
Query Answering in the Description Logic

Horn-SHIQ ⋆

Thomas Eiter1, Georg Gottlob2, Magdalena Ortiz1, and Mantas Šimkus1

1 Institute of Information Systems, TU Vienna, Austria
(eiter|ortiz|simkus)@kr.tuwien.ac.at

2 Computing Laboratory, Oxford University, United Kingdom
georg.gottlob@comlab.ox.ac.uk

Abstract. We provide an ExpTime algorithm for answering conjunc-
tive queries (CQs) in Horn-SHIQ, a Horn fragment of the well-known
Description Logic SHIQ underlying the OWL-Lite standard. The al-
gorithm employs a domino system for model representation, which is
constructed via a worst-case optimal tableau algorithm for Horn-SHIQ;
the queries are answered by reasoning over the domino system. Our al-
gorithm not only shows that CQ answering in Horn-SHIQ is not harder
than satisfiability testing, but also that it is polynomial in data complex-
ity, making Horn-SHIQ an attractive expressive Description Logic.

1 Introduction

Driven by the development of semantically enhanced systems, as in the context
of the Semantic Web and of Enterprise Application Integration, query answer-
ing in Description Logics (DLs) has emerged as an important topic. A variety
of algorithms have been proposed for this problem and, aiming at different ap-
plications, aspects like combined and data complexity have been guiding their
development. The former characterizes the cost of query answering in the gen-
eral case, while the latter in the case when the query and the knowledge base
except the factual part are fixed. Data complexity is especially important for
applications in which DLs are used to formalize rich data models for data repos-
itories, as in such context the model is static as compared to the data contents,
and typical user queries are known. For querying DLs, conjunctive queries (CQs)
have been most widely considered and three major settings have been addressed:

• very expressive DLs for which standard reasoning tasks, like satisfiability test-
ing or instance checking, are intractable both in data and combined complexity.
As query answering is at least as hard, the problem is trivially intractable in
general. For example, CQs in SHIQ have 2ExpTime-complete combined com-
plexity [13] and coNP-complete data complexity [6].
• tailored DLs, like DL-Lite [5], which aim at lower complexity at the price of
limited expressiveness. In DL-Lite, CQ answering is coNP-complete in combined
complexity, but polynomial if the query is fixed, and has very low data complexity
(reducible to FOL, thus inside logarithmic space).

⋆ This work was partially supported by the Austrian Science Fund (FWF) grant
P20840, Wolfgang Pauli Institute (WPI), and the Mexican National Council for
Science and Technology (CONACYT) grant 187697.

• weak DLs, like EL [1], for which standard reasoning and CQ answering under
data complexity are P-complete, while CQ answering under combined complex-
ity is intractable [17]. Several extensions of EL sharing this property (e.g., ELH,
ELIf , EL+, EL++) can be found in [17, 12, 10].

Since CQ answering is intractable under combined complexity already over
very simple knowledge bases, fragments of expressive DLs with tractable data
complexity are of particular interest. Ideally, such fragments should also allow for
CQ answering with combined complexity not higher than of standard reasoning.

In this paper, we identify Horn-SHIQ as a DL with this property. It was in-
troduced in [9] as a Horn fragment of SHIQ, in which the syntax is restricted in a
way that disjunction is not expressible. While standard reasoning in Horn-SHIQ
is ExpTime-complete in general [11], it is polynomial if the taxonomy is fixed [9].

Our main contributions and results are briefly summarized as follows:

• We provide an ExpTime algorithm for answering CQs in Horn-SHIQ. The
algorithm is based on answering tree-shaped queries over particular trees (that
capture a universal model of the KB) finitely represented by domino systems.
The latter are relatives of saturated mosaic sets known in other branches of logic,
and the recent knot sets [16] and domino sets [18] in DLs.
• For constructing domino systems, we exploit a dedicated tableaux-based algo-
rithm for consistency checking in Horn-SHIQ, which is of independent interest.
It adapts the standard SHIQ tableaux [8] (using, e.g., anywhere blocking [15]
and a kind of lazy unfolding [7]) to terminate in deterministic single exponential
time, yielding a representation of a universal model of K such that each CQ over
K can be answered on it. This may also be exploited to precompile K into a
(query-independent) domino system for on-line query answering.
• Based on our algorithm, we show that CQs in Horn-SHIQ have ExpTime-
complete combined complexity and P-complete data complexity. We also present
a fragment of Horn-SHIQ for which CQs are easier. In Horn-SHQ−, which for-
bids inverse roles and existential projection on the left hand side of containment
axioms, the combined complexity of CQs is lowered to PSpace-completeness.

As Horn-SHIQ is an expressive fragment of OWL-Lite, our results are rele-
vant for the Semantic Web context. They extend in fact from CQs to the class
of positive (existential) queries. Our result on the combined complexity of CQs
in Horn-SHIQ is of particular interest. Firstly, it reveals another expressive DL
for which CQ answering is not harder than standard reasoning (cf. [16, 13, 14]).
Secondly, it suggests that the exponential jump in combined complexity of CQs
by adding inverse roles to ALC, which was found by Lutz [13], relies on their
interaction with disjunction. In other words, if disjunction is eliminated, then
inverse roles do not make CQ answering harder.

2 Preliminaries

The Description Logics SHIQ and Horn-SHIQ We assume countably
infinite sets C, R and I of concept names, role names, and individuals respec-
tively, where C contains special concepts names ⊤ and ⊥. Roles are expressions

2

R and R−, where R ∈ R, and their inverses are Inv(R) = R− and Inv(R−) = R,
respectively. For any roles R and S, R⊑S is a role inclusion axiom (RI), and
Trans(R) is a transitivity axiom (TA). For any set R of RIs and TAs, ⊑∗

R denotes
the reflexive transitive closure of {(R, S) | R⊑S ∈ R or Inv(R)⊑ Inv(S) ∈ R};
we write TransR(R′) if R′ ⊑∗

R R and R ⊑∗
R R′ for some R s.t. Trans(R)∈R or

Trans(R−)∈R. A role R is simple w.r.t. R, if there is no S⊑∗
RR with TransR(S).

Concepts are inductively defined as follows: (a) each A ∈ C is a concept, and
(b) if C, D are concepts, R is a role, and S is a simple role, then C ⊓D, C ⊔D,
¬C, ∀R.C, ∃R.C, ≥ n S.C and ≤ n S.C, for n ≥ 1, are concepts.

An expression C ⊑D, where C, D are concepts, is a general concept inclusion
axiom (GCI), and expressions a:A and 〈a, b〉:R, where A ∈ C, a and b are
individuals, and R is a role, are concept and role assertions, respectively. A
SHIQ knowledge base (KB) is a tuple K=〈T ,R,A〉, where the TBox T is a
finite set of GCIs, the RBox R is a finite set of RIs and TAs, and the ABox A
is a finite nonempty set of assertions. We denote by C(K), R(K) and I(K) the
sets of concept names, role names, and individuals occurring in K.

An interpretation I = 〈∆I , ·I〉 for a KB K consists of a nonempty domain
∆I and a valuation function ·I that maps each individual c∈ I(K) to an element
cI ∈∆I , each concept name C ∈C(K) to a subset CI of ∆I , and each role name
R∈R(K) to a subset RI of ∆I×∆I , in such a way that ⊤I=∆I and ⊥I=∅.
The function ·I is extended to all concepts and roles in the standard way (see,
e.g., [11]), and satisfaction of K by I (I |= K), i.e. modelhood, is also standard.

The DL Horn-SHIQ was introduced [9] as a fragment of SHIQ. The main
idea is to restrict the syntax in a way that ⊔ is not expressible, establishing a
correspondence to a Horn fragment of first-order logic with equality. Without
loss of generality, we focus here on a normal form of Horn-SHIQ in [11], to which
each Horn-SHIQ KB can be efficiently rewritten while preserving the answers
to arbitrary CQs (as follows from [11]).

Definition 1. (Normal) Horn-SHIQ KBs contain only GCIs of the forms

A ⊓ B ⊑C A⊑∀R.B A⊑≥ m S.B

∃R.A⊑B A⊑∃R.B A⊑≤ 1 S.B

where A, B, C are concept names, R is a role, S is a simple role, and m ≥ 1.

Example 1. Assume two Horn-SHIQ KBs K1 = 〈T , ∅,A〉 and K2 = 〈T ,R,A〉,
where T = {A⊑∃R.A, B ⊑∃P.C}, R= {P ⊑R}, and A= {a :A, a : B}. Note that
both are consistent, however adding A ⊑ ∀R.⊥ to T makes them inconsistent.

Conjunctive Queries Let V be a countably infinite set of variables. A (Boolean)
conjunctive query (CQ, or query) over a KB K is a finite set q of atoms of the
form A(x) or R(x, y), where A is a concept name, R is a role and x, y ∈V.3 By
V(q) we denote the variables occurring in the atoms of q. The query graph of q

is the directed graph Gq over nodes V(q) with an edge between nodes x and y

iff R(x, y) ∈ q for some role R. The query q is tree-shaped if Gq is a tree.

3 W.l.o.g, no individuals occur in q; we can replace each a in q by a new variable y, add
Ca(y) to q and a : Ca to A, where Ca is a new concept name. Non-Boolean queries
(i.e., with answer variables) can be reduced to Boolean queries as usual.

3

A match for q in an interpretation I is a mapping θ : V(q) → ∆I s.t. (i)
θ(x)∈AI for each A(x)∈ q, and (ii) 〈θ(x), θ(y)〉 ∈RI for each R(x, y)∈ q. We
say that I satisfies q (I |= q), if q has a match in I, and that K entails q (K |= q),
if q has a match in each model I of K.

Example 2. Assume the queries tq1 = {A(x), R(x, y), A(y), R(x, z), C(z)} and
tq2 = {B(x), R(x, y), A(y), P(x, z), C(z)}. As easily seen, K1 6|= tq1 and K1 |= tq2,
while K2 |= tq1 and K2 |= tq2. Note that both queries are tree-shaped.

3 Conjunctive Queries Over Domino Trees

This section describes an algorithm for answering CQs over trees induced by
domino systems, which is exploited in the next sections for deciding CQ entail-
ment in Horn-SHIQ KBs. A domino system finitely represents a possibly infinite
tree-shaped interpretation that be can built by connecting matching dominoes.

Definition 2. A domino is a tuple 〈c, r, c′〉 where c, c′ are sets of concepts
names and r is a set of roles (w.r.t. an underlying alphabet). A domino sys-
tem is a tuple 〈D, ⊲,R〉, where D is a set of dominoes, ⊲ ⊆D × D is a direct
successor relation with c′1 = c2 whenever 〈c1, r1, c

′
1〉 ⊲ 〈c2, r2, c

′
2〉, and R is an

RBox. We also require that for each 〈c, r, c′〉 ∈ D, the set r is closed under role
inclusions in R, i.e., R ∈ r and R ⊑ R′ ∈ R imply R′ ∈ r. Furthermore, D

contains one designated initial domino of the form 〈∅, ∅, c′〉.

Following the terminology in [14], we define next the tree-shaped interpretation
induced by a domino system. Its domain is represented by a prefix-closed set of
words; for a word w = e1· · ·en, let 〈w|en+1〉 denote the word e1· · ·en·en+1.

Definition 3. The tree base of a domino system D = 〈D, ⊲,R〉 is the inter-
pretation I = 〈∆I , ·I〉 (w.r.t. the alphabet underlying D) defined as follows:

1. The domain ∆I is the smallest set of words over dominoes such that:
- if t ∈ D is the initial domino, then t ∈ ∆I;
- if t1· · ·tn ∈ ∆I and tn ⊲ tn+1, then t1· · ·tn·tn+1 ∈ ∆I .

2. The valuation function ·I is defined as follows:
- For each atomic concept A, AI = {〈s|t〉 ∈ ∆I | t = 〈c, r, c′〉 ∧ A ∈ c′}.
- For each role name R,

RI = {(s, 〈s|t〉)∈∆I ×∆I | t = 〈c, r, c′〉 ∧ R ∈ r}∪
{(〈s|t〉, s)∈∆I ×∆I | t = 〈c, r, c′〉 ∧ Inv(R) ∈ r}.

The domino tree TD = 〈∆T , ·T 〉 of D is the interpretation identical to I except
that, for each role R, we have RT = RI ∪

⋃
S⊑∗

R
R∧TransR(S)(S

I)+.

Query entailment in a domino system is naturally defined via the existence of
matches in the represented domino tree. We first provide a procedure to verify
the existence of special ordered matches for tree-shaped queries, and we then
extend the result to all CQs via the standard method of query treeification.

Definition 4. A domino system D entails a CQ q (D |= q), if there is a match
for q in TD. A match π for a tree-shaped CQ tq in TD is ordered if, for each
x, y ∈ V(tq), π(x) is a proper prefix of π(y) whenever R(x, y) ∈ tq for some R.
We write D |=o tq, if there is some ordered match for tq in TD.

4

function checkRoleSucc

input: D= 〈D, ⊲,R〉; dominoes t1= 〈c1, r1, c
′
1〉, t3 = 〈c3, r3, c

′
3〉 from D; role set r 6= ∅;

output: true iff t3 is an r-successor of t1
if t1 has no direct successor in D, then return false;
Initialize t with some direct successor 〈c2, r2, c

′
2〉 of t1;

s := r2; i := 0
repeat

if t = t3 and r ⊆ s then return true;
if r 6⊆ s or t has no direct successor in D, then return false;
Reassign t to some direct successor 〈c2, r2, c

′
2〉 of t;

Set s′ to the smallest set closed under the following rule:
if S ⊑∗

R R, S ∈ s, S ∈ r2, and TransR(S), then R ∈ s′;
s := s′

until i > |D|; return false

Fig. 1. Verifying Successor Dominoes.

Let tq be a fixed tree-shaped query and D = 〈D, ⊲,R〉 a domino system with
tree TD. To obtain a procedure for deciding D |=o tq, we provide some necessary
and sufficient conditions for the existence of ordered matches that can be verified
without building TD explicitly. Roughly, we search for an association of dominoes
from D with the variables of tq. As the association must witness an ordered
match, the domino tx associated with variable x must encode the concept names
needed to satisfy each unary atom A(x) ∈ tq, while for each role atom R(x, y) ∈
tq, the domino tx must ‘reach’ the domino ty via an R-path.

Definition 5. For two dominoes t1 = 〈c1, r1, c
′
1〉 and t3 = 〈c3, r3, c

′
3〉 in D and a

set of roles r 6= ∅, we say t3 is a r-successor of t1 if one of the following holds:

(a) t1 ⊲ t3 and r ⊆ r3, or
(b) for some role set r′, D contains an r′-successor t2 of t1 such that t2 ⊲ t3

and for each R ∈ r there exists S ∈ r′ with TransR(S), S ⊑∗
R R and S ∈ r3.

We are ready to define domino associations, which characterize the |=o relation.

Definition 6. A domino association for tq is a mapping µ that assigns to each
z ∈V(tq) a domino µ(z)∈D in a way such that, for each pair x, y∈V(tq):

(a) if A(x) ∈ tq, then A ∈ c′, where µ(x) = 〈c, r, c′〉; and
(b) if r = {R | R(x, y) ∈ tq} is not empty, then µ(y) is an r-successor of µ(x).

Example 3. Consider the domino system D= 〈D, ⊲,R〉 in Figure 2, where the

B

t1

t4

t3

BR

t2

B

B R A A

CP, R

Fig. 2: Domino D.

black arrows show the dominoes of D and the dashed
arrows the ⊲ relation; R= {Trans(R)} and the ini-
tial domino is t1. A possible domino association for
tq1 in Example 2 is the mapping µ1 with µ1(x)= t2,
µ1(y)= t2, µ1(z)= t4. Note that t2 and t4 are {R}-
successors of t2 as R is transitive, and that tq1 has no

domino association for R= ∅. The query tq2 in Example 2 has a domino associa-
tion even in this case, witnessed by µ2 with µ2(x)= t3, µ2(y)= t2, and µ2(z)= t4.

The following is immediate from the definition of |=o and Definition 6.

5

Theorem 1. D |=o tq iff there exists a domino association for tq.

By Theorem 1, we can decide D |=o tq by deciding existence of a domino as-
sociation. We exploit for the latter the procedure checkRoleSucc in Figure 1,
which nondeterministically checks whether a domino t2 is an r-successor of a
domino t1.

Proposition 1. Let t1, t2 be dominoes of D, and r a role set. Then t2 is an
r-successor of t1 iff some run of checkRoleSucc(D, t1, t2, r) returns true.

Now the following simple procedure assocDominoes(D, tq) non-deterministically
decides the existence of a domino association for tq w.r.t. D: (1) guess a mapping
µ from V(tq) to dominoes of D, and (2) check satisfaction of the conditions (a)
and (b) in Definition 6; to check (b), call checkRoleSucc for each arc in tq.

Theorem 2. D |=o tq iff some run of assocDominoes(D, tq) returns true.

Having a procedure to decide D |=o tq for tree-shaped queries tq, we now set-
tle deciding D |= q for arbitrary CQs q. Following [4, 6, 14], we consider query
treeifications, i.e., tree-shaped queries whose matches induce matches for q.4

Definition 7. For every CQ q, let qR be the smallest query such that: (a)
q⊆ qR, (b) R(x, y)∈ qR and R⊑P ∈R implies P (x, y)∈ qR, (c) R(x, y)∈ qR,
R(y, z)∈ qR and TransR(R) imply R(x, z)∈ qR, and (d) R(x, y)∈ qR implies
Inv(R)(y, x)∈ qR. A treeification of q is a tree-shaped query q′ such that
|q′| ≤ 2|q| and there exists a mapping θ from V(q) to V(q′) fulfilling
a) A(x) ∈ q implies A(θ(x)) ∈ q′, and
b) R(x, y) ∈ q implies R(θ(x), θ(y)) ∈ (q′)

R
.

As easily shown, each match for a treeification q′ of q in TD is also a match for
q. On the other hand, from each match for q in TD, we can obtain a treeification
q′ that is mappable into TD via an ordered match.5 Hence, we obtain:

Theorem 3. For any CQ q, D |= q iff D |=o q′, for some treeification q′ of q.

It follows that we can decide D |= q by listing all treeifications of q and posing
them separately over D. Note that there are finitely many treeifications of q.

4 A Tableaux Algorithm for Horn-SHIQ

In order to exploit the results of Section 3 for query answering in Horn-SHIQ, we
first provide a tableau algorithm for KB satisfiability. Like the standard SHIQ
tableau [8], it uses a completion forest to represent a model; in the next section
we extract from it a domino system that can be used for query answering.

In what follows, K=〈T ,R,A〉 is a Horn-SHIQ KB. We use A, B, C to denote
concepts names; D, E to denote (arbitrary) concepts; R, R′ to denote a role; S

a simple role; and a, b to denote individuals.

4 Unlike [4, 6, 14], we do not use treeifications to reduce CQ entailment to concept
satisfiability, as this would require the use of role conjunction and the decidability
of this extension of Horn-SHIQ in ExpTime is not apparent.

5 As implicit in [6], such a q′ with |q′| ≤ 2|q| exists: to obtain a treeification from
a match, one replaces each atom R(x, y) ∈ q with a pair of atoms in case x, y are
mapped (i) to the same node, or (ii) to nodes in different branches of the domino tree.

6

Most of the following definitions are based on [8], while 9 and 14 follow [15]
and are related to anywhere blocking. Definition 8 is simplified since only normal-
ized KBs are considered, and the ≈ relation from [8] is omitted in Definition 10.6

Definition 8. (concept closure) We define Cl(K) as the smallest set of concepts
closed under subconcepts such that (i) D, E ∈Cl(K) for every D⊑E ∈T ; and
(ii) if ∀R.A∈Cl(K), TransR(R′) and R′⊑∗

RR for some R′, then ∀R′.A∈Cl(K).

Definition 9. ((named/unnamed) nodes) We assume a countably infinite set N

of nodes and a strict total order ⋖ on N. Each a∈ I(K) is associated with one
fixed node na ∈ N; the nodes na are named, all other nodes are unnamed.

Definition 10. (completion forest) A completion forest for a KB K is a tuple
F = 〈N , E ,L, 6≈〉 where N ⊆ N and E ⊆ N × N define a directed graph; L
is a labeling function assigning each n∈N a subset of Cl(K) and each pair
u, u′ ∈N ×N to a set of roles (over K), in such a way that L(u, u′) = ∅ for all
(u, u′) 6∈ E; and 6≈⊆ N×N is a binary relation, tacitly assumed to be symmetric.

Definition 11. (successor, neighbor) For a completion forest F=〈N , E ,L, 6≈〉
and a pair u, u′ ∈N , u′ is a successor of u if (u, u′) ∈ E. The inverse of successor
is called predecessor; the transitive closures of successor and predecessor are
ancestor and descendant respectively. For all R, u′ is an R-successor of u if
R′ ∈L(u, u′) for some R′ with R′ ⊑∗

R R. We call u′ an R-neighbor of u, if u′ is
an R-successor of u, or if u is an Inv(R)-successor of u′.

Definition 12. (clash-free completion forest) A completion forest F contains
a clash, if (i) for some u∈N , ⊥ ∈ L(u); or (ii) for some u∈N with ≤
n S.C ∈L(u), u has n + 1 S-neighbors w0, . . . , wn such that, for all 0 ≤ i <

j ≤ n, C ∈L(wi) and wi 6≈ wj ∈F . If F contains no clash, then F is clash-free.

Definition 13. (initial completion forest) The initial completion forest FA for
K has the named node na labeled with L(na) = {A∈C(K) | a : A ∈ A} for each
individual a ∈ I(K), and an edge (na, nb)∈E labeled L(na, nb) = {R | 〈a, b〉 :
R ∈ A} for each pair a, b ∈ I(K); the relation 6≈ is empty.

Definition 14. (blocking) For a completion forest F = 〈N , E ,L, 6≈〉, a node
u∈N is blocked if u is unnamed and u is either directly or indirectly blocked;
u is indirectly blocked if one of its ancestors is blocked; u is directly blocked
if none of its ancestors is blocked and there is some u′

⋖ u such that u, u′ are
unnamed nodes, L(u) = L(u′), L(v) = L(v′), and L(v, u) = L(v′, u′), where v

and v′ are the predecessors of u and u′ respectively.

The expansion rules are given in Figure 3, where a node u∈N is new in F if
u′

⋖ u for every u′ ∈N . The ≤-rule calls the operation merge(u, N) described in
Figure 4. The rules are similar to those in [8], except for the first three, which
(lazily) ensure the satisfaction of the TBox axioms. Also, the restricted form of
at-most number restrictions allows us to have just one ≤-rule and a deterministic
merge(u, N) that simultaneously merges all nodes in N into one.7

6 It is irrelevant for query answering, but could be emulated e.g. using node labels Ca.
7 Note that the TBox internalization of [8] is not adequate for Horn-SHIQ, and that

the other rules of [8] are not necessary due to the normal form of the KB.

7

T -rule: if A ⊑ D ∈ T , A ∈ L(u), and D /∈ L(u),
then L(u) := L(u) ∪ {D}.

T⊓-rule: if A ⊓ B ⊑ C ∈ T , {A, B} ⊆ L(u),
u is not indirectly blocked, and C 6∈ L(u),

then L(u) := L(u) ∪ {C}.
T∃-rule: if ∃R.A ⊑ B ∈ T , B 6∈ L(u), u is not indirectly blocked, and

u has an R-neighbor u′ with A ∈ L(u′),
then L(u) := L(u) ∪ {B}.

∃-rule: if ∃R.A ∈ L(u), u is not blocked,
and u has no R-neighbor u′ with A ∈ L(u′),

then set N = N ∪ {u′}, E = E ∪ {(u, u′)}, L(u, u′) := {R}
and L(u′) := {A} for some u′ new in F .

∀-rule: if ∀R.A ∈ L(u), u is not indirectly blocked, and
u has an R-neighbour u′ with A /∈ L(u′),

then L(u′) := L(u′) ∪ {A}.
∀+-rule: if ∀R.A ∈ L(u), u is not indirectly blocked,

there is some R′ with TransR(R′) and R′ ⊑∗
R R,

and there is an R′-neighbour u′ of u with ∀R′.A /∈ L(u′),
then L(u′) := L(u′) ∪ {∀R′.A}.

≥-rule: if ≥ m S.A ∈ L(u), u is not blocked,
and there are no m S-neighbours u1, . . . , um of u
such that A ∈ L(ui) and ui 6≈ uj for 1 ≤ i < j ≤ m,

then set N = N ∪ {u1, . . . , um}, E = E ∪ {(u, u1), . . . , (u, um)},
L(u, ui) := {S}, L(ui) := {A} and ui 6≈ uj

for 1 ≤ i < j ≤ m and u1, . . . , um new in F .

≤-rule: if ≤ 1S.A ∈ L(u), u is not indirectly blocked,
N is the set of all S-neighbours u′ of u with A ∈ L(u′),
|N | > 1 and there is no pair u′, u′′ in N with u′ 6≈ u′′,

then merge(u, N).

Fig. 3. Tableaux expansion rules

The initial FA is expanded by exhaustively applying the rules in Figure 3.
The expansion stops, if a clash is reached; otherwise, it continues until the forest
is complete, i.e., no rule is applicable. It can be shown similarly as in [8, 15] that
this algorithm is a decision procedure for KB satisfiability in Horn-SHIQ.

Theorem 4. Let K be a Horn-SHIQ KB. Then K is satisfiable iff a complete
and clash-free completion forest for K can be obtained.

Note that after applying any rule from Figure 3, the resulting forest is uniquely
determined up to renaming of nodes. The only source of differences in the re-
sulting forests lies in possibly different orderings of rule applications (this could
be eliminated, e.g., using ⋖ and any fixed ordering on Cl(K) and on the rules).
However, these differences are not relevant: each F represents a universal model
IF (defined as its standard unravelling [8]) that is embeddable into every model
of K, and can be used for query answering. The following is shown by a straight-
forward induction on the construction of IF :

8

(1) let u0 be the ⋖-minimal element of N ;
(2) let N ′ = N \ {u0}; let N ′′ be the minimal set containing N ′,

each unnamed successor u′ of a node in N ′, and all descendants of u′;
(3) if (u′, n) ∈ E for some u′ ∈ N ′ and some named n,

then E := E ∪ (u0, n) and L(u0, n) := L(u0, n) ∪ L(u′, n);
if (n, u′) ∈ E for some u′ ∈ N ′ and some named n,
then E := E ∪ (n, u0) and L(n, u0) := L(n, u0) ∪ L(n, u′);

(4) set N := N \ N ′′, E := E \ {(v, u′) | u′ ∈ N ′′}, restrict L and 6≈ to the new N , E ;
(5) add u0 6≈ v for every v ∈ N such that u′ 6≈ v for some u′ ∈ N ′;
(6) set L(u0) := L(u0) ∪ L(N ′), where L(N ′) =

S

u′ ∈ N′ L(u′);
(7) if (u0, u)∈E then L(u0, u) :=L(u0, u)∪L(N ′, u), else L(u, u0) :=L(u, u0)∪ L(u, N ′),

where L(u, N ′) =
S

u′ ∈ N
L(u, u′) and L(N ′, u) = {Inv(R) |R∈L(u, N ′)}.

Fig. 4. The merge(u, N) operation on F = 〈N , E ,L, 6≈〉

Theorem 5. Let I be a model of K, let F be a complete and clash-free comple-
tion forest for K, and let IF be the model of K represented by F . Then there is a
homomorphic embedding of IF into I. Hence, for any CQ q, K |= q iff IF |= q.

5 Conjunctive Queries over Horn-SHIQ

To answer CQs over Horn-SHIQ KBs, we exploit the method for answering
tree-shaped queries over domino systems. For this section, we assume that K =
〈T ,R,A〉 is a consistent Horn-SHIQ KB, and q is an arbitrary CQ.8 From a
complete and clash-free completion forest FK for K, we extract a domino system
DFK

that encodes a forest-shaped universal model of K for query answering. We
then rewrite q into a set of tree-shaped queries which can be posed separately
over DFK

, such that K |= q iff one of the generated queries is entailed by DFK
.

The transformation of the completion forest into DFK
, which we now present,

eliminates the ‘graph part’ of the forest by encoding it into the initial domino.

Definition 15. Let F = 〈N , E ,L, 6≈〉 be a complete and clash-free completion
forest for K. For every u ∈ N , let L′(u) = L(u) ∩ C(K).

Let t0 = 〈∅, ∅, c〉 be the domino where c is the smallest set of fresh concept
names such that Root ∈ c and, for each pair na, nb of named nodes in N , (i)
A ∈ L′(na) implies Aa ∈ c, (ii) if nb is an R-neighbour of na, then Ra,b ∈ c,
(iii) Ra,b ∈ c and R ⊑ R′ ∈ R implies R′

a,b ∈ c, (iv) Ra,b ∈ c, Rb,d ∈ c and
TransR(R) implies Ra,d ∈ c, and (v) Ra,b ∈ c implies Inv(R)b,a ∈ c.

For each named node na ∈ N , let ta denote the domino ta = 〈c, {Qa}, c′〉,
where Qa is fresh and c′ = L′(na). For a pair (u, u′)∈E, let t(u, u′) denote the
domino 〈L′(u), {R | u′ is an R-neighbour of u},L′(u′)〉. Then DF = 〈D, ⊲,R〉
is the domino system with initial domino t0, where

- D is the smallest domino set containing (i) t0, (ii) ta for each named na ∈ N ,
and (iii) each t(u, u′) such that (u, u′)∈E and u′ is unnamed and not blocked.
- ⊲ is the smallest relation s.t. (i) for all named na ∈N , t0 ⊲ ta and ta ⊲ t(na, u)

for every t(na, u) ∈ D; and (ii) if t(u, u′), t(u′, v) ∈ D for some (u, u′), (u′, u′′)∈E
such that either u′′ = v is not blocked or u′′ is blocked by v, then t(u, u′)⊲ t(u′, v).

8 Note that in case of inconsistent KBs, query entailment is trivial.

9

Since the specific complete and clash-free F does not matter, we assume in what
follows a fixed arbitrary FK and denote its domino system DFK

simply by DK.
As easily seen, we can reconstruct a universal model of K from the domino tree of
DK. However, for querying DK, we need to rewrite q in order to handle the links
between individuals encoded as concept names in the initial domino.

Definition 16. A link rewriting of q w.r.t. K is a CQ obtained from q as follows:

1. Exhaustively replace, one by one, R(y, x) by Inv(R)(x, y) whenever there are
atoms of the form R(y, x) and S(x, y) in q.

2. Let µ :V(q)→ I(K) be a partial function, and let ν(x)∈ {r (root), i (inside)}
be a choice for each x∈ dom(µ). Let {z} ∪ {x′ | x ∈ V(q)} be fresh variables.
Then, for each R(x, y) ∈ q with {x, y}⊆dom(µ), let S⊑∗

RR be arbitrary such
that TransR(S) holds if either ν(x)= i or ν(y)= i, and (i) replace R(x, y)
in q by Root(z), Sa,b(z), where µ(x)= a and µ(y)= b, and (ii) add in q,
depending on the choice [ν(x), ν(y)], the following atoms:

[r, r]: Qa(z, x), Qb(z, y); [i, i]: Qa(z, x′), Qb(z, y′), S(x, x′), S(y′, y);
[i, r]: Qa(z, x′), Qb(z, y), S(x, x′); [r, i]: Qa(z, x), Qb(z, y′), S(y′, y).

Roughly speaking, possible R-connections between matches for x and y in IFK

via two individuals a, b are reflected in the query by the atoms Root(z), Sa,b(z)
and [ν(x), ν(y)]. For example, if R= {Trans(S), S ⊑R}, the CQ q′ = {Root(z),
Sa,b(z), Qa(z, x′), S(x, x′), A(x), Qb(z, y), B(y)} is a link rewriting of q = {A(x),
R(x, y), B(y)}, obtained by choosing µ(x)= a, µ(y)= b, ν(x)= i, ν(y)= r and S.
A match for q′ in TDK

corresponds to a match for q in IFK
mapping x to a

descendant of a (i.e., inside the tree rooted at a) and y to b (i.e., the root of b’s
tree), which are connected via an S-path and thus in the extension of R. Note
that, as ν(x)= i was chosen, the non-transitive R can not link the matches of x

and y. Choosing µ(x)= a, µ(y)= b, ν(x)= r, ν(y)= r and R we obtain a rewriting
q′′ = {Root(z), Ra,b(z), Qa(z, x), A(x), Qb(z, y), B(y)} that captures the matches
for q which map x and y to a and b if they are R-neighbors in IFK

.

Theorem 6. K |= q iff DK |= q′ for some link rewriting q′ of q. Hence, due to
Theorem 3, K |= q iff DK |=o tq, for some treeification tq of a link rewriting of q.

Theorem 6 suggests a procedure for deciding K |= q: it suffices to verify the
existence of a treeification of a link rewriting of q that has an ordered match in the
domino tree of DK. The latter can be verified using the method from Section 3.

6 Computational Complexity

We now show that CQ entailment in Horn-SHIQ is decidable in exponential
time. The presented method relies on the extraction of a domino system from a
complete and clash-free completion forest. Hence, the following is important.

Theorem 7. The tableau algorithm for Horn-SHIQ in Section 4 decides con-
sistency of Horn-SHIQ KBs in single exponential time. For a consistent KB, it
constructs a complete and clash-free completion forest of at most exponential size.

10

Proof (Sketch). Definition 14 ensures that if a completion forest F contains two
pairs of nodes with the same node-arc-node label combination, one of them is
blocked. The number of such combinations, and thus of nodes in a forest, is single
exponential in the input KB K (in fact, it is bounded by 22|Cl(K)|×2|R(K)|). Using
the usual arguments [8], it can be shown that the number of rule applications
needed to generate F is polynomially bounded by the maximal number of nodes
it can have, as the shrinking rules do not cause repeated rule applications. ⊓⊔

We are ready to formulate the main complexity results of this paper.

Theorem 8. Conjunctive query entailment K |= q in Horn-SHIQ is ExpTime-
complete in combined complexity, i.e., in the size of the KB K and the query q.

Proof (Sketch). By Theorem 7, we can check the consistency of K using the
tableau-based algorithm in exponential time. If K is found inconsistent, then
K |= q trivially holds. Otherwise, we can extract the domino system DK from
the completion forest FK that was constructed, in time polynomial in |FK|.

Each link rewriting q′ of q, as well as each treeification tq of q′, has size
polynomial w.r.t. |K|+ |q|. The are at most exponentially many q′ and, for each
q′, at most exponentially many tq; hence, there are at most exponentially many
tq in total, and they can be traversed in polynomial space. To show ExpTime

membership of K |= q, it is thus sufficient to show that DK |=o tq is decidable
in exponential time w.r.t. |K| + |q|. Indeed, checkRoleSucc runs in NPSpace

w.r.t. |K| + |q| if DK is precomputed (note that the counter i needs only poly-
nomial space). The procedure assocDominoes runs in NP (w.r.t. |K|+ |q|) using
checkRoleSucc as an oracle. Hence, DK |=o tq is in NPNPSpace = PSpace w.r.t.
|K|+ |q|, if DK is precomputed. As computing DK is feasible in exponential time,
it follows that deciding K |= q is in ExpTime. The matching lower bound follows
from the ExpTime-hardness of consistency checking in Horn-SHIQ [11]. ⊓⊔

The next result shows that CQs in Horn-SHIQ are tractable in data complexity.

Theorem 9. Conjunctive query entailment K |= q in Horn-SHIQ is P-complete
in data complexity, i.e., in the size of the ABox A of the KB K= 〈T ,R,A〉.

Proof (Sketch). As in Theorem 8, we can check the consistency of K when we
construct the completion forest FK. As T and R are fixed, |FK| is polynomial
w.r.t. A, so FK and DK can be constructed in time polynomial w.r.t. A. Next, for
fixed q, T and R, there are polynomially many treeifications tq of link rewritings
q′ of q w.r.t. A, and they can be traversed in polynomial time. By Theorem 1,
it remains to show that the existence of a domino association µ : V(tq) → D,
where D is the domino set of DK, is decidable in polynomial time w.r.t. A.
Since |V(tq)| is bounded by a constant w.r.t. A and |D| is polynomial w.r.t. A,
there are polynomially many candidate µ w.r.t. A. We can check r-successorship
between dominoes t1, t2 of DK in time polynomial in |DK|, i.e., polynomial w.r.t.
A. Hence, we can check whether µ satisfies Definition 6 in polynomial time
w.r.t. A. The resulting P membership bound is tight, as consistency checking in
any DL allowing for conjunction on the left hand side and quantified universal
restrictions on the right hand side of GCIs is P-hard in data complexity [3]. ⊓⊔

11

The source of ExpTime-hardness of consistency testing in Horn-SHIQ, and
hence of query entailment, are inverse roles and concepts of the form ∃R.A on
the left hand side of the GCIs. Intuitively, both constructs allow to propagate
information from a node to its ancestors in a completion forest; any one of them
allows for an encoding of a generic Alternating PSpace Turing machine. If we
disallow both, obtaining the DL Horn-SHQ−, consistency testing and CQ entail-
ment drop to PSpace-completeness. Roughly, the direct successors of a node in
a completion forest can be inferred in polynomial time from its label. Hence,
the existence of a complete and clash-free completion forest F is refutable in
PSpace without building it, by non-deterministically following a path in F (of
at most exponential length) that leads to a clash. CQ entailment is decidable in
PSpace by supplying checkRoleSucc with a PSpace oracle for navigating the
domino system DK (note that the explicit construction of DK may require expo-
nential space). This procedure is worst-case optimal, as consistency checking in
Horn-SHQ− is PSpace-hard (provable, e.g., by a generic Turing machine encod-
ing). Finally, also our P-completeness result for data complexity of CQs carries
over from Horn-SHIQ to Horn-SHQ−. Details will be given in the full paper.

7 Related Work and Conclusion

As found recently, answering CQs in some expressive DLs, including ALCH [16]
and ALCHQ [14], is not harder than standard reasoning, and in fact ExpTime-
complete in combined complexity. Horn-SHIQ is another such DL but orthogonal
to those mentioned, as it offers transitive and inverse roles but excludes disjunc-
tion (we note that one can infer from [2] the ExpTime-completeness result for the
DL Horn-ALCHI, i.e., Horn-SHIQ without transitive roles and number restric-
tions). Moreover, the data complexity of CQs is polynomial in Horn-SHIQ but
intractable in ALCH and ALCHQ (in fact, it is coNP-hard already for AL [3]).

Different approaches have been recently used to show that CQs have tractable
data complexity in some DLs. A large class of such DLs are extensions of EL [1],
considered e.g. in [17, 12, 10], of which ELH, ELIf , and EL++ are particularly
noticeable. For EL and ELH, which are subsumed by Horn-SHIQ but not by
Horn-SHQ− (due to the absence of existential restrictions on the LHS of the
GCIs), a reduction to Datalog has been given in [17]. In both EL and ELH, CQs
have coNP-complete combined complexity and P-complete data complexity.
For ELIf , which is also strictly subsumed by Horn-SHIQ (as the latter offers
qualified universal quantification on the RHS of axioms and more general num-
ber restrictions) an explicit (partial) construction of a universal model was used
in [10]. Like in Horn-SHIQ and Horn-SHQ−, CQs have P-complete data com-
plexity in ELIf . Finally, for EL++, which is orthogonal to both Horn-SHIQ
and Horn-SHQ− (EL++ has nominals and regular role hierarchies, but lacks
universal quantification), special proof-graphs with automata were used in [12].
Noticeably, CQs in EL++ have PSpace-complete combined and P-complete data
complexity respectively, and thus the same complexity as in Horn-SHQ−.

Another prominent family for which data complexity has been deeply investi-
gated is DL-Lite [5]. For the core DL-Lite and its extension with functionality and
conjunction, which is subsumed by Horn-SHIQ but not by Horn-SHQ−, query

12

rewriting into first-order logic over relational databases has been been employed.
CQ answering has very low data complexity (inside logarithmic space), and its
coNP-complete combined complexity is also much lower than for Horn-SHQ−.

Our ongoing and future work is devoted to the following issues. The first con-
cerns richer query syntax. As the normal form and the universal model property
of Horn-SHIQ carry over to unions of CQs and the more general positive exis-
tential queries (PQs), our results can be immediately extended to them. In fact,
answering PQs in Horn-SHIQ is reducible to answering at most exponentially
many (in the size of the PQ) CQs. Further, since the universal model property al-
lows us to precompile a knowledge base K into a (query-independent) domino
system DK for on-line query answering, the identification of cases in which DK

is small would be beneficial. Finally, an obvious issue is a detailed study of other
fragments of Horn-SHIQ besides Horn-SHQ−. The effect of syntactic restric-
tions similarly as in [3] on data complexity is here of particular interest.

References

1. F. Baader. Terminological cycles in a description logic with existential restrictions.
In: IJCAI’03, pages 325–330, 2003.

2. A. Cali, G. Gottlob, M. Kifer. Taming the Infinite Chase: Query Answering under
Expressive Relational Constraints. In: KR 2008, to appear, 2008.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In: KR 2006, 2006.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In: PODS’98, pages 149–158, 1998.

5. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-lite family.
J. Autom. Reasoning, 39(3):385–429, 2007.

6. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive Query Answering for
the Description Logic SHIQ. In: IJCAI’07, pages 399–404, 2007.

7. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

8. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In: IJ-
CAI 2005, pages 448–453, 2005.

9. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very ex-
pressive description logics. In: IJCAI 2005, pages 466–471, 2005.

10. A. Krisnadhi and C. Lutz. Data complexity in the EL family of description logics.
In: DL’ 07, Bressanone, Italy, CEUR-WS vol. 250, pages 88–99, 2007.

11. M. Krötzsch, S. Rudolph, and P. Hitzler. Complexity boundaries for Horn descrip-
tion logics. In: AAAI’ 07, pages 452–457, 2007.

12. M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable
fragment of OWL 1.1. In: ISWC/ASWC’07, pages 310–323, 2007.

13. C. Lutz. Inverse roles make conjunctive queries hard. In: DL’ 07, 2007.
14. C. Lutz. Two upper bounds for conjunctive query answering in SHIQ. In: DL’ 08.
15. B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description logics

using hypertableaux. In: CADE’07, LNCS 4603, pages 67–83. Springer, 2007.
16. M. Ortiz, M. Šimkus, and T. Eiter. Worst-case optimal conjunctive query answer-

ing in description logics without inverses. In: AAAI’ 08, to appear, 2008.
17. R. Rosati. On conjunctive query answering in EL. In: DL’ 07, 2007.
18. S. Rudolph, M. Krötzsch, and P. Hitzler. Terminological reasoning in SHIQ with

ordered binary decision diagrams. In: AAAI’ 08, to appear, 2008.

13

