
Parsing Combinatory Categorial Grammar with
Answer Set Programming: Preliminary Report

Yuliya Lierler Peter Schüller

Computer Science Department, University of Kentucky

KBS Group – Institut für Informationssysteme, Technische Universität Wien

WLP – September 30, 2011

supported by: CRA/NSF 2010 Computing Innovation Fellowship, Vienna Science and Technology Fund (WWTF) project ICT08-020



Natural Language Parsing

I Required for transforming natural language into KR language(s)
I First step: obtaining sentence structure
I Example:

John saw the astronomer with the telescope.

⇒ two distinct structures = “structural ambiguity”

John [saw the astronomer] [with the telescope].

John saw [the astronomer [with the telescope]].

I “Wide-coverage parsing”

⇒ parsing unrestricted natural language (e.g., newspaper)

1 / 18



This Work

I Goals of this work:
I Wide-coverage parsing
I obtaining all distinct structures

I Approach:
I Parsing represented as planning
I Answer Set Programming for realizing the planning
I Use of ASP with Function symbols
I Optimization for best-effort parsing
I Framework using python, gringo, clasp
I Visualization

2 / 18



Planning, Answer Set Programming

Planning:
I actions, executability, effects
I initial and goal state
I ⇒ find sequence of actions from initial to goal state

Answer Set Programming:
I declarative programming paradigm
I logic programming rules and function symbols
I stable model semantics
I guess & check — resp. GENERATE - DEFINE - TEST paradigm

3 / 18



Using ASP for Planning

I GENERATE all possible action sequences

I DEFINE action effects starting from initial state

I TEST executability

I TEST goal conditions

4 / 18



Combinatory Categorial Grammar (1)

I Categories for words and constituents:

I Atomic categories, e.g.: noun N, noun phrase NP, sentence S

I Complex categories: specify argument and result, e.g.:
I S\NP ⇒ expect NP to the left, result is S

I (S\NP)/NP ⇒ expect NP to the right, result is S\NP

I Given CCG lexicon⇒ represent words by corresponding categories:

The
NP/N

dog
N

bit
(S\NP)/NP

John
NP

I Words may have multiple categories⇒ handle all combinations

5 / 18



Combinatory Categorial Grammar (2)

I Combinators are grammar rules that combine categories:

application composition type raising
A/B B

A
>

A/B B/C
A/C

>B A
B/(B\A) >T

I Instantiation of combinators used for parsing, e.g.:

NP/N N
NP >

I Example derivation, resp. parse tree:

The
NP/N

dog
N

NP >

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

6 / 18



Combinatory Categorial Grammar (2)

I Combinators are grammar rules that combine categories:

application composition type raising
A/B B

A
>

A/B B/C
A/C

>B A
B/(B\A) >T

I Instantiation of combinators used for parsing, e.g.:

NP/N N
NP >

I Example derivation, resp. parse tree:

The
NP/N

dog
N

NP >

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

6 / 18



Using Planning to Realize CCG (1)

I State = Abstract Sequence Representation (ASR):
ASR contains categories, numbered from left to right.

Example:
The

NP/N
dog
N

bit
(S\NP)/NP

John
NP

is represented by the Initial State ASR:

[NP/N1, N2, (S\NP)/NP3, NP4]

I Actions = Combinators that operate on precondition ASR.
Combinators yield a single result category.
Result category is numbered like the leftmost precondition category.

Example:
NP/N1 N2

NP1 >

7 / 18



Using Planning to Realize CCG (1)

I State = Abstract Sequence Representation (ASR):
ASR contains categories, numbered from left to right.

Example:
The

NP/N
dog
N

bit
(S\NP)/NP

John
NP

is represented by the Initial State ASR:

[NP/N1, N2, (S\NP)/NP3, NP4]

I Actions = Combinators that operate on precondition ASR.
Combinators yield a single result category.
Result category is numbered like the leftmost precondition category.

Example:
NP/N1 N2

NP1 >

7 / 18



Using Planning to Realize CCG (2)

I Action Effect = replace precondition sequence by result category.

Example:
time step 1: ASR = [NP1, (S\NP)/NP3, NP4]

⇒ action (S\NP)/NP3 NP4

S\NP3 >

time step 2: ASR = [NP1, S\NP3]

⇒ action NP1 S\NP3

S1 >

time step 3: ASR = [S1]
I Goal State = ASR [S1]
I Concurrent execution of actions possible.

8 / 18



Spurious CCG Parses

I Redundant parse trees yield same semantic result.

Example:
The

NP/N λα.α

dog
N d

NP d
>

bit
(S\NP)/NP λαβ.b(β, α)

John
NP j

S\NP λβ.b(β, j)
>

S b(d, j)
<

versus
The

NP/N λα.α

dog
N d

NP d
>

S/(S\NP) λγδ.γ(d, δ) >T bit
(S\NP)/NP λαβ.b(β, α)

S/NP λδ.[λαβ.b(β, α)](d, δ) = λδ.b(d, δ) >B John
NP j

S b(d, j)
>

I Such parse trees are called spurious and should be suppressed.

9 / 18



Spurious CCG Parses

I Redundant parse trees yield same semantic result.

Example:
The

NP/N λα.α

dog
N d

NP d
>

bit
(S\NP)/NP λαβ.b(β, α)

John
NP j

S\NP λβ.b(β, j)
>

S b(d, j)
<

versus
The

NP/N λα.α

dog
N d

NP d
>

S/(S\NP) λγδ.γ(d, δ) >T bit
(S\NP)/NP λαβ.b(β, α)

S/NP λδ.[λαβ.b(β, α)](d, δ) = λδ.b(d, δ) >B John
NP j

S b(d, j)
>

I Such parse trees are called spurious and should be suppressed.

9 / 18



Spurious Parse Normalization

ASPCCGTK implements known methods for eliminating spurious parses:

I Allow only one branching direction for functional compositions:
W/X X/Y Y/Z

>B
W/Y

>B
W/Z

no
rm

al
iz

e

⇒

W/X X/Y Y/Z
>B

X/Z
>B

W/Z

I Disallow certain combinations of rule applications:
X/Y Y/Z Z

>B
X/Z

>
X

no
rm

al
iz

e

⇒

X/Y Y/Z Z
>

Y
>

X

I Implemented as executability conditions of actions.

10 / 18



Spurious Parse Normalization

ASPCCGTK implements known methods for eliminating spurious parses:

I Allow only one branching direction for functional compositions:
W/X X/Y Y/Z

>B
W/Y

>B
W/Z

no
rm

al
iz

e

⇒

W/X X/Y Y/Z
>B

X/Z
>B

W/Z

I Disallow certain combinations of rule applications:
X/Y Y/Z Z

>B
X/Z

>
X

no
rm

al
iz

e

⇒

X/Y Y/Z Z
>

Y
>

X

I Implemented as executability conditions of actions.

10 / 18



ASP Encoding (State Representation)

I posCat(p, c, t)⇒ category c is annotated with (position) p at time t

I posAdjacent(pL, pR, t)⇒ position pL is adjacent to position pR at time t

I categories represented as function symbols rfunc, lfunc, and strings

Example: “The dog bit John.” is represented as the EDB

posCat(1, rfunc(“NP”, “N”), 0). posCat(2, “N”, 0).
posCat(3, rfunc(lfunc(“S”, “NP”), “NP”), 0). posCat(4, “NP”, 0).
posAdjacent(1, 2, 0). posAdjacent(2, 3, 0). posAdjacent(3, 4, 0).

11 / 18



ASP Encoding (Action Generation)

I GENERATE part of encoding for A/B B
A

>

{occurs(ruleFwdAppl, L, R, T)} ←
posCat(L, rfunc(A, B), T), posCat(R, B, T), posAdjacent(L, R, T),
not ban(ruleFwdAppl, L, T), time(T), T < maxsteps.

I DEFINE part for ban/2 realizes normalizations

12 / 18



ASP Encoding (Effects)

I DEFINE part of encoding for explicit effects of A/B B
A

>

posCat(L, A, T+1)← occurs(ruleFwdAppl, L, R, T),
posCat(L, rfunc(A, B), T),
time(T), T < maxsteps.

I DEFINE part of encoding for implicit effect called “affectedness”:

posAffected(L, T+1)← occurs(Act, L, R, T), binary(Act),
time(T), T < maxsteps.

13 / 18



ASP Encoding (Inertia and Goal)

I DEFINE part of encoding for ASR inertia:

posCat(P, C, T+1)← posCat(P, C, T),
not posAffected(P, T+1),
time(T), T < maxsteps.

I TEST forbids invalid concurrency

I TEST enforces reaching the goal state

14 / 18



ASPCCG Toolkit

C&C supertagger

GRINGO + CLASP

GRINGO + CLASP

+ IDPDraw

Sequence of words + category tags for each word

Parser answer sets

Sentence (string)

OR

Sequence of words
+

Dictionary

Visualisation

ccg.asp

ccg2idpdraw.asp

ASPCCGTK

I implemented in ASP controlled by python

I using/exteding BioASP library in potassco

I http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/

15 / 18



Visualisation

The
NP/N

dog
N

NP >

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

I uses IDPDraw

I in python: convert rfunc(NP, N) into “NP/N”

16 / 18



Best-effort parsing

I Assume, in our lexicon, “bit” always requires someone being bitten
(i.e., assume there is no intransitive category for “bit”).

I “The dog bit” then is not recognized as a sentence.

I ASPCCGTK will not find a parse and provide a best-effort parse:

The dog bit

NP/N N (S\NP)/NP
>

NP
>T

S/(S\NP)
>B

S/NP

17 / 18



Best-effort parsing

I Assume, in our lexicon, “bit” always requires someone being bitten
(i.e., assume there is no intransitive category for “bit”).

I “The dog bit” then is not recognized as a sentence.

I ASPCCGTK will not find a parse and provide a best-effort parse:

The dog bit

NP/N N (S\NP)/NP
>

NP
>T

S/(S\NP)
>B

S/NP

17 / 18



Recent, Ongoing and Future Work

Recent and Ongoing:

I using incremental solver ICLINGO

I performance evaluation on large corpus CCGBank

I different encodings (configuration, CYK)
(⇒ there we have the main effort in grounding)

Future:

I add features to make ASPCCGTK comparable to C&C
(probably the most widely used wide coverage CCG parser)

I make compatible with Boxer

I correctness evaluation on large corpus

18 / 18



References I

I Alessandro Cimatti, Marco Pistore, and Paolo Traverso. Automated planning.
In Handbook of Knowledge Representation. Elsevier, 2008.

I Jason Eisner. Efficient normal-form parsing for combinatory categorial
grammar. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics (ACL’96), pages 79–86, 1996.

I Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres.
A logic programming approach to knowledge-state planning: Semantics and
complexity. ACM Trans. Comput. Logic, 5:206–263, April 2004.

I Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub.
Conflict-driven answer set solving. In IJCAI’07, pages 386–392, 2007.

I Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365–385, 1991.

I Julia Hockenmaier and Mark Steedman. CCGbank: A corpus of CCG
derivations and dependency structures extracted from the Penn Treebank.
Comput. Linguist., 33:355–396, 2007.



Another sample visualisation

18 / 18


	Appendix

