Motivation

HEX-Programs

- Extend ASP by external sources
- Traditional safety not sufficient due to value invention
- Current notion of strong safety is unnecessarily restrictive

Example

$$\Pi = \left\{ r_1 : t(a). \quad r_3 : s(Y) \leftarrow t(X), \text{cat}[X, a](Y). \right\}$$
$$\left\{ r_2 : \text{dom}(aa). \quad r_4 : t(X) \leftarrow s(X), \text{dom}(X). \right\}$$

Contribution

- New more liberal safety criteria
- Still guarantee finite groundability
- Based on a modular framework \Rightarrow extensibility of the approach
Liberal Safety: Basic Concepts

Monotone Grounding Operator

\[G_\Pi(\Pi') = \bigcup_{r \in \Pi} \{ r \theta \mid A \subseteq A(\Pi'), A \not\models \bot, A \models B^+(r\theta) \}, \]

where \(A(\Pi') = \{ Ta, Fa \mid a \in A(\Pi') \} \setminus \{ Fa \mid a \leftarrow . \in \Pi \} \) and \(r\theta \) is the instance of \(r \) under variable substitution \(\theta : V \rightarrow C \).

Example

Program \(\Pi \):

\[r_1 : s(a). \quad r_2 : \text{dom}(ax). \quad r_3 : \text{dom}(axx). \]
\[r_4 : s(Y) \leftarrow s(X), \& \text{cat}[X, x](Y), \text{dom}(Y). \]

Least fixpoint of \(G_\Pi \):

\[r'_1 : s(a). \quad r'_2 : \text{dom}(ax). \quad r'_3 : \text{dom}(axx). \]
Monotone Grounding Operator

\[G_{\Pi}(\Pi') = \bigcup_{r \in \Pi} \{ r\theta \mid A \subseteq A(\Pi'), A \not\models \bot, A \models B^+(r\theta) \}, \]

where \(A(\Pi') = \{Ta, Fa \mid a \in A(\Pi')\} \setminus \{Fa \mid a \leftarrow . \in \Pi\} \)
and \(r\theta \) is the instance of \(r \) under variable substitution \(\theta: V \rightarrow C \).

Example

Program \(\Pi \):

\[
\begin{align*}
 r_1 &: s(a). \\
 r_2 &: dom(ax). \\
 r_3 &: dom(axx). \\
 r_4 &: s(Y) \leftarrow s(X), \&cat[X, x](Y), dom(Y).
\end{align*}
\]

Least fixpoint of \(G_{\Pi} \):

\[
\begin{align*}
 r_1' &: s(a). \\
 r_2' &: dom(ax). \\
 r_3' &: dom(axx). \\
 r_4' &: s(ax) \leftarrow s(a), \&cat[a, x](ax), dom(ax).
\end{align*}
\]
Monotone Grounding Operator

\[G_{\Pi}(\Pi') = \bigcup_{r \in \Pi} \{ r\theta \mid A \subseteq A(\Pi'), A \not\models \bot, A \models B^+(r\theta) \}, \]

where \(A(\Pi') = \{ \text{T}a, \text{F}a \mid a \in A(\Pi') \} \setminus \{ \text{F}a \mid a \leftarrow \text{.} \in \Pi \} \)

and \(r\theta \) is the instance of \(r \) under variable substitution \(\theta : \mathcal{V} \to \mathcal{C} \).

Example

Program \(\Pi \):

\[
\begin{align*}
 r_1 & : s(a). \quad r_2 : \text{dom}(ax). \quad r_3 : \text{dom}(axx). \\
 r_4 & : s(Y) \leftarrow s(X), \&\text{cat}[X, x](Y), \text{dom}(Y).
\end{align*}
\]

Least fixpoint of \(G_{\Pi} \):

\[
\begin{align*}
 r'_1 & : s(a). \quad r'_2 : \text{dom}(ax). \quad r'_3 : \text{dom}(axx). \\
 r'_4 & : s(ax) \leftarrow s(a), \&\text{cat}[a, x](ax), \text{dom}(ax). \\
 r'_5 & : s(axx) \leftarrow s(ax), \&\text{cat}[ax, x](axx), \text{dom}(axx).
\end{align*}
\]
Liberal Safety: Basic Concepts

Monotone Grounding Operator

\[G_\Pi(\Pi') = \bigcup_{r \in \Pi} \{ r\theta \mid A \subseteq A(\Pi'), A \not\models \bot, A \models B^+(r\theta) \}, \]

where \(A(\Pi') = \{ Ta, Fa \mid a \in A(\Pi') \} \setminus \{ Fa \mid a \leftarrow . \in \Pi \} \)

and \(r\theta \) is the instance of \(r \) under variable substitution \(\theta : V \rightarrow C \).

Example

Program \(\Pi \):

\[
\begin{align*}
 r_1 &: s(a). \\
 r_2 &: \text{dom}(ax). \\
 r_3 &: \text{dom}(axx). \\
 r_4 &: s(Y) \leftarrow s(X), \&\text{cat}[X, x](Y), \text{dom}(Y).
\end{align*}
\]

Least fixpoint of \(G_\Pi \):

\[
\begin{align*}
 r'_1 &: s(a). \\
 r'_2 &: \text{dom}(ax). \\
 r'_3 &: \text{dom}(axx). \\
 r'_4 &: s(ax) \leftarrow s(a), \&\text{cat}[a, x](ax), \text{dom}(ax). \\
 r'_5 &: s(axx) \leftarrow s(ax), \&\text{cat}[ax, x](axx), \text{dom}(axx).
\end{align*}
\]

Intuition: We call a program safe if this operator produces a finite grounding.
Liberal Safety

Two concepts

- A term is **bounded** if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for it
- An attribute is **de-safe** if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position

Idea

1. Start with empty set of bounded terms B_0 and de-safe attributes S_0
2. For all $n \geq 0$ until B_n and S_n do not change anymore
 - a. Identify additional bounded terms $\Rightarrow B_{n+1}$
 (assuming that B_n are bounded and S_n are de-safe)
 - b. Identify additional de-safe attributes $\Rightarrow S_{n+1}$
 (assuming that B_{n+1} are bounded and S_n are de-safe)
Liberal Safety

Two concepts

- A term is **bounded** if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for it.
- An attribute is **de-safe** if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position.

Idea

1. Start with empty set of bounded terms B_0 and de-safe attributes S_0.
2. For all $n \geq 0$ until B_n and S_n do not change anymore
 - a. Identify additional bounded terms $\Rightarrow B_{n+1}$ (assuming that B_n are bounded and S_n are de-safe).
 - b. Identify additional de-safe attributes $\Rightarrow S_{n+1}$ (assuming that B_{n+1} are bounded and S_n are de-safe).

Identification of bounded terms in Step 2a by **term bounding functions (TBFs)**
Concrete safety criteria can be plugged in by specific TBF $b(\Pi, r, S, B)$.
Liberal Safety

Two concepts

- A term is **bounded** if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for it.
- An attribute is **de-safe** if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position.

Idea

1. Start with empty set of bounded terms B_0 and de-safe attributes S_0.
2. For all $n \geq 0$ until B_n and S_n do not change anymore:
 - a. Identify additional bounded terms $\Rightarrow B_{n+1}$ (assuming that B_n are bounded and S_n are de-safe).
 - b. Identify additional de-safe attributes $\Rightarrow S_{n+1}$ (assuming that B_{n+1} are bounded and S_n are de-safe).

Identification of bounded terms in Step 2a by term bounding functions (TBFs). Concrete safety criteria can be plugged in by specific TBF $b(\Pi, r, S, B)$ \Rightarrow TBFs are a flexible means that however must fulfill certain conditions.
Liberal Safety: Concrete TBF

Definition (Syntactic Term Bounding Function)

\[t \in b_{\text{syn}}(\Pi, r, S, B) \text{ iff } \]

(i) \(t \) is a constant in \(r \); or

(ii) there is an ordinary atom \(q(s_1, \ldots, s_{\text{ar}(q)}) \in B^+(r) \) s.t. \(t = s_j \), for some \(1 \leq j \leq \text{ar}(q) \) and \(q \upharpoonright j \in S \); or

(iii) for some external atom \(\&g[\vec{X}](\vec{Y}) \in B^+(r) \), we have that \(t = Y_i \) for some \(Y_i \in \vec{Y} \), and for each \(X_i \in \vec{X} \),

\[
\begin{cases}
X_i \in B, & \text{if } \tau(\&g, i) = \text{const}, \\
X_i \upharpoonright 1, \ldots, X_i \upharpoonright \text{ar}(X_i) \in S, & \text{if } \tau(\&g, i) = \text{pred}.
\end{cases}
\]
Example

Program II:

\[r_1 : s(a). \quad r_2 : \text{dom}(ax). \quad r_3 : \text{dom}(axx). \]
\[r_4 : s(Y) \leftarrow s(X), \& \text{cat}[X, x](Y), \text{dom}(Y). \]

\[B_1(r_2, \Pi, b_{syn}) = \{ax\}, \quad B_1(r_3, \Pi, b_{syn}) = \{axx\}, \quad B_1(r_4, \Pi, b_{syn}) = \{x\} \]
Liberal Safety: Concrete TBF

Example

Program Π:

\[
\begin{align*}
 r_1 &: s(a). \\
 r_2 &: \text{dom}(ax). \\
 r_3 &: \text{dom}(axx). \\
 r_4 &: s(Y) \leftarrow s(X), \&\text{cat}[X, x](Y), \text{dom}(Y).
\end{align*}
\]

- $B_1(r_2, \Pi, b_{syn}) = \{ax\}$, $B_1(r_3, \Pi, b_{syn}) = \{axx\}$, $B_1(r_4, \Pi, b_{syn}) = \{x\}$
- $\Rightarrow S_1(\Pi) = \{\text{dom}|1, \&\text{cat}[X, x]_{r_4}|_2\}$
Liberal Safety: Concrete TBF

Example

Program Π:

\[r_1 : s(a). \quad r_2 : \text{dom}(ax). \quad r_3 : \text{dom}(axx). \]
\[r_4 : s(Y) \leftarrow s(X), \text{&cat}[X,x](Y), \text{dom}(Y). \]

\[B_1(r_2, \Pi, b_{syn}) = \{ax\}, B_1(r_3, \Pi, b_{syn}) = \{axx\}, B_1(r_4, \Pi, b_{syn}) = \{x\} \]

\[\Rightarrow S_1(\Pi) = \{\text{dom}\upharpoonright 1, \text{&cat}[X,x]_{r_4}\upharpoonright 2\} \]

\[B_2(r_4, \Pi, b_{syn}) = \{Y\}, B_2(r_1, \Pi, b_{syn}) = \{a\} \]
Liberal Safety: Concrete TBF

Example

Program Π:

\[
\begin{align*}
r_1 &: s(a). \\
r_2 &: \text{dom}(ax). \\
r_3 &: \text{dom}(axx). \\
r_4 &: s(Y) \leftarrow s(X), \&\text{cat}[X,x](Y), \text{dom}(Y).
\end{align*}
\]

- \(B_1(r_2, \Pi, b_{syn}) = \{ax\} \)
- \(B_1(r_3, \Pi, b_{syn}) = \{axx\} \)
- \(B_1(r_4, \Pi, b_{syn}) = \{x\} \)

\Rightarrow \(S_1(\Pi) = \{\text{dom}\|1, \&\text{cat}[X,x]_{r_4}\|1\} \)

- \(B_2(r_4, \Pi, b_{syn}) = \{Y\} \)
- \(B_2(r_1, \Pi, b_{syn}) = \{a\} \)

\Rightarrow \(S_2(\Pi) \supseteq \{s\|1, \&\text{cat}[X,x]_{r_4}\|o1\} \)

We also provide a TBF which exploits semantic properties of external sources.
Liberal Safety: Concrete TBF

Example

Program Π:

\[r_1 : s(a). \quad r_2 : \text{dom}(ax). \quad r_3 : \text{dom}(axx). \]

\[r_4 : s(Y) \leftarrow s(X), \text{\&cat}[X, x](Y), \text{dom}(Y). \]

\[B_1(r_2, \Pi, b_{syn}) = \{ax\}, B_1(r_3, \Pi, b_{syn}) = \{axx\}, B_1(r_4, \Pi, b_{syn}) = \{x\} \]

\[\Rightarrow S_1(\Pi) = \{\text{dom} \upharpoonright 1, \text{\&cat}[X, x]_{r_4} \upharpoonright 2\} \]

\[B_2(r_4, \Pi, b_{syn}) = \{Y\}, B_2(r_1, \Pi, b_{syn}) = \{a\} \]

\[\Rightarrow S_2(\Pi) \supseteq \{s \upharpoonright 1, \text{\&cat}[X, x]_{r_4} \upharpoonright 0 \upharpoonright 1\} \]

\[X \in B_3(r_4, \Pi, b_{syn}) \]
Example

Program Π:

\[r_1 : s(a). \quad r_2 : \text{dom}(ax). \quad r_3 : \text{dom}(axx). \]
\[r_4 : s(Y) \leftarrow s(X), \quad \&\text{cat}[X, x](Y), \text{dom}(Y). \]

- \[B_1(r_2, \Pi, b_{syn}) = \{ax\}, \quad B_1(r_3, \Pi, b_{syn}) = \{axx\}, \quad B_1(r_4, \Pi, b_{syn}) = \{x\} \]
- \[\Rightarrow S_1(\Pi) = \{\text{dom}|1, \&\text{cat}[X, x]_{r_4}|_2\} \]
- \[B_2(r_4, \Pi, b_{syn}) = \{Y\}, \quad B_2(r_1, \Pi, b_{syn}) = \{a\} \]
- \[\Rightarrow S_2(\Pi) \supseteq \{s|1, \&\text{cat}[X, x]_{r_4}|_1 1\} \]
- \[X \in B_3(r_4, \Pi, b_{syn}) \]
- \[\Rightarrow \&\text{cat}[X, x]_{r_4}|_1 1 \in S_3(\Pi) \]
Liberal Safety: Concrete TBF

Example

Program Π:

- \(r_1 : s(a) \).
- \(r_2 : \text{dom}(ax) \).
- \(r_3 : \text{dom}(axx) \).
- \(r_4 : s(Y) \leftarrow s(X), \&\text{cat}[X, x](Y), \text{dom}(Y) \).

- \(B_1(r_2, \Pi, b_{syn}) = \{ax\}, B_1(r_3, \Pi, b_{syn}) = \{axx\}, B_1(r_4, \Pi, b_{syn}) = \{x\} \)
- \(\Rightarrow S_1(\Pi) = \{\text{dom} \upharpoonright 1, \&\text{cat}[X, x]_{r_4} \upharpoonright 1\} \)
- \(B_2(r_4, \Pi, b_{syn}) = \{Y\}, B_2(r_1, \Pi, b_{syn}) = \{a\} \)
- \(\Rightarrow S_2(\Pi) \supseteq \{s \upharpoonright 1, \&\text{cat}[X, x]_{r_4} \upharpoonright \circ 1\} \)
- \(X \in B_3(r_4, \Pi, b_{syn}) \)
- \(\Rightarrow \&\text{cat}[X, x]_{r_4} \upharpoonright 1 \in S_3(\Pi) \)

We also provide a TBF which exploits semantic properties of external sources
Liberal Safety: Results

Modular composition of TBFs:

Proposition

If $b_i(\Pi, r, S, B), 1 \leq i \leq \ell$, are TBFs, then $b(\Pi, r, S, B) = \bigcup_{1\leq i \leq \ell} b_i(\Pi, r, S, B)$ is a TBF.
Liberal Safety: Results

Modular composition of TBFs:

Proposition

If \(b_i(\Pi, r, S, B) \), \(1 \leq i \leq \ell \), are TBFs, then \(b(\Pi, r, S, B) = \bigcup_{1 \leq i \leq \ell} b_i(\Pi, r, S, B) \) is a TBF.

Operator \(G \) is a witness for finite groundability:

Proposition

If \(\Pi \) is a de-safe program, then \(G_\Pi^\infty(\emptyset) \) is finite.

Proposition

Let \(\Pi \) be a de-safe program. Then \(\Pi \) is finitely restrictable and \(G_\Pi^\infty(\emptyset) \equiv^{pos} \Pi \).

The results hold for any TBF!
Relations to Other Notions of Safety

Using TBF $b_{syn}(\Pi, r, S, B) \cup b_{sem}(\Pi, r, S, B)$, liberal de-safety is strictly more general than many other approaches:

Proposition

Every strongly de-safe [Eiter et al., 2006] program is de-safe.

Proposition

Every VI-restricted program [Calimeri et al., 2007] is de-safe.

Proposition

If Π is ω-restricted [Syrjänen, 2001], then it corresponds to a rewritten program $F(\Pi)$ which is de-safe.
Conclusion

ASP Programs with External Sources

- Ordinary safety not sufficient due to value invention
- Traditional strong safety is unnecessarily restrictive

Liberal Safety Criteria

- Based on term bounding functions (TBFs)
- Allows for easy extensibility of the approach
- We also provide concrete TBFs, which are strictly more liberal than many other approaches

Ongoing and Future Work

- Refine and extend existing TBFs (e.g. exploiting domain-specific properties)
- Define and implement grounding algorithms for the new class of programs
References

External Sources of Knowledge and Value Invention in Logic Programming.

Omega-restricted logic programs.

Termination of term rewriting: Interpretation and type elimination.