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Abstract. This work studies the extension of teeistential entailment algorithm
of CARIN to DLs of theSH family. The CaRIN family of knowledge representa-
tion languages was one of the first hybrid languages conmpiDiTALOG rules
and Description Logics. For reasoning in one of its promingamiants, which
combinesALCNR with non-recursive BTALOG, the blocking conditions of
the standard tableaux procedure $4CAN 'R were modified. Here we discuss
a similar adaptation to th6 HOZ Q tableaux, which provides some new decid-
ability results and tight data complexity bounds for redsgrin non-recursive
CARIN, as well as for query answering over Description Logic krenlgle bases.

1 Introduction

Description Logics (DLs) are specifically designed for esanting structured knowl-
edge in terms of concepts (i.e., classes of objects) and (oée, binary relationships
between classes). In the last years, they have evolved istaralard formalism for
ontologies which describe a domain of interest in differ@mplications areas. In the
context of the Semantic Web, DL-based ontologies have besiguiated via the Web
Ontology Language (OWL) as a standard for describing theaséins of complex Web
resources, in order to facilitate access by automated sgeriven by the need to over-
come limitations of DLs and to integrate them into applicas, recent research focuses
on combining DLs with other declarative knowledge représon formalisms, and in
particular with rule-based languages, which play a dontirea in Databases (as query
languages) and in Artificial Intelligence [3,8,15,19].

One of the first suchybrid languagesCARIN [15], integrates BTALOG programs
with some DLs of theA£C family, being ACCN'R (the basic DLALC with number
restrictions and role intersection) the most expressibe. limited decidability of hy-
brid languages was recognised already with the introdnafoCARIN, as even very
weak DLs yield an undecidable formalism when combined wéttursive ATALOG.
Three alternatives were proposed to regain decidabilityhé DL constructors causing
undecidability are disallowedii] only non-recursive rules are allowed; dir)the vari-
able occurrences in the DL atoms appearing in rules ardatestraccording to some
safety conditionghat limit their ability to relate unnamed individuals.

In this work, we enhance ARIN with a more expressive DL component and focus
on its non-recursive variant (safe rules are briefly disedss Section 4). We consider
the popular DLs of theSH family, which extend4£C with role transitivity and con-
tainment. The most expressive DL here consideféd(Z Q (which essentially corre-
sponds to OWL-DL), also supports concepts denoting a singdigidual callednomi-
nals(O), inverse roles®), and qualified number restrictiong®). By disallowing one of
these three constructs, we obtain the expressive and ryuiln@dmparable sublogics
known asSHZ Q (corresponding to OWL-Lite)$HOQ, andSHOZ respectively.



For reasoning in non-recursiveagIN, the authors of [15] identified thexisten-
tial entailment problermas a key task and proposed an algorithm for it, based on a
tableau (there namexbnstraint systejralgorithm for satisfiability ofALCN R knowl-
edge bases with modified blocking conditions. In this wagythlso obtained the first
algorithm for answering Conjunctive Queries (CQs) and drabConjunctive Queries
(UCQs) in DLs and for deciding their containment, problehe thave become a cen-
tral topic of interest in recent years. Another central dbaotion of CARIN was to
show a tightcoNP upper bound for the aforementioned tasks urnld¢a complexity
i.e., w.r.t. to the size of the data, assuming that the quée/tomponent and the ter-
minological part of the knowledge base are fixed. This sgisnof major importance,
as data repositories can be very large and are usually mrgdr ldnan the terminology
expressing constraints on the data.

In [17] the tableaux algorithm for decidingHOZ Q knowledge base satisfiability
of [11] was adapted following the ideas introduced in [16]ptovide an algorithm for
the entailment and containment of positive queries inSié& family of DLs. In this
paper we show how this algorithm, analogous t®RO\’s existential entailment one,
can be exploited for reasoning in non-recursiveRON and in other hybrid languages.
Like [17], the results have two limitations: transitive eslare not allowed in the rule
component, and the interaction between number restrigtioerses and nominals in
SHOZQ may lead to non-termination. However, reasoning is souddamplete if the
DL component of the hybrid knowledge base is writteiSIHZ Q, SHOQ or SHOZ,
and sound if it is INSHOZ Q. We obtain a precise characterisation of the data com-
plexity of reasoning whenever theADALOG component is non-recursive, and for some
cases where it is recursive, e.g., if it satisfies the weaktgabnditions ofDL+log.

2 Preliminaries

In this section, we define ARIN knowledge bases. The languages that are used in the
two components are defined first: DL knowledge bases axth Db G programs.
Throughout the paper, we consider a fixed alphabet contathia following pair-
wise disjoint countably infinite sets: a $6tof DL predicates of arityl, calledconcept
namesa setR of DL predicates of arity2, calledrole nameswith a subseR ; C R of
transitive role namesan alphabeP of rule predicateswhere eachy € P has an asso-
ciated aritym > 0; a sefl of individuals and a seV of variables This alphabetis used
for defining knowledge bases, whose semantics is given Isy-(fider) interpretations.

Definition 1 (Interpretation). AninterpretatiorZ = (A%, ) is given by a non-empty
domainA? and aninterpretation function” that maps each predicajec PUCUR
of arity n to a subset of AZ)", and each individual ifl to an element of\Z.

2.1 Description Logics
The DLSHOZQ and its sublogic§ HZQ, SHOQ andSHOZ are defined as usul.

Definition 2 (SHOZQ Knowledge Bases)A role expressio? (or simplyrole) is a
role nameP € R or its inverseP~. Arole inclusion axionis an expressiol C R/,
whereR and R’ are roles. Arole hierarchyR is a set of role inclusion axioms.

! For the sake of uniformity, we use the naig(OZ instead of the also commaHZO.



As usuallnv(R) = P~ if R = P for someP € R andInv(R) = Pif R = P~.
For a role hierarchyR, the relationC;, denotes the reflexive, transitive closurefof
overR U {Inv(R) C Inv(R') | RC R’ € R}. We writeTrans(R, R) if R Cj R’ and
R T RforsomeR' € Ry U{R™ | R € Ri}. AroleS is simplew.rt. R if for no
role R with Trans(R, R) we have thai? T, S.

Leta,b € I be individuals,A € C a concept name&;’ andC’ conceptsP € R
a role name,R a role, S a simple role, andr» > 0 an integer. Concepts are defined
inductively according to the following syntax:

C,0' — Al{a}|CNC"|CUC"|-C|VR.C|IRC|>nS.C|<nS.C
Concepts of the fornfa} are callednominals A concept inclusion axions an ex-
pressionC' C D. An assertionis an expressiom(a), P(a,b) or a % b. A TBox is
a finite set of concept inclusion axioms, andARox is a finite set of assertions. A
(SHOZIQ) knowledge basékB) is a triple K = (T, R, A), whereT is a TBox,R is
arole hierarchy, and4 is an ABoxX

Definition 3 (SHOQ, SHZQ, and SHOZ Knowledge Bases)Roles and concepts in
SHOQ, SHIQ, andSHOZ are defined as i’ HOZQ, except that

— in SHOQ, the inverse role constructd?~ is not available;

— in SHZQ, nominals{a} are not available;

— in SHOZ, number restrictions> n S.C', < n S.C are not available,
For £ one of SHOQ, SHZQ, or SHOZ, an L knowledge bases a SHOZQ knowl-
edge basd(=(7, R, .A) such that all roles and concepts occurring in it aredn

Definition 4 (Semantics of DL KBs).LetZ = (AZ,.Z) be an interpretation such
that RZ = (RZ)* for eachR € R.. To interpretK, the interpretation function is
inductively extended to complex concepts and roles asafsilo

(ﬂC)I:AI \CI (HR.C)I: {z| Jy.({z,y) € RInye C’I}
(cnbD)YX=c*nD* (VR.C)F ={z | Vy.(z,y) € RT — y € C*}
(CuD)yf=c*uD* (nRCOY={z|{y| (z,y) € RF Ay e CT}| <n}

(P ={(y,2) | (z,y) € P*} (2nRC)" ={z|{y| (z,y) € R* Ay e C"}| > n}
7T satisfiesan assertiony, denoted. = a, if « = A(a) impliesa? € A%, a = P(a,b)
implies (aZ,b?) € PT anda = a#b impliesa® # b?; T satisfies a role inclusion
axiomR C R’ if R C R'*, and a concept inclusion axiod T C’, if C* C C'Z.
7 satisfies a role hierarcty anda terminology7, if it satisfies every axiom @2 and
T respectively. Furthermord, satisfies an ABox4, if it satisfies every assertion iA.
Finally, Z is amodelof K = (T, R, A), denotedl = K, if it satisfiesT, R, and.A.

2.2 DatALOG
We now define BTALOG programs and their semantics, also given by interpretafion

Definition 5 (DATALOG rules and DATALOG programs). A (rule/DL) atomis an ex-
pressionp(T), wherep is a (rule/DL) predicate, and is a tuple fromV UT of the same
arity asp. If 7 C I, thenp(Z) is ground

2 Note that only concepts and role names may occut,ibut this is no limitation. Indeed, for a
complexC, an assertioi@'(a) can be expressed by.(a) and an axiomd. C C'in 7, while
an assertiolR ™ (z, y) can be replaced by (R)(a,b).

% Note that we consider first-order semantics, without theinmétity requirement.



A DATALOG rule is an expression of the forg(T) : — p1(77), - - - , Pn () Where
n > 0, ¢(T) is a rule atom, eachy;(7;) is an atom, and N’V C g7 U ... UYy,. As
usual,q(z) is called theheadof the rule, and: (77), - - . , pn(Tn) is called thebody. A
rule withn = 0 is called afactand can be written simply(Z).

A DATALOG programP is a set of DATALOG rules. Itsdependency grapis the
directed graph whose nodes are the predicatescurring in? with an edgey — p/ if
p’ occurs in the head angin the body of a rule ifP. P is recursiveif its dependency
graph contains some cycle, andn-recursivetherwise.

Definition 6 (Semantics of A\TALOG Programs). An interpretationZ satisfies a
ground atomp(a), written Z = p(a), if (@)? € p’. A substitutionis a mapping
o: VUI — AT with o(a) = o for everya € I. For an atomp(Z) and a substi-
tution o, we say that makesp(T) true inZ, in symbolsZ, o |= p(T), if Z = p(o(T)).
We say thaf satisfies a rule, denotedZ |~ r, if every substitution that makes all the
atoms in the body true also makes the atom in the head tr@eHfr for eachr € P,
thenZ is a model ofP, in symbol< = P.

2.3 CARIN Knowledge Bases
Now we define the ERIN language. In what follows; denotes a DL of th&H family.

Definition 7 (CARIN knowledge bases)A CARIN-L knowledge basks a tuple( K, P)
where K is an £ knowledge base, called tfizl. componenof K, and P is a DATA-
LOG program, called itsule (or DATALOG) componentA CARIN-L knowledge base
is (non-)recursive if its rule componeRtis (non-)recursive.

Note that only rule predicates can occur in the head of rule8.drhis is a common

feature of many hybrid languages that assume that the DL latlye base provides

a commonly shared conceptualisation of a domain, while titee component defines

application-specific relations that can not change thesira of this conceptual model.
The semantics of 8rRIN KBs arises naturally from the semantics of its components.

As in the original @Q\RIN, we define as main reasoning task the entailment of a ground

atom, which may be either a DL assertion or afBLOG ground fact.

Definition 8 (CARIN-L entailment problem). An interpretationZ is a model of a
CARIN-L knowledge bas& = (K, P), insymbolsZ = K,ifZ = K andZ | P.
For a ground aton, £ = « denotes thaf = K impliesZ = « for everyZ. The
CARIN-L entailment problenis to decide, giverlC anda, whetherk = a.

We note that the standard DL reasoning tasks (e.g., KB densig and subsumption)
are reducible to entailment inARIN, as the latter generalises instance checking.

3 Reasoning in non-recursive GRIN

In this section, we provide an algorithm for reasoning in-necursive @QRIN. The key
to the decidability in this variant of &RIN is the limited interaction between the DL and
rule predicates. Indeed, if we have a non-recursixedDoG prograniP and we want to
verify entailment of an atom(@), it is sufficient to consider the rules fd whose head
predicate i and unfold them into a set of rules where op{¥#) occurs in the head, and



the bodies contain only DL atoms and ground facts. Thel®-£ entailment problem
with such a restricted rule component is then reducibleg¢@iitailment of UCQs.

The query entailmengor informally, query answering) problem is DLs has gained
much attention in recent times. Many papers have studiegnblelem of answering
CQs and UCQs over DL knowledge bases, e.g., [1,5,6,14,28]ctMsider the more
expressive language of positive existential queries.

3.1 Non-recursive GRIN and Query Entailment
We introducepositive (existential) querig®Qs), which generalise CQs and UCBs.

Definition 9 (Positive Queries, Query Entailment) A positive (existential) quer{PQ)
over a KBK is a formuladz.¢(x), whereZ is a vector of variables frorvV and () is
built usingA andV from DL atoms whose variables arein|f ©() is a conjunction of
atoms therdz.p(T) is a conjunctive queryCQ); if (Z) is in disjunctive normal form
then it is aunion of conjunctive querigdJCQ).

Let@ = 37.¢(Z) be a PQ over and letZ be an interpretation. For a substitution
o, letQ? be the Boolean expression obtained frerby replacing each atorm with T
if Z,0 = «, and with L otherwise. We calk a match forZ and@, denoted’, o = @,
if Q7 evaluates tor. 7 is a model ofQ, writtenZ = Q, if Z, 0 = @ for someo.

We say thatk” entails@, denotedkK’ | Q, if Z | Q for each mode¥ of K. The
query entailment probleris to decide, giverd and@, whetherK = Q.

Note that a PQ can be rewritten into an equivalent, possippeentially larger, UCQ.
The UCQ (and thus PQ) entailment problem angRG:I entailment problem are
closely related. In fact, we can reduce the former to thelats follows:

Proposition 1. Let K be aSHOZ Q knowledge base and |6} = Jz.p1(Z7) V... V

on(Trn) be a UCQ ovelK. Thenk = Q iff (K,P) | ¢, whereq € P is fresh,P is

the DATALOG program containing the ruleg: — ¢ (z;) for eachl < i < n, and each
v (7;) is obtained fromp; (Z;) by replacing each connectiveby a comma.

We show next that the converse also holds, i.e., thei8-SHOZ Q entailment prob-
lem can be reduced to query entailment over the DL comporena consequence,
whenever we have a procedure for deciding query entailmentbtain a sound and
complete algorithm for reasoning in non-recursiveRON.

Definition 10 (Rule unfolding and program depth). Given twoDATALOG rules:
r=q @) - pi D) pa@R), and o =qa(TE) - D5 (W) Pl (),
whereg, = p; for somel < i < n, letf be the most general unifier of andy;. Then
the following ruler’ is anunfolding ofrs in ry:

q1(071) 1= p1(071), - - -, pi—1(09i=1), D1 (0Y1), - -+, D1 (01, ), Dik 1 (0Fi51), - - -Pr(OFm)-
Thewidth of a ruler, denotedvidth(r), is the number of atoms in its body. Tdhepthof
anon-recursivédATALOG programP, writtendepth(P), isw + 1, wherew is the width
of the longest rule that can be obtained from some rul® ioy repeatedly unfolding in
it other rules ofP, until no more unfoldings can be applied Af=(}, width(r) =1.

4 We consider Boolean queries, to which non-Boolean ones eaaduced as usual, and disre-
gard the difference between the equivalent query entatliaueth query answering problems.



Note thatdepth(P) is finite and can be effectively computed,/ss non-recursive.

Definition 11 (Unfolding). Theunfoldingof a non-recursiv®ATALOG program?P for

a ground rule atonp(@) is the prograniP, ) obtained as follows:

(1) LetP; denote the set of rules iR where the head is of the forp(z) and there
is a unifier of ofa andz. P, is the set of rulep(6T) : — ¢1 (077), - - ., ¢ (07,) Where
p(T):—q1(71), - - -, qn(TUn) € P1 and@ is the most general unifier afandz.

(2) For aruler, letrp denote the set of unfoldingsirof a rule fromP (note that it may
be empty). Apply exhaustively the following rule: & P, and the body of contains a
rule atoma such that ¢ P, replacer by rp in P,. The resulting program i®,, ).

Every model ofP is also a model 0P, ). Intuitively, P, captures the part d? that
is relevant for the entailment @f@). Each rule irP,, ) hasp(a) as head, and its body
contains only DL atoms and ground facts frémwhich are true in every model &1.
Due to this restricted forn?, ) can easily be transformed into an equivalent UCQ.

Definition 12 (Query for a ground atom). Thequery for a ground atom w.r.t. a non-
recursive XTALOG programP, denoted/p ,, is the UCQ defined as follows:

- If ais a DL atom, the/p ,, = a.

- OtherwiseUp o =37.Q1V ... VQm, Wherer. . ., are the rules of,, eachQ);is the
conjunction of the DL atoms in the body:gf andZ contains the variables of eah;.

Note that if a rule atonax occurs as a fact i, it also occurs as a fact iR, andUp ,
is trivially true (since it has an empty disjunct which is alys true). IfP, =) then
Up . is always false; this is the case, e.gqifloes not unify with the head of any rule.

Proposition 2. Let K = (K, P) be a non-recursiv€ARIN-SHOZ Q knowledge base
and leta be a ground atom. Thell |= « iff K = Up 4.

3.2 A Tableaux Algorithm for Query Entailment

We have shown that the non-recursivaIN-SHOZQ entailment problem can be
reduced to the entailment of a PQ (in fact, a UCQ sufficeshimgection, we describe
the algorithm given in [17] to solve the latter for t5¢{ family DLs. Provided that the
guery contains only simple roles, it is sound and completeStHOQ, SHZ Q, and
SHOLZ; for SHOZQ it is sound, but termination remains open.

The algorithm is an extension of the one in [15] for théstential entailment prob-
lem which informally speaking, simultaneously captures UG@#ment and CQ/UCQ
containment (i.e., given a CQ; and a UCQQ)-, decide whethe/ = @, implies
K = Q2). We present it as a query entailment algorithm: this susffce reasoning
in non-recursive @RIN and the generalisation to containment is trivial. A firstegxt
sion to CQs inSHZ Q was presented in [18]. Here we recall the extension to PQs in
SHOZQ of [17], where the reader may find detailed definitions, psaofd examples.

We build on [11] and useompletion graphsfinite relational structures that rep-
resent models of &HZ Q knowledge basé(. After an initial completion grapldx
for K is built, new completion graphs are generated by repeatgailyingexpansion
rules Every model ofK is represented in some completion graph that results frem th
expansion, thu&’ = @ can be decided by considering a suitable set of such graphs.



In what follows,K=(T, R, A) denotes &HOZ Q knowledge base; the set of roles
occurring in K and their inverses is denotd®x. A denotes a concept namg, £
denote concepts?, R’ denote roles; and, b denote individuals.

A completion grapl§ for K comprises a finite labelled directed graph whose nodes
nodes(G) are labelled by concepts and whose anes(G) are labelled by roles. The
nodes innodes(G) are of two kindsindividual nodesandvariable nodesThe label
of each individual node contains some nomifia} indicating that the node stands for
the individuala € I. A variable node contains no nominal concepts and represemt
or more unnamed individuals whose existence is implied leykimowledge base. An
additional binary relation is used to store explicit ineliiiess between the nodes ¢f

In a completion graply, each arw — w is labelled with a se (v — w) of roles
from R and each node is labelled with a sef(v) of ‘relevant’ concepts. The set
of all the relevant concepts is denoted diys(K') and contains the standard concept
closure of-C' U D for each axiomC' C D in the knowledge bas& (closed under
subconcepts and their negations) and some additional ptmitet may be introduced
by the rules (e.g., to correctly ensure the propagationefithiversal restrictions, con-
cepts of the fornVR’.D for someVR.D € clos(K) and R’ a transitive subroles a®
are used, so they are also included in the closure).

The usual relations between the nodes in a completion gfaale defined as in
[11,17]: if v = w € arcs(G), thenw is asuccessopf v andv a predecessoof w. The
transitive closures of successor and predecessararestorand descendantespec-
tively. If R’ € L(v— w) for some roleR’ with R’ C* R, thenw is an R-successopf
v. We callw an R-neighbourof v, if w is an R-successoof v, or if v is anlnv(R)-
successoof w. Thedistancebetween two nodes if is defined in the natural way.

Theinitial completion graphGx for K contains a node labelled£(a) = {{a}} U
{-CUuD|CCDeT}U{-CUD|CEDeT,} for each individuak in K, where
Ta={{a}CA|A(a) € A} U{{a} EIP.{b} | P(a,b) € Ay U{{a}C—{b} |a #be€
A} is a set of concept inclusion axioms representing the asseiin.A.

We applyexpansion ruleso the initial G and obtain new completion graphs. The
rules may introduce new variable nodes, but they are alwaysessors of exactly one
existing node. Hence the variable nodes form a set of treghtive individual nodes
as roots. Some of these variable nodes may have an individdalas a successor, thus
a tree can have a path ending with an arc to an individual node.

Blocking conditions are given to ensure that the expandiopssafter sufficiently
many steps. They are inspired by [15], but adapted to these expressive logics, and
depend on a depth parameter 0, generalising the non-parametrised blocking of [11].
This blocking is the crucial difference between our aldoritand [11]. According to the
blocking conditions of [11], the expansion of a completioaghG terminates when
a nodev with a predecessar is reached such that there is some ancestaf « that
has in turn a successofsuch that the pair&:’, v') and(u, v) have the same node-arc-
node labels, i.e., when a pair of nodes that is isomorphicgcesiously existing one
appears irg. This pairwise blockingcondition ensures that the expansion stops when
G already represents a model/of If the knowledge base is satisfiable, then there is a
way to non-deterministically apply the expansion rulesluhis blocking occurs, and
a completion graph that represents a model of the knowledge is obtained.



Since we want to decide query entailment, this is not enowgtneed to obtain a
set of models that suffices to check query entailment. Ourifieddblocking ensures
that a completion graph is blocked only if it represents ao$@hodels that are indis-
tinguishable by the query. Instead of halting the expansiben a previously occurred
pair of nodes appears, we stop when a repeated instancerefyaaph occurs, where
then-graph of a node is a tree of variable nodes of depth at masboted atv, plus
arcs to the individual nodes that are direct successors ofla im this tree. We now de-
fine formally this modified blocking. The next definition ishaically quite involved.
It is taken from [17], where more explanations and some eXasrgan be found.

Definition 13 (n-graph blocking). Given an integern > 0 and a completion graph
G, let vn(G) denote the set of variable nodes ¢h The blockablen-graph of node
v € vn(G) is the subgraplg™" of G that containsv and (i) every descendant €
vn(G) of v within distancen, and (ii) every successar’ € in(G) of each suchw.
If w has inG™" no successors fromn(G), we callw a leaf of G™". Nodesuv, v’ of
G are n-graph equivalent via a bijectiop from nodes(G™") to nodes(gw/) if (1)
Y(v) = v'; (2) for everyw € nodes(G™?), L(w) = L(Y(w)); (3) arcs(G™) =
{Y(w) =YW’ | w—w € arcs(G™")}; and (4) for everyw —w’ € arcs(G™")
Llw—w') = L@ (w) —(w)).

Letv, v’ € vn(G) ben-graph equivalent viab, where bothy andv’ have predeces-
sors invn(G), v’ is an ancestor of in G, andv is not inG™*". If v’ reachesv on a
path containing only nodes ¥n(G), thenv’ is an-witness ofv in G via . Moreover,
Gn" graph-blocksg™" via v, and eachw € nodes(G™"") graph-blocks via) the
nodey ! (w) in G™.

Lett be a bijection between two subgrapf§ G of G such thatG’ graph-blocks
G via . A nodev € nodes(G) is n-blocked if v € vn(G) andwv is either directly or
indirectly n-blocked;wv is indirectly n-blocked if one of its ancestors igs-blocked;w
is directly n-blockediff none of its ancestors is-blocked andv is a leaf ofG; in this
case we say thatis (directly) n-blocked by (v). An R-neighbourw of a nodev in G
is n-safeif v € vn(G) or if w is notn-blocked.

Note thatv is m-blocked for eachn <n if it is n-blocked. When > 1, then
n-blocking implies pairwise blocking.

The expansion rules are analogous to the ones in [11], wbhéreked’ is replaced
by ‘n-blocked’ and‘'safe’ is replaced by.*safe’. Due to space restrictions, we can not
present the expansion rules here, but they can be foundjn [17

A clashin a completion graply is an explicit contradiction (e.d.4, A} C L(v)
for some node), and it indicates thaf represents an empty set of models and thus the
expansion can stop. § does not contain a clash it is callethsh-free If G contains a
clash or no more rules are applicable to it, then we say tlimhicomplete We denote
by Gk the set of completion graphs that can be obtained from thialigi; via the
expansion rules, and lyf,, (G k) the ones that are-complete and clash free.

We view each graph it x as a representation of a (possibly infinite) set of models
of K. Intuitively, the models ofK" are all the relational structures containiggthat
satisfy the constraints given by andR. Each completion grapfi contains the initial
A and additional constraints, implicit th andR, that were explicated by applying the



rules. When there is more than one way to apply a rule to a gfafehg. in thell-rule
eitherC; or C» can be added), the models represented aye ‘partitioned’ into the
sets of models represented by each of the different graphsain be obtained.
Importantly, every model oK' is represented by songkin G k. Thus, the union of
all the models of the graphs wef,,(Gx) coincides with all the models dt’, indepen-
dently of the value of.. Therefore, in order to decide query entailment, we can shoo
an arbitraryn > 0 and check all the models of all the completion graphs:i, (G k).
This is still not enough to yield a decision procedure: alijio the setcf, (Gg) is
finite, we do not have an algorithm for deciding entailmengoéry@ in all (possibly
infinitely many) models of a completion gragh However, if a suitable: is chosen,
the latter can be effectively decided by finding a syntactipping of the query intg.

Definition 14 (Query mapping).Let@ = 3z.¢(T) be a PQ and leg be a completion
graph. Lety : VI(Q) — nodes(G) be a total function such thata} € L(u(a)) for
each individuak in VI(Q). We writeC(z) —, G if C € L(u(x)), andS(z,2’) —, G

if u(2’) is anS-neighbour ofu(z). Lety be the Boolean expression obtained fro(r)
by replacing each atom in  with T, if « —, G, and with_L otherwise. We say that
is amapping for@ into G, denoted?) —, G, if v evaluates tol'. () can be mapped into
g, denoted) — g, if there is a mapping: for Q into G.

It is not hard to see that i) — G, then there is a mapping f@p in every model
represented bg. The converse is slightly more tricky and only hold§itontains only
simple roles and if a suitable value for the blocking paramnets chosen. Very roughly,
n-blocking ensures that all paths of lengthn that occur in the models df are already
found in some5 € ccf,,(Gk ). Since the query contains only simple roles, matchefor
in a model do not require paths larger than the numbgp) of role atoms in the largest
disjunct whenQ is transformed into a UCQ (which is in turn bounded by theltaite
atoms in@). As a consequencé) can not distinguish models that are equivalent up to
nr(@)-blocking. The following theorem is shown in [17]:

Theorem 1. Let () be a positive query where only simple roles occur, Aethe a
SHOIQ KB, and letn > nr(Q). ThenK = Q iff Q — G for everyG € ccf,,(Gk).

The theorem suggests to verify PQ entailment as folloiysiitain all the comple-
tion graphs inccfy ) (G ), and (i) check each of them for query mappability. This
yields a decision procedure provided that both steps carffeetieely executed. We
show below that this is the case if the KB is in any3#(Z Q, SHOQ andSHOZ.

Due to Proposition 2, we can use the same decision procedutbd CARIN-L
entailment problem. For any atom the number of atoms in each disjunctli ,, is
bounded bydepth(P). Trivially, if only simple roles occur irP, the same holds for
Up . Therefore, from Proposition 2 and Theorem 1, we easilyinbta

Corollary 1. Let o be a ground atom, lefC = (K, P) be a non-recursiveCARIN-
SHOIQ knowledge base where only simple roles occuPirand letn > depth(P).
ThenK | «iff Up,o — G for everyG € ccf,,(Gk).

5 This view slightly differs from the more common one (e.gi,]jlin which a completion graph
is a representation of one single model (the one obtained ¢ty standard unravelling).



Note that the outlined decision procedure requires thatdch given input the query
a, Up , is built by unfoldingP. If several atoms are to be evaluated, a more efficient
alternative can be to obtain the completion graphsfn (G ) and then evaluate all the
rules of the program over each graph, in a bottom-up way. Rigufpr a completion
graphg and a prograrf?, we can obtain the smallest s&{G, P) of atoms that contains

all the DL ground facts entailed ly, and that contains the head of a ruleshenever
there is a match of the body atoms to the atoms in theS$6t P) (under suitable
substitutions). It is not hard to see that, for every atam € S(G, P) iff K = U, p.®

4 Complexity of Reasoning in Hybrid KBs

We have shown that we can effectively solve the non-recev€ARIN and the PQ
entailment problem whenever we have an effective proceduobtaining the graphs
in ccf,,(Gg) and deciding query mappability for each of them. The lateirivially
decidable if eacl§y and the setcf,,(Gx) are finite (e.g., by traversing, for eaghthe
finitely many possible mappings from the query variablesitortodes of).

As for the first part, it was shown in [17] that the expansioranfinitial G into
the seftecf,, (G i) terminates if there is no interaction between the numbéricésns,
inverses and nominals. Roughly, whenever variable nodesaase a number restric-
tion to be violated at an individual node the so-calle@?-rule is applied to generate
new individual neighbours far. This rule is never applicable f&d#HOQ, SHZ Q, and
SHOZ KBs, allowing us to prove termination. F6tHOZQ, however, due to the mu-
tual dependency between the depth of the forest and the nushlrdividual nodes
generated by the?-rule that results from our modified blocking, we cannot eashat
it terminates (although we believe that, using the priseti strategy for rule application
of [11], it will do so in many cases).

The following bounds for the modified tableaux algorithm ehown in [17],
while in the CARIN-entailment setting they are analysed in more detail in.[G8}en a
KB K=(T,R,.A) and PQQ, || K, Q|| denotes the combined size of the strings encod-
ing the K and@ (assuming unary encoding of numbers in the number restnis}j and
|A| the number of assertions ja. Similarly, ||P|| denotes the size the string encoding
a given DATALOG programpP.

Proposition 3. The expansion df i into someg € ccf,,(Gk), n > 0, terminates in
time triple exponential in| K, Q|| if n is polynomial in|| K, Q||. If n is a constant and
@ and all of K exceptA are fixed, then it terminates in time polynomial .

The same bounds apply to the number of nodes in €ach ccf,,(Gk). Checking
whether@Q — G can be easily done in time single exponential in the siz€)aind
polynomial in|nodes(G)|; if @ is fixed,Q — G can be tested in time polynomial in the
size ofG (as there are only polynomially many candidate assignments

Theorem 2. The PQ entailment problem is decidable if the input KB is ity &
SHIQ, SHOQ and SHOZ and only simple roles occur in the query. Furthermore,
it can be refuted non-deterministically in time polynoniiedhe size of the ABox.

8 This procedure has the same worst-case complexity as theutlied above.
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A matching lower bound holds already for instance checkintpé very weakA4 L [1].

Theorem 3. For every DL extendingl£ and contained ilfHZ Q, SHOQ, or SHOZ,
deciding the entailment of a PQ in which only simple rolesundtascoNP-complete
data complexity.

For a non-recursive BrALOG program®P, depth(P) is finite and effectively com-
putable, andr(U,, ) < depth(P). Althoughdepth(P) is single exponential iffP|],
it is constant ifP is fixed. Hence we obtain:

Theorem 4. The non-recursivEARIN-L entailment problem is decidabledfis any of
SHIQ, SHOQ andSHOZ and only simple roles occur in the rule component of the
KB. Furthermore, it ha& oNP-complete data complexity 4f is a DL extendingAd L.

This result provides an exact characterisation of the dataptexity of the non-
recursive @QRIN-L entailment problem for a wide range of description logicafds-
tunately, our work does not provide optimal upper boundk wéspect to the combined
complexity. In fact, the tableaux algorithm from [11] on whiour work is based termi-
nates in non-deterministic double exponential time in tleesivcase, even if the input
isaSHZQ, SHOQ or SHOZ knowledge base whose satisfiability problem is known
to be EXPTIME-complete [21,7,9]. This suboptimality carries on to owsulés. Addi-
tionally, our reduction from the ERIN-entailment problem to UCQ entailment causes
an exponential blow-up whose inevitability has not beerianegal.

The DL+log Family In [19], Rosati introduced th®L+log family of formalisms
coupling arbitrary DLs with BTALOG rules. It allows for recursive programs and, in
order to preserve decidability, imposes someak safetgonditions on the rules which
are a relaxed version of ARIN’s safety.

An L+log knowledge base is composed of a knowledge base in th&€ @hd a
set of weak-safe BraLOG rules (possibly with disjunction and negation as failuhes).
decidability depends on the one of query containmeurtias shown in [19] (Theorem
11), satisfiability inL+log is decidable iff CQ/UCQ containment is decidabledrl
From well known results that relate query containment aretyjanswering, it follows
that our method can be exploited for deciding this problem.

Theorem 5. Satisfiability of anC+log knowledge base is decidablesfis SHOQ,
SHIQ or SHOZ and theDATALOG component contains only simple roles.

Furthermore, it follows from [19] that whenever the data pbenity of query entail-
ment is strictly lower than that of reasoning in the rule comgnt, the latter carries on
to the overall data complexity of reasoning. As a consegeighcan also be concluded
from our results that reasoning in the above settingXiggomplete data complexity
when the ATALOG component is a disjunctive program with negation.

Related Complexity Results Since this work started, many query answering algo-
rithms have been proposed and new complexity bounds handeed. Due to Propo-
sition 2 (which is independent of the particular DL in the Dangponent), the new de-
cidability results for answering UCQs in DLs imply new deadidity boundaries for

7 In general, ‘satisfiability’ means under both FOL and NM satits.
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non-recursive @RrRIN, similarly as the decidability of CQ/UCQ containment casron
to the DL+log setting. Furthermore, the data complexity of UCQ answedag be
directly transferred to non-recursivergIN.

From this and recent results, the decidability statementhieorems 4 and 5 holds
also in the presence of transitive roles in the querg iis SHOQ [6], SHZQ [5],
or ALCQTb,.4, another expressive DL [2]. Further interesting results lva obtained
from the latter, which is to our knowledge the most genergbathm for query an-
swering in DLs without nominals. In particular, the DL knoasSRZ Q [10] (closely
related to the DLSROZ Q underlying OWL 2) can be reduced to (a minor extension of)
ALCQOTh,.4. Exploiting the regular expressions in the query atoms jnd@e can use
that algorithm to decide PQ entailment and containme&R¥ Q (note that contain-
ment of queries with regular expressions does not follomfi@] in general, butit does
if the query on the left is a plain CQ); hence both/EN andDL+log are decidable for
SRIQ. We also note that the algorithm in [2] provides an optimakREIME upper
bound for satisfiability oSRZ Q knowledge bases; this was reported open in [12].

As for data complexitycONP completeness for ARIN entailment,DL+log sat-
isfiability and UCQ answering (with arbitrary query/rulencponent) forSHZQ fol-
lows from [5]. Most recently, the Pme-complete data complexity of PQ answering in
Horn-SHZQ (a disjunction-free fragment & HZ Q) was established [4]; this carries
on to both non-recursive ARIN entailment and>L+log satisfiability. To our knowl-
edge, no other tight bounds for t5¢1 family have been establishedARIN entailment
andDL+log satisfiability (with a positive BTALOG component) are PE-complete
for ££ and some of its extensions containedifi" ™ [14] and£ £Z [13], see also [20].
Finally, due to the results in [1], the non-recursivarIN entailment problem is in
LoGSPACE for the DLs of the DL-Lite family; their PTME-completeness had already
been established fdpL+log [19].

5 Conclusion

In this paper, we have presented an algorithm for tA®I@ entailment problem in
knowledge bases that combin&&ZQ, SHOQ or SHOZ KB with a non-recursive
DATALOG program containing only simple roles. It relies on a tablebased algorithm
for positive query entailment which builds on the technigfrem [11] and generalises
the existential entailment algorithm given in [15] for a Dlhigh is far less expressive
thanSHZQ, SHOQ andSHOZ.

For the three mentioned sublogics ®HOZ Q, our algorithm is worst-case opti-
mal in data complexity, and allows us to characterise tha dainplexity of reasoning
with non-recursive BTALOG programs for a wide range of DLs, including very ex-
pressive ones. Namely, for all DLs of ti$¢{ family exceptSHOZQ, the problem has
CONP-complete data complexity, and is thus not harder thaaree checking iAL.

Combining the aforementioned DLs with recursivem™LoOG results in an unde-
cidable formalism. However, our results can be combined tibse of Rosati [19] to
show decidability if the rules are weakly safe and the quentains no transitive roles.
Further decidability and data complexity results for ressg in hybrid languages can
be obtained from the reduction of non-recursiveRIN to UCQ entailment presented
here and from the results in [19], some of them were discuissthis work.
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