) if pkgAt(P,dist),notdelivered(P).
caused pkgAt(P,truck) after truck(P).
caused -pkgAt(P,dist) after truck(P).

executable delivery(P) if pkgAt(P,truck), notdelivered(P).
caused delivered(P) after delivery(P), recipAtHome(P).

executable setDelivTime(P,DTime) if delivered(P).
caused delivTimeSet(P) after setDelivTime(P).

executable pickup(P) if pkgAt(P,dist), notdelivered(P).
executable pickup(P) if pkgAt(P,truck), notdelivered(P).
caused delivered(P) after pkgAt(P,dist), pickup(P).
total recipAtHome(P) after pickup(P).

Most of the theory is self-explanatory. The recipient is at home initially. The keyword
noConcurrency specifies that concurrent actions are disallowed. An important as-
pect is modelled by the final total statement. It expresses uncertainty whether after
a pickup attempt at the distribution center, the recipient will be back home, in particular
in time before the truck arrives to deliver the package, if it was already on the way.
Finally, the goal is G = delivTimeSet(py).

The following (optimistic) plans reach G:

Py, = (drop0ff(p1); addPkg(p1); distCenter(p1); truck(pi);
pickup(pi); delivery(pi); setDelivTime(p1))
P, = (drop0ff(p1); addPkg(p1); distCenter(p1); truck(py);
delivery(pi); setDelivTime(p1))
P3 = (drop0ff(p1); addPkg(p1); distCenter(p1); pickup(p1); setDelivTime(pi1))

In Py, the recipient shows up at the distribution center after the package is loaded on
the truck and the truck is on its way. In P», the package is successfully delivered before
the recipient comes to pick it up herself, whereas in Ps, she picks up the package before
it has been loaded on the truck.



Running scenario: According to the message history in M,,,, we see that plan P,
is infeasible, as well as P5 since the package can not be handed over to Sue at the
distribution center. Thus, only P; remains for successful task completion.

4 Agent Monitoring

The overall aim of adding a monitoring agent (monitor) is to aid debugging a given
MAS. We can distinguish between two principal types of errors: (1) design errors, and
(2) implementation (or coding) errors. While the first type means that the model of the
system is wrong (i.e., the MAS behaves correctly to the model of the designer of the
MAS, but this model is faulty and does not yield the desired result in the application),
the second type points to more mundane mistakes in the actual code of the agents:
the code does not implement the formal model of the system (i.e., the actions are not
implemented correctly).

Note that often it is very difficult, if not impossible at all, to distinguish between
design and implementation errors. But even before the system is deployed, the planning
problem P can be given to a planner and thus the overall existence of a solution can be
checked. If there is no solution, this is clearly a design error and the monitoring agent
can pinpoint where exactly the planning fails (assuming the underlying planner has this
ability). If there are solutions, the agent designer can check them and thus critically
examine the intended model.

However, for most applications the bugs in the system become apparent only at
runtime. Our proposed monitoring agent has the following structure.

Definition 2 (Structure of the monitoring agent). The agent monitor loops through
the following steps:

1. Read and parse the message log M oe. If Mo =0, the set of plans for P may be
cached for later reuse.

2. Check whether an action timeout has occurred.

3. Ifthis is not the case, compute the current intended plans (according to the planning
problem description and additional info from the designer) compatible with the
actions as executed by the MAS.

4. If no compatible plans survive, or the system is no more idle, then inform the agent
designer about this situation.

5. Sleep for some pre-specified time.

We now elaborate more deeply into these tasks.

Checking MAS behavior: monitor continually keeps track of the messages sent be-
tween the agents. They are stored in the message-log, M., which is accessible by
monitor. Thus for monitor, the behavior of the MAS is completely determined by
M ,,. We think this is a realistic abstraction from internal agent states. Rather than de-
scribing all the details of each agent (which might be unknown, e.g. if legacy agents
are involved), the kinds of messages sent by an agent can be chosen so as to give a
declarative high-level view of it. In the simplified Gofish example, these messages for
agents em, disp, pa are given by Cem, Caisp, and Cpq (see Section 2).



Intended behavior and compatibility: The desired collaborative MAS behavior is for-
malized as a planning problem P (e.g., in language /X, cf. Section 3). Thus, even before
the MAS is in operation, problem P can be fed into a planner which computes potential
plans to reach a goal. Agent monitor is exactly doing that.

In general, not all P-Plans may be admissible, as constraints may apply (derived
from the intended collaborative behavior). 7 E.g., some actions ought to be taken in fixed
order, or actions may be penalized with costs whose sum must stay within a limit. We
thus distinguish a set I-Plans(P) CP-Plans as intended plans (of the MAS designer).

It is perfectly possible that the original problem has successful plans, yet after some
actions executed by the MAS, these plans are no longer valid. This is the interesting case
for the agent designer since it clearly shows that something has gone wrong: monitor
can pinpoint to the precise place indicating which messages have when caused the plan
to collapse. Because these messages are related to actions executed by the agents, in-
formation about them will help to debug the MAS. In general, it is difficult to decide
whether the faulty behavior is due to a coding or design error. However, the info given
by monitor will aid the agent designer to detect the real cause.

Messages from monitor: Agent monitor continually checks and compares the ac-
tions taken so far for compatibility with all current plans. Once a situation has arisen in
which no successful plan exists (detected by the planner employed), monitor writes
a message into a separate file containing (1) the first action that caused the MAS to go
into a state where the goal is not reached, (2) the sequence of actions taken up to this
action, and (3) all the possible plans before the action in 1) was executed (these are all
plans compatible with the MAS behavior up to it).

In the above description, we made heavily use of the notion of a compatible plan.
Before giving a formal definition, we consider our running scenario. In Gofish, all three
plans P, P», P3 generated from the initial problem coincide on the first three steps:
dropOff(py), addPkg(p1), and distCenter(py).

Running scenario (coding error): Suppose on a preliminary run of our scenario,
Mg shows mq=dropOff(py). This is compatible with each plan P;, ¢ € {1,2, 3}. Next,
meo=distCenter(py). This is incompatible with each plan; monitor detects this and
gives a warning. Inspection of the actual code may show that the command for adding
the package to the database is wrong. While this doesn’t result in a livelock (the MAS is
still idle), the database was not updated. Informed by monitor, this is detected at this
stage already.

After correction of this coding error, the MAS may be started again and another error
shows up:

Running scenario (design error): Instead of waiting at home (as in the “standard” plan
P»), Sue shows up at the distribution center and made a pickup attempt. This “external”
event may have been unforeseen by the designer (problematic events could also arise
from MAS actions). We can expect this in many agent scenarios: we have no complete
knowledge about the world, unexpected events may happen, and action effects may not
fully determine the next state.

7 This might depend on the capabilities of the underlying planning formalism to model con-
straints such as cost bounds or optimality wrt. resource consumption etc.



Only plan P; remains to reach the goal. However, there is no guarantee of success,
if Sue is not back home in time for delivery. This situation can be easily captured in the
framework of [5,4]. There, we have the notion of a secure plan. An (optimistic) plan
is secure (or conformant [11]), if regardless of the initial state and the outcomes of the
actions, the steps of the plan will always be executable one after the other and reach
the goal (i.e., in all trajectories). As can be easily seen, P; is not secure. Thus, a design
error is detected, if delivering the package must be guaranteed under any circumstances.
Based on a generic planning problem P, we now define compatible plans as follows.

Definition 3 (M,; compatible plans). Let the planning problem P model the intended
behavior of a MAS, which is given by a set I-Plans(P) C P-Plans. Then, for any mes-
sage log Myyg =t1:ma,. .., tg:my, we denote by C-Plans(P, M,g,n), n > 0, the set
of plans from I-Plans(P) which comply on the first n steps with the actions my, . . . , My,

Respecting that the X planner, DLV, is capable of computing optimistic and secure
plans, we denote for any K planning problem PX by X-Plans’(PX, M,,,,n) (resp.
X-Plans® (PX, Mg ,n) the set of all optimistic (resp. secure) plans for PX with the
above property, X € {I,C}.

Definition 4 (Culprit(M,g, P)). Let t,:my, be the first entry of Mo, such that either
(i) C-Plans(P, Miog, ) = 0 or (ii) a timeout is detected. Then, Culprit(Mog, P) is the
pair (tn:my, idle) if (i) applies and (t,:my,, timeout) otherwise.

Initially, M, is empty and thus C-Plans(P) = I-Plans(P). As more and more
actions are executed by the MAS, they are recorded in M, and the set C-Plans(P)
shrinks. monitor can thus compare at any point in time whether C-Plans(P, M ,,, )
is empty or not. Whenever this happens, Culprit(M,,, P) is computed and pinpoints to
the problematic action.

Running scenario: Under guaranteed delivery (i.e., secure planning), monitor writes
Culprit(Mog, P)=(20:ms, idle) (the pickup(pi) message) on a file, and thus clearly
points to a situation missed in the MAS design. Note that there are also situations where
everything is fine; if pickup would not occur, agent monitor would not detect a prob-
lem at this stage.

4.1 Properties

We can show that the agent monitoring approach has desirable properties. The first
result concerns its soundness.

Theorem 1 (Soundness). Let the planning problem P model the intended collabora-
tive MAS behavior, given by I-Plans(P) C P-Plans. Let M,, be a message log. Then,
the MAS is implemented incorrectly if Culprit(M o, P) exists.

Semantically, the intended collaborative MAS behavior (described in any formal-
ism) may manifest in a set of trajectories as described for K planning problems, where
trajectories correspond to possible runs of the MAS (sequences of states and executed
actions). On the other hand, optimistic plans for a K planning problem P are projected
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trajectories. We say that a set O P of such plans covers the intended collaborative MAS
behavior, if each run of the MAS corresponds to some trajectory whose projection is
in OP. For example, this holds if OP is the set of all optimistic plans for PX and the
intended collaborative MAS behavior is given by a secure plan, or, more liberally, by a
conditional plan. We have:

Theorem 2 (Soundness of PX Cover). Let PX be a K planning problem, such that
I-Plans®(PX) covers the intended collaborative MAS behavior. Let M og be a message
log. Then, MAS is implemented incorrectly if Culprit{ M g, PX) exists.

As for completeness, we need the assertion that plans can not grow arbitrarily long,
i.e., have an upper bound on their length.

Theorem 3 (Completeness). Let the planning problem P model the intended collabo-
rative MAS behavior, given by I-Plans(P) C P-Plans where plans are bounded. If the
MAS is implemented incorrectly, then there is some message log M o, such that either
(i) C-Plans(P, Myg,0) = 0, or (ii) Culprit( M oe, P) exists.

In (i), we can conclude a design error, while in (ii) a design or coding error may
be present. There is no similar completeness result for PX covers; note that in our run-
ning scenario, a design error is detected for secure plans as MAS collaborative behavior
formalism. However, the culprit vanishes if the cover contains plan P;, which is com-
patible with M;,,.

As for complexity, we mention that in expressive planning formalisms like X, de-
ciding whether C-Plans(P, Mz, n) # @ or Culprit(M ,,, P) exists from P, M,,, and
n is NP-hard in general, which is inherited from expressive planning language. We re-
mind that, like for satisfiability (SAT), this is a theoretical worst-case measure, though,
and still solutions for many instances can be found quickly. Moreover, there are in-
stance classes which are polynomial time solvable and for which bLVX is guaranteed to
compute plans in polynomial time.

S Implementation

To demonstrate the proposed approach, a running example has been implemented. The
Gofish MAS and Agent monitor is developed within IMPACT (Interactive Maryland
Platform for Agents Collaborating Together). Note that in principle our approach is
completely independent of any specific agent system. We refer to [17] for the details of
IMPACT.

Each agent consists of a set of data types, API functions, actions, and an agent
program that includes some rules prescribing its behaviors. Since we use DLV [4] as
the planner, a new connection module has been created within Agent monitor so that
monitor can access the DLV planner. In this way, before the Gofish MAS operates,
we feed PX ., into monitor, which then exploits DLVX to compute all potential plans
including both secure and optimistic plans.

Running scenario: The Gofish post office guarantees the package delivery within 24
hours of dropOff (time 0). Consider the case that Sue wanted to pick up her package
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(p1=0x00fe6206c.1) at the distribution center. Unfortunately, it has been loaded on the
truck. Sue did not come back home in time, therefore the package wasn’t delivered in
time. Thus after the ”pickup” action at time 20, the MAS was keeping idle till a timeout
(24 in this example) was detected by monitor. In the end, monitor generated a log
file as follows (see also the project webpage ®):

Problematic action:
20:pickup(0200fe6206c.1), timeout

Actions executed:

0:drop0ff (0200 fe6206c.1); 5:addPkg(0x00 fe6206c.1);

13:distCenter(0x00fe6206c¢.1); 19:truck(0200fe6206¢.1)

Possible plans before problematic action:

(drop0ff(p1); addPkg(p1); distCenter(p1); truck(py);
pickup(pi); delivery(pi); setDelivTime(p1))

(drop0ff(p1); addPkg(p1); distCenter(p1); truck(py);
delivery(pi); setDelivTime(p1))

6 Related Work

Monitoring problem has been raised in Robotics literature. [10] presented a situation
calculus-based account of execution monitoring for robot programs. A situation cal-
culus specification is given for the behavior of a Golog program. The interpretation
of Golog programs is combined with an execution monitor, which detects and recovers
from discrepancies. Similar to our method, their approach is formal and works for mon-
itoring arbitrary programs. While we focus on monitoring the collaboration of multiple
agents, they address the problem of a single agent acting in an uncertain environment.

Another interesting monitoring approach is based on multi-agent plan-recognition,
by Tambe [18], Intille and Bobick [12], Devaney and Ram [1], Kaminka et al. [13, 14].
In this approach, an agent’s intentions (goals and plans), beliefs or future actions are
inferred through observations of another agent’s ongoing behavior.

Devaney and Ram [1] describe the plan recognition problem in a complex multi-
agent domain involving hundreds of agents which act over large space and time scales.
They use pattern matching to recognize team tactics in military operations. The team-
plan library stores several strategic patterns which the system needs to recognize during
the military operation. In order to make computation efficient, they utilize representa-
tions of agent-pair relationships for team behaviors recognition.

Intille and Bobick [12] constructed a probabilistic framework that can represent
and recognize complex actions based on visual evidence. Complex multi-agent action
is inferred using a multi-agent belief network. The network integrates the likelihood
values generated by several visual goal networks at each time and returns a likelihood
that a given action has been observed. The network explicitly represents the logical and
temporal relationships between agents, and its structure is similar to a naive Bayesian
classifier network structure, reflecting the temporal structure of a particular complex

8 http://www.cs.man.ac.uk/ zhangy/project/monitor/
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action. Their approach relies on all coordination constraints among the agents. Once an
agent fails, it may not be able to recognize the plans.

Another line of work has been pursued in ISI. Gal Kaminka et al. [13, 14] devel-
oped the OVERSEER monitoring system, which builds upon work on multi-agent plan-
recognition by [12] and [18]. They address the problem of many geographically dis-
tributed team members collaborating in a dynamic environment. The system employs
plan recognition to infer the current state of agents based on the observed messages
exchanged between them. The basic component is a probabilistic plan-recognition al-
gorithm which underlies the monitoring of a single agent and runs separately for each
agent. This algorithm is built under a Markovian assumption and allows linear-time in-
ference. To monitor multiple agents, they utilize social knowledge, i.e. relationships and
interactions among agents, to better predict the behavior of team members and detect
coordination failures. OVERSEER supports reasoning about uncertainty and time, and
allows to answer queries related to the likelihood of current and future team plans.

Comparison: While our objective is (1) to debug offline an implemented MAS, and (2)
to monitor online the collaboration of multiple agents, the approaches described above
mainly aim to inferring (sub-)team plans and future actions of agents. They do not ad-
dress the MAS debugging issue. Furthermore, we point out that our method might be
used in the MAS design phase to support protocol generation, i.e., determine at de-
sign time the messages needed and their order, for a (simple) agent collaboration. More
precisely, possible plans P = {my, ..., my) for a goal encode sequences of messages
mi,..., my that are exchanged in this order in a successful cooperation achieving the
goal. The agent developer may select one of the possible plans, e.g. according to op-
timality criteria such as least cost, P*, and program the individual agents to obey the
corresponding protocol. In subsequent monitoring and testing, P* is then the (single)
intended plan.

Plan recognition, which is adopted for multi-agent monitoring by the above ap-
proaches, is suitable for various situations: if communication is not possible, agents
exchanging messages are not reliable, or communications must be secure.

The above methods significantly differ from our approach in the following points:

(1) If a multi-agent system has already been deployed, or it consists of legacy code,
the plan-recognition approach can do monitoring without modifications on the deployed
system. Our method entirely relies on an agent message log file.

(2) The algorithms developed in [14] and [1] have low computational complexity. Es-
pecially the former is a linear-time plan recognition algorithm.

(3) Our model is not yet capable of reasoning about uncertainty, time and space.

(4) In some tasks, agents do not frequently communicate with others during task exe-
cution. In addition, communication is not always reliable and messages may be incor-
rect or get lost.

We believe the first three points can be taken into account in our framework. (1)
Adding an agent actions log file explicitly for a given MAS should not be too diffi-
cult. (2) While the developed algorithms are of linear complexity, the whole framework
needs to deal with uncertainty or probabilistic reasoning which can be very expensive.
While our approach is NP-hard in the worst case, we did not encounter any difficulties
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in the scenarios we have dealt with. (3) Although IMPACT does not yet have imple-
mented capabilities for dealing with probabilistic, temporal and spatial reasoning, such
extensions have been developed and are currently being implemented.

Among the advantages of our method are the following:

e Our method can be more easily extended to do plan repair than the methods above.
Merely Kaminka et al. mentioned the idea of dealing with failure actions.

e The approach we have chosen includes protocol generation in a very intuitive sense
relying on the underlying planner while the cited approaches model agent behavior at
an abstract level which can not be used to derive intended message protocols directly.
e Since ascertaining the intentions and beliefs of the other agents will result in un-
certainty with respect to that information, some powerful means of reasoning under
uncertainty are required for the plan recognition method.

7 Conclusion

We have described a method to support testing of a multi-agent system, based on mon-
itoring their message exchange using planning methods. This can be seen as a very
useful debugging tool for detecting coding and design errors. We also presented some
soundness and completeness results for our approach, and touched its complexity.

Our approach works for arbitrary agent systems and can be tailored to any planning
formalism that is able to express the collaborative behavior of the MAS. We have briefly
discussed (and implemented) how to couple a specific planner, DLV, which is based
on the language K, to a particular MAS platform, viz. IMPACT. A webpage for further
information and detailed documentation has been set up (see footnote 8).

There are many extensions to our approach. We mention just some:

(1) Cost based planning: Can the goal still be reached with a certain bound on the
overall costs, given that actions which the agents take have costs attached? And, what is
the optimal cost and how does a corresponding behavior look like? This would allow us
to assess the quality of an actual agents behavior and to select cost-effective strategies.
To keep the exposition simple, we have omitted that DLV is also capable of computing
admissible plans (plans within a cost bound) and, moreover, optimal plans over opti-
mistic and secure plans, respecting that each action has certain declared cost [6]. For
instance, in the Gofish example we might prefer plans where the customer picks up the
package herself, which is cheaper than sending a truck. Thus, in the realization of our
approach, also economic behavior of agents in a MAS under cost aspects can be easily
monitored, such as obedience to smallest number of message exchanges or least total
communication cost.

(2) Dynamic planning: We assumed an a priori chosen collaboration plan for M,
compatibility. This implies C-Plans(P, M,,, n') C C-Plans(P, M, 1), for all n' >
n > 0. However, this no longer holds if the plan may be dynamically revised. Checking
M o compatibility then amounts to a new planning problem whose initial states are the
states reached after the actions in M,.

(3) At the beginning of monitoring, all potentially interesting plans for the goal are
generated, and they can be cached for later reuse. We have shown the advantages of this
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method. However, if a very large number of intended plans exists up front, the method
may become infeasible. In this case, we might just check, similar as above, whether
from the state reached and the actions in M,,, the goal can be reached.

Investing the above issues is part of ongoing and planned future research.
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