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Abstract The logical foundations of the standard web ontology languages are provided

by expressive Description Logics (DLs), such as SHIQ and SHOIQ. In the Seman-

tic Web and other domains, ontologies are increasingly seen also as a mechanism to

access and query data repositories. This novel context poses an original combination

of challenges that has not been addressed before: (i) sufficient expressive power of the

DL to capture common data modelling constructs; (ii) well established and flexible

query mechanisms such as those inspired by database technology; (iii) optimisation

of inference techniques with respect to data size, which typically dominates the size

of ontologies. This calls for investigating data complexity of query answering in ex-

pressive DLs. While the complexity of DLs has been studied extensively, few tight

characterisations of data complexity were available, and the problem was still open for

most DLs of the SH family and for standard query languages like conjunctive queries

and their extensions. We tackle this issue and prove a tight coNP upper bound for

positive existential queries without transitive roles in SHOQ, SHIQ, and SHOI. We

thus establish that, for a whole range of sublogics of SHOIQ that contain AL, an-
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swering such queries has coNP-complete data complexity. We obtain our result by a

novel tableaux-based algorithm for checking query entailment, which uses a modified

blocking condition in the style of Carin. The algorithm is sound for SHOIQ, and

shown to be complete for all considered proper sublogics in the SH family.

1 Introduction

Description Logics (DLs) [3] are specifically designed for representing structured knowl-

edge in terms of concepts (i.e., classes of objects) and roles (i.e., binary relationships

between classes). They have been initially developed to provide a formalisation of

frame-based systems and semantic networks, and expressive variants of DLs were shown

to be in tight correspondence with representation formalisms used in databases and

software engineering [8, 4]. More recently, DLs gained increasing attention as the logical

foundation for the standard Web ontology languages [22]. In fact, the most significant

representatives of these languages, OWL-Lite and OWL-DL, are syntactic variants of

DLs [27, 38]. In the Semantic Web and in other application domains such as Enter-

prise Application Integration and Data Integration [32], ontologies provide a high-level,

conceptual view of the information relevant in a specific domain or managed by an or-

ganisation. They are increasingly seen also as a mechanism to access and query data

repositories, while taking into account the constraints that are inherent in the common

conceptualisation.

This novel context poses an original combination of challenges unmet before, both

in DLs/ontologies and in related areas such as data modelling and query answering in

databases:

1) On the one hand, a DL should have sufficient expressive power to capture com-

mon constructs typically used in data modelling [5]. This calls for expressive DLs [6, 2],

in which a concept may denote the complement or union of others (to capture class

disjointness and covering), may involve direct and inverse roles (to account for rela-

tionships that are traversed in both directions), may contain number restrictions (to

state existence and functional dependencies and cardinality constraints on the partici-

pation to relationships in general), or may refer to specific objects that are of relevance

at the intensional level. Such concepts are then used in the intensional component of

a knowledge base (the TBox), which contains inclusion assertions between concepts

and roles, while the extensional component (the ABox) contains assertions about the

membership of individuals to concepts and roles.

2) On the other hand, the data underlying an ontology should be accessed using

well established and flexible mechanisms such as those provided by database query

languages. This goes well beyond the traditional inference tasks involving objects that

have been considered and implemented in DL-based systems, like instance checking [16,

39]. Indeed, since explicit variables are missing, DL concepts have limited means for

relating specific data items to each other. Conjunctive queries (CQs), i.e., plain select-

project-join SQL queries, and unions of CQs (UCQs), i.e., a union of plain select-

project-join SQL queries, provide a good trade-off between expressive power and nice

computational properties, and are therefore adopted as core query languages in several

contexts, such as data integration [32].

3) Finally, one has to take into account that data repositories can be very large

and are usually much larger than the representation of the intensional level expressing
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constraints on the data. Therefore, the contribution of the extensional level (i.e., the

data) to the complexity of inference should be singled out, and one must pay attention

to optimising inference techniques with respect to data size, as opposed to the overall

size of the knowledge base. In databases, this is accounted for by data complexity of

query answering [43], where the relevant parameter is the size of the data, as opposed

to combined complexity, which additionally considers the size of the query and of the

schema.

Notable examples of expressive DLs are the ones in the so called SH family, which

support all Boolean constructs over concepts and allow for asserting the transitivity of

certain roles and containment between roles. The most expressive DL in this family is

called SHOIQ. In addition to the mentioned concept constructs and role assertions,

it supports nominals (O), which are concepts denoting a single individual [41], inverse

roles (I), and qualified number restrictions (Q). By disallowing one of these three

constructs, we obtain the sublogics known as SHIQ, SHOQ, and SHOI, respectively,

which are three DLs with high and mutually incomparable expressive power. Note that

SHOIQ essentially corresponds to OWL-DL, while SHIQ essentially corresponds to

OWL-Lite [27, 38].1 These languages have been promoted as standard Web ontology

languages by the World Wide Web Consortium within the Semantic Web effort.2

For the SH family and other expressive DLs, TBox+ABox reasoning has been

studied extensively in the last decade, using a variety of techniques ranging from reduc-

tions to reasoning in Propositional Dynamic Logic (PDL) [7, 6], over tableaux [2, 26]

to automata on infinite trees [6, 42] and resolution [28, 30, 31]. For many of them,

the combined complexity of instance checking (with both TBox and ABox) is Exp-

Time-complete, including SHIQ, SHOQ, and SHOI. Unfortunately, the interaction

of nominals, inverse roles, and counting increases the computational complexity of

inference in SHOIQ causing instance checking to be NExpTime-complete [41].

As for data complexity, it was shown in [16, 39] that instance checking is coNP-

hard already in the rather weak DL ALE , and in [11] that CQ answering is coNP-hard

in the yet weaker DL AL. Tight upper bounds were not known, since little attention

had been paid to this problem. The data complexity was studied in the last years, but

mostly for suitably tailored DLs [10, 11, 12]. In [11, 12], the DL-Lite family of DLs was

considered, and two DLs were identified for which the problem is in LogSpace and can

be effectively reduced to evaluating a UCQ over a database using standard relational

database technology. Furthermore, [11] analysed which additions to the DL make the

problem hard for NLogSpace, PTime, or coNP. The analysis essentially showed that

the two identified DLs are the maximal ones with respect to allowed constructs en-

joying so called FOL-rewritability of query answering, which implies LogSpace data

complexity of this problem. Another interesting consequence of the results in [11] is

that any further addition to the DL, such as universal quantification (a construct con-

sidered basic in DLs) makes the problem already coNP-complete, and therefore, as

shown by our work, as hard as for the very expressive DLs that we consider here.

The data complexity of expressive DLs has not been studied in depth, and it only

became a topic of interest in recent years. An ExpTime upper bound for data com-

1 The OWL languages also support certain datatypes, which are important for applica-
tions and can be seen as a restricted form of concrete domains [1, 34]. On the other hand,
the OWL-DL and OWL-Lite variants support only restricted forms of number restrictions,
namely unqualified number restrictions (N ) and functionality (F), respectively. Notice that
the upcoming standard language OWL 2, instead, supports qualified number restrictions.

2 http://www.w3.org/2001/sw/
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plexity of CQ answering in DLR follows from the results on CQ containment and

view-based query answering in [7, 9].3 They are based on a reduction to reasoning in

PDL, which however prevents to single out the contribution to the complexity coming

from the ABox. Similar considerations hold for the techniques in [25], which refined

and extended the ideas introduced in [7], making the resulting algorithms better suited

for implementation on top of tableaux-based algorithms. In [28, 30] a technique based

on a reduction to Disjunctive Datalog was used for SHIQ. It provides a (tight) coNP

upper bound for data complexity of instance checking, since it allows to single out the

ABox contribution. The result can be immediately extended to tree shaped conjunctive

queries (without transitive roles), since they admit a representation as a DL concept,

e.g., by making use of the notion of tuple-graph of [7], or via rolling up [25]. However,

this is not the case for general CQs, resulting in a non-tight 2ExpTime upper bound.

The first tight upper bounds for CQ answering in SHIQ were given in [37], but only

for queries without transitive roles (though transitive roles may occur in the knowledge

base), and generalised in [19] to all CQs (see Section 5 for further discussion).

Most of the results we have mentioned are quite recent, since the work on data

complexity before this decade was rather scarce. The most notable exception is the

seminal work on the Carin language for hybrid knowledge bases [33]. The authors

showed a tight coNP upper bound for CQ answering in a DL called ALCNR, which

has no role hierarchies, does not support inverse roles, and has only a limited form of

number restrictions. It is based on the tableaux algorithm for satisfiability of ALCNR
knowledge bases, modifying the blocking condition in such a way that it can be used

for deciding query entailment. The modified tableaux algorithm provides not only the

first tight upper bounds for data complexity of query answering in DLs, but also the

first algorithm for answering UCQs and for deciding the containment of UCQs over

DL knowledge bases.

Tableaux algorithms play a very important role in DLs nowadays, and are one of

the most popular reasoning techniques. Despite their high worst-case computational

complexity, they are amenable to optimisations and the basis of many reasoning en-

gines, which provide efficient implementations [23, 21]4. For all DLs in the SH family,

tableaux algorithms for checking satisfiability have been found. In particular, in [24] a

tableaux algorithm for deciding satisfiability of SHOIQ knowledge bases was given,

which generalises the previous algorithms for SHIQ, SHOQ, and SHOI. However,

all these algorithms were devised for standard reasoning tasks like satisfiability and in-

stance checking, and several interesting questions remained unaddressed. First, whether

it is possible to apply the ideas and techniques for Carin to the DLs in the SH family

in order to obtain (tableaux-based) algorithms for answering expressive queries over

knowledge bases in these logics. Second, given that this is possible, what kind of queries

may be handled. Third, whether any of the algorithms obtained would allow to derive,

similarly as in the case of Carin, exact characterisations of the data complexity of

query answering.

In this paper, we shed light on these questions, by simultaneously addressing the

three challenges identified above. We show that the blocking conditions of [33] can be

suitably generalised to very expressive DLs from the SH family. Technically speaking,

the generalisation is not trivial. Indeed, we consider logics that have inverse roles, which

as recently shown make answering CQs 2ExpTime-hard [35]. Some of the DLs have

3 These results apply only to queries without transitive closure.
4 See also http://www.cs.man.ac.uk/~sattler/reasoners.html.
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no finite model property, and only weak forms of the ubiquitous forest model property.

Furthermore, we consider Positive Existential Queries (PQs), a generalisation of UCQs

that is not more expressive, but is exponentially more succinct.

Our main contributions are briefly summarised as follows:

– Building on the techniques of [26, 33], we present a novel tableaux-based algorithm

for query answering in expressive DLs of the SH family. We prove that the algo-

rithm is sound for answering PQs (and hence, also for UCQs and CQs) without

transitive roles over SHOIQ knowledge bases, and thus in all DLs of the SH fam-

ily. However, it does not work in general when the query contains transitive roles.

This is because the blocking condition we use relies on the fact that the query can

only distinguish patterns of bounded size in the model, where the bound depends

on the query shape.

– We prove that the algorithm is complete for knowledge bases in the three DLs

SHIQ, SHOQ, and SHOI. As a consequence, entailment of PQs without tran-

sitive roles over knowledge bases in these logics is decidable, which was open for

SHOI. This result extends also to deciding the containment and equivalence of

PQs. In fact, the algorithm terminates if there is no simultaneous interaction of

number restrictions, inverse roles, and nominals, and hence also works for larger

classes of knowledge bases. However, for arbitrary SHOIQ knowledge bases termi-

nation is not established, as it seems that the interaction could indefinitely postpone

the satisfaction of the blocking conditions.

– The novel algorithm provides us with a characterisation of the data complexity of

query answering in expressive DLs. Specifically, we show that the data complexity of

answering PQs without transitive roles over SHIQ, SHOQ, and SHOI knowledge

bases is in coNP, and thus is coNP-complete for all their sublogics that contain

AL.

This shows that the techniques introduced for Carin are indeed a suitable tool to

provide tableaux-based algorithms and exact characterisations of the data complexity

of answering large families of queries over a wide range of expressive DLs.

The rest of the paper is organised as follows. After technical preliminaries in Sec-

tion 2, we present in Section 3 our algorithm for answering PQs over SHOIQ knowl-

edge bases. In Section 4, we discuss the resulting complexity bounds for SHIQ, SHOQ,

and SHOI, and in Section 5 we draw final conclusions. In order to increase readability,

technical details of some proofs have been moved to an appendix.

2 Preliminaries

In this section, we introduce the technical preliminaries for the rest of the paper. We

first introduce syntax and semantics of the Description Logic SHOIQ and its sublogics

SHIQ, SHOQ, and SHOI, and then we define the query answering problem addressed

in this work.

2.1 Description Logics

Description Logics (DLs) [3] are logics that are particularly well-suited for the represen-

tation of structured knowledge. The basic elements of DLs are concepts, denoting sets
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of objects of the domain of interest, and roles, denoting binary relations between the

instances of concepts. They are described by concept and role expressions built from

concept names and role names, by applying concept and role constructors, respectively.

The domain of interest is then modelled through a knowledge base, which comprises

logical assertions both at the intensional level (specifying the properties of concepts

and roles), and at the extensional level (specifying the properties of individuals and

the relationships among individuals).

We assume that R, C, I are countable and pairwise disjoint sets of role names,

concept names, and individuals, respectively, and that R+ ⊆ R is a set of transitive

role names.

2.1.1 The Description Logic SHOIQ

Definition 2.1 (Roles) A role expression R (or simply role) is either a role name

P ∈ R or its inverse, denoted P−. A role inclusion axiom is an expression of the form

R v R′ where R and R′ are roles. A role hierarchy R is a set of role inclusion axioms.

As usual, we define Inv(R) = P− if R = P is a role-name, and Inv(R) = P if

R = P− for some role name P .

The relation v∗R denotes the reflexive, transitive closure of v over a role hierarchy

R∪{Inv(R) v Inv(R′) | R v R′ ∈ R}. If R v∗R R′, then we call R a sub-role of R′ and

R′ a super-role of R w.r.t. R.

A role R is transitive w.r.t. a role hierarchy R, denoted by Trans(R,R), if either R

or Inv(R) belongs to R+, or the role hierarchy R implies that R is both a sub-role and

a super-role of a transitive role; formally, Trans(R,R) holds iff R v∗R R′ and R′ v∗R R

for some R′ ∈ R+ ∪ {R− | R ∈ R+}.
Finally, a role S is simple w.r.t. a role hierarchy R if S is neither transitive nor has

transitive sub-roles, i.e., for no role R with Trans(R,R) we have that R v∗R S.

In the following, we omit R when it is clear from the context, and use v∗ and

Trans(R) instead of v∗R and Trans(R,R), respectively.

Definition 2.2 (Concepts) SHOIQ concepts (or simply concepts) are defined in-

ductively according to the following syntax:

C,C′ −→ A atomic concept (S1)

| {o} nominal (S2)

| C u C′ conjunction (S3)

| C t C′ disjunction (S4)

| ¬C negation (S5)

| ∀R.C universal quantification (S6)

| ∃R.C existential quantification (S7)

| ≥ nS.C | ≤ nS.C (qualified) number restrictions (S8)

where A is a concept name, C and C′ are concepts, R is a role, S is a simple role, and

n ≥ 0 is an integer. An atomic concept is either a nominal {o} with o ∈ I or a concept

name A ∈ C.

In DLs, the knowledge base about the domain of interest consists of an intensional

component, called TBox, representing general knowledge about the domain, and an

extensional component, called ABox, representing knowledge about specific objects.

Additionally, in the DLs of the SH family, a role hierarchy might be present.
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Definition 2.3 (Knowledge base) A concept inclusion axiom is an expression C v
D where C and D are concepts. An assertion α is an expression A(a), P (a, b) or a 6≈ b,
where A is a concept name, P is a role name, and a, b are individuals in I. A TBox, or

terminology, is a finite set of concept inclusion axioms, and an ABox is a finite set of

assertions. A (SHOIQ) knowledge base (KB) is a triple K = 〈T ,R,A〉, where T is a

TBox, R is a role hierarchy, and A is an ABox.

Without loss of expressivity, we assume that all concepts in K are in negation

normal form (NNF), i.e., negation appears only in front of atomic concepts. For a

concept C, NNF (C) denotes the NNF of C. For K = 〈T ,R,A〉, we denote by RK

the set of roles occurring in T and R, and of their inverses. Furthermore, CK denotes

the set of concept names occurring in K, and IK , IA, and IT denote the sets of all

individuals occurring in K, in A, and in T , respectively. Note that IA ∪ IT = IK for

every K, and if K is a SHIQ knowledge base, then IT = ∅ and IA = IK .

2.1.2 The Description Logics SHOQ, SHIQ, and SHOI

The three sublogics SHOQ, SHIQ, and SHOI of SHOIQ are obtained as follows.

Definition 2.4 (Sublogic Roles and Concepts) Roles and concepts in SHOQ,

SHIQ, and SHOI are defined as in SHOIQ, except that

– in SHOQ, the inverse role constructor is not available;

– in SHIQ, nominals {o} are not available, i.e., (S2) is not in the syntax of SHIQ
concepts;

– in SHOI, (qualified) number restrictions are not available, i.e., (S8) is not in the

syntax of SHOI concepts;

Thus, in SHIQ, only concepts names A ∈ C are atomic concepts.

Definition 2.5 (Sublogic Knowledge Bases) For L being one of the logics SHOQ,

SHIQ, or SHOI, an L knowledge base is a SHOIQ knowledge base K = 〈T ,R,A〉
such that all roles and concepts occurring in it are in L.

Example 2.6 As a running example, we use the following two SHOIQ knowledge bases:

K1 = 〈{A v ∃P1.A, A v ∃P2.¬A}, {}, {A(a)}〉
K2 = 〈{A v ∃P1.A, A v ∃P2.{o}}, {}, {A(a)}〉.

Note that K1 is a SHOQ, a SHIQ, and a SHOI knowledge base, while K2 is a

SHOQ and a SHOI knowledge base, but not a SHIQ one.

We now define the semantics of knowledge bases, which is given in terms of first-

order interpretations.

Definition 2.7 (Model of a knowledge base) An interpretation I = (∆I , ·I)

consists of a non-empty set ∆I , the domain, and an interpretation function ·I that

– maps each role R ∈ R to a set RI ⊆ ∆I × ∆I , such that RI = (RI)+ for each

R ∈ R+ and (R−)I = {〈o′, o〉 | 〈o, o′〉 ∈ RI},
– assigns to each individual o ∈ I an element oI ∈ ∆I ,5 and

5 Notice that we do not enforce the unique name assumption, i.e., two individuals o1 6= o2
may denote the same domain object oI1 = oI2 .
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– assigns to each concept C′ a set C′I ⊆ ∆I such that

(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI

(∀R.C)I = {o | for all o′, 〈o, o′〉 ∈ RI implies o′ ∈ CI}
(∃R.C)I = {o | for some o′, 〈o, o′〉 ∈ RI and o′ ∈ CI}

(≥ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI and o′ ∈ CI}| ≥ n}
(≤ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI and o′ ∈ CI}| ≤ n}

{o}I = {oI}.

Note that the interpretation of each nominal {o} is a singleton.

An interpretation I satisfies a role inclusion axiom R v R′, if RI ⊆ R′I ; a concept

inclusion axiom C v C′, if CI ⊆ C′I ; and an assertion α, denoted I |= α, if:

aI ∈ AI , if α = A(a)

〈aI , bI〉 ∈ PI , if α = P (a, b)

aI 6= bI , if α = a 6≈ b.

An interpretation I satisfies a role hierarchy R and a terminology T , if it satisfies every

axiom of R and T respectively. Furthermore, I satisfies an ABox A, if it satisfies every

assertion in A. Finally, I is a model of K = 〈T ,R,A〉, denoted I |= K, if it satisfies

T , R, and A.

Note that complex concepts and roles are not allowed in ABoxes. However, this is no

limitation, since an assertion C(a) with a complex concept C can always be replaced

by an assertion AC(a) in the ABox, together with an inclusion assertion AC v C,

where AC is a new concept name. This transformation is model preserving.

Finally, we observe that, using nominals, an ABox A in K = 〈T ,R,A〉 can be

internalised in the TBox, yielding a knowledge base KA = 〈TA,R, ∅〉 with an empty

ABox. Indeed, TA is obtained from T by adding, for each ABox assertion α in A, the

inclusion axiom
{a} v A, if α = A(a)

{a} v ∃P .{b}, if α = P (a, b), and

{a} v ¬{b}, if α = a 6≈ b.

If K is a SHIQ knowledge base, the resulting KA is a SHOIQ knowledge base, where

the only nominals are those resulting from ABox internalisation. It is easy to see that

K and KA have exactly the same models, so all reasoning services are preserved [40].

2.2 Positive Queries

We now introduce positive (existential) queries, which generalise both conjunctive

queries and unions of conjunctive queries. We assume that Var is a countably infi-

nite set of variable names.

Definition 2.8 (Positive Queries) Let x be a vector of variables from Var. A pos-

itive (existential) query (PQ) over a KB K is a formula ∃x.ϕ(x), where ϕ(x) is built

using ∧ and ∨ from atoms C(z) and S(z, z′), where C is a concept name in CK , S is

a simple role name in RK , and z, z′ are variables from x or individuals in IK .
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Note that transitive roles and their super-roles are disallowed in queries. We denote

by VI(Q) the set of variables and individuals in a query Q.

A PQ Q = ∃x.ϕ(x) is a conjunctive query (CQ), if ϕ(x) is a conjunction of atoms,

and a union of conjunctive queries (UCQ), if ϕ(x) is in disjunctive normal form; every

PQ can be easily rewritten to a UCQ, but the resulting query may be exponentially

larger.

Queries are interpreted as usual. For an interpretation I, let π : VI(Q) → ∆I be

a total function such that π(a) = aI for each individual a. We write I, π |= C(x) if

π(x) ∈ CI , and I, π |= S(x, y) if 〈π(x), π(y)〉 ∈ SI . Let γ be the Boolean expression

obtained from ϕ by replacing each atom α in ϕ with > if I, π |= α, and with ⊥
otherwise. We call π a match for I and Q, denoted I, π |= Q, if γ evaluates to >. Then

I is a model of Q (I |= Q), if there is a match π for I and Q.

Definition 2.9 (Query Entailment) Let Q be a query over a KB K. We say that

K entails Q, denoted K |= Q, if I |= Q for each model I of K. The query entailment

problem is to decide, given K and Q, whether K |= Q.

Example 2.10 Consider the following PQs:

Q1 = ∃x, y, z.P1(x, y) ∧ P2(x, z) ∧A(y);

Q2 = ∃x, y, z.P2(x, y) ∧ P2(y, z);

Q3 = ∃x, y.(P1(x, y) ∨ P2(x, y)) ∧ P2(y, o).

Note that Q1 and Q2 are CQs. First, we observe that K1 |= Q1. Indeed, due to the

inclusion axiom A v ∃P1.A, in every model I of K1 there is some instance o1 of A that

is connected to aI via role P1. By the axiom A v ∃P2.¬A, there is also some element

o2 that is connected to aI via role P2. Setting π(x) = aI , π(y) = o1, and π(z) = o2,

we have a match for I and Q1. Similarly, K2 |= Q1: if I is a model of K2, let o1 be

an instance of A that is connected to aI via role P1; such an o1 exists by the axiom

A v ∃P1.A. Then π(x) = aI , π(y) = o1, and π(z) = oI is a match for I and Q1.

Next, we have K1 6|= Q2. Indeed, I = (∆I , ·I) where ∆I = {o1, o2} and aI = o1,

AI = {o1}, PI1 = {〈o1, o1〉}, and PI2 = {〈o1, o2〉}, is a model of K1 but not of Q2.

To see that K2 6|= Q2, simply extend I to the nominal {o} by setting {o}I = {o2};
then we have a model of K2 but not of Q2. Finally, K2 |= Q3. (Note that Q3 is not a

query over K1, since o 6∈ IK1 .) Indeed, in every model I of K2, aI must be connected

to some instance o1 of A via P1 by the axiom A v ∃P1.A. The axiom A v ∃P2.{o}
ensures that o1 is connected to oI via role P2. Therefore, π(x) = aI , π(y) = o1, and

π(o) = oI is a match for I and Q3.

The query entailment problem for a DL L is in a complexity class C, if given a KB

K in L and a query Q, deciding K |=Q is in C; this is also called combined complexity,

while the data complexity is the complexity of deciding K |= Q where Q and all of K

except A are fixed.

Note that in Definition 2.8, queries have no distinguished (i.e., free) variables, so

they are Boolean queries. For a query Q = ∃x.ϕ(y,x) with distinguished variables

y, the query answering problem over K consists in finding all the possible tuples t of

individuals (of the same length as y) such that K |= ∃x.ϕ(t,x) holds. Query answering

can be reduced to answering all possible such Boolean queries with individuals appear-

ing in K; that is, to polynomially many (in the size of the ABox) query entailment

problems.
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3 A Tableaux Algorithm for Query Entailment

In this section, we describe an algorithm to solve the query entailment problem for

PQs in the DLs of the SH family we have introduced. As shown in this and the next

section, it is sound and complete for SHOQ, SHIQ, and SHOI. For SHOIQ it is

sound, while completeness is not guaranteed.

An important note is that the query entailment problem in all these DLs is not

reducible to knowledge base satisfiability, since in general the negation of a query is

not expressible as a part of a knowledge base. For this reason, the known algorithms

for reasoning over knowledge bases are insufficient. In general, a knowledge base has

infinitely many (possibly infinite) models, and in principle we have to verify whether

the query is satisfied in all of them. Our technique builds on the tableaux algorithm for

satisfiability of SHOIQ knowledge bases in [24]. Informally, the difference is that the

latter algorithm only focuses on problems that are reducible to satisfiability checking;

hence, it only needs to ensure that the algorithm obtains a model if the knowledge base

is satisfiable. In our case this is not enough. We need to make sure that the algorithm

obtains a set of models that suffices to check query entailment. This adaption to query

answering is inspired by [33], yet we deal with DLs that lack the finite model property.

Like the algorithm in [24] we use completion graphs, finite relational structures that

represent sets of models of a knowledge base. Roughly, an initial completion graph GK
for K is built. Then, by applying expansion rules repeatedly, new completion graphs

are generated. The application of the rules is non-deterministic, and sometimes new

individuals are introduced. Since every model of K is represented in some comple-

tion graph that results from the expansion, K |= Q can be decided by considering

a set of sufficiently expanded graphs G. From each such G a single canonical model

is constructed. Semantically, the finite set of these canonical models is sufficient for

answering all queries Q of bounded size. Furthermore, we prove that entailment in the

canonical model obtained from G can be checked effectively via a syntactic mapping of

the variables in Q to the nodes in G.

As customary with tableau-style algorithms, we give blocking conditions on the

rules that ensure that the expansion of the graphs terminates. They are more involved

than those in [24], which serve for satisfiability checking but not for query entailment,

and they involve a parameter n which depends on Q.

3.1 Completion Graphs

Let VN be a countably infinite set of variable nodes, disjoint from the vocabulary

used in defining queries and knowledge bases. A completion graph G consists of a finite

labelled directed graph (nodes(G), arcs(G), L) such that nodes(G) ⊆ VN ∪ I and a

binary relation 6≈ on nodes(G).6 Each node v of G is labelled with a finite set L(v) of

concepts and each arc v→w of G with a finite set L(v→w) of roles. The node w is

a successor of v and v a predecessor of w. The union of the successor and predecessor

relations is the neighbour relation, and their respective transitive closures are called

descendant and ancestor. The distance between two nodes v, v′ in G is defined as the

6 The 6≈ relation is used to state explicit inequalities between nodes, i.e., that two nodes of
a graph must be interpreted as different individuals (there is no unique name assumption). It
is tacitly assumed that 6≈ is symmetric.
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shortest path between them. We refer to in(G) = {v ∈ nodes(G) | {o} ∈ L(v), o ∈ I} as

the individual nodes in G and to vn(G) = nodes(G) \ in(G) as the variable nodes in G.7

Now we introduce completion graphs for a SHOIQ knowledge base K = 〈T ,R,A〉.
Our algorithm uses a set of TBox concepts tcon(K) = {¬C t D | C v D ∈ T }.
By requiring that each individual belongs to all these concepts, satisfaction of the

TBox is enforced. The subconcept closure of a concept C is the smallest set of concept

expressions containing C that is closed under subconcepts and their negation (expressed

in NNF). Given a concept C and a role hierarchy R, clos(C,R) is the smallest set

containing the subconcept closure of C and all concepts of the form ∀R′.D for each

R′ occurring in R or in C and for each concept expression D such that ∀R.D or

NNF (∀R.D) is in the subconcept closure of C. The closure of K, denoted clos(K), is

the union of all clos(C,R) for each concept C occurring in tcon(K). In the following,

let KA = 〈TA,R, ∅〉 where TA is as in Section 2.1.

Definition 3.1 (Completion graph [24]) A completion graph G for a knowledge

base K is a completion graph in which each node v is labelled with L(v) ⊆ clos(KA)∪
{{o} | o ∈ I} ∪ {≤ mR.C | ≤ nR.C ∈ clos(KA) and m ≤ n}, and in which each arc

v→w has a label L(v→w) ⊆ RKA . If for two nodes v, w there is no arc v→w in G,

we consider L(v→w) = ∅. For each arc v→w and role R, if R′ ∈ L(v→w) for some

role R′ with R′ v∗ R, then w is an R-successor of v. We call w an R-neighbour of v,

if w is an R-successor of v, or if v is an Inv(R)-successor of w.

In order to provide a method for verifying entailment of a conjunctive query Q in

a knowledge base K, we first associate with K an initial completion graph and then

we generate new completion graphs by applying expansion rules.

The initial completion graph GK associated with K has a node a labelled with

L(a) = {{a}} ∪ tcon(KA), for each individual a ∈ IK , and the relation 6≈ is empty.

Example 3.2 In our running example, GK1 contains only the node a which has the

label L(a) := {{a}, ¬A t ∃P1.A, ¬A t ∃P2.¬A, ¬{a} t A}. GK2 contains two nodes,

a and o, with the labels L(a) := {{a}, ¬A t ∃P1.A, ¬A t ∃P2.{o}, ¬{a} t A} and

L(o) := {{o}, ¬At ∃P1.A, ¬At ∃P2.{o}, ¬{a} tA}. In both graphs the 6≈ relation is

empty.

From this initial GK , we obtain new completion graphs by applying expansion rules,

which may introduce new nodes. Variable nodes are always introduced as successors of

exactly one existing node. Hence, the variable nodes in a completion graph form a set of

trees that have individual nodes as roots. It may also happen that one of these variable

nodes has an individual node as its successor, thus we have a tree of variable nodes

that has a branch ending with an arc leading to an individual node. If a completion

graph F for K has no such arcs, then F is a set of trees of variable nodes, whose roots

are possibly interconnected individual nodes. This special kind of completion graphs

are called completion forests.

For any knowledge base K, the initial completion graph GK is a completion forest.

If K is a SHIQ knowledge base the expansion rules only introduce variable nodes and

any completion graph obtained by applying the expansion rules is a completion forest.

This is not the case if K is a knowledge base in some DL with nominals, since arcs

from variable to individual nodes may be introduced.

7 Our individual nodes correspond to nominal nodes in [24], and our variable nodes to
blockable nodes.
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Fig. 3.1 Completion graphs for the example knowledge base K1
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Fig. 3.2 A completion graph for the example knowledge base K2

Example 3.3 In Figure 3.1, we show the completion graphs F1 and F2 for K1, which

have an empty 6≈ relation (for simplicity, omitted in the figure), and where

L1 = {A, ¬A t ∃P1.A, ¬A t ∃P2.¬A, ∃P1.A, ∃P2.¬A}
L2 = {¬A, ¬A t ∃P1.A, ¬A t ∃P2.¬A}.

Note that both F1 and F2 are completion forests. Figure 3.2 shows the completion

graph G1, which has again an empty 6≈ relation, and where

L′1 = {A, ¬A t ∃P1.A, ¬A t ∃P2.{o}, ∃P1.A, ∃P2.{o}}
L′2 = {{o}, ¬A t ∃P1.A, ¬A t ∃P2.{o}, ¬{a} tA, ¬A, ¬{a}}.

Next, before giving the expansion rules, we define a notion of blocking which de-

pends on a depth parameter n ≥ 0. This notion generalises blocking in [24], where the

parameter n is not present.

Definition 3.4 (Blockable n-graph, n-graph equivalence) Given an integer n ≥
0 and a completion graph G, the blockable n-graph of node v ∈ vn(G) is the subgraph

Gn,v of G that contains v and (i) every descendant w ∈ vn(G) of v within distance n,

and (ii) every successor w′ ∈ in(G) of each such w. If w has in Gn,v no successors from

vn(G), we call w a leaf of Gn,v. Nodes v, v′ of G are n-graph equivalent via a bijection

ψ from nodes(Gn,v) to nodes(Gn,v
′
) if:

– ψ(v) = v′,
– for every w ∈ nodes(Gn,v), L(w) = L(ψ(w)),

– arcs(Gn,v
′
) = {ψ(w)→ψ(w′) | w→w′ ∈ arcs(Gn,v)},
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– for every w→w′ ∈ arcs(Gn,v), L(w→w′) = L(ψ(w)→ψ(w′)).

As discussed above, in the algorithm variable nodes occur only in tree-shaped struc-

tures. The n-graph of each variable node v is a tree of variable nodes of depth at most

n rooted at v, plus arcs to the individual nodes that are direct successors of a node in

this tree. The leaves of the graph are the leaves of the tree in the usual sense. For the

completion graph obtained from a SHIQ KB, since there are no arcs from a variable

node to a nominal node, all n-graphs are actually trees of depth at most n.

Definition 3.5 (n-witness, graph-blocking) Let v, v′ ∈ vn(G) be n-graph equiva-

lent via ψ, where both v and v′ have predecessors in vn(G), v′ is an ancestor of v in G,

and v is not in Gn,v
′
. If v′ reaches v on a path containing only nodes in vn(G), then

v′ is a n-witness of v in G via ψ. Moreover, Gn,v
′

graph-blocks Gn,v via ψ, and each

w ∈ nodes(Gn,v
′
) graph-blocks via ψ the node ψ−1(w) in Gn,v.

Note that if some G′ graph-blocks some G via a bijection ψ, then the particular ψ

does not matter and any other bijection satisfying the three conditions of Definition 3.4

could be equivalently used. Therefore, we will always assume a fixed arbitrary bijection

from a graph-blocked G to a graph-blocking G′, and denote it ψ. Moreover, we often

omit ψ and simply say G′ graph-blocks G, v1 graph-blocks v2, etc.

Example 3.6 In F1, v1 and v5 are 1-graph equivalent, v1 is a 1-witness of v5 (but not

vice versa); F1
1,v1 graph-blocks F1

1,v5 ; and v1 (resp., v3, v4) graph-blocks v5 (resp.,

v7, v8).

Definition 3.7 (n-blocking) For an integer n ≥ 0 and a completion graph G, a node

v ∈ nodes(G) is n-blocked, if v ∈ vn(G) and v is either directly or indirectly n-blocked;

v is indirectly n-blocked, if one of its ancestors is n-blocked; v is directly n-blocked iff

none of its ancestors is n-blocked and v is a leaf of some blockable n-graph in G that

is graph-blocked; in this case we say that v is (directly) n-blocked by ψ(v) (i.e., by

the node in G that graph-blocks v).8 An R-neighbour w of a node v in G is n-safe if

v ∈ vn(G) or if w is not n-blocked.

Note that v is m-blocked for each m ≤ n if it is n-blocked. When n ≥ 1, then n-

blocking implies pairwise blocking, which is the blocking used in [26, 24]. When n = 0,

then n-blocking corresponds to blocking by equal node labels (equality blocking [2]),

which is a sufficient blocking condition in some DLs weaker than SHIQ.

Example 3.8 Consider the completion forests F1 and F2 in Figure 3.1. The nodes v7
and v8 in F1 are (directly) 1-blocked. Similarly, v11 and v12 in F2 are (directly) 2-

blocked. Consider the completion graph G1 in Figure 3.2. In it, G11,v1 graph-blocks

G11,v3 ; v4 is (directly) 1-blocked.

Now we can give our expansion rules, which are essentially the same as in [24].

The main differences are that “blocked” is uniformly replaced by “n-blocked” and that

in the generating rules, the labels of the newly generated nodes must contain tcon(K)

(because we don’t assume an empty TBox). The rules use two operations on completion

graphs called merge and prune (prune does not appear in the rules, but it is used by

8 Note that the graph-blocking n-graph is unique, and thus by our assumption also the
bijection ψ is unique.
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merge). To illustrate the use of these operations, consider the ≤-rule. Suppose a node

v is labelled by the concept ≤ 2S.C and has three successors v1, v2, v3 labelled with

C, and v2 6≈ v3 does not hold. Then we can make v satisfy ≤ 2S.C, by merging the

nodes v2 and v3 into one. For this purpose, we use merge(v2, v3), which then applies

prune(v2). Intuitively, merge(v2, v3) merges the node v2 into v3: the label of v2 is added

to the label of v3, all incoming arcs of v2 are copied to v3, and the outgoing arcs of v2
to an individual node are also copied to v3. After the merging, prune(v2) removes v2
from G and, recursively, all its variable successors.

Formally, for a completion graph G and v, w ∈ nodes(G), the operation prune(w)

yields a graph that is obtained from G as follows:

1. For each successor w′ of w, remove w→w′ from arcs(G), and if w′ ∈ vn(G), then

prune(w′).
2. Remove w from nodes(G).

The operation merge(w, v) yields a forest obtained from G as follows:

1. For each w′ ∈ nodes(G) such that w′→w ∈ arcs(G)

(a) if neither v→w′ nor w′→ v is in arcs(G), then add w′→ v to arcs(G) and set

L(w′→ v) := L(w′→w);

(b) if w′→ v is in arcs(G), then set L(w′→ v) := L(w′→ v) ∪ L(w′→w);

(c) if v→w′ is in arcs(G), then set L(v→w′) := L(v→w′) ∪ {Inv(R) | R ∈
L(w′→w)};

(d) remove w′→w from arcs(G).

2. For each w′ ∈ in(G) such that w→w′ ∈ arcs(G)

(a) if neither v→w′ nor w′→ v is in arcs(G), then add v→w′ to arcs(G) and set

L(v→w′) := L(w→w′);
(b) if v→w′ is in arcs(G), then set L(v→w′) := L(v→w′) ∪ L(w→w′);
(c) if w′→ v is in arcs(G), then set L(w′→ v) := L(w′→ v) ∪ {Inv(R) | R ∈
L(w→w′)};

(d) remove w→w′ from arcs(G).

3. Set L(v) := L(v) ∪ L(w).

4. Add v 6≈ w′ for each w′ with w 6≈ w′.
5. prune(w).

To obtain new completion graphs from the initial GK , we apply the rules in Ta-

ble 3.1. Note that their application is non-deterministic. Different choices for E in the

t-rule and the choose-rule generate different graphs. The choice of the nodes to be

merged in the ≤- and ≤o-rules is also non-deterministic. The ∃-rule, the ≥-rule and

the o?-rule are called generating rules, since they add new nodes to the graph. The

≤-rule, the o-rule and the ≤o-rule are shrinking rules, since they merge two nodes of

the graph into one.

Note that the o-rule merges two nodes whenever their labels share a nominal. Like

in [24], we assume that whenever this rule is applicable, it is applied immediately. This

consideration allows us to assume that, in every completion graph, each nominal occurs

in the label of at most one node.

An important note is that the o?-rule is never applicable for SHOQ, SHIQ, and

SHOI KBs, which allows us to prove termination (see below).9 For SHOIQ KBs,

9 This also holds for SHOIQ KBs without interaction between number restrictions, inverse
roles, and nominals, in particular for SHOIQ KBs that result from internalising the ABox of
a SHIQ KB, as described in Section 2.1.



15

u-rule: if C1 u C2 ∈ L(v), v is not indirectly n-blocked, and {C1, C2} * L(v),

then L(v) := L(v) ∪ {C1, C2}.
t-rule: if C1 t C2 ∈ L(v), v is not indirectly n-blocked, and {C1, C2} ∩ L(v) = ∅,

then L(v) := L(v) ∪ {E} for some E ∈ {C1, C2}.
∃-rule: if ∃R.C ∈ L(v), v is not n-blocked, and

v has no n-safe R-neighbour w with C ∈ L(w),

then create a new node w with L(v→w) := {R} and L(w) := {C} ∪ tcon(K).

∀-rule: if ∀R.C ∈ L(v), v is not indirectly n-blocked, and

v has an R-neighbour w with C /∈ L(w),

then L(w) := L(w) ∪ {C}.
∀+-rule: if ∀R.C ∈ L(v), v is not indirectly n-blocked,

there is some R′ with Trans(R′) and R′ v∗ R, and

there is an R′-neighbour w of v with ∀R′.C /∈ L(w),

then L(w) := L(w) ∪ {∀R′.C}.
choose- if ≤ mS.C ∈ L(v), v is not indirectly n-blocked, and

rule: there is an S-neighbour w of v with {C,NNF (¬C)} ∩ L(w) = ∅,
then L(w) := L(w) ∪ {E} for some E ∈ {C,NNF (¬C)}.

≥-rule: if ≥ mS.C ∈ L(v), v is not n-blocked, and

there are not m n-safe S-neighbours w1, . . . , wm of v

such that C ∈ L(wi) and wi 6≈ wj for 1 ≤ i < j ≤ m,

then create new nodes w1, . . . , wm with L(v→wi) := {S},
L(wi) := {C} ∪ tcon(K), and wi 6≈ wj for 1 ≤ i < j ≤ m.

≤-rule: if ≤ mS.C ∈ L(v), v is not indirectly n-blocked,

|{w | w is an S-neighbour of v and C ∈ L(w)}| > m, there are

S-neighbours w, w′ of v with not w 6≈ w′, and C ∈ L(w) ∩ L(w′),
then (i) if w ∈ in(G), then merge(w′, w); else

(ii) if w′ ∈ in(G) or w′ is an ancestor of w, merge(w,w′);
else (iii) merge(w′, w).

o-rule: if there are v, v′ with not v 6≈ v′ and {o} ∈ L(v) ∩ L(v′) for some o ∈ in(G),

then (i) if v ∈ I, then merge(v′, v); else (ii) merge(v, v′).

o?-rule: if ≤ mS.C ∈ L(v), v ∈ in(G), v′ ∈ vn(G), C ∈ L(v′),
v′ is an S-neighbour of v, v is a successor of v′, and there is

no m′ with 1 ≤ m′ ≤ m such that: (i) ≤ m′ S.C ∈ L(v) and

(ii) v has m′ S-neighbours w1, . . . , wm′ ∈ in(G)

with C ∈ L(wi) and wi 6≈ wj for all 1 ≤ j < i ≤ m′,
then guess m′ ≤ m, set L(v) := L(v) ∪ {≤ m′ S.C}, and

create m′ new nodes w1, . . . , wm′ with L(v→wi) := {S},
L(wi) := {C, {oi}} ∪ tcon(K) for some oi ∈ I \ in(G),

and wi 6≈ wj for all 1 ≤ j < i ≤ m′.
≤o-rule: if ≤ mS.C ∈ L(v), v ∈ in(G), v′ ∈ vn(G) is an S-neighbour of v,

C ∈ L(v′), v has m S-neighbours w1, . . . , wm ∈ in(G) with

C ∈ L(wi) and wi 6≈ wj for all 1 ≤ j < i ≤ m, and

w ∈ in(G) is an S-neighbour of v, C ∈ L(w) and not v′ 6≈ w,

then merge(v′, w).

Table 3.1 Expansion Rules

however, the o?-rule is needed and the naive application of the expansion rules can

lead to non-termination. Horrocks and Sattler in [24] give a prioritised strategy for

rule application which guarantees termination of their satisfiability testing algorithm.

Unfortunately, this strategy does not work for our query answering algorithm; we
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Fig. 3.3 2-complete completion graph for the example knowledge base K2

cannot ensure that it terminates on SHOIQ KBs (although we believe that it will do

so in many cases).

Definition 3.9 (Clash-free completion graph) A completion graph G contains a

clash if one of the following holds:

1. For some v ∈ nodes(G) and some concept name A, {A,¬A} ⊆ L(v).

2. For some v ∈ nodes(G) with ≤ nS.C ∈ L(v), v has n+ 1 S-neighbours w0, . . . , wn
such that, for all wi, wj with 0 ≤ i < j ≤ n, C ∈ L(wi) and wi 6≈ wj ∈ G.

3. For some o ∈ I and some v, v′ ∈ nodes(G), {o} ∈ L(v) ∩ L(v′) and v 6≈ v′ ∈ G.

If G does not contain a clash, then G is clash-free.

Definition 3.10 (n-complete completion graph) A completion graph G is n-

complete, if no rule in Table 3.1 can be applied to it.

For a knowledge base K, we denote by GK the set of all completion graphs that

can be obtained from the initial GK by applying the expansion rules, and by ccfn(GK)

the set of completion graphs in GK that are n-complete and clash free.

Example 3.11 Both F1 and F2 can be obtained from GK1 by applying the expansion

rules, and they are both clash-free. F1 is 1-complete and F2 is 2-complete, so F1 ∈
ccf1(GK1) and F2 ∈ ccf2(GK1). Consider also the completion graphs G1 in Figure 3.2

and G2 in Figure 3.3 (where L′1 and L′2 are as in Example 3.3). Both can be obtained

from GK2 by means of the expansion rules. They are both clash-free completion graphs,

and they are 1-complete and 2-complete respectively, so G1 ∈ ccf1(GK2) and G2 ∈
ccf2(GK2).

3.2 Models of a Completion Graph

Semantically, by viewing all the nodes of a completion graph as individuals, we can

interpret a completion graph in a very similar way as we interpret a knowledge base.

Intuitively, every individual in K is represented by a node of the completion graph, but

the completion graph may have additional nodes. An interpretation of the individuals,

concepts, and roles in G is an interpretation of K, possibly extended to interpret these

additional nodes, and we can see it as a representation of a set of models of K.

Definition 3.12 (Model of a completion graph) An extended interpretation I =

(∆I , ·I) is an interpretation as in Definition 2.7 that in addition assigns to each node

v ∈ VN an element vI ∈ ∆I . Let G ∈ GK . Then I is a model of G w.r.t. K, written

I |=K G, if:



17

1. I |= K, and

2. for all v, w ∈ nodes(G), {C ∈ L(v)} ⊆ {C | vI ∈ CI}, {R∈ L(v→w)}⊆{R |
〈vI , wI〉 ∈RI}, and v 6≈ w ∈ G implies vI 6= wI .

We emphasize that, in order to be a model of a completion graph for K, an extended

interpretation must include an ordinary interpretation that is a model of K (item 1).

We say that two extended interpretations I and J are equal on a set N ⊆ VN∪ I,

if ∆I = ∆J and for every v, w ∈ N , vI = vJ , {C | vI ∈ CI} = {C | vJ ∈ CJ },
and {R | 〈vI , wI〉 ∈ RI} = {R | 〈vJ , wJ 〉 ∈ RJ }. Furthermore, we call an extended

interpretation J a K-extension of an ordinary interpretation I, if J equals I on IK .

The initial completion graph GK is just an alternative representation of the knowl-

edge base, and it has exactly the same models. The following lemma is immediate from

the definition of the semantics of knowledge bases and of GK .

Lemma 3.13 For every (extended or ordinary) interpretation I, I |=K GK iff I |= K.

When we expand the graph, we make choices and obtain new graphs that represent

a subset of the models of the knowledge base K. The union of the sets of models of all

graphs in ccfn(GK), when restricted to the language of K, coincides with the set of

models of K, independently of the value of n. Therefore, if we want to check all models

of K, we must check all models of all graphs in ccfn(GK) for some n.

Proposition 3.14 Let n ≥ 0. For every interpretation I such that I |= K, there is

some G ∈ ccfn(GK) and some K-extension J of I such that J |=K G.

Proof Consider an interpretation I such that I |= K. Intuitively, every K-extension

J of I is a model of the initial GK , and I can be used to guide the non-deterministic

choices when applying the expansion rules, in such a way that clashes are avoided

until a complete graph is reached. This is the same intuition underlying the proof of

completeness given in [24].10 Formally, let Gk denote the set of completion graphs

obtained from GK by at most k applications of the expansion rules, and cf(Gk) the

set of these graphs that are clash-free. We prove the following claim by induction on

k ≥ 0:

Claim 1 If I |= K, then for every k ≥ 0 there is some K-extension J of I and some

G ∈ cf(Gk) such that J |=K G.

If k = 0, then cf(Gk) = {GK} and the claim holds by Lemma 3.13. For the inductive

step, we use the following fact:

Claim 2 Let G ∈ GK , let J |=K G, and let r be any rule in Table 3.1 that is applicable

to G. Then, there exist a completion graph G′ obtainable from G by applying r and an

extended interpretation J ′ equal to J on nodes(G) such that J ′ |=K G′.

The (straightforward) proof of Claim 2 is given in the Appendix. Consider now G ∈
cf(Gk). If J |=K G, then by Claim 2 there exist some J ′ equal to J on nodes(G) and

some G′ ∈ Gk+1 such that J ′ |=K G′. As J is a K-extension of I and IK ⊆ nodes(G),

also J ′ is a K-extension of I and a model of G′ w.r.t. K. Hence, G′ ∈ cf(Gk+1) and

Claim 1 holds.

10 The details of the proof are quite different, however, since the authors of [24] use tableaux,
while we use completion graphs as model representations.
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Finally, it is easy to see that Claim 1 implies the statement of the proposition,

as every sufficiently expanded completion graph that did not reach a clash will be n-

complete, i.e., by taking a sufficiently large k, we can ensure that cf(Gk) = ccfn(GK).

ut

3.3 Answering Positive Queries

Recall that for a knowledge base K and a query Q, K |= Q holds iff I |= Q for every

model I of K. We define an analogous notion of query entailment in a completion

graph G: G |=K Q iff I |= Q for every model I of G w.r.t. K. We are interested in

checking whether K |= Q, which means that entailment of Q has to be verified in every

model of K. To this end, we may choose an arbitrary n and check entailment of Q in

each graph G ∈ ccfn(GK). This is sound since all the models of K are represented by

the graphs in ccfn(GK).

Proposition 3.15 Let n ≥ 0. Then K |= Q iff G |=K Q for every G ∈ ccfn(GK).

Proof For the only if direction, assume K |= Q. Consider G ∈ GK and some I such

that I |=K G. Since I |= K by definition, K |= Q implies that I |= Q. Hence, G |=K Q.

The if direction is shown by contraposition. If K 2 Q, then there exists some model

I of K such that I 2 Q. By Proposition 3.14, there is some K-extension J of I and

some G ∈ ccfn(GK) such that J |=K G. Note that I 2 Q implies J 2 Q, since J and

I can only differ in the interpretation of the nodes in VN, which is irrelevant for Q.

Thus, G 2K Q. ut

In order to decide query entailment, we can choose an arbitrary n ≥ 0 and check

all the models of all the completion graphs in ccfn(GK). This is still not enough to

yield a decision procedure: although the set ccfn(GK) is finite, we do not have an

algorithm for deciding entailment of query Q in all (possibly infinitely many) models

of a completion graph. In the rest of this section, we show that if a suitable n is chosen,

entailment in all the models of K can be decided effectively by deciding the existence

of a mapping of the query into each G ∈ ccfn(GK).

Definition 3.16 [Query mapping] LetQ = ∃x.ϕ(x) be a PQ and let G be a completion

graph. Let µ : VI(Q)→ nodes(G) be a total function such that {a} ∈ L(µ(a)) for each

individual a in VI(Q). We write C(x)
µ
↪−→G if C ∈ L(µ(x)), and S(x, x′)

µ
↪−→G if µ(x′)

is an S-neighbour of µ(x). Let γ be the Boolean expression obtained from ϕ(x) by

replacing each atom α in ϕ with >, if α
µ
↪−→G, and with ⊥ otherwise. We say that µ is

a mapping for Q into G, denoted Q
µ
↪−→G, if γ evaluates to >. Q can be mapped into G,

denoted Q ↪→G, if there is a mapping µ for Q into G.

Note that S(x, x′)
µ
↪−→G does not imply S ∈ L(µ(x)→µ(x′)), but only that a subrole

of S occurs in the label. The correctness of the mapping for role atoms is thus related

to the notion of S-neighbour (see Definition 3.1).

Example 3.17 We have that Q1
µ1
↪−→F1 and Q1

µ′1
↪−→F2, witnessed by µ1(x) = µ′1(x) =

a, µ1(y) = µ′1(y) = v1 and µ1(z) = µ′1(z) = v2. Note that there is no mapping of

Q2 into F2 or F1 satisfying the above conditions. The mappings µ2(x) = µ′2(x) = a,

µ2(y) = µ′2(y) = v1 and µ2(o) = µ′2(o) = o show that Q3
µ2
↪−→G1 and Q3

µ′2
↪−→G2.
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Indeed, for completion graphs G for K, syntactic mappability Q ↪→G implies se-

mantic consequence G |=K Q.

Lemma 3.18 If Q ↪→G, then G |=K Q.

Proof Since Q ↪→G, there is a mapping µ : VI(Q)→ nodes(G) satisfying Definition 3.16.

Let I be a model of G w.r.t. K. Then vI ∈ CI if C ∈ L(v); and if w is an R-neighbour

of v, then 〈wI , vI〉 ∈ RI . We can define a match for I and Q by setting π(x) = µ(x)I

for every x ∈ VI(Q). It satisfies π(a) = aI for each individual a and I, π |= α for each

atom α such that α
µ
↪−→G. Hence, I |=K Q, which implies G |=K Q. ut

Since every model of the KB K is represented by some completion graph, we already

know that Q is entailed by K if there is a mapping for Q in each G. We prove that the

converse also holds. Now the blocking conditions come into play and the mapping will

only be feasible if n is sufficiently large. We show that provided G has been expanded

far enough, a suitable mapping µ into G can be constructed from a single model IG of

K, which we call the canonical model induced by G. In fact, entailment in this model

implies entailment in the completion graph for all queries Q of bounded size. Indeed,

we will see that the mapping µ can be constructed from any match for IG and Q.

3.3.1 Tableaux and Canonical Models

To build the canonical model induced by G ∈ ccfn(GK) (with n ≥ 1), we unravel G
into a tableau TG . This tableau induces a model for K.11 Each path to a node in G is a

node of TG . Every blocked node points back to the node that blocks it, creating a loop

that generates infinite paths. Thus, if G has blocked nodes, its tableau is an infinite

structure. Defining a model from T is straightforward. The definition of tableau is

based on the one in [24].

Definition 3.19 (Tableau) A triple T = 〈S,L, E〉 is a tableau for a KB K =

〈A,R, T 〉, if S is a non-empty set; L : S → 2clos(KA) maps each element in S to a

set of concepts; and E : RKA → 2S×S maps each role to a set of pairs of elements in

S. Furthermore, for all s, t ∈ S; C,C1, C2 ∈ clos(KA); and R,R′, S ∈ RKA , T satisfies:

(P0) if C ∈ tcon(K) then C ∈ L(s).

(P1) if C ∈ L(s), then ¬C /∈ L(s);

(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s);

(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s);

(P4) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t);

(P5) if ∃R.C ∈ L(s), then 〈s, t〉 ∈ E(R) and C ∈ L(t) for some t ∈ S;

(P6) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R′) for some R′ v∗ R with Trans(R′) = true, then

∀R′.C ∈ L(t);

(P7) if ≤ nS.C ∈ L(s), then |{t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}| ≤ n;

(P8) if ≥ nS.C ∈ L(s), then |{t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}| ≥ n;

(P9) if 〈s, t〉 ∈ E(R) and ≤ nS.C ∈ L(s), then {C,NNF (¬C)} ∩ L(t) 6= ∅;
(P10) if 〈s, t〉 ∈ E(R) and R v∗ R′ then 〈s, t〉 ∈ E(R′);
(P11) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R));

(P12) if {o} ∈ L(s) ∩ L(s′) for some o ∈ I, then s = s′;

11 Note that we only use tableaux to define the canonical model .
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(P13) if o ∈ IK , then {o} ∈ L(s) for some s ∈ S.

We can easily obtain a canonical model of a KB K from every tableau for it.

Definition 3.20 (Canonical model) Let T = 〈S,L, E〉 be a tableau for K. The

canonical model of T , IT = (∆IT , ·IT ), is defined as follows:

– ∆IT = S,

– AIT = {s | A ∈ L(s)} for all concept names A in clos(KA),

– aIT = s ∈ S, {a} ∈ L(s), for all individual names a in IK , and

– PIT = E(P )⊕ for all role names P in RKA , where E(·)⊕ is the minimal extension

of E(·) such that E(R)⊕ is transitively closed whenever Trans(R), and E(R′)⊕ ⊆
E(R)⊕ whenever R′ v∗ R.

Please note that for each simple role S, SIT = E(S)⊕ =
S
S′v∗S E(S′). The next

lemma follows from Lemma 4 in [24].

Lemma 3.21 Let T be a tableau for K. Then IT |= K.

Each completion graph G ∈ ccfn(GK) with n ≥ 1 induces a tableau TG that is the

unravelling of G, and which has as domain the set of paths in G. The paths and the

tableau are constructed as in [24]; each path comprises a sequence of pairs of nodes v
v′ ,

in order to store which blocked nodes caused the loops in the path construction.

Definition 3.22 (Induced tableau) Let G ∈ ccfn(GK), n ≥ 1. In a sequence of

pairs of nodes of the form p = [ v0
v′0
, . . . , vm

v′m
], we define tail(p) = vm and tail′(p) = v′m.

By [p | vm+1
v′m+1

] we denote [v0
v′0
, . . . , vm

v′m
,
vm+1
v′m+1

]. For a sequence of pairs of nodes p and a

variable v ∈ vn(G), if v is not n-blocked and v is an R-successor of tail(p), then [p | vv ]

is an R-step of p; if v is directly n-blocked by w and v is an R-successor of tail(p), then

[p | wv ] is an R-step of p. The set of paths in G, denoted paths(G), is inductively defined

as follows:

– if a ∈ in(G), then [aa ] ∈ paths(G).

– if p ∈ paths(G), q is an R-step of p, R ∈ RK , then q ∈ paths(G).

The tableau TG = (S,L, E) induced by G is defined as follows:

S = paths(G),

L(p) = L(tail(p)),

E(R) = {〈p, q〉 ∈ S2 | q is an R-step of p, or p is an Inv(R)-step of q,

or q = [aa ] and a is an R-successor of tail(p),

or p = [aa ] and a is an Inv(R)-successor of tail(q)}.

Note that the definition of R-step requires w to be a variable node. Every path in

paths(G) starts with a node a
a for some individual a, and a node of this form only

occurs at the first position in a path. The last two cases in the definition of E(R)

are necessary in order to consider the arcs leading to individual nodes, which are not

unravelled.

We use IG (instead of ITG ) to denote the canonical model of the tableau TG induced

by G.
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Example 3.23 By unravelling F1, we obtain a model IF1 whose domain is the infinite

set of paths from a to each vi. When a node is not blocked, like v1, the pair v1
v1

is

added to the path. Every time a path reaches v7, which is 1-blocked, we add v3
v7

to the

path and ‘loop’ back to the successors of v3. We thus obtain the following infinite set

of paths:

p0 = [aa ], p6 = [aa ,
v1
v1
, v3v3 ,

v6
v6

],

p1 = [aa ,
v1
v1

], p7 = [aa ,
v1
v1
, v3v3 ,

v5
v5
, v3v7 ],

p2 = [aa ,
v2
v2

], p8 = [aa ,
v1
v1
, v3v3 ,

v5
v5
, v4v8 ],

p3 = [aa ,
v1
v1
, v3v3 ], p9 = [aa ,

v1
v1
, v3v3 ,

v5
v5
, v3v7 ,

v5
v5

], . . .

p4 = [aa ,
v1
v1
, v4v4 ], p10 = [aa ,

v1
v1
, v3v3 ,

v5
v5
, v3v7 ,

v6
v6

],

p5 = [aa ,
v1
v1
, v3v3 ,

v5
v5

], p11 = [aa ,
v1
v1
, v3v3 ,

v5
v5
, v3v7 ,

v5
v5
, v3v7 ],

The extension of each concept C is determined by the set of all pi such that C occurs

in the label of the last node in pi. The extension of each role R is given by the pairs

〈pi, pj〉 such that pj is an R-step of pi. Therefore p0, p1, p3, . . . are in AIF1 ; 〈p0, p1〉,
〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are in P

IF1
1 and 〈p0, p2〉, 〈p1, p4〉, 〈p3, p6〉, 〈p5, p8〉, . . .

are in P
IF1
2 .

Analogously, by unravelling G2, we obtain the model IG2 whose domain is the infinite

set of paths from a to each vi, since there are no paths from o to any other node, i.e.,

the domain is:

p0 = [ oo ], p5 = [aa ,
v1
v1
, v2v2 ,

v3
v3
, v4v4 ],

p1 = [aa ], p6 = [aa ,
v1
v1
, v2v2 ,

v3
v3
, v4v4 ,

v5
v5

]

p2 = [aa ,
v1
v1

], p7 = [aa ,
v1
v1
, v2v2 ,

v3
v3
, v4v4 ,

v5
v5
, v3v6 ], . . .

p3 = [aa ,
v1
v1
, v2v2 ], p8 = [aa ,

v1
v1
, v2v2 ,

v3
v3
, v4v4 ,

v5
v5
, v3v6 ,

v4
v4

]

p4 = [aa ,
v1
v1
, v2v2 ,

v3
v3

], p9 = [aa ,
v1
v1
, v2v2 ,

v3
v3
, v4v4 ,

v5
v5
, v3v6 ,

v4
v4
, v5v5 ]

The extension of the concepts are {o}IG2 = {p0}, {a}IG2 ={p1} and AIG2 = {pi | i ≥ 1},
and the extensions of the roles are P

IG2
1 ={〈pi, pi+1〉 | i ≥ 1} and P

IG2
2 = {〈pi, p0〉 |

i ≥ 1}.

Lemma 3.24 Let G ∈ ccfn(GK) with n ≥ 1. Then IG |= K.

Proof First, it is proved as in [24] that every G ∈ ccfn(GK) for n ≥ 1 induces a tableau

TG for K. Note that since n ≥ 1, pairwise blocking is subsumed. Since TG is a tableau

for K, it has a canonical model IG , which by Lemma 3.21 is a model of K. ut

Now we prove that, for a sufficiently large n, if Q is satisfied in the canonical model

IG induced by an n-complete and clash-free graph G, then we can map Q into G. If

IG |= Q, then there is a match π for IG and Q. We show how to obtain a mapping µ

witnessing Q ↪→G from π.

In this proof, the blocking parameter n is crucial. As we mentioned, it depends

on Q. More specifically, it depends on the match π and what we call the maximal

π-distance. Roughly, we consider the image of the query Q under π, restricted to the

atoms that evaluate to true. If d is the length of the longest path between two (variable)

nodes in this graph and the completion graph is (at least) d-complete, then it is large

enough to construct a mapping Q
µ
↪−→G from π, which contains an isomorpic copy of

the query image.
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Definition 3.25 (Match graph, maximal π-distance) Let G ∈ ccfn(GK), where

n ≥ 0, such that IG |= Q, and let π be a match for Q and IG . Let Satπ denote the

set of atoms α in Q such that IG , π |= α. Then, the match graph Gπ is the following

(undirected) graph:

(i) its nodes are all π(x) such that x ∈ VI(Q) occurs in some α ∈ Satπ; furthermore, if

π(x) = [aa ] for some a ∈ in(G), then π(x) belongs to the set ip(Gπ), otherwise to the

set vp(Gπ).

(ii) There is an edge between π(x) and π(y) iff R(x, y) in Satπ for some role R.

For every x, y ∈ VI(Q), dπ(x, y) is the length of the shortest path between π(x)

and π(y) in Gπ with nodes from vp(Gπ) only, and −1 if no such path exists. Finally,

the maximal π-distance, denoted dmax
π , is the maximal dπ(x, y) for all x, y in VI(Q).

Note that the subgraph of Gπ induced by vp(Gπ) is acyclic (in fact, it is forest

shaped), and thus shortest paths in it are unique.

Example 3.26 Consider a match π1 for Q1 and IF1 given as follows: π1(x) = p7,

π1(y) = p9, and π1(z) = p10. Satπ1 contains all atoms in Q1 and the match graph Gπ1

has the nodes p7, p9 and p10, where ip(Gπ1) = ∅ and vp(Gπ1) = {p7, p9, p10}, and the

arcs 〈p7, p9〉 and 〈p7, p10〉. Moreover, dπ1(x, y) = 1, dπ1(x, z) = 1 and dπ1(y, z) = 2, so

dmax
π1 = 2. Consider also the match π2 for Q3 and IG2 , where π2(x) = p7, π2(y) = p8

and π2(o) = p0. Satπ2 = {P1(x, y), P2(y, o)} and the match graph Gπ2 has nodes p0, p7
and p8, where ip(Gπ2) = {p0} and vp(Gπ2) = {p7, p8}, and arcs 〈p7, p8〉 and 〈p8, p0〉.
Here, dπ2(x, y) = dmax

π2 = 1.

In the following, let nr(Q) denote the number of role atoms in Q. Then, dmax
π is

bounded by nr(Q).12 Since only simple roles occur in Q, arcs in Gπ correspond to

arcs in G; thus in expanding the initial completion graph GK , it is sufficient to use n-

blocking as a termination condition, for some arbitrarily chosen n ≥ nr(Q). Formally,

we show:

Proposition 3.27 Let G ∈ ccfn(GK) with n ≥ nr(Q), and let IG be the canonical

model of G. If IG |= Q then Q ↪→G.

Proof As IG |= Q, there is a match π for IG and Q. To define a mapping µ : VI(Q)→
nodes(G), we consider the match graph Gπ. Recall that, by construction, each node

in Gπ is from paths(G). Let G′π be the subgraph of Gπ induced by vp(Gπ), and let

G1, . . . , Gn be the connected components of G′π. Note that, since only simple role occur

in Q, dmax
π ≤ nr(Q) ≤ n and each Gi has at most nr(Q) ≤ n edges.

Informally, the proof works as follows: G is n-complete, and by unravelling it we

obtain the tableau TG that induces IG . Suppose there is a node v′ in G directly n-

blocked by some node v, and such that v′ is not indirectly n-blocked; let S be the

subgraph of G that includes every variable descendant of v that is not n-blocked. Then

we can see TG as having a branch composed of infinitely many adjacent non-overlapping

copies of the path between v and v′, where there are infinitely many copies v1, v2, . . .

of v, and each vi is the root of a copy Si of the subtree S. The match π maps each

x ∈ VI(Q) to some element π(x) of TG , which we now map to a node µ(x) in G. There

are two cases.

12 For simplicity, we are using the number of role atoms in the query as a bound. A tighter
bound would be the number of role atoms in the largest disjunct when the query is transformed
into disjunctive normal form.
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(1) If π(x) ∈ ip(Gπ), we just set µ(x) = a where π(x) = [aa ].

(2) If π(x) ∈ vp(Gπ), consider the (unique) Gi containing π(x). The bounded size of

Gi ensures that it contains nodes from at most two copies of the subtree S in TG , and

that if it contains nodes from two copies Sk and Sk′ , k ≤ k′, then k′ = k+ 1. Consider

two subcases. (2.1) Gi contains nodes from at most one copy of S, i.e., Gi is before the

leaves of the first copy S1 or fully within some Sk. Then we can map x in G to a node

in S or above. (2.2) Gi includes nodes of two subtrees Sk and Sk+1, i.e., π maps some

variables to nodes in Sk, which correspond to paths in G ending before or at v′, and

others to nodes in Sk+1, which correspond to paths ending at descendants of v (after

passing through v′). We then ensure that µ maps the former to v or to nodes above v,

and the latter to nodes in S.

Technically, let blockedLeaves(Gi) be the set of all nodes p of Gi such that

tail(p) 6= tail′(p), and let afterblocked(Gi) be the set of all nodes of Gi of the form

[v0
v′0
, . . . , vm

v′m
, . . . ,

vm+j

v′m+j
] for some [ v0

v′0
, . . . , vm

v′m
] ∈ blockedLeaves(Gi) and j > 0. Intu-

itively, blockedLeaves(Gi) contains the paths π(x) that end at some directly n-blocked

node, i.e., at the end of a subtree Sk, and afterblocked(Gi) the paths π(x) that go

beyond these nodes, i.e., into the next subtree Sk+1.

If afterblocked(Gi) = ∅, then the nodes of Gi are in at most one copy of S, and

we are in case 2.1. For each variable x with π(x) in Gi, we define µ(x) = tail′(π(x)),

which is a node in or above S. Otherwise, we are in case 2.2 and consider two subcases:

(2.2.1) if π(x) ∈ afterblocked(Gi), then we also define µ(x) = tail′(π(x)), which is a

node in S; (2.2.2) if π(x) 6∈ afterblocked(Gi), then we define µ(x) = ψ(tail′(π(x))),

where ψ denotes the bijection via which tail′(π(x)) is graph-blocked (thus µ(x) is a

node above S). This is possible because the bounded size of Gi ensures that tail′(π(x))

is a node in a blocked n-graph. Summing up, we define

µ(x) =

8><>:
ψ(tail′(π(x))), if π(x) is in some Gi with afterblocked(Gi) 6= ∅

and π(x) 6∈ afterblocked(Gi),

tail′(π(x)), otherwise.

Now we prove the following:

a) For each individual a in VI(Q), π(a) = aIG implies {a} ∈ L(µ(a)).

b) For each C(x) in Satπ, C ∈ L(µ(x)).

c) For each R(x, y) in Satπ, µ(y) is an R-neighbour of µ(x).

Items a) – c) ensure that IG , π |= α implies α
µ
↪−→G for each atom α in Q. Since π

is a match for Q and IG , this is sufficient to prove Q ↪→G.

The proof of items a) and b) is straightforward by the construction of IG and µ.

Observe that for each individual a in VI(Q), π(a) = aIG , which implies {a} ∈ L(π(a)).

Since L(π(a)) = L(µ(a)), we get {a} ∈ L(µ(a)). For every x in VI(Q), IG |= C(π(x))

implies that C ∈ L(π(x)). Again, as L(π(x)) = L(µ(x)), we have C ∈ L((µ(x))).

For c), by construction of IG , we have that IG |=R(π(x), π(y)) implies 〈π(x), π(y)〉
∈ E(R′)⊕. Since R is a simple role and E(R)⊕ =

S
R′v∗R E(R′), 〈π(x), π(y)〉 ∈ E(R′)

for some R′ v∗ R follows. We then prove:

Claim 3 If 〈π(x), π(y)〉 ∈ E(R′), then µ(y) is an R′-neighbour of µ(x).

As discussed above, µ is defined such that each variable preserves all its neighbours

under the match π. A formal proof of Claim 3 is given in the Appendix. ut
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In the proof of Proposition 3.27, it was crucial that a match for the query on a

canonical model only needs fragments of bounded size from the tableau. If this does

not hold, as in the case of queries where non-simple roles occur, it is not clear whether

this kind of technique can be used for deciding query entailment.

Example 3.28 For the match π1 in Example 3.26, the single graph Gi for the match

graph Gπ1 as in the proof of Proposition 3.27 is Gπ1 ; recall that ip(Gπ1) = ∅, and Gπ1 is

connected. We have blockedLeaves(Gπ1) = {p7} and afterblocked(Gπ1) = {p9, p10}. We

obtain the mapping µ1 from π1 by: µ1(x) = ψ(tail′(p7)) = v3; µ1(y) = tail′(p9) = v5;

µ1(z) = tail′(p10) = v6. It satisfies the conditions of Definition 3.16, so Q1
µ1
↪−→F1.

Now reconsider π2 and Gπ2 in Example 3.26. Removing the nodes ip(Gπ2) = {p0}
from Gπ2 , the resulting graph G′π2 is connected and hence the single graph Gi for

Gπ2 as in the proof of Proposition 3.27. We have afterblocked(G1) = {p8}. We obtain

from π2 the mapping µ by: µ2(x) = ψ(tail′(p7)) = v3, µ2(y) = tail′(p8) = v4 and

µ2(o) = tail(p0) = o. It also satisfies Definition 3.16, so Q3
µ2
↪−→G2.

Summing up, to decide whether K |= Q, it is sufficient to choose an arbitrary

n ≥ nr(Q) and then to check the existence of a mapping Q ↪→G for each G ∈ ccfn(GK).

Theorem 3.29 Let Q be a positive query, let K be a SHOIQ KB, and let n ≥ nr(Q).

Then K |= Q iff Q ↪→G for every G ∈ ccfn(GK).

Proof Let G ∈ ccfn(GK). By Lemma 3.24, IG |= K, and since K |= Q, it follows

IG |= Q. Since n ≥ nr(Q), by Proposition 3.27, Q ↪→G. Conversely, from Q ↪→G and

Lemma 3.18, we have that G |= Q for every G ∈ ccfn(GK). By Proposition 3.15, this

means K |= Q. ut

Example 3.30 K |= Q1, so F1 |= Q1 must hold. This is witnessed by the mapping µ1

in Example 3.28. Note that there are longer queries, like Q′ = {P1(a, x0), P1(x0, x1),

P1(x1, x2), P1(x2, x3), P1(x3, x4)} such that K |= Q′ holds, but the entailment F1 |=
Q′ cannot be verified by mapping Q′ into F1 since F1 is 1-complete and nr(Q′) > 1.

4 Termination and Complexity

The method from above yields a sound algorithm for answering PQs on SHOIQ KBs.

As we show in this section, it always terminates for SHIQ, SHOQ and SHOI KBs.

Based on this, we prove our main results on the data complexity of query answering

in these logics.

We point out that query answering is intractable with respect to combined com-

plexity already for rather simple queries and on very small completion graphs. In fact,

this holds even for a conjunctive query and a fixed completion graph which consists of

few nodes. This is shown in the proof of the next proposition.

Proposition 4.1 Let G be a (fixed) completion graph in GK and let Q be a given CQ.

Deciding whether Q ↪→G is NP-hard.

Proof Deciding the existence of a mapping Q ↪→G is at least as hard as evaluating a CQ

over a database (given by the ABox), which is NP-hard (w.r.t. query complexity) [14].

To verify this, consider the completion graph Gcol associated to the ABox {E(c, c) |
c, c′ ∈ {red , green, blue}, c 6= c′}. Every directed graph G can be represented as a CQ
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Q, where each node in G is associated with a distinct variable and for each arc 〈x, y〉
in G there is the literal E(x, y) in Q. Then Q can be mapped into Gcol iff G is 3-

colourable. ut

Note that when Q is fixed, the test Q ↪→G can be done in time polynomial in the

size of G by simple methods, as only a polynomial number of candidate mappings needs

to be checked. This is relevant to prove a tight upper bound in data complexity.

4.1 Bounding the size of completion forests and graphs

In what follows, we assume that K is a SHIQ, SHOQ or SHOI knowledge base, such

that c := |clos(K)| ≥ 1 and r := |RK | ≥ 1. Let m denote the maximum between 1

and any number n occurring in concepts of the form ≤ nR.C or ≥ nR.C in K.

We first derive a bound on the possible size of a blockable n-graph, and then a

bound on the size of the completion graphs in ccfn(GK).

Claim 4 Let G ∈ GK and let n ≥ 0. Then G has at most Hn = 2p(c,r,m)n+1
many

non-isomorphic blockable n-graphs, for some polynomial p(c, r,m) in c, r, and m.

Proof First, we give a bound on the number of non-isomorphic node and arc labels

that may occur in a blockable n-graph in G. Recall that KA is the KB obtained from

K by internalising the ABox as in Section 2.1.2, which is used for constructing the

initial GK .

The only expansion rule that can add some C 6∈ clos(KA) to the label of a node

is the o?-rule, which is never applied for a SHIQ, SHOQ, or SHOI KB. Therefore,

the label of every node v in a completion forest in GK fulfills L(v) ⊆ clos(KA). By

definition, every node v in a blockable n-graph is a successor of a variable node, and

either (1) v is a variable node; or (2) v is an individual node that has a variable

predecessor w. In case (1), v was created by a generating rule and its label was initialised

with L(v) ⊆ clos(K). Moreover, any concept added to its label will be from clos(K),

unless it is merged into an existing individual whose label already contains some C ∈
clos(KA) \ clos(K); the latter would imply that v is not a variable node. So we can

conclude that every v of vn(G) fulfils L(v) ⊆ clos(K). In case (2), if an individual node

v is a successor of a variable node w, then {a} ∈ L(v) for some {a} ∈ clos(K). This

is because arcs from variable to individual nodes can only be created by merging two

nodes that share a nominal. The expansion rules can only cause this for nominals in

clos(K), as they only add concepts from clos(K) to the node labels (except the o?-rule,

which is never applied).

Consider two blockable n-graphs G1 and G2. Remove from them all arcs connecting

two individual nodes, and restrict the labels of the individual nodes to clos(K). Suppose

that the resulting graphs G′1 and G′2 are isomorphic. The label of each individual node

in G′1 contains some nominal {a} from clos(K), which must also be in the label of the

isomorphic node in G′2. As this {a} can be in the label of only one node in G (by the

assumption on the application of the o-rule), both nodes are the same node from G.

This ensures that G′1 and G′2 are isomorphic iff G1 and G2 are isomorphic. In general,

G1 and G2 can only be isomorphic if they contain exactly the same set of individual

nodes. Hence, when calculating the number of non-isomorphic blockable n-graphs, we

can omit all arcs between individual nodes, and restrict their labels to the concepts in

clos(K) (note that they will still be individual nodes after this restriction). Thus, we
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consider only node labels that are subsets of clos(K), and there are 2c possible such

labels. Similarly, each arc is labelled with a subset of RKA , but roles in RKA \ RK

occur only in arcs connecting two individual nodes, so we restrict our attention to 2r

different arc labels that are subsets of RK .

Now we derive a bound on the out-degree of the variable nodes in G. Every successor

of such a node is generated by the application of a generating rule. Only two are feasible

for K: the ∃-rule and the ≥-rule. Only concepts of the form ∃R.S or ≥ nR.C trigger

the application of these rules, and there are at most c such concepts. Each time one

such rule is applied, it generates at most m R-successors for each role R. Note that if

a node v is identified with another one by a shrinking rule, then the rule application

which led to the generation of v will never be repeated [24], so a generating rule can

be applied to each node at most c times. This gives a bound of c·m R-successors for

each role R, and a total of b = r·c·m ≥ 1 for each variable node of G.

Let hn denote the number of non-isomorphic blockable n-graphs that may occur

in G. There are 2c different roots, each of which can have up to b successors. Each

successor can be reached by any of the 2r possible arcs and can be the root of any of

the hn−1 many different blockable (n−1)-graphs. Hence, there are at most (2r·hn−1)b

(ordered) combinations for each root. Thus we have

hn = 2c·(2r·hn−1)b = 2c+r·b·(hn−1)b

To simplify the notation, let x = c + r·b. Then

hn = 2x·(hn−1)b = 2x+x·b+...+x·b
n−1
·(h0)b

n

= 2x·
Pn−1

i=0 bi

·(h0)b
n

.

Since t0 = 2c, we obtain for b ≥ 2 that

hn ≤ (2x·h0)b
n

= (2c+r·b·2c)b
n

≤ 2(2·c·b+r·b2)n+1
= 2p(c,r,m)n+1

(4.1)

where p(c, r,m) = 2·c·b + r·b2 = 2·c2·r·m + c2·r3·m2. As (4.1) also holds for b = 1,

we obtain the claimed bound Hn = 2p(c,r,m)n+1
. ut

In the rest of this section, we use p(c, r,m) to denote the polynomial given above.

Claim 5 Let T be a tree of variable nodes rooted at some individual node in G ∈
ccfn(GK), n ≥ 0. Then the number of nodes in T is bounded by (c·m·r)1+n·2

p(c,r,m)n+1

.

Proof The claim is a consequence of the following properties:

i) The out-degree of T is bounded by c·m·r. As shown above, each role R has at

most c·m variable R-successors, and there are r roles.

ii) The depth of T is bounded by d = (Hn + 1)·n. This is because there are at most

Hn non-isomorphic blockable n-graphs. If there was a path of length greater than

(Hn + 1)·n to a node v in T , then v would occur after a sequence of Hn + 1 non

overlapping blockable n-graphs, and one of them would have been blocked so v

would not have been generated.

iii) The number of variables in T is bounded by (c·m·r)d+1. ut

There can be one such tree rooted at each individual node, and since there is at

most one individual node for each individual in IK , we easily get a bound on the size

of a completion graph.
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Lemma 4.2 Let K be a SHIQ, SHOQ, or SHOI KB and let G ∈ ccfn(GK), n ≥ 0.

Then the number of nodes in G is bounded by

|IK |·(c·m·r)1+n·2
p(c,r,m)n+1

Unfortunately, Lemma 4.2 does not apply to SHOIQ KBs. Indeed, our bound

on the depth of completion graphs, relies on a fixed number of individual nodes. For

SHOIQ KBs, the application of the o?-rule may introduce new individual nodes that

lead to new n-blockable graphs non-isomorphic to previously present graphs. This

potentially leads to non-termination. Note that in [24], the maximal depth of a variable

node in the completion graphs does not depend on the number of individual nodes that

can be generated. In turn, it is used to bound the number of nominals introduced by

applying the o?-rule. The technique in [24] seems not to be applicable in our case, and

it is not clear how termination could be achieved in general.

4.2 Complexity of the Query Entailment Algorithm

We now determine the complexity of deciding K |= Q for a PQ Q. As for data com-

plexity, the TBox, the RBox, and the query are considered fixed, while the ABox A
is given as an input. The complexity bounds are given w.r.t. the size of this A. In the

following, we denote by ||K,Q|| the total size of the string representing K and Q. Note

that m is linear in ||K,Q|| for unary number coding in number restrictions, and single

exponential for binary number coding. In any case, if Q and all of K except A are

fixed, m is a constant. Furthermore, c and r are linear in ||K,Q||, but also constant

in |A|. Finally, |IK | is linear in both. From this, and by Lemma 4.2, we know that

the maximum number of nodes in a completion graph G ∈ GK is triple exponential in

||K,Q|| if n is polynomial in ||K,Q||. If n is a constant, then the size of G is linear in

|A|. We easily obtain:

Corollary 4.3 Let G ∈ ccfn(GK), n ≥ 0. Then the number of nodes in G is (i) at

most triple exponential in ||K,Q||, if n is polynomial in ||K,Q||, and (ii) polynomial

in |A|, if n is a constant and Q and all of K except A is fixed.

Moreover, we also obtain a bound on the number of rule applications to derive any

clash-free n-complete completion graph.

Proposition 4.4 The expansion of GK into some G ∈ ccfn(GK), n ≥ 0, terminates

in time triple exponential in ||K,Q|| if n is polynomial in ||K,Q||. If n is a constant

and Q and all of K except A is fixed, then it terminates in time polynomial in |A|.

Proof The claim follows from the bound on the size of G given in Corollary 4.3, together

with the following observations:

– Since the worst-case analysis of the size of G assumes that all possible successors

are generated for every node, the shrinking of the completion graph by merging

nodes can only lead to a smaller completion graph, and there is no additional effort

in the regeneration of successors w.r.t. the worst-case estimate.
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– Shrinking rules do not cause repeated rule applications, by merging some node into

another node that would later have to be regenerated. Indeed, a concept C ∈ L(v)

can fire a generating rule r for node v at most once. Even if a shrinking rule is

applied and a successor w of v is merged into a node w′, then w′ inherits the labels

and inequalities of w, as well as all its neighbours that are not variable successors

(which are removed by prune). This ensures that the conditions that triggered the

application of r for v are not met again, and thus the rule application that led to

the generation of w will not be repeated [24]. ut

Checking whether Q ↪→G can be easily done in time single exponential in the size

of Q. For G ∈ ccf(GK) and a query Q with n variables, the naive search space has

|nodes(G)|n many candidate assignments, and each one can be polynomially checked.

This is triple exponential in ||K,Q|| if |nodes(G)| is. On the other hand, Q ↪→G can be

tested in time polynomial in the size of G when Q is fixed. Therefore, we obtain the

following result.

Theorem 4.5 Given a SHIQ, SHOQ, or SHOI knowledge base K and a PQ Q in

which all roles are simple, deciding whether K |= Q is:

1. in coN3ExpTime w.r.t. combined complexity, for both unary and binary encoding

of number restrictions in K.

2. in coN2ExpTime w.r.t. combined complexity for a fixed Q if number restrictions

are encoded in unary.

3. in coNP w.r.t. data complexity.

Proof If K 6|= Q, then there is a completion graph G ∈ ccfnr(Q)(GK) such that Q 6↪→G.

By Proposition 4.4, this G can be obtained non-deterministically in time triple ex-

ponential in ‖K,Q‖. Furthermore, Q ↪→G can be checked by naive methods in time

triple exponential in ‖K,Q‖ as well. Therefore, non-entailment of Q is in N3ExpTime,

entailment in coN3ExpTime and item 1 holds.

Similarly, since m does not occur in the uppermost exponent of the bound in

Lemma 4.2, each G in ccfnr(Q)(GK) can be obtained in double exponential time when

the conditions of item 2 hold.

As for item 3, under data complexity nr(Q) is constant, since Q and all components

of K = 〈T ,R,A〉 except A are fixed. By Proposition 4.4, every G ∈ ccfnr(Q)(GK) can

be nondeterministically generated in polynomial time. Since deciding whether Q ↪→G
is polynomial in the size of G, K |= Q is in coNP. ut

We note that Q ↪→G can also be tested in time polynomial in the size of G when Q is

fixed, or when the expansion rules generate a completion graph whose size exponentially

dominates the query size. Other particular cases can be solved in polynomial time as

well. For example, when G is tree-shaped (i.e., the ABox is tree-shaped and there

are no arcs from variable to individual nodes), then the complexity of the mapping

corresponds to evaluating a conjunctive query over a tree-shaped database, which is

polynomial in certain cases [20].

4.3 Data Complexity

The upper bound for data complexity given in Theorem 4.5 is worst-case optimal.

In [16], coNP-hardness was proved for instance checking over ALE knowledge bases,
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and in [11] this result has been extended to even less expressive DLs, like AL. This

allows us to state the following main result.

Theorem 4.6 For KBs in any DL extending AL and contained in SHIQ, SHOQ,

or SHOI, answering positive existential queries in which all roles are simple is coNP-

complete w.r.t. data complexity.

This result provides an exact characterisation of the data complexity of PQs for

a wide range of description logics. An interesting observation is that once we allow

for universal quantification, which is a basic constructor of DLs, then many other

constructors can be added without affecting worst-case data complexity. Also, this

result provides the first tight upper bound for data complexity of SHOQ and SHOI
and extends two previous coNP-completeness results w.r.t. data complexity: (i) for

answering UCQs over ALCNR knowledge bases [33]. We extend this result to a query

language allowing for arbitrary use of conjunction and disjunction, as well as to DLs

including role hierarchies and some combinations of inverse roles and nominals. (ii) For

answering atomic queries in SHIQ [30]. This can be immediately extended to tree-

shaped CQs, as they admit a representation as a DL concept (e.g., by tuple-graphs

of [7], or via rolling up [25]). However, an extension to all PQs without transitive roles

remained open. We point out that [19] presented an algorithm for answering CQs with

transitive roles in SHIQ KBs that also yields a coNP upper bound.

4.4 Combined Complexity

Theorem 4.5 does not provide optimal upper bounds with respect to the combined com-

plexity of query answering. The main reason is that the tableaux algorithms in [26]

and [24], which we extended, are also not worst-case optimal. They are both non-

deterministically double exponential, while satisfiability of a knowledge base is Exp-

Time-complete for SHIQ [42] and NExpTime-complete for SHOIQ [41]. It is well

known that tableaux algorithms for expressive DLs often do not yield optimal complex-

ity bounds. However, they are easy to implement and amenable for optimisations [2].

Moreover, efficient reasoners implementing these algorithms are available [23, 21].

We want to point out that, in our algorithm, the witness of a blocked variable must

be its ancestor. We use these rather strict conditions for blocking in order to make

them similar to the conventional ones in DL tableaux, where it is usually required that

the blocking and the blocked variable are on the same path, see e.g., [26] and [24]. This

condition was relaxed in [36], resulting in an algorithm whose wort-case complexity

is exponentially lower than in [26]. We conjecture that a similar blocking with any

previous occurrence of an isomorphic n-tree could be used in our algorithm, without

affecting its soundness and completeness. With this relaxed condition, we would ob-

tain the same complexity upper bounds as those given in [33]. In fact, the absence of

the ‘blocking on the same path’ requirement is the actual reason why the combined

complexity bounds in [33] are exponentially lower than the ones we obtained. Our

algorithms may be further optimised following the ideas in [15].

It was recently shown in [35] that answering CQs is 2ExpTime-hard for all DLs con-

taining ALCI, and thus also for SHIQ and SHOI. As a consequence, the 2ExpTime

upper bound given in [13] for answering PQs in SHIQ is tight, and similarly the ones

given in [30, 19] for answering CQs in SHIQ, and the ones given in [7] for containment
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of CQs in DLR. In the light of these results, and considering the coN2ExpTime up-

per bound discussed above and the intrinsic non-determinism of tableaux algorithms,

it seems reasonable to conjecture that a 2ExpTime upper bound can be achieved for

SHOQ and SHOI. To our knowledge, the question remains open and this work pro-

vides the first upper bounds. We point out that decidability of CQs (with transitive

roles) in SHOQ has been shown [18], but we are not aware of any emerging com-

plexity results. As for SHOI, no other decision procedures seem to be available, even

for more restricted classes of queries. In any case, since CQ answering in SHOI is

already 2ExpTime-hard, the gap to our coN2ExpTime upper bound is rather small.

For SHOQ (in fact, for any logic containing ALC) ExpSpace-hardness of PQ answer-

ing was shown in [13], thus the gap is still not large. A quite significant gap remains

open for CQs, since only the ExpTime-hardness that follows from instance checking is

known.

5 Conclusion

We have studied answering positive existential queries (PQs) over knowledge bases in

the expressive DLs of the SH family, where we have focused on data complexity, i.e.,

measuring the complexity of query answering with respect to the size of the ABox while

the query and the other parts of the knowledge base are fixed. This setting is gaining

importance since DL knowledge bases are more and more used also for representing

data repositories, especially in the context of the Semantic Web and in Enterprise

Application Integration.

Generalising a technique presented in [33] for a DL which is far less expressive

than SHIQ, SHOQ, and SHOI, and combining it with the techniques from [24], we

have developed a novel tableaux-based algorithm for answering PQs without transitive

roles. The algorithm manages the technical challenges caused by the simultaneous

presence of inverse roles, number restrictions, and general knowledge bases, leading to

DLs without the finite model property. We have presented blocking conditions that

make it suitable for deciding query entailment. They are more involved than previous

blocking conditions in [24] and use the query size as a parameter. Query answering

itself is then accomplished by a technique that maps the query into completion graphs

of bounded depth, which are constructed using tableaux-style rules. The technique

provides a sound and complete algorithm for SHIQ, SHOQ, and SHOI, while for

SHOIQ only soundness is established.

For the three mentioned sublogics of SHOIQ, our algorithm is worst-case optimal

in data complexity, and allows us to characterise the data complexity of answering PQs

for a wide range of DLs, including very expressive ones. Namely, for each DL of the

SH family except SHOIQ, answering PQs without transitive roles is coNP-complete

with respect to data complexity. This narrows the gap between the known coNP lower

bound and the ExpTime upper bound for even weaker DLs, towards a negative answer

to the open issue whether the data complexity of expressive DLs will similarly increase

as their combined complexity.

We point out that our method can also be exploited for deciding containment

between PQs, i.e., given a knowledge base K and PQs Q1 and Q2, deciding whether

K |= Q1 implies that K |= Q2. As a simple consequence, we also obtain decidability

of the equivalence of positive queries Q1 and Q2 having only simple roles in SHIQ,
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SHOQ, and SHOI. This result can be exploited for query optimisation, and is to the

best of our knowledge the first result in this direction for PQs in expressive DLs.

In this paper, roles in queries must be simple (this was also assumed e.g., in [29]),

and a natural question is whether our results extend to queries with transitive roles.

Unfortunately, as discussed in [17], these roles impose major difficulties in establishing

a bound on the depth of completion graphs which need to be considered for answering

a given query. The extension of these modified-tableaux techniques to general CQs is

not apparent, and other techniques may be more adequate.

For example, the ‘rolling-up’ technique, which is related to the notion of tuple-

graph of [7] and reduces the query answering problem to verifying the unsatifiability

of a knowledge base, allowed the authors of [19] to obtain an algorithm for answering

arbitrary CQs in SHIQ. This technique was also exploited in [18] to provide an algo-

rithm for arbitrary CQs in SHOQ. Exploiting automata on infinite trees, an algorithm

for answering positive 2-way regular path queries in the DL ALCQIbreg was presented

in [13]. This is, to our knowledge, the most general algorithm for query answering in

DLs without nominals, and allows, e.g., to answer PQs in SRIQ, a generalization of

SHIQ closely related to the DL underlying OWL 2.

These techniques are both quite different from ours. The algorithms in [19] and [13]

yield optimal 2ExpTime upper bounds w.r.t. combined complexity, while only the

bound in [19] is known to be tight w.r.t. data complexity. Indeeed, we are not aware

of any other tight data complexity bounds for query answering in SHOQ and SHOI,

neither of other algorithms for SHOI. A terminating algorithm for query answering in

SHOIQ remains to be found, either tableaux-based using suitable blocking conditions,

or based on a different approach. It also remains to explore whether the proposed

technique can be applied to yet more expressive DLs, e.g., allowing reflexive-transitive

closure in the TBox (in the style of PDL), or to more expressive query languages.

However, including inequality atoms in CQs is infeasible; as follows from results in [7],

such queries are undecidable for every DL of the SH family.

Apart from the data complexity, also the combined complexity of query answering

in expressive DLs remains for further investigation, since no tight bounds are known

for SHOQ and SHOI. Finally, an interesting issue is whether other techniques may

be applied to derive results similar to ours. For instance, whether resolution-based

techniques as in [28, 30] or techniques based on tree automata can be fruitfully applied.

While the latter have already been successfully applied for answering PQs, allowing

also for atoms that are regular expressions over roles, in very expressive DLs [13], it

remains unclear how the contribution of the ABox may be singled out so as to establish

data complexity.
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Appendix

Claim 2 Let G ∈ GK , let J |=K G, and let r be any rule in Table 3.1 that is applicable

to G. Then, there exist a completion graph G′ obtainable from G by applying r and an

extended interpretation J ′ equal to J on nodes(G) such that J ′ |=K G′.

The proof of this claim is similar to the proof of completeness of the tableau al-

gorithm for SHOIQ, given in detail in [24]. Although the technical details are quite
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different, the underlying intuition is essentially the same. The main difference is that

the authors of [24] use a tableau T to represent an arbitrary model of the knowl-

edge base, and they “steer” the application of the expansion rules through this T . In

contrast, we follow an approach closer to [33] and look at completion graphs as a rep-

resentation of a set of models of the knowledge base, thus we do the steering directly

with a model. In [24], it was proved that there is a mapping π from the nodes of G
to the elements of T , satisfying certain conditions, which can be extended after each

rule application. The conditions imposed on π are closely related to those for a model

of a completion graph. Here we prove that the interpretation J can be extended and

modelhood is preserved after each rule application, similarly as this was proved for π.

Proof To prove Claim 2, we consider the different cases for an expansion rule r from

Table 3.1. First we consider the cases where r is a deterministic, non-generating rule.

There is only one completion graph G′ which can be obtained from G by applying r,

and the models of G are exactly the models of G′. If r is the u-rule, there is some node

v in G s.t. C1uC2 ∈ L(v). Since J |=K G, we have vJ ∈ (C1uC2)J . By the definition

of interpretation, both vJ ∈ CJ1 and vJ ∈ CJ2 hold. The inequality relation and all

labels in G′ are exactly as in G, the only change is that {C1, C2} ⊆ L(v) in G′, so

J |=K G′.
The cases of the ∀-rule and the ∀+-rule, are similar to the u-rule. The labels of all

nodes in G are preserved in G′, except for the node w to which the rule was applied,

and we have in G′ either C ⊆ L(w) or ∀R′.C ⊆ L(w) respectively. In the former case,

since J |= K, vJ ∈ (∀R.C)J , and w is an R-neighbour of v, it follows that wJ ∈ CJ .

In the latter case, vJ ∈ (∀R.C)J and w and R′-neighbour of v for some R′ v∗ R,

Trans(R′), imply that wJ ∈ (∀R′.C)J . Thus J |=K G′ in both cases.

For the non-deterministic, non-generating rules, there are two different completion

graphs G′ that can be obtained after the rule application, and J |=K G′ for at least

one of them, so we can choose to apply the rule in a way that such a G′ is obtained.

In particular, if r is the t-rule, there is some node v in G with C1 t C2 ∈ L(v). For

every J such that J |=K G we have vJ ∈ (C1 tC2)J . By definition, either vJ ∈ CJ1
or vJ ∈ CJ2 holds. If the former holds, we can apply r in such a way that we obtain

a G′ with {C1} ⊆ L(v). If the latter holds, we can obtain a G′ with {C2} ⊆ L(v). In

both cases, J |=K G′ and the claim holds.

The proof for the choose rule is easy. Since either vJ ∈ CJ or vJ ∈ ¬CJ holds

for every v, C, and J , we can choose to apply r in such a way that we obtain a G′
with {C} ⊆ L(v) if the former, or a G′ with {NNF (¬C)} ⊆ L(v) if the latter, so that

J |=K G′.
Now we show that if a shrinking rule r is applicable to G and J |=K G, then there

are two nodes v, v′ in G such that vJ = v′J . Thus the new G′ can be obtained by

merging these nodes and J |=K G′. When the ≤-rule is applicable to a node v in G,

there is some concept ≤ nS.C ∈ L(v) such that v has S-neighbours w1, . . . , wn, wn+1

labelled with C. As J |=K G, it follows vJ ∈ (≤ nS.C)J , which implies that there are

at most o1, . . . , on elements in ∆J such that 〈vJ , oi〉 ∈ SJ and oi ∈ CJ . Thus v has

S-neighbours wi and wj , i 6= j, which are instances of C such that wJi = wJj . Hence

J |=K G′, where G′ is obtained from G by merging wi into wj .

The o-rule is applicable if {o} ∈ L(v)∩L(v′) for some nominal {o} and two nodes v

and v′. Since J |=K G, we have vJ ∈ {o}J and v′J ∈ {o}J , but since {o}J = {oJ },
we have vJ = v′J = oJ . This ensures one can be merged into the other to obtain G′,
and J |=K G′.
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If the ≤o-rule is applicable to a node v in G, then ≤ mS.C ∈ L(v) for some m.

As J |=K G by assumption, there are only m′ ≤ m elements o1, . . . , om′ in ∆J

such that 〈vJ , oi〉 ∈ SJ and oi ∈ CJ . Furthermore, since v has m S-neighbours

w1, . . . , wm ∈ in(G) with C ∈ L(wi) and wi 6≈ wj for all 1 ≤ j < i ≤ m, every oj must

be such that wJi = oj for some wi. Since 〈vJ , v′J 〉 ∈ SJ and v′J ∈ CJ for any v′

that satisfies the conditions of the rule, v′J = oj for some oj , which implies that there

is some wi such that wJi = v′J . Thus we can merge v′ into wi to obtain a G′ such that

J |=K G′.
Next, we consider the generating rules. If r is the ∃-rule, since the propagation rule

is applicable, there is some v in G such that ∃R.C ∈ L(v). Hence, some o ∈ ∆J exists

such that 〈vJ , o〉 ∈ RJ and o ∈ CJ . A completion graph G′ can be obtained by adding

a new node w to G. J will be modified to J ′ by setting wJ
′

= o, and thus J ′ |=K G′.
The case of the ≥-rule is analogous to the ∃-rule: if J |=K G and ≥ nS.C ∈ L(v),

there are m elements, o1, . . . , om ∈ ∆J , m ≥ n, such that 〈vJ , oi〉 ∈ RJ and oi ∈ CJ
for each oi. To obtain G′, we add new nodes w1, . . . , wn to G, set the labels of each

wi and each v→wi as required, and introduce new inequalities wi 6≈ wj to G for each

pair i 6= j. By setting wJ
′

i = oi for 1 ≤ i ≤ n, J ′ |=K G′ is ensured.

Finally, the o?-rule is only applicable to v if ≤ nS.C ∈ L(v). As J |=K G by

assumption, there is some m ≤ n such that there are exactly m elements o1, . . . , om
in ∆J with 〈vJ , oi〉 ∈ SJ and oi ∈ CJ . We can guess this m and create m nominal

S-successors w1, . . . , wm of v with C ∈ L(wi) and wi 6≈ wj for all 1 ≤ j < i ≤ m to

obtain G′. By setting wJ
′

i = oj for each i, we ensure that J ′ |=K G′ as desired. ut

Claim 3 If 〈π(x), π(y)〉 ∈ E(R′), then µ(y) is an R′-neighbour of µ(x).

Proof By the definition of E(R′) and of R′-step, if 〈π(x), π(y)〉 ∈ E(R′) then either:

(i) tail′(π(y)) is an R′-successor of tail(π(x)), or (ii) tail′(π(x)) is an Inv(R′)-successor

of tail(π(y)).

We prove that (i) implies that µ(y) is an R′-successor of µ(x). Analogously, (ii)

implies that µ(x) is an Inv(R′)-successor of µ(y). Together, these two facts complete

the proof of the claim. We consider three cases:

1) π(x) = [aa ] ∈ in(Gπ): then µ(x) = tail′(π(x)) = tail(π(x)) = a. If tail′(π(y)) is an

R′-successor of tail(π(x)) = a, then tail′(π(y)) is an R′-successor of an individual

node. This implies that either tail′(π(y)) is also an individual node; or it is a variable

node that is not n-blocked and π(y) is in some Gi with afterblocked(Gi) = ∅. In

both cases µ(y) = tail′(π(y)) = tail(π(y)) holds and thus µ(y) is an R′-successor of

µ(x).

2) π(y) = [aa ] ∈ in(Gπ): then µ(y) = tail′(π(y)) = tail(π(y)) = a. By construction

of π(x), either tail(π(x)) = tail′(π(x)) or tail(π(x)) = ψ(tail′(π(x))). The claim

thus holds if µ(x) = tail(π(x)). Suppose this is not the case. Then there are two

possibilities.

2a) µ(x) = tail′(π(x)), tail′(π(x)) 6= tail(π(y)) and tail(π(x)) = ψ(tail′(π(x))).

In this case, tail′(π(x)) is a leaf of a blocked n-graph, and it is blocked by

tail(π(x)) = ψ(tail′(π(x))). Since µ(y) = a is an R′-successor of tail(π(x)) =

ψ(tail′(π(x))), we have that ψ−1(a) is an R′-successor of tail′(π(x)). Since

ψ−1(a) = a (recall that nominals occur in at most one node label, thus an

individual node can only be isomorphic to itself), we have that a = µ(y) is an

R′-successor of tail′(π(x)) = µ(x) as desired.
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2b) µ(x) = ψ(tail′(π(x))), ψ(tail′(π(x))) 6= tail(π(y)) and tail(π(x)) = tail′(π(x)).

Then π(x) is a node of some Gi with afterblocked(Gi) 6= ∅, and π(x) 6∈
afterblocked(Gi). Also in this case, tail′(π(x)) is blocked by ψ(tail′(π(x))). Thus,

µ(y) = a an R′-successor of tail(π(x)) = tail′(π(x)) implies that ψ(a) is an

R′-successor of ψ(tail′(π(x))). As ψ(a) = a, we have that a = µ(y) is an R′-
successor of ψ(tail′(π(x))) = µ(x) and the claim holds.

3) If π(x), π(y) 6∈ in(Gπ), then π(x) and π(y) are nodes of some Gi.

First, suppose that afterblocked(Gi) = ∅. Then µ(x) = tail′(π(x)). Since π(y) is an

R′-step of π(x), we have tail′(π(x)) = tail(π(x)) (otherwise π(y) ∈ afterblocked(Gi)

would follow, contradicting afterblocked(Gi) = ∅). Clearly, if tail′(π(y)) is an

R′-successor of tail(π(x)), then µ(y) = tail′(π(y)) is an R′-successor of µ(x) =

tail′(π(x)) = tail(π(x)).

Now we assume afterblocked(Gi) 6= ∅. We can further distinguish the following cases:

3a) {π(x), π(y)} ⊆ afterblocked(Gi).

In this case, by definition, µ(x) = tail′(π(x)) and µ(y) = tail′(π(y)). Note that,

by the definition of n-blocking, if there is some p with tail(p) 6= tail′(p) and some

p′ which is a descendant of p, then tail(p′) 6= tail′(p′) can only hold if the distance

between p and p′ is greater than n. As a consequence, and since the path length of

Gi is bounded by n, tail(p) = tail′(p) holds for each p ∈ afterblocked(Gi). Clearly,

if tail′(π(y)) is an R′-successor of tail(π(x)), we have that µ(y) = tail′(π(y)) is

an R′-successor of µ(x) = tail′(π(x)) = tail(π(x)) as desired.

3b) π(x) 6∈ afterblocked(Gi) and π(y) ∈ afterblocked(Gi).

In this case µ(x) = ψ(tail′(π(x))) and µ(y) = tail′(π(y)). It is also easy to see

that π(x) ∈ blockedLeaves(Gi), thus tail(π(x)) 6= tail′(π(x)) and tail(π(x)) =

ψ(tail′(π(x))). Hence if tail′(π(y)) is an R′-successor of tail(π(x)), then µ(y) =

tail′(π(y)) is an R′-successor of µ(x) = ψ(tail′(π(x))).

3c) {π(x), π(y)} ∩ afterblocked(Gi) = ∅.
By definition, µ(x) = ψ(tail′(π(x))) and µ(y) = ψ(tail′(π(y))) hold. We can

also verify that tail(π(x)) = tail′(π(x)), as otherwise π(y) ∈ afterblocked(Gi)

would hold. By the definition of n-graph equivalence, if tail′(π(y)) is an R′-
successor of tail(π(x)) = tail′(π(x)), then µ(y) = ψ(tail′(π(y))) is an R′-successor

of µ(x) = ψ(tail′(π(x))) as desired.

Note that the case π(y) 6∈ afterblocked(Gi) and π(x) ∈ afterblocked(Gi) is not

possible. This proves the claim. ut


