A Web-Based Tutoring Tool for Calculating Default Logic
Extensions

Uwe Egly, Michael Fink, Axel Polleres, and Hans Tompits
Abt. Wissensbasierte Systeme
Technische Universitdt Wien, Austria
e-mail: [uwe,michael,axel,tompits)@kr.tuwien.ac.at

Introduction and Background

In this paper, we report on the use of a tutoring program supporting an advanced university course on
knowledge-based systems for students of computer science. The course is suggested to be attended at the
sixth semester and deals with both practical and theoretical issues regarding knowledge-representation
techniques. In previous installments of the lecture, we noticed that certain topics caused problems in
understanding among students. A particular hurdle represented the calculation of extensions in Reiter’s
default logic [Reiter 1980]. Reasons for this difficulties can be found in the fact that (i) the notion of
an extension is defined only in a non-constructive fashion, and (ii) in order to check whether an object
represents an extension, certain skills of formal logic are required, which most students ostensibly lacked,
although an undergraduate course on mathematical logic is mandatory in their curriculum. In order to
tackle this situation, we had to find a way to make the complex issues easier to comprehend, and, at the
same time, provide a better motivation for the students than pure class-room teaching.

Since computer-based education is growing in popularity, and students in general enjoy applying new
technologies, we decided to implement a computer program which explains the problematic topic as
detailed as possible. The following items where chosen as the main specification of the program:

— it must not only visualize the computation of extensions, but also explain the required steps in detail;
— it should contain examples where the characteristics of default logic are expressed; and finally
— it should require no special software and should run on any computer.

To fulfill the third requirement, we opted to use a JAVA-applet to guarantee highest possible accessi-
bility because all students have access to the Web and any machine which has a JAVA-capable browser
can be used to execute the program. In fact, all standard browsers claim to be JAVA-compatible and are
free for non-commercial use.

The Applet

Let us first briefly sketch what the tool is actually supposed to visualize.

Default logic belongs to that class of logical formalisms devoted to the study of human common-sense
reasoning, i.e., the process of inferring “plausible” conclusions given less than conclusive evidence. A
characteristic instance of this sort of reasoning is the frequent approach to assert a particular statement as
long as there is no evidence to the contrary. In default logic, such assertions are facilitated by special kinds
of inference rules, the so-called default rules, stating what is expected to hold under normal circumstances.
A default theory, then, is a collection of default rules, together with a set of definite facts (called the
premises of the theory).

Since the application of a default depends on both the presence and the absence of certain knowledge,
different defaults can be mutually blocking and hence the total knowledge induced by a given default
theory can give rise to several (if any!) possible “states of affairs”. These sets of total beliefs are called
extensions of the given default theory and play a vital role in default logic.

Unfortunately, the formal definition of an extension is rather tricky and involves some intricate fixed-
point construction. (N.B. A fized-point of an operator f is a value x such that f(x) = z holds.) However,
for a wide class of default theories, a concrete generate-and-test algorithm can be given which outputs
all extensions of a given default theory. Our applet now has the task to visualize this algorithm. The



algorithm is as follows: in the first stage, possible candidates for being an extension are generated; and
in the second stage, the candidates are checked whether they represent an extension or not.

The program itself consists of several examples to choose from; in toto representing characteristic
properties of default logic. Each example is provided with a detailed step-by-step solution, running either
automatically or manually, in which case the student clicks on a button in order to proceed to the next
step. In automatic mode, the speed of the simulation can be adjusted; it can be stopped at any point
and also restarted if desired.

The generation of the candidates, and the checking of the candidates are presented in an own window,
respectively, and the corresponding steps are given in a structured diagram at the right-hand-side of these
windows. Explanations for each step can be requested by simply clicking on the respective text, which
are then displayed in a small pop-up window. Help and a general description of each example can also
be requested, which will appear in a new browser window.

Responses

Generally, student response was predominately favourable. The few negative reactions all centered around
the inability of the respective students to execute the program. However, such situations occurred only
if the student disregarded the information we provided specifying the particular versions of the browser
which guarantee a trouble-free execution of the applet. For instance, some older (intermediate) versions
of Netscape for Linux exhibited certain unpleasant font-related problems, which, however, have been
resolved by the current release.

The most interesting question of course was whether the program fulfills our expectation of improving
the students skills and examination results. Analyzing the examinations which have been carried out
since the availability of the tool, there is an affirmative answer to this question. Let us discuss this in
more detail.

Before we supported the students with our tool, their knowledge and ability to generate extensions of
given (simple) default theories were rather disappointing. Since we knew these deficiencies, we recapitu-
lated the topic several times during the lectures and discussed many examples. Although we stressed the
importance of these examples with respect to the examination at the end of the course, less than 50% of
the students got more than 50% of the possible points in those examples concerning default logic.

Since the availability of our tool, however, there is a clear improvement over the previous situation.
First of all, the number of students using the tool increased quite significantly over time (from 32% to
58% of all students performing the examination). The reason is that the tool becomes more and more
tested and some inevitable software glitches have been removed. Moreover, students profiting from the
tool recommend its use to other students. From a performance point of view, there is a marked difference
between those students which claim usage of the tool and those either claiming non-usage or giving
no answer at all. Tool users got between 8% and 16% more points on the default-logic example than
non-users, and 21% more points than students not answering the question about the tool usage.

Future Issues

In the current version of the applet, the examples are hard-coded. However, the program is written in such
a way that additional examples can be added without much ado, and that it allows the straightforward
inclusion of a simple theorem prover, enabling users to create their own examples. In fact, currently we are
working on this extension of the program, and we hope that the new version will be of even greater benefit
than the current one. Also, since the concepts underlying the construction of extensions in default logic
are closely related to certain semantics for logic programming with negation as failure—which represent
similar problems among students—we plan to develop a related visualization tool for that area as well.

References

Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence Journal, 13, 81-132.



