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Abstract. Recent research in answer-set programming (ASP) is concerned with
the problem of finding faithful transformations of logic programs under the stable
semantics. This is in particular relevant in practice when programs with variables
are considered, where such transformations play a basic role in (offline) simplifi-
cations of logic programs. So far, such transformations of non-ground programs
have been considered under the implicit assumption that the domain (i.e., the
set of constants of the underlying language) is always suitably extensible. How-
ever, this may not be a desired scenario, e.g., if one needs to deal with a fixed
number of objects. In this paper, we investigate how an explicit restriction of the
domain influences the applicability of program transformations and we study in
detail computational aspects for the concepts of tautological rules and rule sub-
sumption. More precisely, we provide a full picture of the complexity to decide
whether a non-ground rule is tautological or subsumed by another rule under sev-
eral restrictions.

1 Introduction

Answer-set programming (ASP) has emerged as an important paradigm for declarative
problem solving, and provides a host for many different application domains on the ba-
sis of nonmonotonic logic programs. The increasing popularity of ASP has also raised
interest in the question of equivalence between programs [1,2], which is relevant con-
cerning formal underpinnings for program optimization, where equivalence-preserving
modifications are of primary interest; in particular, rewriting rules which allow to per-
form a local change in a program are important. Many such rules have been considered
in the propositional setting [3,4,5,6], but just recently have they been extended to the
practicably important case of non-ground programs [7].

In the latter work, a countable domain of constants is assumed, and although this
is a reasonable assumption for many scenarios and also common in database theory, it
is sometimes more desirable to consider the underlying language in a more restricted
way, assuming only a finite, possibly fixed set of constants. While such a finite set comes
for free in computing answer-sets of a (complete) program via its active domain, i.e.,
the set of constants occurring in the program under consideration, this is not the case
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for program replacements, which should be applicable in a local sense, for instance
to program parts. To this end, such replacements have to take the underlying global
domain into account, rather than the active domain of a given program.

In this paper, we consider two important replacements in non-ground answer-set pro-
gramming under this point of view and analyze their complexity. Intuitively, one would
expect that the complexity of a problem decreases as the domain under consideration
decreases. In particular, one might hope to get more favorable complexity results when
a finite domain is considered rather than a countable domain. On the one hand, Eiter
et al. [1] show that the restriction to finite domains turns the, in general, undecidable
problem of uniform equivalence between logic programs into a decidable one. On the
other hand, there is a related problem in the literature where the complexity increases
when the domain is restricted: Lassez and Marriot [8] identify so-called implicit gen-
eralizations as a formal basis of machine learning from counter examples. One of the
main problems studied there is the following: Given an atom A and a set {B1, . . . , Bn}
of atoms over some domain C, is every ground instance of A also a ground instance
of some Bi? Lassez and Marriot [8] show that this problem is tractable in case of a
countably infinite set of constants. This is in contrast to the case of a finite domain,
where this problem becomes coNP-complete [9,10]. Now the question naturally arises
whether this somewhat counter-intuitive effect of an increased complexity in case of
a decreased size of domain also holds for replacements in non-ground answer-set pro-
gramming. We show that this is indeed the case. In particular, our contributions are as
follows, assuming the restriction to a finite domain:

– We show that the detection of tautological rules is NP-complete; and that hardness
remains even for some restrictions on the syntax of rules.

– We show that the problem of deciding rule subsumption becomes ΠP
2 -complete,

and again hardness holds also under several restrictions.

These two main results reveal that complexity increases when we restrict our attention
to finite domains, since the detection of tautological rules is tractable under countably
infinite domains and rule subsumption is only NP-complete in this setting [7]. However,
we also provide results where the problems under consideration are tractable under
finite domains as well. In particular, we show that

– detecting tautological Horn rules remains tractable if the maximal arity of predi-
cates is fixed by some constant, and

– detecting tautological rules, as well as rule subsumption, remains tractable in case
the number of variables occurring in the involved rules is fixed by some constant.

2 Preliminaries

Our objects of interest are disjunctive logic programs formulated in a language L over
a finite set A of predicate symbols, a finite set V of variables, and a set C of constants
(also called the domain), which may be either finite or countably infinite.

An atom (over L) is an expression of the form p(t1, . . .,tn), where p is a predicate
symbol from A of arity ar(p) = n and ti ∈ C ∪ V , for 1 ≤ i ≤ n. A (disjunctive) rule
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(over L), r, is an ordered pair of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

where a1, . . . , an, b1, . . . , bm are atoms (with n ≥ 0, m ≥ k ≥ 0, and n+ m > 0), and
“not” denotes default negation. The head of r is H(r) = {a1, . . . , an}, and the body of
r is B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. We also define B+(r) = {b1, . . . , bk}
and B−(r) = {bk+1, . . . , bm}. We call r positive if k = m, and Horn if r is positive
and n = 1. Furthermore, r is a fact if m = 0 and n = 1 (in which case “←” is usually
omitted). As well, r is safe if each variable occurring in H(r) ∪ B−(r) also occurs in
B+(r). By a program (over L) we understand a finite set of safe rules (over L).

Let ε be an atom, a rule, or a program. The set of variables occurring in ε is denoted
by Vε, and ε is called ground if Vε = ∅. Similarly, we write Cε to refer to the set of
constants occurring in ε and Aε to refer to the set of predicates occurring in ε. Further-
more, for a set C ⊆ C of constants, we write BA,C to denote the set of all ground atoms
constructible from the predicate symbols from A and the constants from C. Moreover,
for a set A of predicates, armax(A) = max{ar(p) | p ∈ A}.

Given a rule r and some C ⊆ C, we define grd(r, C) as the set of all rules rϑ
obtained from r by all possible substitutions ϑ : Vr → C. Moreover, for any program
P , the grounding of P with respect to C is given by grd(P, C) =

⋃
r∈P grd(r, C). The

program grd(P ) is grd(P, CP ) for CP �= ∅, and grd(P, {c}) otherwise, where c is an
arbitrary element from C.

By an interpretation (over L) we understand a set of ground atoms (over L). A
ground rule r is satisfied by an interpretation I , symbolically I |= r, iff H(r) ∩ I �= ∅
whenever B+(r) ⊆ I and B−(r)∩I = ∅. I satisfies a ground program P , symbolically
I |= P , iff I |= r, for each r ∈ P . The Gelfond-Lifschitz reduct [11] of a ground
program P with respect to an interpretation I is given by P I = {H(r) ← B+(r) | r ∈
P, I ∩ B−(r) = ∅}. An interpretation I is an answer set of P iff I is a minimal model
of grd(P )I . AS(P ) denotes the set of all answer sets of a program P .

Programs P1 and P2 are called (ordinarily) equivalent iff AS(P1) = AS(P2). Fur-
thermore, P1 and P2 are strongly equivalent (in L), in symbols P1 ≡s P2, iff, for
each set S of rules, AS(P1 ∪ S) = AS(P2 ∪ S). (J, I)C is an SE-model [1] of a
program P iff (i) J ⊆ I , (ii) I |= grd(P, C), and (iii) J |= grd(P, C)I . We de-
fine SEC(P ) = {(J, I)C | (J, I)C is an SE-model of P}, for a given C ⊆ C, and
SE (P ) =

⋃
C⊆C SEC(P ). For all programs P1 and P2, the following three condi-

tions are equivalent [1]: (i) P1 ≡s P2, (ii) SE (P1) = SE (P2), and (iii) SEC(P1) =
SEC(P2), for every finite C ⊆ C.

Deciding strong equivalence is co-NEXPTIME-complete both for languages over a
finite domain as well as for languages over an infinite domain [1]. In what follows, we
assume familiarity with the basic complexity classes P, NP, coNP, ΔP

2 , ΣP
2 , and ΠP

2
from the literature (cf., e.g., Garey and Johnson [12] for an overview).

3 Tautological Rules

In this section, we syntactically characterize rules which can be deleted in any program
(over a given language L), i.e., which are tautological. Following Eiter et al. [7], let us
define
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Θ = {r | B+(r) ∩ (H(r) ∪ B−(r)) �= ∅} and

ΞC = {r | for each ϑ : Vr → C, B+(rϑ) ∩ (H(rϑ) ∪ B−(rϑ)) �= ∅}.

Note that the former set does not explicitly refer to the domain of the underlying lan-
guage. The following proposition rephrases results by Eiter et al. [7].

Proposition 1. Let L be a language over an infinite domain C and r a rule. Then, the
following conditions are equivalent: (i) P ≡s P \ {r}, for each program P over L;
(ii) r ∈ Θ; and (iii) r ∈ ΞC .

In other words, both sets, Θ and ΞC , contain exactly the same rules in case the domain
C of the underlying language L is infinite. Moreover, they capture all rules which can
be faithfully removed in programs over L. Also observe that both sets are equal if only
ground rules are taken into account.

Deciding r ∈ Θ is an easy syntactic check. Thus, in case the underlying language
is given over an infinite domain, the problem of recognizing exactly those rules which
can be deleted in any program is an easy task. In particular this test is not harder than in
the ground case (which was fully established by Inoue and Sakama [5] and by Lin and
Chen [6]), and can be done in linear time.

The situation differs, however, if we restrict our attention to a finite domain. Consider
r : h(1) ∨ h(0) ← h(X), which is obviously not contained in Θ. However, under the
binary domain C = {0, 1}, we have r ∈ ΞC . Observe that each grounding rϑ with
ϑ : Vr → C yields a tautological (ground) rule contained in Θ. As shown below, each
r ∈ ΞC can be faithfully removed from a program. Thus, in the setting of a finite
domain C, we have, for each rule r, that r ∈ Θ implies r ∈ ΞC , but not vice versa.

In the remainder of this section, we assume L to be given over a finite domain C.
Our first result shows that ΞC contains all rules which can be faithfully removed from
programs in this scenario. Hence, we subsequently call rules r ∈ ΞC tautological in
(domain) C.

Theorem 1. For a language L over finite domain C, we have that for any program P
and any rule r, P is strongly equivalent in L to P \ {r} iff r ∈ ΞC .

The proof of this result is along the lines of proofs given by Eiter et al. [7].

3.1 Complexity of Detecting Tautological Rules in a Finite Domain

In what follows, we establish results about the computational cost for deciding whether
a rule is tautological in C, i.e., whether it is contained in ΞC . Thus, assuming a finite
domain, in view of Theorem 1, the considered problem amounts to checking which
rules can be faithfully deleted from any program. Recall that in the infinite case, this
problem is decidable in linear time by just checking r ∈ Θ, according to Proposition 1.
As we show below, in the finite case we observe an increase of the difficulty to recognize
tautological rules, even in very restricted settings.

Theorem 2. Given a rule r, checking whether r is tautological in a fixed finite domain
C of size ≥ 2 is coNP-complete. Hardness holds even for positive rules with bounded
arities.
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Proof. Membership is easy. In order to test that a rule is not tautological in C, we guess a
ground substitution ϑ : Vr → C and check in polynomial time that B+(rϑ)∩ (H(rϑ)∪
B−(rϑ)) = ∅ holds.

For hardness, suppose that the domain C is of size 	 + 1 with 	 ≥ 1. Without loss
of generality, let C be of the form C = {0, 1, , . . . , 	}. We prove coNP-hardness via
a reduction from UNSAT. Let φ =

∧n
i=1 li,1 ∨ li,2 ∨ li,3 be a formula in CNF over

propositional atoms X1, . . . , Xm, and consider a positive rule rφ with

H(rφ) = {c(0, 0, 0)} ∪ {v(α, β) | (α, β) ∈ C2 \ {(0, 1), (1, 0)}} and

B(rφ) = {c(l∗i,1, l
∗
i,2, l

∗
i,3) | 1 ≤ i ≤ n} ∪ {v(Xj , X̄j) | 1 ≤ j ≤ m},

where l∗ = X if l = X , and l∗ = X̄ if l = ¬X , with X̄1, . . . , X̄m being new variables.
By a slight abuse of notation, we use Xi to denote either a propositional atom (in φ) or
a first-order variable (in rφ). We claim that φ is unsatisfiable iff rφ is tautological in C.

For the “only if”-direction, suppose that rφ is not tautological in C. Hence, since
B−(rφ) = ∅, there exists a substitution ϑ : V → C such that B+(rφϑ) ∩ H(rφϑ) = ∅.
Thus, for each propositional atom Xi in φ, the pair of first-order variables (Xi, X̄i) in
rφ is either instantiated to (0, 1) or (1, 0), since otherwise v(Xi, X̄i)ϑ would match with
some atom v(α, β) from H(rφ). Thus, we can view ϑ as an assignment to the propo-
sitional variables Xi from φ. Now, since no atom in B+(rφϑ) matches with c(0, 0, 0)
from H(rφ), each clause in φ is satisfied “under ϑ”, i.e., in each clause at least one
propositional literal is assigned to true by the truth assignment ϑ. Hence, φ is satisfi-
able. The “if”-direction is by essentially the same arguments. �

Note that according to Theorem 2, checking whether a disjunctive rule is tautological is
coNP-hard even if the domain is fixed and, moreover, the number of predicate symbols
and their arities are bounded. If we drop the restriction of bounded arities, then coNP-
hardness can be shown even for Horn rules.

Theorem 3. Given a Horn rule r, checking whether r is tautological in a fixed finite
domain C of size ≥ 2 is coNP-complete.

Proof. Membership is shown as above. Hardness is along the lines of Kunen [9] and
Kapur et al. [10]. Suppose that the domain C is of size 	 + 1 with 	 ≥ 1. Without
loss of generality, let C be of the form C = {0, 1, , . . . , 	}. Again, we prove coNP-
hardness via a reduction from UNSAT. Let φ =

∧n
i=1 li,1 ∨ li,2 ∨ li,3 be a formula in

CNF over propositional atoms X1, . . . , Xm. Without loss of generality, we may assume
that every propositional variable Xj occurs at most once in each clause, i.e., for every
i ∈ {1, . . . , n}, there cannot be two literals such that one is either identical to the other
or one is the dual of the other. Note that clauses containing some propositional variable
plus its dual can be faithfully deleted from φ.

Now consider a Horn rule rφ such that

H(rφ) = {p(X1, . . . , Xm)} and

B(rφ) = {p(si1, . . . , sim) | 1 ≤ i ≤ n} ∪
{p(X1, , . . . , Xj−1, α, Xj+1, . . . , Xm) | α ∈ C \ {0, 1} and 1 ≤ j ≤ m},
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where the arguments sij with 1 ≤ i ≤ n and 1 ≤ j ≤ m are defined as follows:

sij =

⎧
⎨

⎩

1 if the negative literal ¬Xj occurs in the i-th clause of φ;
0 if the positive literal Xj occurs in the i-th clause of φ;
Xi otherwise.

We claim that φ is unsatisfiable iff rφ is tautological in C.
For the “only if”-direction, suppose that φ is unsatisfiable. Moreover, let ϑ : V →

C be an arbitrary ground substitution over the variables in rφ. Since B−(rφ) = ∅,
we have to show that B+(rφϑ) ∩ H(rφϑ) �= ∅. First suppose that ϑ instantiates at
least one variable Xj to α ∈ C \ {0, 1}. Then, p(X1, . . . , Xj−1, α, Xj+1, . . . , Xm)ϑ
and p(X1, . . . , Xm)ϑ are identical. Thus, in this case, p(X1, . . . , Xm)ϑ ∈ B+(rφϑ) ∩
H(rφϑ), and therefore B+(rφϑ) ∩ H(rφϑ) �= ∅.

It remains to consider the case that ϑ instantiates all variables Xj to either 0 or 1.
Hence, ϑ defines a truth assignment of {X1, . . . , Xm}. Since φ is unsatisfiable, there
must exist some clause li,1 ∨ li,2 ∨ li,3 with truth value false in ϑ. We claim that then
p(X1, . . . , Xm)ϑ = p(si1, . . . , sim)ϑ holds, i.e., for every j, Xjϑ = sijϑ. We prove
this claim by distinguishing the three cases of the definition of sij :

– If the negative literal ¬Xj occurs in the i-th clause, then sij = 1. On the other hand,
the i-th clause, and therefore also the literal ¬Xj , is false under the assignment ϑ.
Thus, Xj has the value true in this assignment, i.e., Xjϑ = 1 = sijϑ.

– If the positive literal Xj occurs in the i-th clause, then sij = 0. On the other hand,
the i-th clause, and therefore also the literal Xj , is false under the assignment ϑ.
Thus, Xjϑ = 0 = sijϑ.

– If Xj does not occur in the i-th clause, then sij = Xj , and therefore Xjϑ = sijϑ
trivially holds.

The “if”-direction is shown analogously and is therefore omitted. �

Note that the coNP-completeness results in Theorems 2 and 3 were shown for an arbi-
trary but fixed finite domain C of size |C| ≥ 2. As far as coNP-hardness is concerned,
we thus get slightly stronger results than if we considered the domain C as part of the
problem input. On the other hand, it can be easily verified that the membership proofs
clearly also work if the finite domain C is not fixed (i.e., if it is part of the problem
input). In other words, detecting tautological rules has the same complexity no matter
whether we have to deal with a specific finite domain or with all finite domains.

3.2 Tractable Cases

We conclude our discussion on the detection of tautological rules by identifying two
tractable cases. The first one combines the restrictions considered in Theorems 2 and 3;
the second one is obtained by a restriction on the variables occurring in a rule.

Theorem 4. Given a Horn rule r, where the arity of all predicate symbols is bounded
by some fixed constant, checking whether r is tautological in a finite domain is in P.
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Proof. Since r is Horn, the head H(r) of r consists of a single atom A and B−(r) is
empty. Hence, r is tautological in C iff Aϑ ∈ B+(rϑ) holds for every ground substitu-
tion ϑ. In order to check this condition, we loop over all possible ground instantiations
Aσ of A. Since the arity of the predicate symbols is bounded and the domain is finite,
there are only polynomially many such ground instantiations. For each Aσ, we have to
check whether σ can be extended to a substitution ϑ such that Aσ = Aϑ ∈ B+(rϑ).
This is a matching problem, which can be clearly solved in polynomial time. �

Theorem 5. Given a rule r such that |Vr| ≤ k for some fixed constant k, checking
whether r is tautological in a finite domain is in P.

Proof. Since the number of variables in r is bounded by a constant and the domain
is finite, there are only polynomially many ground instances rϑ of r. In order to test
whether r is tautological in C, we just have to test for each ground instance rϑ of r
whether B+(rϑ) ∩ (H(rϑ) ∪ B−(rϑ)) �= ∅ holds. �

4 Rule Subsumption

Rule subsumption is a syntactic criterion to identify a rule r which can be faithfully
deleted from any program containing another (“more general”) rule s. For the ground
case, Lin and Chen [6] generalized replacements from the literature [3,13] and showed
that their syntactic criterion captures all such pairs of rules. The non-ground case was
first studied by Eiter et al. [7] and Traxler [14]. As shown by the latter author, also rule
subsumption can be characterized in two alternative ways (similarly as before for tau-
tological rules), which turn out to be equivalent for languages over an infinite domain.
To formulate these characterizations, let us define the following relations (for any pair
of rules r, s):

s ≤ r iff there exists a substitution ϑ : Vs → Vr ∪ Cr such that

H(sϑ) ⊆ H(r) ∪ B−(r) and B(sϑ) ⊆ B(r);
s �C r iff, for each ϑr : Vr → C, there exists a ϑs : Vs → C such that

H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆ B(rϑr).

Observe that ≤ does not take the underlying domain into account, but only variables and
constants involved in the two rules, r and s, while �C explicitly refers to the domain
C of the underlying language. The following proposition collects results from Eiter et
al. [7] and Traxler [14].

Proposition 2. Let L be given over an infinite domain C and let r, s be rules. Then,
the following relations hold: (i) s ≤ r iff s �C r; and (ii) if s ≤ r (or, equivalently,
s �C r), then P ≡s P \ {r}, for each P with s ∈ P .

Note that not only in case C is infinite, but also if r is ground, the equivalence between
s ≤ r and s �C r holds, for arbitrary s. As shown by Eiter et al. [7], given rules r, s,
deciding whether s ≤ r holds is NP-complete. The proof was carried out by a reduction
of the 3-coloring problem to checking containment in ≤. Inspecting the proof reveals
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that NP-hardness already holds if r is restricted to be ground. Again, we can show by
a simple example that the equivalence between ≤ and �C does not hold in case C is
finite. Consider, e.g., s : q(X) ← p(X, X), r : q(0) ← p(1, Y ), p(Y, 0), not q(1),
and C = {0, 1}. Then, s �≤ r, while s �C r. Again, we have the effect that, for each
pair s, r of rules, s ≤ r implies s �C r, but not vice versa.

Whenever s �C r holds, we say that r is subsumed by s (in C). We next show that
s �C r implies that r can be removed from each program containing s also in case C is
finite.

Theorem 6. If s �C r, for a finite domain C, then P ≡s P \ {r}, for each program P
with s ∈ P .

Proof. We first show that {r, s} ≡s {s}. To this end, we show that grd({r, s}, C) ≡s
grd({s}, C), for any C ⊆ C.

Consider any C ⊆ C. By assumption, for every ϑ : Vr → C, there exists a substi-
tution ϑs : Vs → C such that H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆ B(rϑr).
Note that this implies ϑs(x) ∈ C, for each x ∈ Vs. We thus have grd({r, s}, C) =
grd({s}, C)∪{rϑ, sϑs | ϑ : Vr → C}, with ϑs as above. To every subset {rϑ, sϑs} ⊆
grd({r, s}, C), i.e., for every ϑ : Vr → C, we can apply Theorem 6 of Lin and Chen [6]
and replace it by {sϑs}. By construction, the resulting program is strongly equiv-
alent to grd({r, s}, C), and exactly matches grd({s}, C). Thus, grd({r, s}, C) ≡s
grd({s}, C), for any C ⊆ C.

Assume now that there exists a program P such that s ∈ P but P �≡s P \ {r}, i.e.,
P ∪ Q �≡ (P \ {r}) ∪ Q, for some program Q. For P ′ = (P \ {r, s}) ∪ Q, we thus
have {r, s} ∪ P ′ �≡ {s} ∪ P ′, which implies {r, s} �≡s {s}, a contradiction. Hence,
P ≡s P \ {r} must hold for any program P with s ∈ P . �

4.1 Complexity of Rule Subsumption

Concerning complexity, we already mentioned the NP-completeness of checking rule
subsumption given an infinite domain. As in the previous section, we observe an in-
crease of complexity when a finite domain is considered. Note that there is a subtle
difference between the ΠP

2 -hardness result in Theorem 7 below and the hardness re-
sults in Section 3: In Theorem 7, the domain C is considered to be part of the input
and therefore |C| is not bounded by a fixed constant. In contrast, Section 3 provided
hardness results even for a fixed domain.

Theorem 7. Given rules r and s, checking whether r is subsumed by s in a finite do-
main C is ΠP

2 -complete. Hardness holds even for Horn rules over a bounded number
of predicate symbols with bounded arities.

Proof. For membership, we show that the complementary problem is in ΣP
2 : Guess

ϑr and check that for each ϑs : Vs → C, either H(sϑs) �⊆ H(rϑr) ∪ B−(rϑr) or
B(sϑs) �⊆ B(rϑr) holds. The latter check is in coNP, since checking whether there
exists some ϑs : Vs → C with H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆ B(rϑr)
is clearly in NP.
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For showing hardness, we proceed along the lines of Pichler [15]. We reduce the ΠP
2 -

complete decision problem of ∀∃-QSAT to testing whether s �C r holds. To this end,
let Φ = ∀X1 . . . ∀Xk∃Xk+1 . . . ∃Xmφ be a QBF with φ =

∧n
i=1 li,1 ∨ li,2 ∨ li,3, and let

the domain C be of size k+1, i.e., without loss of generality, assume C = {0, 1, , . . . , k}.
We use two rules, rΦ and sΦ, which have empty heads and purely positive bodies:

B+(rΦ) = {p(1, X1), . . . , p(k, Xk)} ∪ {v(α, 0), v(0, α) | α ∈ C \ {0}} ∪
{c(α, β, γ) | (α, β, γ) ∈ C3 \ {(0, 0, 0)}},

B+(sΦ) = {p(1, X1), . . . , p(k, Xk)} ∪ {v(Xj , X̄j) | 1 ≤ j ≤ m} ∪
{c(l∗i,1, l

∗
i,2, l

∗
i,3) | 1 ≤ i ≤ n},

where l∗ = X if l = X , and l∗ = X̄ if l = ¬X , with X̄1, . . . , X̄m being new atoms.
We show that Φ is true iff sΦ �C rΦ.

For the “only if”-direction, suppose that Φ is true and let ϑr be an arbitrary ground
substitution of the variables {X1, . . . , Xk} in rΦ. We define a truth assignment I for
{X1, . . . , Xk} with I(Xi) = false if Xiϑr = 0 and I(Xi) = true otherwise. By hypoth-
esis, Φ is true. Hence, there exists an extension J of I for {X1, . . . , Xm} such that φ is
true in J . From J , we define the ground substitution ϑs as follows:

Xiϑs =

⎧
⎨

⎩

0 if Xi is false in J ;
Xiϑr if Xi is true in J and i ≤ k;
1 if Xi is true in J and i > k;

X̄ϑs =
{

0 if Xi is true in J ;
1 if Xi is false in J.

It remains to show that B+(sΦϑs) ⊆ B+(rΦϑr) holds for ϑs. For every i ≤ k, we have
Xiϑs = Xiϑr by construction. Hence, every atom p(i, Xi)ϑs in sΦϑs is contained
in B+(rΦϑr). Moreover, by construction, for every j ∈ {1, . . . , m}, exactly one of
the variables Xj and X̄j is instantiated to 0 by ϑs. Hence, every atom v(Xj , X̄j)ϑs is
either of the form v(α, 0) or v(0, α), for some α �= 0. Thus, every atom v(Xj , X̄j)ϑs

is contained in B+(rΦϑr). Finally, φ is true in J , i.e., in all clauses of φ, at least one
literal is true in J . Hence, by construction, for each i, at least one of the first-order
variables l∗i,1, l

∗
i,2, l

∗
i,3 is instantiated to a constant different from 0 by ϑs. Thus, all atoms

c(l∗i,1, l
∗
i,2, l

∗
i,3)ϑs are different from c(0, 0, 0) and are therefore contained in B+(rΦ).

For the “if”-direction, suppose that sΦ �C rΦ, and let I be an arbitrary truth assign-
ment for {X1, . . . , Xk}. Then, we define the ground substitution ϑr over {X1, . . . , Xk}
as Xiϑr = 0 if I(Xi) = false and Xiϑr = 1 if I(Xi) = true. By hypothesis, sΦ �C rΦ.
Thus, there is a substitution ϑs over {X1, . . . , Xm} where B+(sΦϑs) ⊆ B+(rΦϑr).
From ϑs we define the extension J of I for {X1, . . . , Xm} as follows: J(Xi) = false if
Xiϑs = 0 and J(Xi) = true if Xiϑs �= 0.

For every i ≤ k, Xiϑs = Xiϑr holds. Hence, J and I coincide on {X1, . . . , Xk},
and therefore J is indeed an extension of I . By assumption, every atom v(Xj , X̄j)ϑs

is either of the form v(α, 0) or v(0, α), for some α �= 0. Thus, by the definition of
J , we also have that J(X̄i) = false if X̄iϑs = 0 and J(X̄i) = true if X̄iϑs �= 0.
Finally, all atoms c(l∗i,1, l

∗
i,2, l

∗
i,3)ϑs are contained in B+(rΦ) and are therefore different

from c(0, 0, 0), i.e., for each i, at least one of the first-order variables l∗i,1, l
∗
i,2, l

∗
i,3 is

instantiated to a constant different from 0 by ϑs. But then, in all clauses li,1 ∨ li,2 ∨ li,3
of φ, at least one literal is true in J . Thus, φ is true in J . This holds for arbitrary I ,
consequently Φ is true. �
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Note that in the proof of Theorem 7, the domain C is part of the input. This is in stark
contrast to Theorems 2 and 3, were the domain C is arbitrary but fixed—thus leading to
slightly stronger hardness results. However, in the ΠP

2 -hardness proof of Theorem 7,
it is crucial that there is no fixed bound on the size of the domain. In particular, we
indeed need k pairwise distinct domain elements (where k corresponds to the number
of universally quantified propositional variables in Φ) in order to make sure that any in-
stantiation of a first-order variable Xi in rΦ forces the same instantiation of the variable
Xi (with precisely the same index i) in sΦ.

Alternatively, we could have considered the domain C to be fixed (with |C| ≥ 2)
and either let the number of predicate symbols or the arity of the predicate symbols
be unbounded. In case of an unbounded number of predicate symbols, we can sim-
ply replace the atoms p(1, X1), . . . , p(k, Xk) in both rΦ and sΦ by atoms of the form
p1(X1), . . . , pk(Xk). Likewise, if the domain is fixed and the arities of predicate sym-
bols are unbounded, then we replace the atoms p(1, X1), . . . , p(k, Xk) in both rΦ and
sΦ by a single atom p(X1, . . . , Xk).

However, if the domain C is fixed (or at least its cardinality is bounded) and, more-
over, both the number of predicate symbols and their arity is bounded, then ΠP

2 -com-
pleteness no longer holds unless the polynomial hierarchy collapses.

Theorem 8. Given rules r and s, with armax(A{r,s}) ≤ k and |A{r,s}| ≤ k′ for fixed
constants k, k′, checking whether r is subsumed by s in a domain of fixed size is in ΔP

2 .

Proof. Since the cardinality of C, the number of predicate symbols, and the arity of
predicate symbols are all bounded, there is only a constant number, K , of different
ground rules in this language. Note that s ��C r iff there exists a ground instance rϑr

of r such that, for every ground substitution ϑs : Vs → C, either H(sϑs) �⊆ H(rϑr) ∪
B−(rϑr) or B(sϑs) �⊆ B(rϑr).

In order to check whether such a ground instance rϑr of r exists, we loop over all
K ground rules t and check by one NP-oracle call that t is a ground instance of r and
by another NP-oracle call that s ��C t. Note that both checks are indeed feasible by
NP-oracles: On the one hand, checking whether t is a ground instance of r amounts to
guessing a ground substitution ϑr and checking that rϑr = t holds. On the other hand,
checking whether s �C t amounts to guessing a ground substitution ϑs and checking
that both H(sϑs) ⊆ H(t) ∪ B−(t) and B(sϑs) ⊆ B(t) hold. �

4.2 Restricting Variable Occurrences and Tractability

As in Section 3, we conclude our discussion by considering restrictions on the vari-
ables occurring in the rules. Since, for subsumption, we are dealing with two rules, we
distinguish those cases where variable occurrences are restricted in either one of the
rules, or in both. It turns out that just a restriction of variable occurrences in both rules
guarantees tractability of subsumption detection.

Theorem 9. Given rules r, s, checking whether r is subsumed by s in a domain of fixed
size ≥ 2 is (a) NP-hard, if |Vr| is bounded by a fixed constant, and even if r is ground
and purely positive, and (b) coNP-hard, if |Vs| is bounded by a fixed constant, and even
if s consists of a single body atom.
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Proof. (a) Even when r is ground and purely positive, the problem of subsumption
detection in answer-set programming corresponds to “normal” first-order subsumption
of clauses, which is a well known NP-hard problem (cf. Problem [LO18] in Garey and
Johnson [12]).

(b) Let |C| = k. Without loss of generality, assume C = {1, . . . , k}. We first suppose
that k ≥ 3. In this case, we reduce the k-colorability problem to the complementary
problem of rule subsumption. Let an instance of the k-colorability problem be given by
the graph G = (V, E), where V denotes the vertices and E the edges. We construct two
rules, rG and sG, as follows:

B+(rG) = {e(Xi, Xj) | {vi, vj} ∈ E};
B+(sG) = {e(X, X)}.

We claim that G is k-colorable iff sG ��C rG.
For the ‘if”-direction, suppose that G is k-colorable, i.e., there exists a coloring

f : V → {1, . . . , k} such that no two adjacent vertices are assigned with the same
color. Now define the ground substitution ϑr : V → C as Xiϑr = f(vi). Then, by
construction, B+(rGϑr) does not contain an atom e(Xi, Xj)ϑ with Xiϑ = Xjϑ, since
otherwise also f(vi) = f(vj) for some edge {vi, vj} of the graph G. But this is impos-
sible for a valid k-coloring f .

For the “only if”-direction, suppose that sG ��C rG. Hence, there exists a ground
substitution ϑ : V → C such that B+(rGϑr) does not contain an atom e(Xi, Xj)ϑ
with Xiϑ = Xjϑ. But then we can clearly define a valid k-coloring of the graph G as
f : V → {1, . . . , k} such that f(vi) = Xiϑr.

It remains to consider the case where |C| = 2. Without loss of generality, assume
C = {0, 1}. In this case, we establish coNP-hardness by a reduction of the 4-colorability
problem to the complementary problem of rule subsumption. Let an instance of the 4-
colorability problem be given by the graph G = (V, E). We construct the rules rG and
sG as follows:

B+(rG) = {e(Xi, Yi, Xj , Yj) | {vi, vj} ∈ E};
B+(sG) = {e(X, Y, X, Y )}.

We claim that G is 4-colorable iff sG ��C rG. The proof is essentially as in the case k ≥
3 above. However, now pairs of variables (X, Y ) are considered as a binary encoding
of the four colors in the graph. �

Theorem 10. Given rules r, s such that |Vr ∪Vs| is bounded by a fixed constant, check-
ing whether r is subsumed by s in a finite domain is in P.

Proof. Since the number of variables in r and s is bounded by a constant and the number
of domain elements is finite, there are only polynomially many ground instances rϑr

and sϑs, respectively. Hence, we may test in a loop over all ground instances rϑr if
there exists an instance sϑs such that H(sϑs) ⊆ H(rϑr) ∪ B−(rϑr) and B(sϑs) ⊆
B(rϑr) hold. The latter test requires simply a nested loop over polynomially many
ground instances sϑs. �
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Table 1. Complexity of detecting tautological rules in finite (possibly fixed) domains

general case armax(Ar) ≤ k |Vr| ≤ k

r disjunctive coNP-complete coNP-complete in P
r positive coNP-complete coNP-complete in P
r Horn coNP-complete in P in P

Table 2. Complexity of detecting rule subsumption s �C r in fixed finite domains

general case armax(A{r,s}) ≤ k |Vr| ≤ k

general case ΠP
2 -complete ΠP

2 -complete NP-hard
|A{r,s}| ≤ k ΠP

2 -complete in ΔP
2 NP-hard

|Vs| ≤ k coNP-hard coNP-hard in P

5 Discussion and Conclusion

We investigated the complexity of applying rule eliminations in the setting of finite do-
mains, and provided a full complexity picture with respect to several restrictions, in
particular restricting the syntax to Horn rules, imposing a bound on predicate arities
and/or on the number of variables (a summary of our results is given in Tables 1 and
2). Note that the concept of bounded predicate arities was suggested by Eiter et al. [16]
in order to reduce the complexity of basic reasoning tasks in answer-set programming
from nondeterministic exponential time classes to classes from the polynomial hierar-
chy. Similarly, Vardi [17] used bounded variables in order to narrow the gap between
expression and data complexity of database queries (i.e., Horn programs).

The main observation of our results is that if we consider finite domains then the de-
tection of tautological or subsumed rules becomes, in general, harder. More specifically,
we observed an increase from P to coNP as well as from NP to ΠP

2 . However, we also
identified restrictions such that complexity does not increase. To wit, a restriction to
Horn clauses makes the detection of tautological rules tractable, but only if we addi-
tionally impose a bound on the arities of predicate symbols (cf. the first two columns of
Table 1).

As for the detection of subsumed rules, restricting to Horn clauses is irrelevant since
all hardness results in Section 4 were shown for Horn clauses. On the other hand,
Table 2 reflects the effects of other restrictions: In the second row, the case of fixing
the number of predicate symbols by some constant is considered. This restriction leads
to a decrease of complexity if it is combined with a bound on the arities of predicate
symbols. However, in order to obtain tractability, more severe restrictions are required.
For instance, a restriction on the number of variable occurrences in both r and s is a
sufficient condition for the tractability of detecting subsumed rules (cf. the third row,
last column, of Table 2).

We finally remark, however, that local checks for rule redundancy, as presented here,
may pay off in program simplification since the complexity of checking rule redundancy
(which amounts to testing strong equivalence) is in general much harder, viz. complete
for co-NEXPTIME.
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