
Exploiting Support Sets for Answer Set Programs with External Evaluations∗

Thomas Eiter and Michael Fink and Christoph Redl and Daria Stepanova
Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,fink,redl,dasha}@kr.tuwien.ac.at

Abstract

Answer set programs (ASP) with external evaluations are a
declarative means to capture advanced applications. However,
their evaluation can be expensive due to external source ac-
cesses. In this paper we consider HEX-programs that provide
external atoms as a bidirectional interface to external sources
and present a novel evaluation method based on support sets,
which informally are portions of the input to an external atom
that will determine its output for any completion of the partial
input. Support sets allow one to shortcut the external source ac-
cess, which can be completely eliminated. This is particularly
attractive if a compact representation of suitable support sets
is efficiently constructible. We discuss some applications with
this property, among them description logic programs over
DL-Lite ontologies, and present experimental results showing
that support sets can significantly improve efficiency.

1 Introduction
Answer Set Programming (ASP) has been gaining popularity
as a tool for declarative problem solving (Brewka, Eiter, and
Truszczyński 2011). The need for accessing external infor-
mation in them has led to HEX-programs (Eiter et al. 2005),
which feature external atoms as a generic bidirectional in-
terface to arbitrary sources of computation. Thanks to such
atoms (which can be tailored and plugged in by the user), a
powerful and flexible formalism for advanced reasoning is
available; this has been exploited in many different applica-
tion areas, including Semantic Web, multi-context systems,
or argumentation, to mention a few. A prominent applica-
tion are DL-programs (Eiter et al. 2008), which amount to
HEX-programs with access to an external ontology.

For instance, consider the following DL-program rule

cust(X)←isIn(X,Y),

not DL[worksIn] goTo;¬Cust](X)

taken from a taxi-driver assignment program (see Section 3
for the full example). An external ontology O is acessed by
a DL-atom (i.e., external atom of a particular HEX-program)

∗This research has been supported by the Austrian Science Fund
(FWF) project P20840, P20841, P24090, and by the Vienna Science
and Technology Fund (WWTF) project ICT08-020.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a(X) = DL[worksIn] goTo;¬Cust](X). The latter speci-
fies an update of O, via the operator], prior to querying it:
i.e. additional assertions worksIn(c, c′) are considered for
each pair of individuals (c, c′) such that goTo(c, c′) is true
under the rules part, before all instances X of ¬Cust (i.e.,
non-customers) are retrieved from the ontology.

The semantics of HEX-programs is given in terms of an-
swer sets, whose computation involves evaluating external
atoms. The number of external source accesses for that can
be large, especially if cyclic dependencies or nondeterminism
(choices) occur in the program, which are typical for the use
of ASP in many applications–and a bottleneck of the existing
evaluation approach.

To counter this, we present a new evaluation approach
based on support sets. Intuitively, a support set for an external
atom is a portion of its input whose presence settles a concrete
output value. For instance, given that O |= ∃.worksIn v
¬Cust as in our example, S = {TgoTo(d3, r1)} is a sup-
port set of the DL-atom a(X) above for output X = d3,
since truth of goTo(d3, r1) guarantees that a(d3) will eval-
uate to true. Such support sets can be effectively used to
reduce the number of external source accesses in answer set
checking, but also to prune the candidate space of answer
sets. In particular, if a sufficiently rich collection of support
sets is available, the external source access can be entirely
eliminated. The latter is highly attractive if a suitable repre-
sentation of such a complete set of support sets is efficiently
computable, and promises high performance gains.

In developing this approach, we proceed as follows.

• We formalize the notion of support set and introduce a
non-ground form for compact representation. The latter
includes optional source information to increase usability
(Section 3).

• We show how to use support sets effectively for optimizing
HEX-program evaluation (Section 4).

• As applications, we consider DL-programs over
DL-LiteA ontologies (Calvanese et al. 2007), a premier
formalisms for ontology based data access, for which small
representations of complete sets of support sets can be effi-
ciently obtained, and query answering over external ASP
programs (Section 5).

• We compare an implementation of the novel against the
traditional approach. The results show its effectiveness,

with significant gains (up to two orders of magnitude;
Section 6).

In conclusion, the support sets approach opens a new
and fruitful perspective for increasing scalability of HEX-
programs, which is crucial for serving applications.

2 Preliminaries
We assume a vocabulary of a set C of constants, a set V
of variables, a set P of predicates, and a set X of external
predicates (all pairwise disjoint).

Following Gebser et al. (2012), a (signed) literal is a posi-
tive or a negative formula Ta resp. Fa, where a is an atom
of form p(X) = p(X1, . . . , X`), with predicate p and terms
X1, . . . , X` ∈ C ∪V ; a signed literal or atom is ground, if all
terms in X are constants, and nonground otherwise.

An assignment A over a (finite) set A of ground atoms is
a consistent set of ground signed literals Ta and Fa, a ∈ A,
where Ta expresses that a is true and Fa that a is false. An
interpretation is any assignment A that is complete, i.e., no
strictly larger assignment A′⊃A over A exists.

HEX-Programs: Syntax. HEX-programs generalize (dis-
junctive) extended logic programs under the answer set
semantics (Gelfond and Lifschitz 1991) with external
atoms a(Z) of the form &g [Y](X), where &g ∈X ,
Y =Y1, . . . , Y`, and X = X1, . . . , Xm, such that Yi, Xj ∈
P ∪ C ∪ V , for 1≤ i ≤ ` and 1≤ j ≤m; and Z is the
restriction of Y and X to elements from V .

A HEX-program (or program) consists of rules r of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where each ai is an (ordinary) atom, each bj is either an
ordinary atom or an external atom, and k + n > 0.

The head of r is H(r) = {a1, . . . , ak} and the body is
B(r) = B+(r)∪notB−(r), where B+(r) = {b1, . . . , bm}
is the positive body, B−(r) = {bm+1, . . . , bn} is the nega-
tive body, and notS = {not b | b ∈ S}. For any rule, set of
rules, etc. O, let A(O) and EA(O) be the set of all ordinary
and external atoms occurring in O, respectively.

A program is ground, if it contains no variables. We will
also consider non-ground programs in our examples, for
which suitable safety conditions allow to use a grounding
procedure that transforms the program to a variable-free pro-
gram with the same answer sets. We thus confine our formal
investigations here to ground programs.

Semantics. The semantics of a HEX-program is defined via
interpretations A over the Herbrand base HB(P, C) i.e., all
atoms constructible from P and C; throughout the rest, we
assume thatA = HB(P, C) is fixed. Ordinary atoms are eval-
uated w.r.t. an interpretation A while the value of a ground
external atom &g [y](x) is given by the value f&g(A,y,x)
of a 1+|y|+|x|-ary Boolean oracle function f&g (Eiter et al.
2005). Satisfaction of (sets of) literals, rules, etc. O w.r.t. A
(A is a model ofO), denoted A |= O, extends naturally from
ordinary (Gelfond and Lifschitz 1991) to HEX-programs as
follows. An ordinary atom b is satisfied w.r.t. A if Tb ∈ A,
an (ordinary or external) literal not b is satisfied if A 6|= b,
and a rule of form (1) is satisfied w.r.t. A if A |= ai for some

1 ≤ i ≤ k or A 6|= bi for some 1 ≤ i ≤ m or A |= bi for
some m < i ≤ n.

An answer set of Π is any model A of the program ΠA =
{r ∈ Π | A |= B(r)} (the FLP-reduct of Π w.r.t. A, cf.
(Faber et al. 2011)) whose positive part (i.e., {Ta ∈ A}) is
subset-minimal; AS(Π) is the set of all answer sets of Π.
Example 1 (Set Partitioning) Consider the program Π

d(c)←; q(c) ← d(c),&diff [d , p](c)

p(c) ← d(c),&diff [d , q](c)

where &diff [p, q](X) computes the set of all elements X
which are in the extension of p but not that of q. Informally,
this program implements a choice from p(c) and q(c).

Evaluation. The usual way to compute the answer sets of
a HEX-program Π is via a transformation to an ordinary ASP
program Π̂. Each external atom a = &g [y](x) in a rule r ∈
Π is replaced by an ordinary replacement atom â = e&g[y](x)
(resulting in a rule r̂), and a rule e&g[y](x) ∨ ne&g[y](x)←
is added to the program. The answer sets of the resulting
guessing program Π̂ are computed by an ASP solver and
projected to non-replacement atoms. However, each answer
set Â of Π̂ merely gives rise to a candidate answer set of
Π, as the guess for e&g[p](c) must be checked against the
actual value of &g [p]. If no discrepancy is found, the model
candidate is a compatible set of Π. More precisely,
Definition 1 (Compatible Set) A compatible set of a pro-
gram Π is an assignment Â s.t. (i) Â∈AS(Π̂) and (ii) for
all &g [y](x) in Π, f&g(Â,y,x) = 1 iff Te&g[y](x)∈ Â.

As each answer set of Π is a projection of a (unique) compati-
ble set that fulfills an additional minimality check, computing
compatible sets is essential for evaluation (and a focus here).

External Behaviour Learning. To improve efficiency,
Eiter et al. (2012) extended the ASP solving approach of
Gebser et al. (2012), which uses nogoods in a program repre-
sentation, to HEX-programs. A nogood is a set {L1, . . . , Ln}
of ground signed literals Li, 1 ≤ i ≤ n that must not be all
true; formally, an interpretation A is a solution to a nogood δ
(a set ∆ of nogoods), iff δ 6⊆ A (δ 6⊆ A for all δ ∈ ∆). More-
over, by external behavior learning, nogoods are learned from
evaluations of external atoms during the computation; they
are added to Π̂’s representation to prune model candidates
that violate the known semantics of external atoms.

Formally, learned nogoods are specified with a learning
function Λ for Π, which assigns to each pair (&g [y], Â) of
an external predicate with input list &g [y] that occurs in Π

and assignment Â over A(Π̂) a set Λ(&g [y], Â) of nogoods
over A(Π̂). These nogoods must not eliminate answer sets,
which is ensured by the following correctness condition.
Definition 2 (Correctness) Given a program Π, a nogood
δ is correct for Π, if each compatible set of Π is a solution
to δ; a learning function Λ is correct for Π, iff each δ ∈
Λ(&g [y], Â) is correct for Π, for all possible &g [y] and Â.

For a complete procedure of computing answer sets of
HEX-programs see Eiter et al. (2013).

O =

(1) Driver v ¬Cust (4) worksIn(d1 , r1)
(2) ∃.worksIn v Driver (5) worksIn(d2 , r3)
(3) EDriver v Driver (6) EDriver(d2)

P=

(7) isIn(c2 , r3); (8) isIn(d3 , r3); (9) isIn(d2 , r3);
(10) needsTo(c2 , r4); (11) goTo(d3 , r2);

(12) cust(X)← isIn(X ,Y),
not DL[worksIn] goTo;¬Cust](X);

(13) driver(X)← not cust(X), isIn(X ,Y);

(14) drives(X ,Y)← cust(Y), isIn(Y,Z), isIn(X ,Z),
driver(X), not omit(X ,Y);

(15) omit(X ,Y)← needsTo(Y ,Z), drives(X ,Y),
DL[Driver]driver ;EDriver](X),
not DL[;worksIn](X,Z)

Figure 1: DL-program Π = (O, P) over a driver ontology

3 Support Sets
In this section we present the notion of a support set for an
external atom, which intuitively encodes a (partial) behavior
of its boolean oracle function.

Before defining support sets formally, let us introduce our
running example, which has been briefly mentioned in the
introduction and is used throughout the paper, in more detail.

Example 2 Imagine a system that assigns customers to taxi
drivers under constraints, using (in a simplistic form) the DL-
program Π = (O, P) in Figure 1. The (external) ontology O
has a taxonomy T in (1)-(3) and a data part A about drivers
and their working regions in (4)-(6). The logic program P
has facts about current positions and needs in (7)-(11) and
the following rules: (12) and (13) single out customers resp.
taxi drivers; (14) assigns taxi drivers to customers in the
same region; and (15) forbids drivers of electro-cars to serve
needs going outside their working region (see Section 5 for
formal details on DL-programs).

Intuitively, support sets are consistent sets of signed literals
that as (part of the) input of an external atom completely
determine its output values. Formally, ground support sets
are defined as follows:

Definition 3 (Ground Support Set) Let a = &g [y](x) be
a ground external atom of a program Π.

• A support set for a is a consistent set S⊆{Tp(c),Fp(c) |
p(c) ∈ HB(P, C), p ∈ y} of ground signed literals s.t.
for all assignments A, A′ ⊇ S, it holds that A |= a iff
A′ |= a.
• A support set S is positive (resp. negative), iff for all

assignments A ⊇ S it holds that A |= a (resp. A 6|= a).

We denote by S(a) the set of all support sets for a; for any
S ⊆ S(a), we denote by S+ (resp. S−) the set of all positive
(resp. negative) support sets S ∈ S for a.

Example 3 S = {TgoTo(d3, r2)} is a ground positive sup-
port set for a(d3) = DL[worksIn] goTo;¬Cust](d3) from
Example 2, i.e. S ∈ S+(a(d3)). For &diff [d , p](c) in Exam-
ple 1, {Td(c), Fp(c)} is a positive ground support set and
{Tp(c)} is a negative one.

Unlike learning functions, the machinery of support sets al-
lows to conveniently encode the full external source behavior
through the notion of completeness for a support family, i.e.,
a set of support sets. A complete support family for a ground
external atom is a set of its support sets that is sufficient for
determining the value of the external atom under all possible
assignments. We now state this formally:

Definition 4 (Complete Support Family) A support family
S ⊆ S(a) for a ground external atom a is complete iff for
each assignment A there exists some S ∈S s.t. A⊇S.

Given a complete support family S = S+ ∪ S− for a, we
can decide on the value of a w.r.t. an assignment A by simply
checking if some S ∈ S “covers” A, i.e., S ⊆ A holds.
In fact, to decide this we need just one of S+ and S−; for
space reasons, storing the smaller set is preferable. A support
family is +-complete (resp. −-complete) for a, if it equals
S+ (resp. S−) for some complete support family S ⊆ S(a).

Different ground support sets might have similar structure.
The atom a(d3) from Example 3 has S = {TgoTo(d3, c)} as
support set, for each c ∈ C. Moreover, S = {TgoTo(d, c)}
is a support set for any a(d), c, d ∈ C. This suggests that a
nonground representation of support sets is desirable.

Given a set of nonground signed literals, in general, one
can not decide on the value of the external source without
any knowledge about the latter. Thus nonground support sets
are useful only if they work on a conditional basis and take
source information into account. In our framework this is
served by so-called guards (γ), which (unlike the existing
machinery of learning functions) allow to elegantly specify
the support sets on a nonground level as follows:

Definition 5 (Nonground Support Set) Let Π be a pro-
gram and let a(Z) = &g [Y](X) be an external atom of
Π. A positive (negative) nonground support set S for a is a
pair 〈N, γ〉, where

• N ⊆ {Tpi(X),Fpi(X) | pi ∈ Y ∩ P} is a set of
nonground signed literals over predicates pi;

• γ : C|Z| × grndC(N) → {0, 1} is a Boolean function
(called the guard), s.t. for all z ∈ C|Z| and Ngr ∈
grndC(N) it holds that γ(z, Ngr) = 1 only if Ngr is a
positive (negative) ground support set for a(z).

Here, grndC(N) is the support family constructed from N
by replacing all variables with constants from C in all ways.
The guard γ selects instances from grndC(N) which are
ground support sets for an external atom, i.e. every positive
input (z, Ngr) of γ yields a ground support set Ngr for a(z).

In principle, the technical toolkit of guards is flexible and
elaborate conditions can be defined using arbitrary functions
as guards. However, clearly nonground support sets are only
useful if their ground instances can be easily constructed.
This should be taken into account when nonground support
sets for an external atom are defined.

Frequently, an external source may be abstractly viewed
as a data part with an algorithm on top; e.g. an ontologyO =
〈T ,A〉, has the ABox A as data part and a query answering
algorithm (which respects also T) on top. Here γ might check
conditions on the data part, without invoking the algorithm.

Example 4 For a(X) in Example 3, the pair S = 〈∅, γ〉,
where γ : C×{∅} → {0, 1} is such that γ(c, ∅) = 1 iff
EDriver(c) ∈ A, is a nonground support set. Indeed, since
T ∪ {EDriver(c)} |= ¬Cust(c) for every c ∈ C, any c such
that γ(c) = 1 will be a’s output w.r.t. any interpretation A.
S = 〈{TgoTo(X,X ′)},>〉 is another nonground sup-

port set for a(X), where the guard > returns 1 for each
grounding of TgoTo(X,X ′); hence {TgoTo(c, d)} is a
ground support set of a(c), for all c, d ∈ C.

In the above example the guard γ checks whether a certain
assertion occurs in the data part of an ontology. Due to guards,
the notion of completeness for a set of ground support sets
becomes strongly application dependent when lifted to the
nonground case. Formally, it amounts to the following.
Definition 6 (Nonground Completeness) A family S of
nonground support sets for an external atom a(Z) is com-
plete, if for all z ∈ C|Z|, {Ngr ∈ grndC(N) | γ(z, Ngr)=1}
is a complete support family for a(z).

Note that if S is complete, we may similarly as in the
ground case only store S+ resp. S− (defining them as usual).

4 Using Support Sets
In this section, we present two ways of using support sets
to optimize answer set computation, and we briefly discuss
support set generation.

Using Support Sets in the Search. Clearly, every S ∈
S+(a) (resp. S ∈ S−(a)) yields a nogood δ = S ∪ {Fea}
(resp. δ = S ∪{Tea}). Adding such nogoods to the nogood
representation of Π̂ eliminates interpretations that are known
to fail the compatibility check. In this way, support sets can
be fruitfully used to prune the candidate search space.
Proposition 1 Let a be a ground external atom of Π. For
every ground support set S ∈ S+(a) (resp., S ∈ S−(a)), the
nogood S ∪ {Fea} (resp. S ∪ {Tea}) is correct for Π.

Proof We prove the claim for S ∈ S+(a) (for S ∈ S−(a)
the proof is analogous). Since S ∈ S+(a), it holds that
A |= a for all A ⊇ S. Towards a contradiction, suppose that
δ = S ∪ {Fea} is not correct for Π. Hence some compatible
set Â′ ⊇ S exists which is not a solution to δ, i.e. δ ⊆ Â′.
As Fea ∈ δ, by compatibility of Â′, we conclude A′ 6|= a.
Since A′ ⊇ S, this contradicts that S ∈ S+(a). 2

Intuitively, the above property shows that we can safely
eliminate answer sets of Π̂ that contain nogoods generated
from support sets; this does not prune any compatible set.
Example 5 The support set {TgoTo(d3, r2)} ∈ S+(a(d3))
for a(d3) from Example 3 yields a correct nogood δ =

{TgoTo(d3, r2),Fea(d3)}. All answer sets Â ⊇ δ of Π̂
can be neglected without loss of compatible sets.

Using Support Sets for Compatibility Checking. Given
a complete support family, external source accesses can be
avoided, which promises significant performance improve-
ments. This beneficial property is now formally stated.
Proposition 2 Let S ⊆ S(a) be a complete (ground) sup-
port family for a ground external atom a of Π, let ∆ be the

set of nogoods constructed from S, and let Â ∈ AS(Π̂) be
a solution to ∆. If Tea ∈ Â (resp. Fea ∈ Â) then A |= a
(resp. A 6|= a).

Proof Assume Â′ ∈AS(Π̂) is a solution to ∆. Towards a
contradiction, suppose:

(1) Tea ∈ Â′ and A′ 6|= a. Since S(a) is complete there
exists a negative support set S ∈ S(a) such that S ⊆ A′. The
nogood δ ∈ ∆ constructed from S is of the form S ∪ {Tea}.
However, then it holds that δ ⊆ Â′ which contradicts Â′

being a solution to ∆.
(2) Fea ∈ Â′ and A′ |= a. This case is analogous. 2

As a consequence of Propositions 1 and 2, considering all
external atoms of a program rather than a single one, we get
the following property of support sets.
Corollary 1 Let S1, . . . ,Sn be complete (ground) support
families for all external atoms in Π, and let ∆ be the set of
nogoods constructed from S1, . . . ,Sn. Then Â ∈ AS(Π̂) is
a compatible set for Π iff it is a solution to ∆.

By exploiting Corollary 1, compatibility of answer sets Â
of Π̂ can be checked by testing whether each external atom
guessed to be true (resp. false) is covered by some positive
(negative) support set in a collection S of support sets. Given
completeness of S, only the positive (negative) nogoods of
each external atom must be stored. This is in contrast to
the approach of Eiter et al. (2012), which evaluates external
atoms explicitly for verification of guesses.
Example 6 Consider the ground DL-program Π = 〈O, P 〉,
where O is as in Example 2 and the rule part P is as follows:

isIn(d3 , r3); goTo(d3 , r2);

cust(d3)←isIn(d3, r2),

not DL[worksIn] goTo;¬Cust](d3).

For the DL-atom a(d3) = DL[worksIn] goTo;¬Cust](d3)
the support family S(a(d3)) = {{TgoTo(d3, c)}}, where
c∈C, is complete. Due to the fact there are no other DL-
atoms in Π, the compatibility check of Â= {TisIn(d3, r3),

TgoTo(d3, r2),Tea(d3)} amounts to testing whether Â is a
solution to the set ∆ of nogoods constructed from S(a(d3)).
Therefore, Â is compatible, while Â′= {TisIn(d3, r3),
TgoTo(d3, r2), Fea(d3)} is not.

Support Set Construction. Clearly, support sets are only
useful if there are procedures that effectively (and efficiently)
construct them. For some applications, such procedures
are already in place; e.g., for DL-programs over DL-LiteA
ontologies, +-complete support families can be efficiently
obtained (in polynomial time), using algorithms for query
answering. We consider this and other practically relevant
applications with this property in the next section.

In general, the designer of an external atom may be aware
of its semantic structure, and make this knowledge fruitfully
available for the evaluation through support sets. In fact, for
whole classes of external atoms (thus whole classes of HEX-
programs) complete families of support sets can be efficiently
obtained and automatically computed.

Another important aspect is that also partial (incomplete)
families of support sets, in settings where it is difficult or
computationally infeasible to use complete families, allow
us to optimize external atom evaluation, as a code call is
only needed if no support set applies. Clearly, choosing good
partial support families is nontrivial, and many issues (e.g. a
Pareto principle respectively power law for calls and resulting
savings) may be investigated. However, the whole issue goes
beyond this paper.

5 Some Applications
DL-programs. A well-known application of HEX-pro-
grams is DL-programs, which we informally considered in
Example 2. They have a native, user-friendly syntax for
external atoms (called DL-atoms) which is translated into
HEX-syntax. Before discussing support sets of DL-atoms, we
describe the translation.

A DL-program is a pair Π = 〈O, P 〉, where O is an on-
tology fixed as an external source and P is a set of rules
allowing DL-atoms in the body. O is assumed to be consis-
tent (otherwise each DL-atom is trivially true).

DL-atoms are of the form &DL[c+, c−, r+, r−, Q](x),
where c+, c− (r+, r−) are binary (resp. ternary) predicates
and Q is a string which encodes an ontology query. In this
exposition we consider only instance queries, i.e. Q is a pos-
sibly negated ontology concept or a role name; other types of
queries (e.g. subsumption, conjunctive queries) are possible
in general. The oracle function of &DL is defined by

f&DL(A, c+, c−, r+, r−,x) = 1

⇐⇒ O ∪ UA(c+, c−, r+, r−) |= Q(x),

where UA(· · ·) is an update toO, specified by the (extension
of the) predicates c+, c−, r+, r−. More specifically, it con-
tains for each Tc+(“C”, a) ∈ A (resp. Tc−(“C”, a) ∈ A),
a concept assertion C(a) (resp. ¬C(a)). Updates of roles,
generated by the predicates r+ and r− are analogous.
Example 7 The DL-atom DL[;worksIn](X) from Exam-
ple 2 is translated to &DL[c+, c−, r+, r−, worksIn](X),
s.t. none of the input predicates occurs anywhere else in P .

The DL-atom a = DL[worksIn] goTo;¬Cust](X) is
translated to &DL[c+, c−, r+, r−, “¬Cust”](X) by adding
a rule r+(“worksIn”, X, Y) ← goTo(X,Y) to P . For
A ⊇ {Tr+(“worksIn”, d3, r2)} we get A |= a(d3).

Informally, a DL-atom evaluates to true under A if either its
query is entailed from a consistent updated ontology, or if the
update makes the ontology inconsistent.

This observation together with the results by Calvanese
et al. (2007), on the properties of DL-LiteA yield the fol-
lowing characterization of ground support sets for DL-atoms
accessing an DL-LiteA ontology.
Proposition 3 Let a = &DL[c+, c−, r+, r−, Q](x) be a
ground DL-atom over a consistent DL-LiteA ontology O =
〈T ,A〉, and let S be a complete (ground) support family for
a. Then each S ∈ S+ is either ∅ or has one of the following
forms (P (¬) is P if p ∈ {c+, r+}, and is ¬P otherwise):

(1) S ⊇ {p(“P”,x)}, such that P (¬)(x) ∪ T is consistent
and P (¬)(x) ∪ T |= Q(x);

(2) S ⊇ {p(“P”,x′)} s.t. P (¬)(x′) ∪ T is inconsistent;

(3) S ⊇ {p(“P”, c′), q(“P ′”, c′)}, such that P (¬)(c′) ∪
P ′(¬)(c′) ∪T is inconsistent, p, q ∈ {c+, c−, r+, r−}.

By results of Calvanese et al. (2007), at most one assertion
α is needed to derive an instance query from a consistent
O. If α is in the update, then the support set encoding this
knowledge is of form (1); S = ∅ encodes the case if α ∈
A. At most two ABox assertions are needed to make an
DL-LiteA ontology inconsistent. Given that O is consistent,
we get support sets of forms (2) and (3).

Positive support sets for DL-atoms that query a DL-LiteA
ontology can not only be restricted to small size but are
also easy to generate. One can construct suitable support
sets by syntactic analysis of the (extensions of) DL-atoms
input predicates and exploit TBox classification, which is
efficiently doable for DL-LiteA; we have implemented this.

Query Answering Over Positive ASP Programs. As sec-
ond application, we consider query answering over exter-
nal positive ASP programs, using external atoms of form
&queryn [cΠ, p, q](x). Here cΠ is a constant representing a
positive ASP program Π (as a string or giving a filename), p is
predicate providing input to Π, and q is the n-ary query pred-
icate. We have that f&queryn

(A, cΠ, p, q,x) = 1 iff q(x) is
true in the unique answer set of Π∪{p(y)← | Tp(y) ∈ A}.
Example 8 Suppose an external program Πq checks whether
a color assignment is not a valid 3-coloring of a graph
G stored by facts ΠG over node(X) and edge(X,Y). If
&query0 receives the edges by facts inp(edge, x, y) and the
color assignment by facts inp(col , x, c), then
Πq = {inv ← inp(col , X,C), inp(col , Y, C), inp(edge, X, Y)}
derives inv iff the coloring is invalid. Any non 3-colorable G
is then recognized in an answer set of the following program
Π = ΠG ∪Πcol , where

Πcol =

col(V, r) ∨ col(V, g) ∨ col(V, b)← node(V),

inp(p, X, Y)← p(X,Y) | p ∈ {col , edge},
inval ← &query0 [cΠq

, inp, inv](),
col(V, c)← inval ,node(V) | c ∈ {r, g, b}

Intuitively, a guess for a coloring is checked using the exter-
nal atom, which spoils the guess by assigning all colors to all
nodes if it is invalid. If G is not 3-colorable, Π has a single
answer set A0, which contains Tinval ; otherwise, each valid
3-coloring induces an answer set A such that Finval ∈A.
Thus, Π makes inval true iff G is not 3-colorable.

The basic structure of Π is reusable for related problems,
resorting to appropriate checking programs Πq; this gives
rise to a class of applications, which we formalize next.

A positive ASP program Πq is a set of rules of form (1)
where k= 1 and m=n. For such a program, the clause
set cl(Πq) = {{FH1(r)} ∪ {Tb | b∈B(r)} | r∈Πq} re-
flects the classical semantics of its rules. For two clauses
C1 and C2 which share no variables, its set of resol-
vents is res(C1, C2) = {(C1 ∪ ρ(C2)) \ {Tx,Fρ(x′)} |
Tx∈C1,Fx

′ ∈C2, x∼ρ x′}, where ∼ρ denotes unification
of atoms x and x′ using the most general unifier ρ : V →
V∪C; x is the resolved atom. For a set Γ of clauses, res∞(Γ)

denotes its (finite) closure under res , with clauses which are
equivalent up to variable renaming being eliminated.
Definition 7 (Query Support) Let Πq be a positive ASP
program and a= &queryn [cΠq

, p, q](x) occur in program Π.
Then QS (a) = grndC({C ⊆ ({Tp(x) | p(x) ∈ A(Π)} |
C ∪ {Fq(x)} ∈ res∞(cl(Πq))}).

This definition is motivated by the following idea. By
soundness and completeness of the resolution calculus,
res∞(cl(Πq)) contains all and only clauses that are implied
by the original clause set. Thus, the set materializes the im-
plications encoded by the rules of the program. However,
since support sets need to represent only the behavior of the
external atom, it is sufficient to select those elements from
res∞(cl(Πq)) that relate an atom q(x) over the query predi-
cate q to the input atoms of &queryn , i.e., atoms from A(Π).
Informally, each S ∈ QS(a) is an instance of an unfolded
rule deriving q(x), projected to input facts. As one can show:
Proposition 4 Let Πq be a positive ASP program and a =
&queryn [Πq, p, q](x) occur in a program Π. Then QS (a) is
+-complete for a.

Clearly, non-minimal sets can be pruned from QS(a), and
lifting QS(a) to non-ground support sets is straightforward
(but we omit it for simplicity). While in general deciding
S ∈ QS(a) is intractable and QS(a) may be large, in prac-
tical settings (e.g. usage of small acyclic Πq with low-arity
predicates) QS(a) may be fruitfully employed.

6 Implementation and Experiments
Both the traditional and the new algorithm are implemented
in the DLVHEX system version 2.3.0, where a command-line
switch allows to select the algorithm. The system is based
on GRINGO and CLASP for either selection. External sources
are supposed to provide a complete set of ground support
sets (optionally, its positive resp. negative part), possibly in
nonground form. Support sets are grounded before program
evaluation, added in candidate search to the solver as nogoods
(cf. Prop. 1), and used in compatibility checking.

Experimental Setup. We compared the novel approach
against native HEX-program evaluation in a number of exper-
iments1. They were run on a Linux server with two 12-core
AMD 6176 SE CPUs/128GB RAM using a timeout of 300
secs per run. The results show clear benefits of the new
approach.

Non 3-Colorability. In addition to the program Π in Exam-
ple 8 for non 3-colorability, we consider one for non check-
ered 3-colorings, in which each pair of different colors must
appear at adjacent vertices. To this end, we add to Π facts
inp(pair , c1, c2), c1 6= c2 ∈ {r, g, b}, a rule

inv ← inp(pair , C1, C2),
not &query2 [cΠq

, inp, app](C1, C2),

and to Πq a rule

app ← inp(pair , C1, C2), inp(col , X,C1),
inp(col , Y, C2), inp(edge, X, Y).

1Program instances used in the experiments are available at
http://www.kr.tuwien.ac.at/research/projects/hexhex/supportsets/.

#nodes Ordinary Graph Coloring Complete Graph Coloring
-Sup. +Sup. ASP -Sup. +Sup. ASP

5 59.73 (18) 0.05 (0) 0.04 (0) 116.20 (33) 0.09 (0) 0.04 (0)
10 256.48 (85) 0.07 (0) 0.05 (0) 268.35 (87) 0.12 (0) 0.05 (0)
15 289.17 (96) 0.10 (0) 0.05 (0) 294.76 (96) 0.17 (0) 0.05 (0)
20 300.00 (100) 0.13 (0) 0.06 (0) 300.00 (100) 0.24 (0) 0.06 (0)
40 300.00 (100) 0.46 (0) 0.10 (0) 300.00 (100) 0.67 (0) 0.13 (0)
60 300.00 (100) 1.35 (0) 0.18 (0) 300.00 (100) 1.72 (0) 0.24 (0)
80 300.00 (100) 3.30 (0) 0.29 (0) 300.00 (100) 3.86 (0) 0.38 (0)

100 300.00 (100) 7.12 (0) 0.43 (0) 300.00 (100) 8.03 (0) 0.58 (0)

Table 1: Graph Coloring Benchmark Results

n m = 10 m = 100 m =∞
-Sup. +Sup. ASP -Sup. +Sup. ASP -Sup. +Sup. ASP

5 0.66 0.32 0.05 8.67 (0) 0.45 0.07 108.55 (16) 3.89 (0) 0.39 (0)
6 0.92 0.55 0.07 13.37 (0) 0.71 0.09 236.29 (77) 10.04 (0) 0.87 (0)
7 1.28 0.85 0.07 14.74 (0) 1.05 0.09 244.01 (78) 28.53 (5) 3.80 (0)
8 1.93 1.47 0.08 21.60 (0) 1.70 0.10 269.70 (86) 62.10 (10) 14.76 (2)
9 2.56 2.30 0.08 31.04 (0) 2.56 0.10 277.36 (85) 94.20 (12) 27.44 (6)

10 3.39 3.21 0.10 45.16 (0) 3.50 0.12 295.44 (88) 114.47 (23) 31.85 (6)
11 3.93 4.88 0.12 49.04 (0) 5.21 0.14 300.00 (100) 134.21 (25) 64.69 (19)
12 5.23 7.78 0.17 65.70 (1) 8.15 0.20 300.00 (100) 193.03 (57) 103.96 (31)
13 8.57 8.98 0.16 81.83 (0) 9.35 0.18 300.00 (100) 161.61 (41) 77.68 (22)
14 6.60 11.94 0.16 99.22 (2) 12.31 0.19 300.00 (100) 208.21 (57) 103.80 (28)
15 19.70 17.67 0.27 133.76 (10) 18.20 0.30 300.00 (100) 211.30 (67) 128.18 (36)

Table 2: House Configuration Problem

The average runtimes on 100 randomly generated instances
for graphs with n nodes are shown in Table 1, where –Sup
is traditional and +Sup support set evaluation; numbers in
parentheses are timeouts. The gain is obvious and increases
scalability drastically. As expected, a native ASP encoding
(ASP; no external source) is faster, but the gap is not huge.

House Problem. The house problem is an abstraction of
configuration problems (Mayer et al. 2009). Objects owned
by persons must be placed in cabinets located in rooms of
a house. Instances consist of sets of persons, objects, cabi-
nets and rooms, and an assignment of objects to persons. A
solution assigns cabinets to persons, cabinets to rooms, and
objects to cabinets, under the following constraints. Each
room has ≤4 cabinets and each cabinet can store ≤5 objects.
Objects of a person must be stored in her cabinets, and a room
must contain cabinets of a single person. These constraints
are expressible by positive ASP rules (with 6=). We consider
a variant of the problem in which a partial assignment of
objects to cabinets and cabinets to rooms must be completed;
this is relevant e.g. for a shared flat if new persons move in.
We use an ASP encoding2 and outsource the checking part,
obtaining a query answering problem as in Section 5.

Instances of size n have n persons, n+2 cabinets, n+1
rooms, and 2n objects randomly assigned to the persons;
2n−2 objects are already stored. Table 2 shows the aver-
age runtime for 100 randomly generated instances per n; m
bounds the number of answer sets to compute. This bench-

2Available at http://143.205.174.183/reconcile/tools.

p all answer sets first answer set
-Sup. +Sup. -Sup. +Sup.

5 (100) 9.07 (1) 0.08 (0) 8.54 (1) 0.08 (0)
10 (100) 34.01 (6) 0.09 (0) 31.65 (6) 0.09 (0)
15 (100) 295.16 (98) 0.16 (0) 294.78 (97) 0.14 (0)
20 (100) 297.42 (99) 0.17 (0) 297.38 (99) 0.15 (0)
25 (100) 300.00 (100) 0.34 (0) 300.00 (100) 0.24 (0)
35 (100) 300.00 (100) 0.23 (0) 300.00 (100) 0.21 (0)
50 (100) 300.00 (100) 0.28 (0) 300.00 (100) 0.28 (0)
65 (100) 300.00 (100) 0.36 (0) 300.00 (100) 0.36 (0)
80 (100) 300.00 (100) 0.47 (0) 300.00 (100) 0.48 (0)

9 (100) 300.00 (100) 1.70 (0) 300.00 (100) 1.71 (0)
12 (100) 300.00 (100) 2.31 (0) 300.00 (100) 2.32 (0)
15 (100) 300.00 (100) 2.91 (0) 300.00 (100) 2.91 (0)

Table 3: Driver - Customer Assignment Problem

mark needs more support sets than non 3-colorability, which
causes a higher initialization overhead and may be counter-
productive if only few answer sets are computed. However,
as the number of answer sets to be computed increases, there
is again a significant gain and the gap to native ASP gets
smaller.

Taxi Assignment. For the DL-program in Example 2, we
fixed the ABox A of the ontology O to 50 customers, 20
drivers (among them 4 driving electro-cars), and 5 regions;
every driver works in 2-4 regions. In the program P , facts
isIn(c, r), needsTo(c, r), goTo(d, r) for appropriate con-
stants c, d, r from A are randomly added with probability
p/100 under the following constraints: persons are in at most
one region; customers need to go to at most one region, and
their position is known in that case. Furthermore, drivers
positions are added as facts isIn(d, r) with fixed probabili-
ties of 0.3, 0.7 and 1 growing discretely in accordance with
p. The results are in the upper part of Table 3, where the
first column shows in parentheses the number of instances
generated per p. One can see dramatic improvements, even
for small instances. Results for a larger ABox (500 customers
and 200 drivers, including 40 driving electro-cars), shown in
the bottom of Table 3, are similarly satisfactory: while the
standard approach always times out, support sets scale well.

LUBM Diamond. Finally, we consider default reasoning
over the famous LUBM ontology3 in its DL-LiteA form.The
defaults–expressed in a simple DL-program–state that re-
search assistants (RAs) are normally employees, while stu-
dents are normally not employees; as the ontology entails
that RAs are students, this instantiates the well-known Nixon
diamond. Table 4 shows the results for a randomly gener-
ated ABox over 50 individuals. Here p is the percentile of
the relevant domain (RAs, students, employees entailed by
O), which is generated as a set of facts in the program. Un-
surprisingly, the combinatorial nature of the defaults, which
is difficult to grasp for “blackbox” external atoms, affects
scalability, but the support sets approach is clearly better;
combined with domain independence properties (Eiter et al.
2009), it might be even further reduced drastically.

3http://swat.cse.lehigh.edu/projects/lubm/

p all answer sets first answer set
-Sup. +Sup. -Sup. +Sup.

5 (100) 0.21 (0) 0.22 (0) 0.18 (0) 0.21 (0)
9 (100) 9.15 (2) 0.64 (0) 0.42 (0) 0.29 (0)

13 (100) 16.22 (2) 1.73 (0) 0.95 (0) 0.60 (0)
17 (100) 118.99 (32) 16.39 (2) 14.04 (1) 6.35 (1)
21 (100) 186.37 (53) 49.64 (10) 48.75 (11) 29.51 (7)
25 (100) 236.22 (66) 96.38 (22) 68.27 (13) 41.54 (7)
29 (100) 268.58 (85) 149.93 (37) 130.00 (34) 88.02 (21)
33 (100) 298.66 (99) 242.99 (68) 212.22 (62) 135.34 (36)
37 (100) 295.71 (98) 262.68 (81) 243.93 (75) 177.97 (49)

Table 4: Default Rules over LUBM in DL-LiteA

7 Conclusion
We introduced support sets as a means for optimizing HEX-
program evaluation. While ground support sets are closely
related to nogoods, our work is innovative in two aspects:
1. we exploit completeness properties to fully avoid external
source access, and 2. we lift our approach to non-ground
support sets that can include optional source information; to
the best of our knowledge, this has no analogs in the literature.
Applications such as DL-programs over DL-LiteA and query
answering over ASP, witness an effective exploitation with
significant performance gains in experiments.

Support sets can be viewed as a form of knowledge compi-
lation (Darwiche and Marquis 2002). They are loosely related
to support clauses in clause management systems (Reiter and
de Kleer 1987). While support clauses are geared towards de-
ciding truth of a literal in a propositional knowledge base, our
support sets are more general; they serve to answer abstract
queries over arbitrary external sources. Drescher and Walsh
(2012) characterized in constraint ASP external propagation
using nogoods; this can be viewed as a special case of our
approach, where external sources are constraint stores.

As for implementation, there is no comparable system
apart from DLVHEX; there is room for further improvement,
e.g. to develop sophisticated algorithms for nogood ground-
ing and coverage checking. On the theoretical side, support
sets may use information about a program at hand, such
that not all assignments need to be considered; respective
performance gains are traded for reusability, however.

Acknowledgements. We are grateful to the anonymous re-
viewers for their feedback, comments and suggestions, which
helped to improve the paper.

References
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Calvanese, D.; Lembo, D.; Lenzerini, M.; and Rosati, R.
2007. Tractable reasoning and efficient query answering in
description logics: The DL-Lite family. Journal of Automated
Reasoning 39(3):385–429.
Darwiche, A., and Marquis, P. 2002. A knowledge compila-
tion map. J. of Artificial Intelligence Research 17:229–264.
Drescher, C., and Walsh, T. 2012. Answer set solving with
lazy nogood generation. In Dovier, A., and Costa, V. S., eds.,
ICLP (Technical Communications), volume 17 of LIPIcs,
188–200. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005. A
Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer-Set Programming. In 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’05),
90–96. Professional Book Center.
Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008. Combining answer set programming
with description logics for the semantic web. Artif. Intell.
172(12-13):1495–1539.
Eiter, T.; Fink, M.; Krennwallner, T.; and Redl, C. 2012.
Conflict-driven asp solving with external sources. TPLP
12(4-5):659–679.
Eiter, T.; Fink, M.; Krennwallner, T.; Redl, C.; and Schüller, P.
2014. Efficient HEX-program evaluation based on unfounded
sets. J. of Artificial Intelligence Research 49:269–321.
Eiter, T.; Fink, M.; and Krennwallner, T. 2009. Decom-
position of declarative knowledge bases with external func-
tions. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI-09), 752–758. AAAI
Press/IJCAI.
Faber, W.; Leone, N.; and Pfeifer, G. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artif.
Intell. 187–188:52–89.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. New Generation
Computing 9(3–4):365–386.
Mayer, W.; Bettex, M.; Stumptner, M.; and Falkner, A. 2009.
On solving complex rack configuration problems using csp
methods. In IJCAI’09 Workshop on Configuration.
Reiter, R., and de Kleer, J. 1987. Foundations of assumption-
based truth maintenance systems: Preliminary report. In
Forbus, K. D., and Shrobe, H. E., eds., AAAI, 183–189. Mor-
gan Kaufmann.

