In: Proc. Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR, 2002),

Toulouse, France. Morgan Kaufman, 2002.

A Generic Approach for Knowledge-Based
Information-Site Selection

Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits

Institut fiir Informationssysteme, Technische Universitit Wien,
Favoritenstrafle 9-11, A-1040 Vienna, Austria
e-mail: {eiter,michael,giuliana,tompits}@kr.tuwien.ac.at

Abstract

With the advent of the World Wide Web,
a vast number of heterogenous information
sources has become available. In order to
access and process these data, suitable tools
and methods for building an information in-
frastructure are necessary. One task for this
purpose is the selection of relevant informa-
tion sources in automated query answering.
In this paper, we present an approach for
information-site selection based on the an-
swer set programming paradigm. We use ex-
tended logic programs to represent rich de-
scriptions of the information sources, an un-
derlying domain theory, and queries in a for-
mal language. Moreover, we use extended
logic programs also for declarative query
analysis and query abstraction. The cen-
tral part of our architecture are site-selection
programs, representing both qualitative and
quantitative criteria. Because of the struc-
tured nature of data items, the semantics
of such programs, given in terms of priori-
tized logic programs, must carefully respect
implicit context information in site-selection
rules, and furthermore combine it with pos-
sible user preferences. An experimental pro-
totype of the overall approach has been im-
plemented using the d1v KR system and its
plp front-end for prioritized logic programs.

1 Introduction

With the advent of the World Wide Web, a wealth
of information has become available to a large group
of users. However, the distribution of the information
sources, their heterogeneity and diverse ways of ac-
cessibility have raised the need for suitable tools and

methods for building an information infrastructure.
A promising approach is based on multi-agent sys-
tems, in which special information agents (or middle
agents [10]) provide various services, including finding,
selecting, and querying relevant information sources.

The potential of knowledge-based approaches—
especially of logic programming—for developing rea-
soning components of intelligent information agents is
outlined in [14, 16, 29]. In this paper, we pursue this
further and present a declarative approach to infor-
mation source selection. Here, the problem is, given a
query of the user, which out of a collection of informa-
tion sources should the agent select for answering the
query, such that the utility of the answer, in terms of
quality of the result and other criteria (e.g., costs), is
as large as possible for the user? Obviously, a sensi-
ble solution to this problem is nontrivial and involves
various aspects such as elementary properties of the
information sources, knowledge about their contents,
and knowledge about the application domain.

Our approach incorporates such aspects, and makes
several contributions, which are briefly highlighted as
follows.

(1) We use extended logic programs [21] to represent
rich descriptions of the information sources, an
underlying domain theory, and queries in a formal
language. We perform query analysis by logic pro-
grams and compute query abstractions. Here, we
consider XML-QL [13], but other query languages
could be handled as well.

(2) At the heart, a declarative site selection program
represents both qualitative and quantitative crite-
ria (such as site preference and costs). Its rules
may access information provided by the other pro-
grams, including occurrences of objects and val-
ues in the query. For instance, a rule r; may state
that a query about actors’s awards (where actors

Selected site

IIQ,<<

Query Q

i [770) 511y [T (114 [T s

Figure 1: General Architecture of a Selection Base S = (Il g, IIsq, Hgom, I ser, <4) for Site Selection.

and awards are objects) should be posed to infor-
mation source si.

(3) We consider the interesting and, to our knowl-
edge, novel issue of contezrts in logic programs.
Structured data items require a careful definition
of the selection program semantics. If, besides r;
as above, rule o says that source s, is in general
best for awards, then r; should have priority over
ro and s; should be queried. Note that this pri-
ority is not based on inheritance (cf. [7]), but on
the context of the occurrence of awards, which is
determined by the access path in the query. Fur-
thermore, implicit priorities, derived from context
information, must be combined with explicit user
preferences from the selection policy, and arising
conflicts must be resolved.

Generally speaking, the main advantage of using ex-
tended logic programs under the answer set seman-
tics for dealing with the site-selection task considered
here is given by their declarative nature, which pro-
vides a clear semantics for knowledge representation
and reasoning, both under qualitative as well as quan-
titative criteria. Furthermore, this formalism is capa-
ble of handling incomplete information, modeling some
form of nonmonotonic reasoning which, arguably, is an
inherent feature of the current problem domain. As
well, changes in the specification of the site-selection
process are easily incorporated by modifying or adding
suitable rules or constraints, without the need for re-
designing the given program, as might be the case, e.g.,
in procedural languages. Finally, the declarative na-
ture of the answer set semantics formalism permits also
a coupling with sophisticated ontology tools for provid-
ing more advanced features for the domain knowledge.

2 Outline of the Approach

Our approach is based on the answer set programming
paradigm [28], in which problems are represented by
extended logic programs (ELPs) [21], possibly aug-

mented with priorities (e.g., [6, 11, 25]) and weak con-
straints [8], and solutions are obtained from the answer
sets of the programs. We assume the reader famil-
iar with answer sets; for further background, see e.g.,
[21, 28, 4].

Let us illustrate our conception with the following sce-
nario.

Example 1 Consider an information agent which
knows information sources s1, Sz, and s3 about movies,
containing XML data. Assume that the following
query (in XML-QL [13]) is handed to the agent, which
informally asks a source for titles of all movies directed
by Alfred Hitchcock:

FUNCTION HitchcockMovies($MovieDB:"Movie.dtd") {
CONSTRUCT <MovieList> {
WHERE <MovieDB> <Movie>
<Title> $t </Title>
<Director> <Personalia>
<FirstName> "Alfred" </FirstName>
<LastName> "Hitchcock" </LastName>
</Personalia> </Director>
</Movie> </MovieDB>
IN source($MovieDB)
CONSTRUCT <Movie> $t </Movie>}
</MovieList>}

Suppose the agent knows that s; is especially accurate
for information about directors, while sy has usually
good coverage of information about person data; all
which known about s3 is that the site is not particularly
reliable. In this situation, we would expect the agent
to select s1 for querying.

While the above example is simple, it shows that the
selection process uses different kinds of knowledge. In
our approach, this is reflected by the following compo-
nents of a selection base S = (g, g, Maom, Hser, <u)
(see Figure 1):

Query description Il 4: For any query) as in Ex-
ample 1, a high-level abstract description is ex-
tracted from a low-level (syntactic) representation
R(Q), given as a set of elementary facts, by ap-
plying a logic program II;4 to R(Q). Informally,
the rules of II;4 single out the essential parts of
@, such as occurrence of attributes and values in
the query, comparison and joins, or access paths
describing contexts.

Domain theory Il;,,,: The agent’s background
knowledge about the application domain (e.g.,
movies) is represented in a logic program ILg,,.
It includes a domain ontology, which is estab-
lished by the knowledge engineer; under certain
circumstances, semi-automatic support may be
provided from meta-information about the data
stored in information sites (e.g., an XML DTD).

Site description II,;: Information about the sites is
represented in a logic program Il,4, using spe-
cial predicates for (i) thematic aspects concern-
ing query topics, e.g., accurate(S,T,V), stat-
ing that site S is accurate on topic 7' at value
V€ {high, medium, low}; (ii) cost aspects, e.g.,
charge(S,C), expressing that querying site S
has cost C; and (iii) technical aspects, e.g.,
last_update(S, D), which gives the date D of the
last update of site S. Besides facts, Iy may con-
tain also rules, and in particular default rules for
incomplete information.

Site-selection program II.;: The selection of in-
formation sites is specified using rules and con-
straints, which refer to predicates defined in the
above programs. It comprises both gqualitative as-
pects, given by rules and constraints, as well as
quantitative aspects in terms of optimization crite-
ria (concerning, e.g., cost or response time), which
are represented using weak constraints [8].

The user may also define preferences between rules, in
terms of a strict partial order, <,. These preferences
must be combined with implicit priorities derived from
the contexrt in which rules for site selection should be
applied. We define a respective semantics, which re-
solves also possible conflicts that might arise.

Summarizing, given a query @, the overall evaluation
proceeds in three steps:

Step 1 (query representation): The input query
Q is parsed and mapped into the internal query
representation R(Q).

Step 2 (qualitative selection): From R(Q), L4,
and IIgzom, the qualitative part of Il is used
to single out different query options by respect-
ing qualitative aspects only, where explicit pref-
erences, <, and implicit priorities must be taken
into account. To this end, a priority relation < is
computed on rules, which is then used in a priori-
tized logic program (Ilg, <). Candidate solutions
are computed as answer sets of (Ilg, <).

Step 3 (optimization): Among the candidates of
Step 2, the one is chosen which represents the best
solution with respect to the quantitative aspects
of I, and the selected site is provided as output.

In this paper, we focus on Il and the construction
of (Ilg, <) (see Section 4). The next section provides
some details concerning the query-description program
I1,4; a comprehensive discussion of the employed query
abstraction method is reported in a companion pa-
per [17].

3 Abstract Query Description

An important aspect of our approach is a meaningful
description of a given query). For our purposes, we
need a suitable representation of the constituents of ()
in terms of predicates and objects. Simply mapping)
to logical facts reflecting its syntactic structure, which
can be easily derived from the query grammar, will not
serve our purposes. Rather, we need an abstract de-
scription which provides “relevant” information about
@, such as occurrence of an attribute or a value in @,
related to the scope in which it occurs. As an exam-
ple, the value “Hitchcock” occurs in the query of Ex-
ample 1 in a selection condition, which is performed
on the attribute LastName reached by the access path
Movie | Director | Personalia.

In our abstract query description, we adopt a general
view in which a query consists of a construct part, a
where part, and a source part, corresponding to the
SQL select, where, and from parts, respectively. At
a high-level description, the following predicates are
used for describing a query (), using surrogates for
maximal access paths (starting from a root object) in
@ from the low-level description:

access(0,C, P,Q): This predicate describes that an
item, which may be an attribute or a concept,
is accessed under path P within the context of a
concept C' in the where-part of query @), where O
identifies a maximal path in @ with suffix “C'/P”.
We call such a pair (C, P) a context-reference pair

mn Q.

query(Q): identifies an individual, independent query
Q, taking into account that a query might be com-
posed of several such subqueries.

occurs(0,V): this means that a value V' is associated
with a maximal path O in the (global) query. For
example, occurs(oq, “Alfred”) expresses that value
Alfred is associated with the maximal path os.

selects(0O,C,V): like occurs, but also specifies the
type of relationship in terms of compari-
son operator C. For example, we have
selects(oa, equal, “Alfred”), where equal repre-
sents the equality operator.

constructs(0, I, P): specifies the maximal paths O
which, by use of variables, also appear in the
construct part of the query, as an item I under
path P (which may be different from the path
in the where part). In our example, we have
constructs(oy, “Movie”, “ 7).

joins(01,02,C): records joins of (or within) queries
between maximal paths O; and Oy under com-
parison operator C. Our example has no join.

Example 2 The complete high-level description of
the query in Exzample 1 is given by the following set
of facts:

{ query(ar),
access(oy, “MovieDB” , “ Movie/ Title” , q1),
access(oy, “Movie” | “Title” , q1),
access(02, “MovieDB” , “Movie [Director /
Personalia/ FirstName” , q1),

access(0z2, “Movie”, “Director [Personalia/
FirstName”, q1),

access(0z2, “Director” , “ Personalia/
; ”
FirstName” , q1),

access(oq, “Person”, “FirstName” , q1),

access(o03, “MovieDB” , “ Movie [Director
Personalia/LastName”, q),

access(oz, “Movie” , “Director [Personalia/
LastName”, q1),
access(os, “Director” , “ Personalia/

LastName”, q),
access(os, “Person” , “LastName” , q1),
(02, “Alfred”), occurs(os, “Hitchcock”),
(02, equal, “Alfred”),
selects (o3, equal, “Hitchcock”),

occurs

selects
“ o WM

constructs(oy, “Movie” ,“ ”) }

They are obtained from the mazimal paths
MovieDB [Movie/ Title and MovieDB | Movie | Direc-

tor [Personalia/ FirstName corresponding to 0y
and oz, respectively. Here, “MovieDB”, “Mowvie”,
“Director”, and “Person” are concepts, given in
the ontology; furthermore, “Personalia” is known to
amount to “Person”.

Note that the high-level description of @ does not de-
pend on a particular query language. It is extracted
from a low-level query description, R(Q), which con-
tains further structural details and can be generated
by a query parser, by means of a stratified logic pro-
gram II;4 which imports the relevant ontology knowl-
edge. The high-level description facts are given by the
(unique) answer set of I, UQ(R). Further details are
provided in [17].

4 Site Selection

In this section, we describe the formal details of site-
selection programs, which represent the main part of
our architecture. Roughly speaking, a site-selection
program Il is a prioritized logic program consisting
of four parts, namely (i) a core unit II¢ ,, contain-
ing the actual site-selection rules, (ii) a set II?%* of
auxiliary rules, (iii) an order relation <, defined over
members of II¢,,;, and (iv) an optimization part II9,,,
containing weak constraints. We define syntax and se-
mantics of site-selection programs, and discuss some

basic properties.

4.1 Syntax

The alphabet, A, of a site-selection program Il in
a selection base S = (Ilyq, ILsq, Haom, Hger, <o) con-
sists of the following pairwise disjoint categories:

e the alphabets Agq, Asq, and Agom of the query
description Il;4, the site description II,4, and the
domain theory Il4,.,, respectively;

e the selection predicate query_site(S,Q), express-
ing that site S is selected for evaluating query
Q; and the predicates default_object(O,C, Q) and
default_path(O, P,Q), which are projections of
access(0,C, P, Q);

e a set Ay, of auxiliary predicates; and

e aset N of terms serving as names for rules.

Informally, the predicates default_object(O,C, Q) and
default_path(O, P,Q) serve to specify a default sta-
tus for selection rules depending on context-reference
pairs matched in the query Q. For example,
default_object(O, “Person”, Q) in the body of rule r
says that r is eligible, if the concept Person occurs in

ri: query_site(s2, Q)

ro: query_site(s1, Q)

r3: query_site(S,Q)

T4 high_acc(T,Q) <«

T5: high_cov(T,Q) <+

cr: < query_site(S, Q),
high_acc(T, Q),

not accurate(S, T, high)

co: < query_site(S,Q),

high_cov(T, Q),

not covers(S, T, high)

nrl (Qv—) <u nr3(Q7—7—7—)'

default_object(O, “Person”, Q);

selects(O, equal, “Hitchcock”),
access(0, “Director”, “Personalia/ LastName” , Q);

default_path(O, “LastName”, Q),
default_object(0,T,Q),
accurate(S, T, high);

access(0,T, P,Q),
accurate(S, T, high);

access(0,T, P,Q),
covers(S, T, high);

[10 : 1];

[5:1];

Figure 2: Site-Selection Program (I, <,) from Example 3.

the access path O and there is no other rule s that
refers to some context-reference pair (C', P') matched
in Q. These defaults are semantically realized using a
suitable rule ordering.

We assume that A, generates a function-free lan-
guage; rules are constructed as usual. We use upper-
case letters for variables and lower-case letters for
constants. We write r(X;,...,X,) to indicate that
rule r has variables Xi,...,X,. As well, H(r) de-
notes the head of r and B(r) its body. The set of
all literals built from the atoms in A;, where £ €
{qd, sd, dom, auz, sel}, is denoted by Lit,. For literal
L, we write =L to denote its complementary literal,
ie.,, "L =Aif L=-A and L =-Aif L = A, for
some atom A. Furthermore, we use an injective func-
tion n(-) which assigns to each rule r(Xy,...,X,) €
Ise; aname n(r) € N of form (X, ..., X,), such that
n(-) naturally extends to Ils¢ by n(s) = t(g1,---,9n)
for each ground instance s = r(g1,...,9n) of 7. To
ease notation, we also write n, instead of n(r).

Definition 1 A site-selection program over Age is a
tuple (ger, <4), where

(i) Mger s a collection of rules over Ase; consisting
of the following parts:

(a) the core unit IIS,, containing rules of form

query_site(S,Q) <« Li,..., Ly,

1m0t Lyyq1,...,n0t Ly;

(b) a set II13%* of auxiliary rules of form

Ly + Ll,...,Lm,noth+1,...,noth;

(c) an optimization part II%,, containing weak
constraints [8] of form

< Li,...,Ly,n0t Lypyya,...,n0t Ly [w: 1],

where Lqg is either a literal from Litgy, or is of
form —query_site(-,-), and L; € Litse for1 <i <
n, and w,l > 1 are integers. The number w is
the weight and [is the priority level of the weak
constraint in (c).
(i) The relation <, is a strict partial order (i.e., an
irreflexive and transitive relation) between names
of rules in IS, whose elements are called user
defined preferences. If n,. <, ns then s is said to

have preference over 7.

The rules in the core unit IS, serve for selecting a
site, based on information from the domain descrip-
tion I 4., the site description Ilz4, the query descrip-
tion R(Q) U Ily4, and possibly from auxiliary rules.

The latter may be used, e.g., for evaluating complex
conditions. By <., preference of site selection can be
expressed. The weak constraints in II9,, are used to
filter answer sets under quantitative conditions. Infor-
mally, they work as follows: From the answer sets of
the weak-constraint free part of a program II, prune
first those where the sum of weights of violated con-
straints in the highest priority level is not minimal,
then those where the sum of weights of violated con-
straints in the next lower level is not minimal, and
so on. We refer the reader to [8] for a precise formal
definition.

Example 3 Consider some site-selection program
(41, <w) for our movie domain, depicted in Figure 2.
Intuitively, rule ry advises to choose site so if the query
involves persons and no more specific rule is eligible.
Furthermore, rule T2 says to choose site sy if the query
contains an explicit select on the movie director Hitch-
cock. Rule r3 demands to choose a site if, on some
query access path, “LastName” is accessed under some
concept T (with arbitrary intermediate access path),
and the site is highly accurate for T. Rules r4 and 13
define auxiliary predicates which hold on concepts T
appearing in the query () such that some site with high
accuracy and coverage, respectively, for T exists. The
weak constraints c1 and co state penalties for choosing
a site that has not high accuracy (weight 10) or cover-
age (weight 5), respectively, for a concept in the query
while such a site exists. Finally, n.,(q,) <u Mry(Q,-,_,)
expresses that on the same query, instances of rule r3
are preferred to those of 1.

4.2 Semantics

The semantics of a site-selection program (I, <y)
in a selection base S = (I, Haom, s, Hser, <yu) 0N
a query @ is given by the concept of an answer set of
(T4er, <u), which is defined as a preferred answer set of
a prioritized logic program £(S, Q) = (Ilg, <) associ-
ated with S and Q. The program Ilg contains ground
instances of rules and constraints in I, and further
rules ensuring that a single site is selected per query
and defining the default context predicates. The order
relation < is formed from the user preferences <, and
the implicit priorities derived from context-references
in the core unit and from auxiliary rules. In that, we
must suitably combine preference information—and in
particular handle conflicts. For this, we use a cautious
conflict elimination policy.

We commence the formal details with the following
notation: For any rule r, its defaultization, r®, is given
by H(r) < B(r),not —H(r).

Definition 2 Let S = (4, sq, aom, Mser, <u) be
a selection base and Q) a query. Then, the program
IIg contains all ground instances of the rules and con-

straints in II2%F UILS,,, as well as all ground instances

of the following rules:

1. the defaultization ™ of r, for each r € Ie,,;

2. the structural rule
—query_site(S, Q) <+ query_site(S',Q),S # S';
and

3. the default context rules

default_object(0,T,Q) <+
default_path(O, P,Q) <+

access(0, T, _, Q);
access(O, -, P, Q).

Intuitively, the defaultization makes the selection rules
in I, defeasible; the structural rule enforces that only
one source is selected; and the default context rules de-
fine the two default predicates. We remark that, since
we have no function symbols in our language, Il is
finite, and its size depends on the constants appearing
in qu: R(Q); Hsda and Ilgom.

For § = (qu;Hsda Waoms ser, <u> and query Qa we
call any answer set of IT = II;4 U R(Q) U Ilsq U gop,
a selection input of S for (). The set of all selection
inputs of S for @ is denoted by Sel(S,Q). For I €
Sel(S,Q), we define

Tgep = IU
{default_object(o,c,q) | access(o,¢,p,q) € I}

C C

{default_path(o,p,q) | access(o,¢,p,q) € I}.

Notice that, in general, a selection base may admit
multiple selection inputs for a query (). However, in
many cases there may exist only a single selection in-
put, in particular, if the site description IIs4 and the
domain knowledge Il ,,, have unique answer sets. In
our framework, this is ensured if, for instance, these
components are represented by stratified programs.

Definition 3 A ruler € Ilg is relevant for Q iff there
is some I € Sel(S, Q) such that Bi(r) is true in Iy,
where BY(r) results from B(r) by deleting each element
which does not contain a predicate symbol from Aqq U
Asa U Adom U{default_object, default_path}.

In the sequel, we denote for any binary relation R its
transitive closure by R*.

We continue with the construction of the preference re-
lation <, used for interpreting a site-selection program

(T4, <) relative to a selection base S and a query
@, in terms of an associated prioritized logic program
(g, <).

Informally, the specification of < depends on the fol-
lowing auxiliary relations:

e the preference relation <., taking care of implicit
context priorities;

e the intermediate relation <, representing a direct
combination of user-defined preferences with con-
text preferences; and

e the preference relation <’, removing possible con-
flicts within the joined relation < and ensuring
transitivity of the resultant order <.

More specifically, the relation <. represents the first
step in the construction of <, transforming structural
context information into explicit preferences, in virtue
of the following specificity conditions:

e relative to the same maximal path and query,
rules that mention default concepts or a context-
reference pair matching the query are considered
more specific than rules mentioning default paths;

e default contexts for concepts are assumed to be
more specific than default contexts for attributes;
and

e rules which have in the same maximal path more
detailed context-reference pairs are considered
more specific than rules with less such objects.

The second step in the construction of < is the relation
<, which is just the union of the user preferences <,
and the context priorities <.. In general, this will
not be a strict partial order. To enforce irreflexivity,
we remove all priorities n, < n,; which lie on a cycle
1 Ing Ing, K---dn,;, I n,., resulting in <'. Finally,
taking the transitive closure of <’ yields <. The formal
definition of relation < is as follows.

Definition 4 Let S be a selection base, Q a query,
and Ilg as in Definition 2. We introduce the following
binary relations over the names of rules in Ilg: For
r,s € Ilg,

1. n. <. ns iff r,s are relevant for Q, r # s, and
one of (P1)—~(Ps) holds:

(Py) default_path(o1,p1,q) is a member of B(r),
and we have either default_object(o2,t2,q) €
B(s) or access(02,t2,p2,q) € B(s);

(P2) default_object(oy,t1,q) belongs to B(r) and
access(0a,t2, p2,q) is in B(s);

(P3) access(o,t1,p1,q) is a member of B(r),
access(0,t2,p2,q) is in B(s), and t1/p1 is a
subpath of ta/pa;

2. n. dng iff n. <y ns and r,s are relevant for Q,
or Ny 2¢ Mg

3. np <" ng iff nr < ng but not ng <* n,.

Then, the relation < is given as the transitive closure
of relation <'.

Let us illustrate this definition with an example.

Example 4 Reconsider (Ilsep,<y) from Ezample 3.
Suppose the domain ontology contains the concepts
“MovieDB”, “Actor”, “Movie”, “Director”, and “Per-
son”, and that “Personalia” amounts to “Person”.
Furthermore, let us assume we have a unique selec-
tion input I for the query Q) of Example 1, containing
the following facts from the site description:

accurate(s1, “Director”, high);
covers(sa, “Person”, high);
reliable(ss, low),

as well as the following elements resulting from the
query description and the default context rules:

default _path(os, “LastName”, q1);
default _object(o2, “Person” , q1);
default_object (o3, “Person”,q1);
default_object (o3, “Director”, q1);
selects(os3, equal, “ Hitchcock”);
access(0q, “Person” , “FirstName” , q1);

access(o0z2, “Director” , “ Personalia/ FirstName” , q1);

access(os, “Person” , “LastName”,q1);
access(os, “Director” , “ Personalia/ LastName” , q1).

These elements are exactly those contributing to
relevant instances of Ilg. The relevant instances
of r1, r2, and r3 are given by the ground rules
r1(q1,02), r2(q1,03), m2(q1,03), and r3(q1,81,03, “D”)
(for brevity, we write here “D” for “Director”). In-
tuitively, we expect T2(q1,03) to have highest priority
among these rule instances, since the bodies of the in-
stances of r1 and r3 contain default predicates while
ro references a specific context. Actually, the order re-
lation < includes for the relevant instances of r1, T2,
and r3 the following pairs:

My (g1,02) < Mro(g1,03)7

My (q1,05) < Mra(qr,03)7

Nr3(q1,81,03,“D”) < Mra(gr,03)-

Note that for each of r4 and rs5, there also exist two
relevant instances. However, they have no influence
on the above rule ordering. Informally, they are ei-
ther unrelated to or “ranked between” the priority of
r2(q1,03) and the priority of the relevant instances of
r1 and r3 (since the ‘access’ predicates of r4 and rs re-
fer to the same context as the context referenced in the
body of r2, or to a subpath of such a context). Hence,
the relevant instance of ro has highest priority.

With respect to r1 and r3, the auxiliary relation < con-
tains two further structural priorities, namely

Trg(g1,81,08,“D”) ¢ Mri(g1,02)

and
Nr3(q1,51,03,“D”) =c Ny (q1,03)"

They are in conflict with the user preferences

My (g1,02) <u Trg(q1,51,03,“D”)

and

Tr1(q1,03) <u Mry(q1,s1,03,4D")>

respectively. This conflict is resolved in the resultant
relation < by removing these preferences.

Note that the final order < in Definition 4 enforces a
cautious conflict resolution strategy, in the sense that
it remains “agnostic” with respect to priority informa-
tion causing conflicts. Alternative definitions of <’,
such as removal of a minimal cutset eliminating all
cycles in <, may be considered; however, this may
lead to nondeterministic choices. Namely, in general,
multiple such cutsets exist, of which one must be cho-
sen. Different choices lead to different orders <, which
may lead to different results of the site selection pro-
gram. Thus, unless a well-defined particular minimal
cutset is singled out, by virtue of preference conflicts
the result of the site selection process might not be de-
terministic. Furthermore, an extended logic program
component computing a final order based on minimal
cutsets is more involved than a component computing
the relations in Definition 4.

Combining Definitions 2 and 4, we obtain the transla-
tion £(-,-) as follows:

Definition 5 Let S be a selection base and QQ a query.
Then, the evaluation E(S, Q) of S with respect to Q is
given by the prioritized logic program (Ilg, <), where
Ilg and < are as in Definitions 2 and 4, respectively.

For defining answer sets of site-selection programs, in
what follows we assume the approach of [11] as un-
derlying preference framework; other approaches, like,
e.g., [6], are also suitable for this purpose. Further-
more, for any program II and any set S of literals, we
write IIU S to denote the program ITU {L «+| L € S}.

Definition 6 Let S = (g, Lsq, Waom, Hser, <u) be
a selection base, and let £(S,Q) = (Ilg, <) for query
Q. Then, S C Litse is an answer set of (Isep, <y)
for () with respect to S iff S is a preferred answer set
of the prioritized logic program (Ilg U I, <), for some
I € Sel(S, Q).

A site s is selected for Q iff the atom query_site(s,q)
belongs to some answer set of (Ilsey, <y) for Q (with
respect to S), where the constant q represents Q.

Example 5 In our running ezample, (e, <y) has a
unique answer set, S, for the query Q from Example 3
with respect to S, containing query_site(s1,q1) (where
q1 represents Q). This atom is derived from the core
rule 79(q1,03), which has the highest priority among
the applicable rules, leading to a single preferred an-
swer set for the weak-constraint free part of Mg . If
we replace, e.g., r1 by the rule

query_site(s2, Q) < access(O, “Person”, P, Q)

and adapt the corresponding user preference to

r1(Q,--) <u Trg(Q,-,—,)>

then the weak-constraint free part of Iz has two pre-
ferred answer sets: one, Si, is identical to S (where
an application of r2(q1,03) is preferred to an appli-
cation of r1(q1,03) given that ny (g, 05) < Mra(gr,08))5
in the other answer set, Sa, the rule r1(q1,02) is ap-
plied and query_site(sa,q1) is derived. Informally,
due to the replacement, the preference of r2(q1,03)
over r1(q1,02) does no longer hold, since their ‘access’
predicates refer to different contexts (“.../ FirstName”
and “.../ LastName” , respectively). As a consequence,
r1(q1,02) has mazimal preference like r2(q,03).

Given that S1 has weight 5, caused by wviolation of
co(s1,q1, “Person”), but Sy has weight 10, caused by
violation of ¢1(s2,q1, “Director”), S is the answer set

of (ger, <u) for Q.

4.3 Properties

Finally, we discuss some properties of our framework.
Our first result deals with the adequacy of the evalua-
tion method of site-selection programs with respect to
the usual semantics of prioritized logic programs.

Recall that the construction of answer sets of site-
selection programs is laid out in a modular fashion,
depending on the input of several subprograms, where
each program module is assigned with a particular rep-
resentation task. However, since the predicate symbols
occurring in the heads of rules in a site-selection pro-
gram do not occur in rules from the query descrip-
tion, the site description, or the domain theory, from
standard modularity results for logic programs [27] we
easily obtain the following characterization:

Theorem 1 Let S = (Ilgq, Maom, sq, Mser, <u) be
selection base, let @ be a query, and let £(S,Q)
(g, <). Then, S is an answer set of (Iger, <y) for
Q with respect to S iff S is a preferred answer set of
(HQ U qu U R(Q) Ullsg Ulgom, <).

s

Furthermore, it is possible to emulate the construction
of £(S, Q) in terms of a single logic program under us-
age of dynamic priorities. Indeed, given the relevant
rules for @, the order relation < can be computed by a
stratified logic program II. which computes the rela-
tions in Definition 4. On the other hand, the relevant
rules for () can be computed in a program II,..; de-
rived from Il q U Il;4 U Ilg,,, using weak constraints.
By combining the components, we obtain:

Theorem 2 Let S = (Iyq, Laom, Msq, Hser, <u) be a
selection base. Then, there exists a logic program Ils =
Iy UIlom Ullig UILs U <, U I UL, such that for
every query Q, the preferred answer sets of ILs U R(Q)
under dynamic preference < correspond to the answer
sets of (Uger,<y) for Q with respect to S.

One of the desiderata of our approach is that each an-
swer set selects a unique source, for any query (). The
following result states that this property is fulfilled.

Theorem 3 Let S be an answer set of (Usey, <y) for

query Q with respect to S. Then, for any constant q it
holds that

[{s | query_site(q,s) € S}| < 1.

Intuitively, this result holds due to the presence of the
structural rule

—query_site(S,Q) « query_site(S',Q),S # S’

in Definition 2, which enforces that during the evalua-
tion step no more than one site can be selected simul-
taneously.

Lastly, the following result concerns the order of appli-
cation of site-selection rules, stating that site selection
is blocked in terms of priorities as desired.

Theorem 4 Let S be an answer set of (Uger, <y) for
query Q with respect to S, and let r be some rule from
the grounding of IIS,, for Q with respect to S. Suppose
that B(r) is true in S but H(r) ¢ S. Then, there
is some s in the grounding of II¢,, U II%" for Q) with
respect to S such that

1. B(s) is true in S;
2. H(s) € S; and

3. either r and s are incompatible with respect to <,
or else r < s holds.

This result follows from the observation that, under
the above circumstances, if B(r) is true in S but
H(r) ¢ S, then there must be some s in the grounding
of II¢,, UII2%* such that H(s) = ~H(r) and s fires dur-
ing the construction of S. Moreover, the underlying
preference semantics guarantees that we can choose s
in such a way that either r and s are not related with

respect to <, or else r < s holds.

5 Related Work and Conclusion

Selection of data sources is an ingredient to several sys-
tems for information integration, e.g. [2, 5, 9, 20, 22,
24, 26]. However, they center around mappings from
a global scheme to local schemes and vice versa, query
rewriting, and planning, in order to optimally recon-
struct dispersed information. Qur concern is with the
qualitative selection from different alternatives, based
on rich meta-knowledge, which is not an issue there.
More related is [23], which outlines an interactive tool
for assisting information specialists in query design. It
relieves them from searching through data source spec-
ifications and can provide suggestions for using sources
to determine tradeoffs. However, no formal semantics
or richer domain theories, capable of handling incom-
plete and default information, is presented. Remotely
related to our work is [19], which presents a decision-
theoretic model for selecting data sources based on re-
trieval cost and typical IR parameters.

Our approach to declarative information site selection,
based on query analysis and contexts in logic pro-
grams, is novel and innovate in several respects. It
is implemented on top of the d1lv system [18, 15] and
its front end plp [12] for prioritized logic programs,
and employs the underlying Eclipse Prolog engine as a
glueing frame. For testing, we developed a prototyp-
ical environment of a movie domain, which comprises
(i) basic domain knowledge, (ii) XML sources con-
taining movie data wrapped from the Internet Movie
Database [1] and other movie related data sources, and

(iii) suitable site descriptions. Queries are formulated
in XML-QL [13], and can be executed after site selec-
tion on the respective source. For generating the low-
level representation R(Q), for query @), we have devel-
oped an XML-QL query parser, written in C++ using
the standard tools 1lex and yacc. The implementation,
as well as the full movie application, is too complex to
be described here. In its current version, selection in-
puts are assumed to be unique, which is ensured if the
site description II;; and the domain knowledge I1,,,,
yield unique answer sets. This is given, for example, if
these components are stratified, or by adding suitable
weak constraints. The implementation will be consid-
ered in more detail in an extended paper.

Our ongoing work comprises several tasks. One is
making our site selection method available for build-
ing multi-agent information systems. To this end, its
agentization in the IMPACT agent platform [3] is in
progress. Another task is coupling the approach with
learning and program updates for adaptive source se-
lection, and with query rewriting and planning. Also,
the current setting of single site selection can be gen-
eralized to multiple site selection for parallel querying.

References

[1] The Internet Movie Database. http://imdb. com.

[2] Y. Arens, C. Chee, C. Hsu, and C. Knoblock. Re-
trieving and Integrating Data from Multiple In-
formation Sources. Int. J. of Cooperative Infor-
mation Systems, 2(2):127-158, 1993.

[3] K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross,
and V. Subrahmanian. IMPACT: A Platform for
Collaborating Agents. IEEFE Intelligent Systems,
14(2):64-72, 1999.

[4] C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solving with An-
swer Sets. 2001. Draft. Available from http:
//www.public.asu.edu/"cbaral/bahi/.

[6] R. Bayardo, B. Bohrer, R. Brice, A. Ci-
chocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid,
M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. InfoSleuth: Semantic
Integration of Information in Open and Dynamic
Environments (Experience Paper). In SIGMOD
Conf. 1997, pages 195-206, 1997.

[6] G. Brewka and T. Eiter. Preferred Answer Sets
for Extended Logic Programs. Artificial Intelli-
gence, 109(1-2):297-356, 1999.

[7] F. Buccafurri, N. Leone, and P. Rullo. Stable
Models and their Computation for Logic Pro-
gramming with Inheritance and True Negation.
J. of Logic Programming, 27(1):5-43, 1996.

[8] F. Buccafurri, N. Leone, and P. Rullo. Enhancing
Disjunctive Datalog by Constraints. IEEE Trans.
on Knowledge and Data Engineering, 12(5):845—
860, 2000.

[9] P. Cannata, M. Huhns, N. Jacobs, T. Ksiezyk,
K. Ong, A. Sheth, M. Singh, C. Tomlinson, and
D. Woelk. The Carnot Heterogeneous Database
Project: Implemented Applications. Distributed
and Parallel Databases, 5(2):207-225, 1997.

[10] K. Decker, K. Sycara, and M. Williamson.
Middle-Agents for the Internet. In Proc. 15th Int.
Joint Conf. on Artificial Intelligence (IJCAI’97),
volume 1, pages 578-583. Morgan Kaufmann,
1997.

[11] J. Delgrande, T. Schaub, and H. Tompits. Logic
Programs with Compiled Preference. In W. Horn,
editor, Proc. 14th Europ. Conf. on Artificial Intel-
ligence (ECAI 2000), pages 392-398. I0S Press,
2000.

[12] J. Delgrande, T. Schaub, and H. Tompits. plp: A
Generic Compiler for Ordered Logic Programs. In
T. Eiter, W. Faber, and M. Truszczynski, editors,
Proc. 6th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning (LPNMR’01), pages
411-415. Springer, 2001.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. A Query Language for XML. In
Proc. 8th International World Wide Web Confer-
ence (WWW8), 1999. Computer Networks 31(11-
16): 1155-1169. See also http://www.w3.org/
TR/NOTE-xml-ql/.

[14] Y. Dimopoulos and A. Kakas. Information
Integration and Computational Logic. Com-
putational Logic, Special Issue on the Future
Technological Roadmap of Compulog-Net, 2000.
Available from http://www.compulog.org/net/
Forum/Supportdocs.html.

[15] T. Eiter, W. Faber, N. Leone, and G. Pfeifer.
Declarative Problem-Solving Using the DLV Sys-
tem. In J. Minker, editor, Logic-Based Artifi-
cial Intelligence, pages 79-103. Kluwer Academic
Publishers, 2000.

[16] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits.
Using Methods of Declarative Logic Programming

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

for Intelligent Information Agents. Theory and
Practice of Logic Programming, 2001. To appear.
Available from http://xxx.lanl.gov/abs/cs.
MA/0108008.

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits.
Declarative Query Abstraction for Selecting In-
formation Sources. Manuscript (in preparation),
2002.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The KR System dlv: Progress Re-
port, Comparisons, and Benchmarks. In A. Cohn,
L. Schubert, and S. Shapiro, editors, Proceedings
Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR-
98), pages 406—417, June 2-4 1998.

N. Fuhr. A Decision-Theoretic Approach to
Database Selection in Networked IR. ACM Trans-
actions on Information Systems, 17(3):229-249,
1999.

H. Garcia-Molina, Y. Papakonstantinou,
D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, V. Vassalos, and J. Widom. The TSIMMIS
Approach to Mediation: Data Models and Lan-
guages. J. of Intelligent Information Systems,
8(2):117-132, 1997.

M. Gelfond and V. Lifschitz. Classical Negation in
Logic Programs and Disjunctive Databases. New
Generation Computing, 9(3—4):365-386, 1991.

M. Genesereth, A. Keller, and O. Duschka. Info-
master: An Information Integration System. In
Proc. ACM SIGMOD Conference, volume 26(2)
of SIGMOD Record, pages 539-542, New York,
1997. ACM Press.

S. B. Huffman and D. Steier. A Navigation As-
sistant for Data Source Selection and Integration.
In Working Notes of AAAI-95 Fall Symposium
Series on Al Applications in Knowledge Naviga-
tion and Retrieval, Cambridge, MA, pages 72-77,
1995.

M. Huhns and M. Singh. The Semantic Integra-
tion of Information Models. In AAATI Workshop
on Cooperation among Heterogeneous Intelligent
Agents, 1992.

K. Inoue and C. Sakama. Prioritized Logic Pro-
gramming and Its Applications to Commonsense
Reasoning. Artificial Intelligence, 123(1-2):185—
222, 2000.

[26]

[27]

[28]

[29]

A. Levy, A. Rajaraman, and J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In T. Vijayaraman, A. Buchmann,
C. Mohan, and N. Sarda, editors, Proc. 22th
Int. Conf. on Very Large Data Bases (VLDB’96),
pages 251-262. Morgan Kaufmann, 1996.

V. Lifschitz and H. Turner. Splitting a Logic
Program. In Proceedings ICLP-94, pages 23-38,
Santa Margherita Ligure, Italy, June 1994. MIT-
Press.

A. Provetti and T. C. Son, editors. Proceed-
ings AAATI 2001 Spring Symposium on Answer
Set Programming: Towards Efficient and Scalable
Knowledge Representation and Reasoning, Stan-
ford, CA (Workshop Technical Report SS-01-01).
AAAT Press, March 2001.

F. Sadri and F. Toni. Computational Logic
and Multi-Agent Systems: a Roadmap. Com-
putational Logic, Special Issue on the Future
Technological Roadmap of Compulog-Net, 2000.
Avaliable from http://www.compulog.org/net/
Forum/Supportdocs.html.

