FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Parsing Combinatory Categorial Grammar with
Answer Set Programming: Preliminary Report

Yuliya Lierler Peter Schiller

UK kbs™®

Computer Science Department, University of Kentucky
KBS Group — Institut flr Informationssysteme, Technische Universitat Wien

WLP — September 30, 2011

supported by: CRA/NSF 2010 Computing Innovation Fellowship, Vienna Science and Technology Fund (WWTF) project ICT08-020

mn Natural Language Parsing

» Required for transforming natural language into KR language(s)
» First step: obtaining sentence structure
» Example:

John saw the astronomer with the telescope.

= two distinct structures = “structural ambiguity”

John [saw the astronomer] [with the telescope].
John saw [the astronomer [with the telescope]].

» “Wide-coverage parsing”

= parsing unrestricted natural language (e.g., newspaper)

B I This Work

» Goals of this work:

>

>

Wide-coverage parsing
obtaining all distinct structures

» Approach:

vV vV vV vV VvYY

Parsing represented as planning

Answer Set Programming for realizing the planning
Use of ASP with Function symbols

Optimization for best-effort parsing

Framework using python, gringo, clasp
Visualization

mn Planning, Answer Set Programming

Planning:
» actions, executability, effects
» initial and goal state
» = find sequence of actions from initial to goal state
Answer Set Programming:
» declarative programming paradigm
» logic programming rules and function symbols
» stable model semantics
» guess & check — resp. GENERATE - DEFINE - TEST paradigm

mn Using ASP for Planning

» GENERATE all possible action sequences
» DEFINE action effects starting from initial state
» TEST executability

» TEST goal conditions

18

mn Combinatory Categorial Grammar (1)

» Categories for words and constituents:

» Atomic categories, e.g.: noun N, noun phrase NP, sentence S
» Complex categories: specify argument and result, e.g.:

> S\NP = expect NP to the left, result is S

> (S\NP)/NP = expect NP to the right, result is S\NP

» Given CCG lexicon = represent words by corresponding categories:

The dog bit John
NP/N N (S\NP)/NP NP

» Words may have multiple categories = handle all combinations

18

mn Combinatory Categorial Grammar (2)

» Combinators are grammar rules that combine categories:

application composition type raising

A/B B A/B B/C A
A ac % A

>T

mn Combinatory Categorial Grammar (2)

» Combinators are grammar rules that combine categories:

application composition type raising
A/B B A/B B/C A
A ac % mea T
» Instantiation of combinators used for parsing, e.g.:
NP/N N
NP7

» Example derivation, resp. parse tree:

The dog bit John
NP/N N (S\NP)/NP NP
NP SWP_

S

18

mn Using Planning to Realize CCG (1)

» State = Abstract Sequence Representation (ASR):
ASR contains categories, numbered from left to right.

Example:
The dog bit John
NP/N N (S\NP)/NP NP

is represented by the Initial State ASR:
[NP/N', N2, (S\NP)/NP? NP%

18

mn Using Planning to Realize CCG (1)

» State = Abstract Sequence Representation (ASR):
ASR contains categories, numbered from left to right.

Example:
The dog bit John
NP/N N (S\NP)/NP NP

is represented by the Initial State ASR:
[NP/N', N2, (S\NP)/NP? NP%
» Actions = Combinators that operate on precondition ASR.

Combinators yield a single result category.
Result category is numbered like the leftmost precondition category.

Example:
NP/N' N?
_— >
NP!

mn Using Planning to Realize CCG (2)

» Action Effect = replace precondition sequence by result category.
Example:
time step 1: ASR = [NP!, (S\NP)/NP?, NP%|
(S\NP)/NP*> NP*

= action
S\NP?
time step 2: ASR = [NP!, S\NP?]
: NP! S\NP?
= action I S

Sl
time step 3: ASR = [S]
» Goal State = ASR [S']
» Concurrent execution of actions possible.

mn Spurious CCG Parses

» Redundant parse trees yield same semantic result.

Example:
The dog bit John
NP/N Aa.ao Nd (S\NP)/NP \a3.b(3,«x) NP
NP d - S\WPAGb(A.) _

Sb(d.))

18

mn Spurious CCG Parses

» Redundant parse trees yield same semantic result.

Example:
The dog bit John
NP/N Ma.a Nd (S\NP)/NP \a3.b(3,«x) NP
NP d - S\NP \G.6(3.))
Sb(d.j) =
versus
The dog
NP/N Ma.oc Nd
NP d - bit
S/(S\NP) \y0.~(d, 0) (S\NP)/NP AGG6(3:0) . john
S/NP \0.\af.b(3,0)](d,0) = \o.b(d,0) ~ > NPj
Sb(d.j) g

» Such parse trees are called spurious and should be suppressed.

mn Spurious Parse Normalization

AsPCcGTK implements known methods for eliminating spurious parses:

» Allow only one branching direction for functional compositions:

W/X X)Y Y/Z 8 W/X X/Y Y/Z
>B g >B
w/Y 5 X/Z
>B >B
W/Z = w/Z

10/18

mn Spurious Parse Normalization

AsPCcGTK implements known methods for eliminating spurious parses:

» Allow only one branching direction for functional compositions:

W/X X)Y Y/Z 8 W/X X/Y Y/Z
>B g >B
w/Y 5 X/Z
——>B — >B
W/Z = w/Z
» Disallow certain combinations of rule applications:
X/Yy Y/z z 8 XJ)Y Y/Z Z
>B g >
X/Z 5 Y
x = = X

» Implemented as executability conditions of actions.

10/18

mn ASP Encoding (State Representation)

» posCat(p, c,t) = category c is annotated with (position) p at time ¢
» posAdjacent(pr, pr,t) = position p;, is adjacent to position pg at time ¢

» categories represented as function symbols rfunc, Ifunc, and strings

Example: “The dog bit John.” is represented as the EDB

posCat(1, rfunc(“NP”, “N”),0). posCat(2, “N”,0).
posCat(3, rfunc(lfunc(“S”, “NP”), “NP”),0). posCat(4, “NP”,0).
posAdjacent(1,2,0). posAdjacent(2,3,0). posAdjacent(3,4,0).

11/18

mn ASP Encoding (Action Generation)

A/B B
7.4 >
{occurs(ruleFwdAppl,L,R,T)} «—
posCat(L, rfunc(A,B),T), posCat(R,B,T), posAdjacent(L,R,T),
not ban(ruleFwdAppl, L, T), time(T), T < maxsteps.

» GENERATE part of encoding for

» DEFINE part for ban/2 realizes normalizations

12/18

wn ASP Encoding (Effects)

» DEFINE part of encoding for explicit effects of A/B B >
A

posCat(L,A, T+1) «— occurs(ruleFwdAppl,L,R,T),
posCat(L, rfunc(A,B),T),
time(T), T < maxsteps.

» DEFINE part of encoding for implicit effect called “affectedness”:

posAffected(L, T+1) «— occurs(Act,L,R,T), binary(Act),
time(T), T < maxsteps.

13/18

mn ASP Encoding (Inertia and Goal)

» DEFINE part of encoding for ASR inertia:
posCat(P,C,T+1) «— posCat(P,C,T),
not posAffected(P,T+1),
time(T), T < maxsteps.

» TEST forbids invalid concurrency

» TEST enforces reaching the goal state

14/18

OR Sequence of words + category tags for each word

GRINGO + CLASP

1
1
1
1
' Parser answer sets
1
1
1
1

— GRINGO + CLASP -
+ IDPDraw <—/ ccg21dpdraw.asp/

Sequence of words
+
Dictionary

» implemented in ASP controlled by python
» using/exteding BioASP library in potassco

» http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/

15/18

mn Visualisation

The dog bit John
NP/N N (S\NP)/NP NP
NP S\NP
S <
"the" "dog" "bit" "John"
"NP/N" "N" "(S\NP)/NP" "NP"
fa fa
| "NP" | ["S\NP" I
ba

» uses IDPDraw

» in python: convert rfunc(NP,N) into “NP/N”

16/18

mn Best-effort parsing

» Assume, in our lexicon, “bit” always requires someone being bitten
(i.e., assume there is no intransitive category for “bit”).

» “The dog bit” then is not recognized as a sentence.

17/18

mn Best-effort parsing

» Assume, in our lexicon, “bit” always requires someone being bitten
(i.e., assume there is no intransitive category for “bit”).

» “The dog bit” then is not recognized as a sentence.

» AsPCcGTK will not find a parse and provide a best-effort parse:

The dog bit
NP/N N (S\NP)/NP
NP g
——>T
S/(S\NP)
>B

S/NP

17/18

mn Recent, Ongoing and Future Work

Recent and Ongoing:
» using incremental solver ICLINGO
» performance evaluation on large corpus CCGBank

» different encodings (configuration, CYK)
(= there we have the main effort in grounding)

Future:

» add features to make ASPCCGTK comparable to C&C
(probably the most widely used wide coverage CCG parser)

» make compatible with Boxer

» correctness evaluation on large corpus

18/18

mn References |

» Alessandro Cimatti, Marco Pistore, and Paolo Traverso. Automated planning.
In Handbook of Knowledge Representation. Elsevier, 2008.

» Jason Eisner. Efficient normal-form parsing for combinatory categorial
grammar. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics (ACL'96), pages 79-86, 1996.

» Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres.
A logic programming approach to knowledge-state planning: Semantics and
complexity. ACM Trans. Comput. Logic, 5:206—263, April 2004.

» Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub.
Conflict-driven answer set solving. In [JCAI'07, pages 386-392, 2007.

» Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365-385, 1991.

» Julia Hockenmaier and Mark Steedman. CCGbank: A corpus of CCG
derivations and dependency structures extracted from the Penn Treebank.
Comput. Linguist., 33:355-396, 2007.

n Another sample visualisation

I A I i_“saw“ I }_“yes(evday“ I “and” T }_“pmved“ T }_“mday“ [[“completeness”
["NP" | "(S\INP)/NP" | "SWPVSINP | | "Con" | "(S\NP)/NP" | "SIWPVSINP || "NP"
[~ W\NP)/NF’”“WC [o] W\NP)/NP”‘FXC e
"NP” mn{ “(S\INP)/NP" [™~
[["SNP]
=
=

i

18/18

	Appendix

