
Extending CARIN to the Description Logics
of the SH Family

Magdalena Ortiz

Institute of Information Systems, Vienna University of Technology
ortiz@kr.tuwien.ac.at

Abstract. This work studies the extension of theexistential entailment algorithm
of CARIN to DLs of theSH family. The CARIN family of knowledge representa-
tion languages was one of the first hybrid languages combining DATALOG rules
and Description Logics. For reasoning in one of its prominent variants, which
combinesALCNR with non-recursive DATALOG, the blocking conditions of
the standard tableaux procedure forALCNR were modified. Here we discuss
a similar adaptation to theSHOIQ tableaux, which provides some new decid-
ability results and tight data complexity bounds for reasoning in non-recursive
CARIN, as well as for query answering over Description Logic knowledge bases.

1 Introduction
Description Logics (DLs) are specifically designed for representing structured knowl-
edge in terms of concepts (i.e., classes of objects) and roles (i.e., binary relationships
between classes). In the last years, they have evolved into astandard formalism for
ontologies which describe a domain of interest in differentapplications areas. In the
context of the Semantic Web, DL-based ontologies have been designated via the Web
Ontology Language (OWL) as a standard for describing the semantics of complex Web
resources, in order to facilitate access by automated agents. Driven by the need to over-
come limitations of DLs and to integrate them into applications, recent research focuses
on combining DLs with other declarative knowledge representation formalisms, and in
particular with rule-based languages, which play a dominant role in Databases (as query
languages) and in Artificial Intelligence [3,8,15,19].

One of the first suchhybrid languages, CARIN [15], integrates DATALOG programs
with some DLs of theALC family, beingALCNR (the basic DLALC with number
restrictions and role intersection) the most expressive. The limited decidability of hy-
brid languages was recognised already with the introduction of CARIN, as even very
weak DLs yield an undecidable formalism when combined with recursive DATALOG.
Three alternatives were proposed to regain decidability: (i) the DL constructors causing
undecidability are disallowed; (ii) only non-recursive rules are allowed; or (iii) the vari-
able occurrences in the DL atoms appearing in rules are restricted according to some
safety conditionsthat limit their ability to relate unnamed individuals.

In this work, we enhance CARIN with a more expressive DL component and focus
on its non-recursive variant (safe rules are briefly discussed in Section 4). We consider
the popular DLs of theSH family, which extendALC with role transitivity and con-
tainment. The most expressive DL here considered,SHOIQ (which essentially corre-
sponds to OWL-DL), also supports concepts denoting a singleindividual callednomi-
nals(O), inverse roles (I), and qualified number restrictions (Q). By disallowing one of
these three constructs, we obtain the expressive and mutually incomparable sublogics
known asSHIQ (corresponding to OWL-Lite),SHOQ, andSHOI respectively.

For reasoning in non-recursive CARIN, the authors of [15] identified theexisten-
tial entailment problemas a key task and proposed an algorithm for it, based on a
tableau (there namedconstraint system) algorithm for satisfiability ofALCNR knowl-
edge bases with modified blocking conditions. In this way, they also obtained the first
algorithm for answering Conjunctive Queries (CQs) and Union of Conjunctive Queries
(UCQs) in DLs and for deciding their containment, problems that have become a cen-
tral topic of interest in recent years. Another central contribution of CARIN was to
show a tightCONP upper bound for the aforementioned tasks underdata complexity,
i.e., w.r.t. to the size of the data, assuming that the query/rule component and the ter-
minological part of the knowledge base are fixed. This setting is of major importance,
as data repositories can be very large and are usually much larger than the terminology
expressing constraints on the data.

In [17] the tableaux algorithm for decidingSHOIQ knowledge base satisfiability
of [11] was adapted following the ideas introduced in [15], to provide an algorithm for
the entailment and containment of positive queries in theSH family of DLs. In this
paper we show how this algorithm, analogous to CARIN ’s existential entailment one,
can be exploited for reasoning in non-recursive CARIN and in other hybrid languages.
Like [17], the results have two limitations: transitive roles are not allowed in the rule
component, and the interaction between number restrictions, inverses and nominals in
SHOIQ may lead to non-termination. However, reasoning is sound and complete if the
DL component of the hybrid knowledge base is written inSHIQ, SHOQ or SHOI,
and sound if it is inSHOIQ. We obtain a precise characterisation of the data com-
plexity of reasoning whenever the DATALOG component is non-recursive, and for some
cases where it is recursive, e.g., if it satisfies the weak safety conditions ofDL+log.

2 Preliminaries

In this section, we define CARIN knowledge bases. The languages that are used in the
two components are defined first: DL knowledge bases and DATALOG programs.

Throughout the paper, we consider a fixed alphabet containing the following pair-
wise disjoint countably infinite sets: a setC of DL predicates of arity1, calledconcept
names; a setR of DL predicates of arity2, calledrole names, with a subsetR+ ⊆ R of
transitive role names; an alphabetP of rule predicates, where eachp ∈ P has an asso-
ciated aritym ≥ 0; a setI of individuals; and a setV of variables. This alphabet is used
for defining knowledge bases, whose semantics is given by (first-order) interpretations.

Definition 1 (Interpretation). An interpretationI = (∆I , ·I) is given by a non-empty
domain∆I and aninterpretation function·I that maps each predicatep ∈ P∪C ∪R

of arity n to a subset of(∆I)n, and each individual inI to an element of∆I .

2.1 Description Logics
The DLSHOIQ and its sublogicsSHIQ, SHOQ andSHOI are defined as usual.1

Definition 2 (SHOIQ Knowledge Bases).A role expressionR (or simplyrole) is a
role nameP ∈ R or its inverseP−. A role inclusion axiomis an expressionR ⊑ R′,
whereR andR′ are roles. Arole hierarchyR is a set of role inclusion axioms.

1 For the sake of uniformity, we use the nameSHOI instead of the also commonSHIO.

2

As usual,Inv(R) = P− if R = P for someP ∈ R and Inv(R) = P if R = P−.
For a role hierarchyR, the relation⊑∗

R
denotes the reflexive, transitive closure of⊑

overR∪ {Inv(R) ⊑ Inv(R′) | R ⊑ R′ ∈ R}. We writeTrans(R,R) if R ⊑∗
R R′ and

R′ ⊑∗
R
R for someR′ ∈ R+ ∪ {R− | R ∈ R+}. A roleS is simplew.r.t. R if for no

roleR with Trans(R,R) we have thatR ⊑∗
R
S.

Let a, b ∈ I be individuals,A ∈ C a concept name,C andC′ concepts,P ∈ R

a role name,R a role, S a simple role, andn ≥ 0 an integer. Concepts are defined
inductively according to the following syntax:

C,C′ −→ A | {a} | C ⊓ C′ | C ⊔ C′ | ¬C | ∀R.C | ∃R.C | ≥ nS.C | ≤ nS.C

Concepts of the form{a} are callednominals. A concept inclusion axiomis an ex-
pressionC ⊑ D. An assertionis an expressionA(a), P (a, b) or a 6≈ b. A TBox is
a finite set of concept inclusion axioms, and anABox is a finite set of assertions. A
(SHOIQ) knowledge base(KB) is a tripleK = 〈T ,R,A〉, whereT is a TBox,R is
a role hierarchy, andA is an ABox.2

Definition 3 (SHOQ,SHIQ, andSHOI Knowledge Bases).Roles and concepts in
SHOQ, SHIQ, andSHOI are defined as inSHOIQ, except that

– in SHOQ, the inverse role constructorP− is not available;
– in SHIQ, nominals{a} are not available;
– in SHOI, number restrictions≥ nS.C, ≤ nS.C are not available,

For L one ofSHOQ, SHIQ, or SHOI, anL knowledge baseis aSHOIQ knowl-
edge baseK=〈T ,R,A〉 such that all roles and concepts occurring in it are inL.

Definition 4 (Semantics of DL KBs).Let I = (∆I , ·I) be an interpretation such
that RI = (RI)+ for eachR ∈ R+. To interpretK, the interpretation function is
inductively extended to complex concepts and roles as follows:

(¬C)I=∆I \CI (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(C ⊓ D)I=CI ∩ DI (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
(C ⊔ D)I=CI ∪ DI (≤ n R.C)I = {x | |{y | (x, y) ∈ RI ∧ y ∈ CI}| ≤ n}

(P−)I={(y, x) | (x, y) ∈ P I} (≥ n R.C)I = {x | |{y | (x, y) ∈ RI ∧ y ∈ CI}| ≥ n}

I satisfiesan assertionα, denotedI |= α, if α = A(a) impliesaI ∈ AI , α = P (a, b)
implies〈aI , bI〉 ∈ P I andα = a 6≈ b impliesaI 6= bI ; I satisfies a role inclusion
axiomR ⊑ R′ if RI ⊆ R′I , and a concept inclusion axiomC ⊑ C′, if CI ⊆ C′I .
I satisfies a role hierarchyR anda terminologyT , if it satisfies every axiom ofR and
T respectively. Furthermore,I satisfies an ABoxA, if it satisfies every assertion inA.
Finally, I is a modelofK = 〈T ,R,A〉, denotedI |= K, if it satisfiesT , R, andA.

2.2 DATALOG

We now define DATALOG programs and their semantics, also given by interpretations.3

Definition 5 (DATALOG rules and DATALOG programs).A (rule/DL) atomis an ex-
pressionp(x), wherep is a (rule/DL) predicate, andx is a tuple fromV∪ I of the same
arity asp. If x ⊆ I, thenp(x) is ground.

2 Note that only concepts and role names may occur inA, but this is no limitation. Indeed, for a
complexC, an assertionC(a) can be expressed byAc(a) and an axiomAc ⊑ C in T , while
an assertionR−(x, y) can be replaced byInv(R)(a, b).

3 Note that we consider first-order semantics, without the minimality requirement.

3

A DATALOG rule is an expression of the formq(x) :− p1(y1), . . . , pn(yn) where
n ≥ 0, q(x) is a rule atom, eachpi(yi) is an atom, andx ∩ V ⊆ y1 ∪ . . . ∪ yn. As
usual,q(x) is called theheadof the rule, andp1(y1), . . . , pn(yn) is called thebody. A
rule withn = 0 is called afact and can be written simplyq(x).

A DATALOG programP is a set ofDATALOG rules. Itsdependency graphis the
directed graph whose nodes are the predicatesp occurring inP with an edgep→ p′ if
p′ occurs in the head andp in the body of a rule inP . P is recursiveif its dependency
graph contains some cycle, andnon-recursiveotherwise.

Definition 6 (Semantics of DATALOG Programs). An interpretationI satisfies a
ground atomp(a), written I |= p(a), if (a)I ∈ pI . A substitutionis a mapping
σ : V ∪ I → ∆I with σ(a) = aI for everya ∈ I. For an atomp(x) and a substi-
tutionσ, we say thatσ makesp(x) true inI, in symbolsI, σ |= p(x), if I |= p(σ(x)).
We say thatI satisfies a ruler, denotedI |= r, if every substitution that makes all the
atoms in the body true also makes the atom in the head true. IfI |= r for eachr ∈ P ,
thenI is a model ofP , in symbolsI |= P .

2.3 CARIN Knowledge Bases

Now we define the CARIN language. In what follows,L denotes a DL of theSH family.

Definition 7 (CARIN knowledge bases).A CARIN-L knowledge baseis a tuple〈K,P〉
whereK is anL knowledge base, called theDL componentof K, andP is a DATA -
LOG program, called itsrule (or DATALOG) component. A CARIN-L knowledge base
is (non-)recursive if its rule componentP is (non-)recursive.

Note that only rule predicates can occur in the head of rules of P . This is a common
feature of many hybrid languages that assume that the DL knowledge base provides
a commonly shared conceptualisation of a domain, while the rule component defines
application-specific relations that can not change the structure of this conceptual model.

The semantics of CARIN KBs arises naturally from the semantics of its components.
As in the original CARIN, we define as main reasoning task the entailment of a ground
atom, which may be either a DL assertion or a DATALOG ground fact.

Definition 8 (CARIN -L entailment problem). An interpretationI is a model of a
CARIN-L knowledge baseK = 〈K,P〉, in symbolsI |= K, if I |= K andI |= P .
For a ground atomα, K |= α denotes thatI |= K impliesI |= α for everyI. The
CARIN-L entailment problemis to decide, givenK andα, whetherK |= α.

We note that the standard DL reasoning tasks (e.g., KB consistency and subsumption)
are reducible to entailment in CARIN, as the latter generalises instance checking.

3 Reasoning in non-recursive CARIN

In this section, we provide an algorithm for reasoning in non-recursive CARIN. The key
to the decidability in this variant of CARIN is the limited interaction between the DL and
rule predicates. Indeed, if we have a non-recursive DATALOG programP and we want to
verify entailment of an atomp(a), it is sufficient to consider the rules inP whose head
predicate isp and unfold them into a set of rules where onlyp(a) occurs in the head, and

4

the bodies contain only DL atoms and ground facts. The CARIN-L entailment problem
with such a restricted rule component is then reducible to theentailment of UCQs.

Thequery entailment(or informally, query answering) problem is DLs has gained
much attention in recent times. Many papers have studied theproblem of answering
CQs and UCQs over DL knowledge bases, e.g., [1,5,6,14,20]. We consider the more
expressive language of positive existential queries.

3.1 Non-recursive CARIN and Query Entailment

We introducepositive (existential) queries(PQs), which generalise CQs and UCQs.4

Definition 9 (Positive Queries, Query Entailment).A positive (existential) query(PQ)
over a KBK is a formula∃x.ϕ(x), wherex is a vector of variables fromV andϕ(x) is
built using∧ and∨ from DL atoms whose variables are inx. If ϕ(x) is a conjunction of
atoms then∃x.ϕ(x) is a conjunctive query(CQ); if ϕ(x) is in disjunctive normal form
then it is aunion of conjunctive queries(UCQ).

LetQ = ∃x.ϕ(x) be a PQ overK and letI be an interpretation. For a substitution
σ, letQσ be the Boolean expression obtained fromϕ by replacing each atomα with ⊤
if I, σ |= α, and with⊥ otherwise. We callσ a match forI andQ, denotedI, σ |= Q,
if Qσ evaluates to⊤. I is a model ofQ, writtenI |= Q, if I, σ |= Q for someσ.

We say thatK entailsQ, denotedK |= Q, if I |= Q for each modelI ofK. The
query entailment problemis to decide, givenK andQ, whetherK |= Q.

Note that a PQ can be rewritten into an equivalent, possibly exponentially larger, UCQ.
The UCQ (and thus PQ) entailment problem and CARIN entailment problem are

closely related. In fact, we can reduce the former to the latter as follows:

Proposition 1. LetK be aSHOIQ knowledge base and letQ = ∃x.ϕ1(x1) ∨ . . . ∨
ϕn(xn) be a UCQ overK. ThenK |= Q iff 〈K,P〉 |= q, whereq ∈ P is fresh,P is
theDATALOG program containing the rulesq :−ϕ′

i(xi) for each1 ≤ i ≤ n, and each
ϕ′

i(xi) is obtained fromϕi(xi) by replacing each connective∧ by a comma.

We show next that the converse also holds, i.e., the CARIN-SHOIQ entailment prob-
lem can be reduced to query entailment over the DL component.As a consequence,
whenever we have a procedure for deciding query entailment,we obtain a sound and
complete algorithm for reasoning in non-recursive CARIN.

Definition 10 (Rule unfolding and program depth).Given twoDATALOG rules:
r1 = q1(x1) :− p1(y1), . . . , pn(yn), and r2 = q2(x2) :− p′1(y

′
1), . . . , p

′
m(y′m),

whereq2 = pi for some1 ≤ i ≤ n, let θ be the most general unifier ofx2 andyi. Then
the following ruler′ is anunfolding ofr2 in r1:
q1(θx1) :− p1(θy1), . . ., pi−1(θyi−1), p

′
1(θy

′
1), . . ., p

′
m(θy′m), pi+1(θyi+1), . . .pn(θyn).

Thewidth of a ruler, denotedwidth(r), is the number of atoms in its body. Thedepthof
a non-recursiveDATALOG programP , writtendepth(P), isw+1, wherew is the width
of the longest rule that can be obtained from some rule inP by repeatedly unfolding in
it other rules ofP , until no more unfoldings can be applied. IfP = ∅, width(r)= 1.

4 We consider Boolean queries, to which non-Boolean ones can be reduced as usual, and disre-
gard the difference between the equivalent query entailment and query answering problems.

5

Note thatdepth(P) is finite and can be effectively computed, asP is non-recursive.

Definition 11 (Unfolding). Theunfoldingof a non-recursiveDATALOG programP for
a ground rule atomp(a) is the programPp(a) obtained as follows:
(1) LetP1 denote the set of rules inP where the head is of the formp(x) and there
is a unifier of ofa andx. P2 is the set of rulesp(θx) :− q1(θy1), . . . , qn(θyn) where
p(x) :− q1(y1), . . . , qn(yn) ∈ P1 andθ is the most general unifier ofa andx.
(2) For a ruler, letrP denote the set of unfoldings inr of a rule fromP (note that it may
be empty). Apply exhaustively the following rule: ifr∈P2 and the body ofr contains a
rule atomα such thatα /∈P , replacer byrP in P2. The resulting program isPp(a).

Every model ofP is also a model ofPp(a). Intuitively,Pp(a) captures the part ofP that
is relevant for the entailment ofp(a). Each rule inPp(a) hasp(a) as head, and its body
contains only DL atoms and ground facts fromP , which are true in every model ofP .
Due to this restricted form,Pp(a) can easily be transformed into an equivalent UCQ.

Definition 12 (Query for a ground atom).Thequery for a ground atomαw.r.t. a non-
recursive DATALOG programP , denotedUP,α, is the UCQ defined as follows:
- If α is a DL atom, thenUP,α = α.
- OtherwiseUP,α = ∃x.Q1∨ . . .∨Qm, wherer1. . .rm are the rules ofPα, eachQiis the
conjunction of the DL atoms in the body ofri, andx contains the variables of eachQi.

Note that if a rule atomα occurs as a fact inP , it also occurs as a fact inPα, andUP,α

is trivially true (since it has an empty disjunct which is always true). IfPα = ∅ then
UP,α is always false; this is the case, e.g., ifα does not unify with the head of any rule.

Proposition 2. LetK = 〈K,P〉 be a non-recursiveCARIN-SHOIQ knowledge base
and letα be a ground atom. ThenK |= α iff K |= UP,α.

3.2 A Tableaux Algorithm for Query Entailment

We have shown that the non-recursive CARIN-SHOIQ entailment problem can be
reduced to the entailment of a PQ (in fact, a UCQ suffices). In this section, we describe
the algorithm given in [17] to solve the latter for theSH family DLs. Provided that the
query contains only simple roles, it is sound and complete for SHOQ, SHIQ, and
SHOI; for SHOIQ it is sound, but termination remains open.

The algorithm is an extension of the one in [15] for theexistential entailment prob-
lem, which informally speaking, simultaneously captures UCQ entailment and CQ/UCQ
containment (i.e., given a CQQ1 and a UCQQ2, decide whetherK |= Q1 implies
K |= Q2). We present it as a query entailment algorithm: this suffices for reasoning
in non-recursive CARIN and the generalisation to containment is trivial. A first exten-
sion to CQs inSHIQ was presented in [18]. Here we recall the extension to PQs in
SHOIQ of [17], where the reader may find detailed definitions, proofs and examples.

We build on [11] and usecompletion graphs, finite relational structures that rep-
resent models of aSHIQ knowledge baseK. After an initial completion graphGK

for K is built, new completion graphs are generated by repeatedlyapplyingexpansion
rules. Every model ofK is represented in some completion graph that results from the
expansion, thusK |= Q can be decided by considering a suitable set of such graphs.

6

In what follows,K=〈T ,R,A〉 denotes aSHOIQ knowledge base; the set of roles
occurring inK and their inverses is denotedRK . A denotes a concept name;D,E
denote concepts;R,R′ denote roles; anda, b denote individuals.

A completion graphG forK comprises a finite labelled directed graph whose nodes
nodes(G) are labelled by concepts and whose arcsarcs(G) are labelled by roles. The
nodes innodes(G) are of two kinds:individual nodesandvariable nodes. The label
of each individual node contains some nominal{a} indicating that the node stands for
the individuala ∈ I. A variable node contains no nominal concepts and represents one
or more unnamed individuals whose existence is implied by the knowledge base. An
additional binary relation is used to store explicit inequalities between the nodes ofG.

In a completion graphG, each arcv→w is labelled with a setL(v→w) of roles
from RK and each nodev is labelled with a setL(v) of ‘relevant’ concepts. The set
of all the relevant concepts is denoted byclos(K) and contains the standard concept
closure of¬C ⊔ D for each axiomC ⊑ D in the knowledge baseK (closed under
subconcepts and their negations) and some additional concepts that may be introduced
by the rules (e.g., to correctly ensure the propagation of the universal restrictions, con-
cepts of the form∀R′.D for some∀R.D ∈ clos(K) andR′ a transitive subroles ofR
are used, so they are also included in the closure).

The usual relations between the nodes in a completion graphG are defined as in
[11,17]: if v→w ∈ arcs(G), thenw is asuccessorof v andv a predecessorof w. The
transitive closures of successor and predecessor areancestoranddescendantrespec-
tively. If R′ ∈ L(v→w) for some roleR′ with R′ ⊑∗ R, thenw is anR-successorof
v. We callw anR-neighbourof v, if w is anR-successorof v, or if v is an Inv(R)-
successorof w. Thedistancebetween two nodes inG is defined in the natural way.

The initial completion graphGK for K contains a nodea labelledL(a)= {{a}}∪
{¬C ⊔D |C ⊑D∈T }∪{¬C ⊔D |C ⊑D∈TA} for each individuala in K, where
TA = {{a}⊑A |A(a) ∈ A}∪{{a}⊑∃P .{b} |P (a, b) ∈ A}∪{{a}⊑¬{b} | a 6= b ∈
A} is a set of concept inclusion axioms representing the assertions inA.

We applyexpansion rulesto the initialGK and obtain new completion graphs. The
rules may introduce new variable nodes, but they are always successors of exactly one
existing node. Hence the variable nodes form a set of trees that have individual nodes
as roots. Some of these variable nodes may have an individualnode as a successor, thus
a tree can have a path ending with an arc to an individual node.

Blocking conditions are given to ensure that the expansion stops after sufficiently
many steps. They are inspired by [15], but adapted to these more expressive logics, and
depend on a depth parametern ≥ 0, generalising the non-parametrised blocking of [11].
This blocking is the crucial difference between our algorithm and [11]. According to the
blocking conditions of [11], the expansion of a completion graphG terminates when
a nodev with a predecessoru is reached such that there is some ancestoru′ of u that
has in turn a successorv′ such that the pairs(u′, v′) and(u, v) have the same node-arc-
node labels, i.e., when a pair of nodes that is isomorphic to apreviously existing one
appears inG. This pairwise blockingcondition ensures that the expansion stops when
G already represents a model ofK. If the knowledge base is satisfiable, then there is a
way to non-deterministically apply the expansion rules until this blocking occurs, and
a completion graph that represents a model of the knowledge base is obtained.

7

Since we want to decide query entailment, this is not enough:we need to obtain a
set of models that suffices to check query entailment. Our modified blocking ensures
that a completion graph is blocked only if it represents a setof models that are indis-
tinguishable by the query. Instead of halting the expansionwhen a previously occurred
pair of nodes appears, we stop when a repeated instance of ann-graph occurs, where
then-graph of a nodev is a tree of variable nodes of depth at mostn rooted atv, plus
arcs to the individual nodes that are direct successors of a node in this tree. We now de-
fine formally this modified blocking. The next definition is technically quite involved.
It is taken from [17], where more explanations and some examples can be found.

Definition 13 (n-graph blocking). Given an integern ≥ 0 and a completion graph
G, let vn(G) denote the set of variable nodes inG. Theblockablen-graph of node
v ∈ vn(G) is the subgraphGn,v of G that containsv and (i) every descendantw ∈
vn(G) of v within distancen, and (ii) every successorw′ ∈ in(G) of each suchw.
If w has inGn,v no successors fromvn(G), we callw a leaf of Gn,v. Nodesv, v′ of
G are n-graph equivalent via a bijectionψ from nodes(Gn,v) to nodes(Gn,v′

) if (1)
ψ(v) = v′; (2) for everyw ∈ nodes(Gn,v), L(w) = L(ψ(w)); (3) arcs(Gn,v′

) =
{ψ(w)→ψ(w′) | w→w′ ∈ arcs(Gn,v)}; and (4) for everyw→w′ ∈ arcs(Gn,v)
L(w→w′) = L(ψ(w)→ψ(w′)).

Letv, v′ ∈ vn(G) ben-graph equivalent viaψ, where bothv andv′ have predeces-
sors invn(G), v′ is an ancestor ofv in G, andv is not inGn,v′

. If v′ reachesv on a
path containing only nodes invn(G), thenv′ is an-witness ofv in G via ψ. Moreover,
Gn,v′

graph-blocksGn,v via ψ, and eachw ∈ nodes(Gn,v′

) graph-blocks viaψ the
nodeψ−1(w) in Gn,v.

Letψ be a bijection between two subgraphsG′, G of G such thatG′ graph-blocks
G via ψ. A nodev ∈ nodes(G) is n-blocked, if v ∈ vn(G) andv is either directly or
indirectly n-blocked;v is indirectly n-blocked, if one of its ancestors isn-blocked;v
is directlyn-blockediff none of its ancestors isn-blocked andv is a leaf ofG; in this
case we say thatv is (directly)n-blocked byψ(v). AnR-neighbourw of a nodev in G
is n-safeif v ∈ vn(G) or if w is notn-blocked.

Note thatv is m-blocked for eachm≤n if it is n-blocked. Whenn ≥ 1, then
n-blocking implies pairwise blocking.

The expansion rules are analogous to the ones in [11], where ‘blocked’ is replaced
by ‘n-blocked’ and‘safe’ is replaced by ‘n-safe’. Due to space restrictions, we can not
present the expansion rules here, but they can be found in [17].

A clashin a completion graphG is an explicit contradiction (e.g.,{A,¬A} ⊆ L(v)
for some nodev), and it indicates thatG represents an empty set of models and thus the
expansion can stop. IfG does not contain a clash it is calledclash-free. If G contains a
clash or no more rules are applicable to it, then we say that itis n-complete. We denote
by GK the set of completion graphs that can be obtained from the initial GK via the
expansion rules, and byccfn(GK) the ones that aren-complete and clash free.

We view each graph inGK as a representation of a (possibly infinite) set of models
of K. Intuitively, the models ofK are all the relational structures containingA that
satisfy the constraints given byT andR. Each completion graphG contains the initial
A and additional constraints, implicit inT andR, that were explicated by applying the

8

rules. When there is more than one way to apply a rule to a graphG (e.g. in the⊔-rule
eitherC1 or C2 can be added), the models represented byG are ‘partitioned’ into the
sets of models represented by each of the different graphs that can be obtained.5

Importantly, every model ofK is represented by someG in GK . Thus, the union of
all the models of the graphs inccfn(GK) coincides with all the models ofK, indepen-
dently of the value ofn. Therefore, in order to decide query entailment, we can choose
an arbitraryn ≥ 0 and check all the models of all the completion graphs inccfn(GK).
This is still not enough to yield a decision procedure: although the setccfn(GK) is
finite, we do not have an algorithm for deciding entailment ofqueryQ in all (possibly
infinitely many) models of a completion graphG. However, if a suitablen is chosen,
the latter can be effectively decided by finding a syntactic mapping of the query intoG.

Definition 14 (Query mapping).LetQ = ∃x.ϕ(x) be a PQ and letG be a completion
graph. Letµ : VI(Q) → nodes(G) be a total function such that{a} ∈ L(µ(a)) for
each individuala in VI(Q). We writeC(x) →֒µ G if C ∈ L(µ(x)), andS(x, x′) →֒µ G
if µ(x′) is anS-neighbour ofµ(x). Letγ be the Boolean expression obtained fromϕ(x)
by replacing each atomα in ϕ with⊤, if α →֒µ G, and with⊥ otherwise. We say thatµ
is amapping forQ intoG, denotedQ →֒µ G, if γ evaluates to⊤.Q can be mapped into
G, denotedQ →֒ G, if there is a mappingµ for Q into G.

It is not hard to see that ifQ →֒ G, then there is a mapping forQ in every model
represented byG. The converse is slightly more tricky and only holds ifQ contains only
simple roles and if a suitable value for the blocking parametern is chosen. Very roughly,
n-blocking ensures that all paths of length≤ n that occur in the models ofK are already
found in someG ∈ ccfn(GK). Since the query contains only simple roles, matches forQ
in a model do not require paths larger than the numbernr(Q) of role atoms in the largest
disjunct whenQ is transformed into a UCQ (which is in turn bounded by the total role
atoms inQ). As a consequence,Q can not distinguish models that are equivalent up to
nr(Q)-blocking. The following theorem is shown in [17]:

Theorem 1. Let Q be a positive query where only simple roles occur, letK be a
SHOIQ KB, and letn ≥ nr(Q). ThenK |= Q iff Q →֒G for everyG ∈ ccfn(GK).

The theorem suggests to verify PQ entailment as follows: (i) obtain all the comple-
tion graphs inccfnr(Q)(GK), and (ii) check each of them for query mappability. This
yields a decision procedure provided that both steps can be effectively executed. We
show below that this is the case if the KB is in any ofSHIQ, SHOQ andSHOI.

Due to Proposition 2, we can use the same decision procedure for the CARIN-L
entailment problem. For any atomα, the number of atoms in each disjunct inUP,α is
bounded bydepth(P). Trivially, if only simple roles occur inP , the same holds for
UP,α. Therefore, from Proposition 2 and Theorem 1, we easily obtain:

Corollary 1. Let α be a ground atom, letK= 〈K,P〉 be a non-recursiveCARIN-
SHOIQ knowledge base where only simple roles occur inP , and letn ≥ depth(P).
ThenK |= α iff UP,α →֒ G for everyG ∈ ccfn(GK).

5 This view slightly differs from the more common one (e.g., [11]) in which a completion graph
is a representation of one single model (the one obtained from G by standard unravelling).

9

Note that the outlined decision procedure requires that, for each given input the query
α, UP,α is built by unfoldingP . If several atoms are to be evaluated, a more efficient
alternative can be to obtain the completion graphs inccfn(GK) and then evaluate all the
rules of the program over each graph, in a bottom-up way. Roughly, for a completion
graphG and a programP , we can obtain the smallest setS(G,P) of atoms that contains
all the DL ground facts entailed byG, and that contains the head of a ruler whenever
there is a match of the body atoms to the atoms in the setS(G,P) (under suitable
substitutions). It is not hard to see that, for every atomα, α ∈ S(G,P) iff K |= Uα,P .6

4 Complexity of Reasoning in Hybrid KBs

We have shown that we can effectively solve the non-recursive-CARIN and the PQ
entailment problem whenever we have an effective procedureor obtaining the graphs
in ccfn(GK) and deciding query mappability for each of them. The latter is trivially
decidable if eachG and the setccfn(GK) are finite (e.g., by traversing, for eachG, the
finitely many possible mappings from the query variables to the nodes ofG).

As for the first part, it was shown in [17] that the expansion ofan initial GK into
the setccfn(GK) terminates if there is no interaction between the number restrictions,
inverses and nominals. Roughly, whenever variable nodes can cause a number restric-
tion to be violated at an individual nodea, the so-calledo?-rule is applied to generate
new individual neighbours fora. This rule is never applicable forSHOQ, SHIQ, and
SHOI KBs, allowing us to prove termination. ForSHOIQ, however, due to the mu-
tual dependency between the depth of the forest and the number of individual nodes
generated by theo?-rule that results from our modified blocking, we cannot ensure that
it terminates (although we believe that, using the prioritised strategy for rule application
of [11], it will do so in many cases).

The following bounds for the modified tableaux algorithm were shown in [17],
while in the CARIN-entailment setting they are analysed in more detail in [16]. Given a
KB K=〈T ,R,A〉 and PQQ, ||K,Q|| denotes the combined size of the strings encod-
ing theK andQ (assuming unary encoding of numbers in the number restrictions), and
|A| the number of assertions inA. Similarly, ||P|| denotes the size the string encoding
a given DATALOG programP .

Proposition 3. The expansion ofGK into someG ∈ ccfn(GK), n ≥ 0, terminates in
time triple exponential in||K,Q|| if n is polynomial in||K,Q||. If n is a constant and
Q and all ofK exceptA are fixed, then it terminates in time polynomial in|A|.

The same bounds apply to the number of nodes in eachG ∈ ccfn(GK). Checking
whetherQ →֒ G can be easily done in time single exponential in the size ofQ and
polynomial in|nodes(G)|; if Q is fixed,Q →֒ G can be tested in time polynomial in the
size ofG (as there are only polynomially many candidate assignments).

Theorem 2. The PQ entailment problem is decidable if the input KB is in any of
SHIQ, SHOQ andSHOI and only simple roles occur in the query. Furthermore,
it can be refuted non-deterministically in time polynomialin the size of the ABox.

6 This procedure has the same worst-case complexity as the oneoutlined above.

10

A matching lower bound holds already for instance checking in the very weakAL [1].

Theorem 3. For every DL extendingAL and contained inSHIQ,SHOQ, orSHOI,
deciding the entailment of a PQ in which only simple roles occur hasCONP-complete
data complexity.

For a non-recursive DATALOG programP , depth(P) is finite and effectively com-
putable, andnr(Uα,P) ≤ depth(P). Althoughdepth(P) is single exponential in||P||,
it is constant ifP is fixed. Hence we obtain:

Theorem 4. The non-recursiveCARIN-L entailment problem is decidable ifL is any of
SHIQ, SHOQ andSHOI and only simple roles occur in the rule component of the
KB. Furthermore, it hasCONP-complete data complexity ifL is a DL extendingAL.

This result provides an exact characterisation of the data complexity of the non-
recursive CARIN-L entailment problem for a wide range of description logics. Unfor-
tunately, our work does not provide optimal upper bounds with respect to the combined
complexity. In fact, the tableaux algorithm from [11] on which our work is based termi-
nates in non-deterministic double exponential time in the worst case, even if the input
is aSHIQ, SHOQ or SHOI knowledge base whose satisfiability problem is known
to be EXPTIME-complete [21,7,9]. This suboptimality carries on to our results. Addi-
tionally, our reduction from the CARIN-entailment problem to UCQ entailment causes
an exponential blow-up whose inevitability has not been explored.

The DL+log Family In [19], Rosati introduced theDL+log family of formalisms
coupling arbitrary DLs with DATALOG rules. It allows for recursive programs and, in
order to preserve decidability, imposes someweak safetyconditions on the rules which
are a relaxed version of CARIN ’s safety.

An L+log knowledge base is composed of a knowledge base in the DLL and a
set of weak-safe DATALOG rules (possibly with disjunction and negation as failure).Its
decidability depends on the one of query containment inL: as shown in [19] (Theorem
11), satisfiability inL+log is decidable iff CQ/UCQ containment is decidable inL.7

From well known results that relate query containment and query answering, it follows
that our method can be exploited for deciding this problem.

Theorem 5. Satisfiability of anL+ log knowledge base is decidable ifL is SHOQ,
SHIQ or SHOI and theDATALOG component contains only simple roles.

Furthermore, it follows from [19] that whenever the data complexity of query entail-
ment is strictly lower than that of reasoning in the rule component, the latter carries on
to the overall data complexity of reasoning. As a consequence, it can also be concluded
from our results that reasoning in the above setting hasΣp

2 -complete data complexity
when the DATALOG component is a disjunctive program with negation.

Related Complexity Results Since this work started, many query answering algo-
rithms have been proposed and new complexity bounds have been found. Due to Propo-
sition 2 (which is independent of the particular DL in the DL component), the new de-
cidability results for answering UCQs in DLs imply new decidability boundaries for

7 In general, ‘satisfiability’ means under both FOL and NM semantics.

11

non-recursive CARIN, similarly as the decidability of CQ/UCQ containment carries on
to theDL+log setting. Furthermore, the data complexity of UCQ answeringcan be
directly transferred to non-recursive CARIN.

From this and recent results, the decidability statements in Theorems 4 and 5 holds
also in the presence of transitive roles in the query ifL is SHOQ [6], SHIQ [5],
or ALCQIbreg, another expressive DL [2]. Further interesting results can be obtained
from the latter, which is to our knowledge the most general algorithm for query an-
swering in DLs without nominals. In particular, the DL knownasSRIQ [10] (closely
related to the DLSROIQ underlying OWL 2) can be reduced to (a minor extension of)
ALCQIbreg. Exploiting the regular expressions in the query atoms in [2], one can use
that algorithm to decide PQ entailment and containment inSRIQ (note that contain-
ment of queries with regular expressions does not follow from [2] in general, but it does
if the query on the left is a plain CQ); hence both CARIN andDL+log are decidable for
SRIQ. We also note that the algorithm in [2] provides an optimal 2EXPTIME upper
bound for satisfiability ofSRIQ knowledge bases; this was reported open in [12].

As for data complexity,CONP completeness for CARIN entailment,DL+log sat-
isfiability and UCQ answering (with arbitrary query/rule component) forSHIQ fol-
lows from [5]. Most recently, the PTIME-complete data complexity of PQ answering in
Horn-SHIQ (a disjunction-free fragment ofSHIQ) was established [4]; this carries
on to both non-recursive CARIN entailment andDL+log satisfiability. To our knowl-
edge, no other tight bounds for theSH family have been established. CARIN entailment
andDL+log satisfiability (with a positive DATALOG component) are PTIME-complete
for EL and some of its extensions contained inEL++ [14] andELIf [13], see also [20].
Finally, due to the results in [1], the non-recursive CARIN entailment problem is in
LOGSPACE for the DLs of the DL-Lite family; their PTIME-completeness had already
been established forDL+log [19].

5 Conclusion

In this paper, we have presented an algorithm for the CARIN entailment problem in
knowledge bases that combine aSHIQ, SHOQ or SHOI KB with a non-recursive
DATALOG program containing only simple roles. It relies on a tableaux-based algorithm
for positive query entailment which builds on the techniques from [11] and generalises
the existential entailment algorithm given in [15] for a DL which is far less expressive
thanSHIQ, SHOQ andSHOI.

For the three mentioned sublogics ofSHOIQ, our algorithm is worst-case opti-
mal in data complexity, and allows us to characterise the data complexity of reasoning
with non-recursive DATALOG programs for a wide range of DLs, including very ex-
pressive ones. Namely, for all DLs of theSH family exceptSHOIQ, the problem has
CONP-complete data complexity, and is thus not harder than instance checking inAL.

Combining the aforementioned DLs with recursive DATALOG results in an unde-
cidable formalism. However, our results can be combined with those of Rosati [19] to
show decidability if the rules are weakly safe and the query contains no transitive roles.
Further decidability and data complexity results for reasoning in hybrid languages can
be obtained from the reduction of non-recursive CARIN to UCQ entailment presented
here and from the results in [19], some of them were discussedin this work.

12

AcknowledgementsThis paper presents some results obtained during the author’s Mas-
ters thesis and complements those in [18,17]. The author wants to express her great
gratitude to her thesis supervisors, Thomas Eiter and DiegoCalvanese. She also thanks
the JELIA organisers for the invitation to present these results, as well as the consortium
of the European Masters in Computational Logic. This work was partially supported by
the Austrian Science Fund(FWF) grant P20840, and the Mexican National Council for
Science and Technology(CONACYT) grant 187697.

References
1. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-

cardo Rosati. Data complexity of query answering in description logics. InProc. of KR’06,
pages 260–270, 2006.

2. Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries in ex-
pressive description logics: An automata-theoretic approach. InProc. of AAAI’2007, pages
391–396, 2007.

3. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.Combining Answer Set Program-
ming with Description Logics for the Semantic Web. InProc KR’04, pages 141–151, 2004.

4. Thomas Eiter, Georg Gottlob, Magdalena Ortiz and Mantas Simkus. Query Answering in
the Description Logic Horn-SHIQ. In Proc. of JELIA’08, to appear.

5. Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query answering
for the description logicSHIQ. In Proc. of IJCAI’07, pages 399–404, 2007.

6. Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive query entailment forSHOQ.
In Proc. of DL’07, volume 250, pages 65–75, 2007.

7. Birte Glimm, Ian Horrocks, and Ulrike Sattler. DecidingSHOQ plus role conjunction
knowledge base consistency using alternating automata. InProc. of DL’08, 2008.

8. S. Heymans and D. Vermeir. Integrating ontology languages and answer set programming.
In Proceedings DEXA Workshops 2003, pp. 584–588. IEEE Computer Society, 2003.

9. Jan Hladik. A tableau system for the description logicSHIO. In IJCAR Doctoral Pro-
gramme, volume 106 ofCEUR Workshop Proceedings. CEUR-WS.org, 2004.

10. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The irresistibleSRIQ. 2005.
11. Ian Horrocks and Ulrike Sattler. A tableaux decision procedure forSHOIQ. In Proc. of

the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 448–453, 2005.
12. Yevgeny Kazakov.SRIQ andSROIQ are harder thanSHOIQ. In Proc. DL’08, 2008.
13. Adila Krisnadhi and Carsten Lutz. Data complexity in theEL family of description logics.

In Proc. of DL’07, 2007.
14. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for a tractable

fragment of OWL 1.1. InProc. of ISWC/ASWC 2007, pages 310–323, 2007.
15. Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description logics in

CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.
16. Ortiz Magdalena, Diego Calvanese and Thomas Eiter. DataComplexity of Query answer-

ing in Expressive Description Logics via Tableaux. INFSYS Research Report 1843-07-07.
Vienna University of Technology, November 2007.

17. Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query answering
in expressive description logics via tableaux.J. of Automated Reasoning. June 2008.

18. Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing data complexity for
conjunctive query answering in expressive description logics. InProc. of AAAI’06, 2006.

19. Riccardo Rosati. DL+log: Tight integration of description logics and disjunctive datalog. In
Proc. of KR’2006, pages 68–98, 2006.

20. Riccardo Rosati. On conjunctive query answering inEL. In Proc. of DL’07, 2007.
21. Stephan Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Rep-

resentation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, 2001.

13

