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Abstract

Answer set programming (ASP) is a declarative programming approach which has gained in-
creasing attention in the last years. It is useful for many tasks in arti�cial intelligence, and many
language extensions have advanced the paradigm into a strong modeling language.

While the ASP programming paradigm has proved to be fruitful for a range of applications,
current trends in distributed systems and the World Wide Web, for instance, revealed the need
for access to external sources in a program, ranging from light-weight data access (e.g., XML,
RDF, or relational data bases) to knowledge-intensive formalisms (e.g., description logics). To
this end, HEX-programs are an extension and generalization of answer set programs by external
sources which can be tightly coupled to the reasoner. This is realized by external atoms, whose
truth value is not determined within the logic program, but by a background theory, which is
technically realized as a plugin to the reasoner.

The traditional evaluation algorithm for HEX-programs uses a translation approach which
rewrites them to ordinary ASP programs. The fundamental idea is to replace external atoms
by ordinary ones whose truth values are guessed. The resulting program is then evaluated by
a state-of-the-art ASP solver. The resulting model candidates are subsequently checked for
compliance with the external sources, and are discarded if the guesses value differs from the
real truth value. While this approach is intuitive and natural, it turned out to be a bottleneck
in advanced applications. It does not scale well, as the number of candidate answer sets grows
exponentially with the number of external atoms in the program. Moreover, the traditional
algorithms also impose very strong syntactic safety conditions on the input program, which
restricts the language. This motivates the development of novel evaluation algorithms for HEX-
programs, which treat external atoms as �rst-class citizens and build models from �rst principles;
it is expected that this increases scalability and expressiveness. The thesis consists of two major
parts.

In the �rst part, we present new algorithms for ground HEX-programs, i.e., programs without
variables. Con�ict-driven learning techniques will be an important basis for our algorithms,
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but need to be extended from ordinary ASP solving to HEX-programs. Moreover, minimality
checking for model candidates of HEX-programs turned out to be an interesting topic because it
causes the major part of the computational costs. Hence, new minimality checking methods will
be developed and integrated into the overall evaluation algorithms.

The second part is concerned with HEX-programs with variables in general, and with value

invention in particular, i.e., the introduction of new constants by external sources, which do not
show up in the input program. Traditionally, value invention is restricted by syntactic condi-
tions such that grounding algorithms for ASP programs without external sources are applicable.
However, this restricts the expressiveness of the language. Thus the syntactic restrictions shall be
relaxed whenever possible, which also requires the development of a new grounding algorithm.

The practical part of this thesis deals with the implementation of the new methods and algo-
rithms in our prototype system DLVHEX. We will analyze and evaluate our work by empirical
experiments, and show that the new algorithms provide a much better scalability and richer
modeling language, which helps establishing HEX as a practical knowledge representation for-
malism. We then take a look at some practical applications and extensions of HEX-programs,
with focus on those domains which newly emerged or have been signi�cantly extended during
the work on this thesis.



Kurzfassung

Antwortmengenprogrammierung (answer set programming, kurz ASP) ist ein deklarativer Pro-
grammieransatz der in den letzten Jahren stark an Popularität gewonnen hat. Sie ist für zahlrei-
che Probleme im Bereich der künstlichen Intelligenz gut geeignet, und hat sich dank zahlreicher
Spracherweiterungen zu einer reichen Modellierungssprache weiterentwickelt.

Während ASP-Systeme bereits für eine Vielzahl von Applikationen im Einsatz sind, er-
fordern neue Trends, beispielsweise im Bereich der verteilten Systeme und dem World Wide
Web, den Zugriff aus einem ASP-Programm auf externe Quellen, wie etwa XML- oder RDF-
Dokumente, relationale Datenbanken, oder Formalismen aus dem Bereich der Wissensrepräsen-
tation und -verarbeitung, beispielsweise Beschreibungslogiken (description logics). Zu diesem
Zweck wurden HEX-Programme entwickelt, die sich als Generalisierung und Erweiterung von
ASP verstehen, und die die Anknüpfung von externen Quellen an das ASP-System erlauben.
Dies wird über sogenannte externe Atome (external atoms) erreicht, deren Wahrheitswert nicht
im logischen Programm bestimmt, sondern von einer Hintergrundtheorie eingespeist wird, die
als Plugin in das ASP-System eingehängt wird.

Der ursprüngliche Ansatz zur Auswertung von HEX-Programmen verwendet eine Überset-
zung in gewöhnliche ASP-Programme. Externe Atome werden dabei durch gewöhnliche Atome
ersetzt, deren Wahrheitswert nichtdeterministisch geraten wird. Das entstehende Programm kann
von herkömmlichen ASP-Systemen ausgewertet werden. Anschließend wird jeder so gewonne-
ne Modellkandidat auf seine Kompatibilität mit der Semantik der externen Quellen getestet und
gegebenenfalls verworfen. Zwar ist dieser Ansatz elegant und natürlich, er skaliert aber schlecht
für mittelgroße und größere Anwendungen. Außerdem erfordert diese Vorgehensweise die Ein-
haltung von sehr restriktiven syntaktischen Bedingungen, durch die die Ausdrucksst¤ärke der
Sprache eingeschränkt wird. Daher ist das Hauptziel dieser Dissertation die Entwicklung von
neuen Evaluierungsalgorithmen für HEX-Programme, die externe Atome von Anfang an als sol-
che behandeln und in die Berechnungen miteinbeziehen. Dadurch soll sowohl die Skalierbarkeit
als auch die Ausduckssärke erhöht werden. Die Arbeit setzt sich aus zwei Hauptteilen zusam-
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men.
Im ersten Teil beschäftigen wir uns mit Algorithmen für variablenfreie HEX-Programme.

Kon�ikt-getriebene Techniken (con�ict-driven techniques) sind ein wichtiger Grundstein für un-
sere Algorithmen, müssen dazu aber von ASP auf HEX-Programme erweitert werden und exter-
ne Atome berücksichtigen. Es hat sich dabei auch herausgestellt, dass der Minimalitätscheck für
Modellkandidaten eine wesentliche Rolle spielt, da er einen Großteil des gesamten Rechenauf-
wands verursacht. Deswegen werden wir uns in einem weiteren Schritt auch damit beschäftigen
und neuartige Algorithmen zur Sicherung der Minimalität von Modellen präsentieren.

Der zweite Teil der Arbeit befasst sich mit HEX-Programmen mit Variablen, und insbeson-
dere mit Domänenerweiterung durch externe Quellen (value invention). Darunter versteht man
das Hinzufügen von neuen Konstanten durch externe Quellen, die im ursprünglichen Programm
nicht vorkommen. Im bisherigen Ansatz wird dies durch starke syntaktische Einschränkungen
so weit beschränkt, dass das Programm mit den in ASP üblichen Methoden in ein variablenfreies
Programm übersetzt werden kann. Da dies jedoch auch den Freiraum bei der Modellierung ein-
schränkt, sollen die syntaktischen Einschränkungen gelockert werden, wenn immer das möglich
ist.

Der praktische Teil der Arbeit beschäftigt sich mit der Implementierung der neuen Methoden
und Algorithmen in unserem Prototypsystem DLVHEX. Damit werden wir unsere Algorithmen
auch empirischen Experimenten unterziehen, die zeigen, dass damit eine deutlich bessere Ska-
lierbarkeit erreicht wird, und dass die Modellierungssprache nun deutlich weniger Einschrän-
kungen unterliegt. Dies soll dazu beitragen, HEX zu einem praktisch nutzbaren Formalismus
weiterzuentwickeln. Abschließend betrachten wir einige Anwendungen und Erweiterungen von
HEX-Programmen, wobei der Fokus auf jenen Anwendungen liegt, die im Zuge dieser Arbeit
neu entstanden sind oder wesentlich erweitert wurden.
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Chapter 1
Introduction

Answer Set Programming (ASP) is a declarative programming paradigm which proved to be
useful for many problems in arti�cial intelligence and gained attention as a knowledge represen-
tation and reasoning formalism in the last years [Niemelä, 1999; Marek and Truszczy·nski, 1999;
Lifschitz, 2002]. Unlike traditional programming languages, the programmer speci�es a de-
scription of the desired solution to some search problem rather than an algorithm which com-
putes it. The problem at hand is encoded as logic program such that its solutions can be com-
puted as models using an ASP solver. This approach is based on model �nding methods for
logic theories and is in spirit of the Satis�ability Solving (SAT) approach [Biere et al., 2009],
but is more convenient for the user and has a richer expressiveness for many applications (e.g.,
transitive closure and programs with variables). Moreover, numerous extensions like aggre-
gates [Pelov et al., 2007; Lee and Meng, 2009; Ferraris, 2011; Faber et al., 2011] and weak con-
straints [Buccafurri et al., 1997] exist.

The predominant notions of models in this context are stable models for normal logic pro-
grams [Gelfond and Lifschitz, 1988] and the generalized notion of answer sets for (possible
disjunctive) logic programs [Gelfond and Lifschitz, 1991]. With both notions, the set of logi-
cal consequences from all stable models (resp. all answer sets) does, in general, not necessarily
grow with increasing information. This is due to the use of negation-as-failure and is called
nonmonotonicity. As a simple example, consider the computation of the symmetric difference
of two sets. Then the output of the operation does in general not grow monotonically with the
two sets. This kind of reasoning is also in spirit of human thinking, where it is very common to
make assumptions about the world, which may need to be withdrawn if the available knowledge
grows. This is referred to as default reasoning or commonsense reasoning and was formalized
by Reiter (1980) as default logic. This work is one of the theoretical foundations of modern
answer set programming systems.

While formalisms like Prolog have strong procedural elements, both the stable model and
the answer set semantics are fully declarative. That is, neither the order of rules nor the or-
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der of the literals in rules affect the result and program termination. The answer set semantics
is an extension of the stable model semantics. While programs under the latter semantics are
called normal logic programs (NLPs) and feature only negation-as-failure, the class of extended

logic programs (ELPs) under the answer set semantics supports in addition also strong nega-

tion (also often called classical negation) in program rules, and programs with disjunctions in
rule heads. The answer set semantics has then been further extended and generalized, e.g., to
nested logic programs [Lifschitz et al., 1999], to programs with aggregates [Pelov et al., 2007;
Lee and Meng, 2009; Ferraris, 2011; Faber et al., 2011], or to whole arbitrary propositional the-
ories [Ferraris, 2005].

Answer set programming is well-suited for applications with incomplete and inconsistent
information, and for expressing nondeterministic features. The popularity of ASP has espe-
cially increased since sophisticated solvers for the respective languages have become avail-
able, including DLV [Leone et al., 2006; DLV Website, 2014], SMODELS [Simons et al., 2002;
SMODELS Website, 2014], and the CLASP system in the Potassco suite [Gebser et al., 2007a;
Gebser et al., 2011b; CLASP Website, 2014]; (see Asparagus Website (2014) for more solvers).
Besides many applications in arti�cial intelligence [Eiter et al., 2011a; Brewka et al., 2011] and
data management [Antoniou et al., 2007; Halevy et al., 2003], ASP systems are also increas-
ingly applied in other sciences [Erdogan et al., 2010; Hoehndorf et al., 2007] and commercial
applications [Brewka et al., 2011]. Because of its expressiveness, ASP is also a suitable host
language for capturing advanced tasks in automated reasoning, like planning, scheduling, or
diagnosis. For this purpose, numerous front-ends to ASP solvers are available (the DLV sys-
tem [Leone et al., 2006], e.g., has several in its distribution).

While the ASP programming paradigm has turned out to be fruitful for a range of applica-
tions, current trends in distributed systems and the World Wide Web, for instance, revealed the
need for access to external sources in a program, ranging from light-weight data access (e.g.,
XML, RDF, or relational data bases) to knowledge-intensive formalisms (e.g., description log-
ics).

Although modular aspects of ASP have been considered, e.g., by Janhunen et al. (2009),
Dao-Tran et al. (2009a), Järvisalo et al. (2009), and Analyti et al. (2011), those frameworks are
limited to logic programs or related formalisms. Also multi-context systems can be seen as
modular logic programs. They allow for interlinking multiple knowledge bases (which can be
formalized in different host logics) using special bridge rules and axioms that access and import
information from other contexts to a local knowledge base, cf. Giunchiglia and Sera�ni (1994),
Brewka and Eiter (2007), Bikakis and Antoniou (2008), and Bikakis and Antoniou (2010). Fur-
ther extensions of ASP that allow for accessing information in external sources from logic pro-
grams include the DLVDB system [Terracina et al., 2008], which allows for querying relational
databases from the logic program, and VI programs [Calimeri et al., 2007], which allow for im-
porting knowledge from (monotonic) external sources with possibly fresh constants. This thesis
focuses on one particular extension, called HEX-programs [Eiter et al., 2005], which can be seen
as a generalization of other formalisms with external sources. Indeed, many other ASP exten-
sions and related formalisms can be translated to HEX-programs. For instance, Bögl et al. (2010)
present a system for inconsistency analysis in multi-context systems by rewriting the problem to
a HEX-program.
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1.1 Motivation

HEX-programs extend ASP with so called external atoms, through which the user can couple
any external data source, which can be represented by a computable function, with a logic
program. Roughly, such atoms pass information from the program, given by predicate exten-
sions and constants, to an external source, which returns output values of an (abstract) func-
tion that it computes. This is realized as a plugin system which supports the bidirectional
communication between the logic program and user-de�ned library functions. This extension
is convenient and very expressive due to the support of recursive data exchange between the
logic program and external sources. It has been exploited for applications in different areas,
e.g., in the Semantic Web, they have been used as a backend for the SPARQL Query Lan-
guage for RDF [Prud’hommeaux and Seaborne, 2007], which can be conveniently translated
to HEX-programs (see Polleres (2007)), for representing default knowledge in biomedical on-
tologies [Hoehndorf et al., 2007], and for ontology integration [Eiter et al., 2006c]. Further ap-
plications include planning with external functions [Van Nieuwenborgh et al., 2007], ranking
services using fuzzy HEX-programs [Heymans and Toma, 2008], geographic information sys-
tems [Mosca and Bernini, 2008], complaint management [Zirtilo�glu and Yolum, 2008], multi-
context systems [Brewka and Eiter, 2007], querying biological or biomedical ontologies in nat-
ural language [Erdogan et al., 2010], and belief (set) merging [Redl et al., 2011]. The latter ap-
plication is in fact a further extension of HEX-programs by means which allow for the nesting of
logic programs, i.e., HEX-programs may call further HEX-programs. The realization is based on
special external atoms for calling subprograms, passing arguments to them, and accessing their
answer sets as objects. This allows for reasoning on the level of sets of answer sets, and to ag-
gregate and combine information from different answer sets. All these applications demonstrate
the usefulness of integrating external knowledge by means of external atoms.

The traditional evaluation algorithm for HEX-programs uses a translation approach which
rewrites them to ASP programs without external sources (we will sometimes call them ordinary

ASP programs to stress the absence of external sources). The fundamental idea is to guess the
truth values of external atoms (i.e., whether a particular fact is in the ‘output’ of the external
source access) in a modi�ed guessing program, which is evaluated by a state-of-the-art ASP
system. After computing an answer set of the guessing program, a compatibility test checks
whether the guesses coincide with the actual source behavior. While this approach is intuitive
and natural, it turned out to be a bottleneck in advanced applications. It does not scale well,
as the number of candidate answer sets grows exponentially with the number of external atoms
in the program. This is because all combinations of truth values are blindly guessed, although
many of them fail the �nal compatibility test, frequently even due to the same reason. However,
when treating external sources as black-boxes, there is little room for improvement, as the inter-
nals of the model �nding process are hidden in the ASP solver, which prevents a pruning of the
search space. Hence, even if properties of external sources would be known, it is impossible to
make use of them in the translation approach. In addition to ef�ciency problems, the translation
approach suffers also expressiveness restrictions. In order to rewrite HEX-programs to ordinary
ASP programs, the output values of external sources need to be known in advance (in general)
for grounding purposes. This is currently ensured by strong syntactic criteria which limit the
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use of external sources in many cases. These restrictions call for new genuine evaluation al-
gorithms, which handle external sourced as �rst-class citizens to increase both ef�ciency and
expressiveness.

1.2 State-of-the-Art

This section reviews existing approaches for three related topics which will be relevant for this
thesis: propositional model building algorithms for ordinary answer set programs, grounding

methods for programs with variables, and approaches of answer set programming with access to
external sources and domains.

1.2.1 Propositional Model Building

We will formally introduce ASP programs as a special case of HEX-programs in Chapter 2. For
now we give a more intuitive description. A propositional answer set program is a set of rules r
of form

a1 _ � � � _ ak  b1; : : : ; bm; not bm+1; : : : ; not bn;

where not denotes default-negation, and ai; 1 � i � k, bj ; 1 � j � n are propositional atoms1.
The part to the left of is the head and the part right the body of r.

An interpretation is a consistent set A of literals2. A satis�es a rule if either some bj
for 1 � j � m is not in A, some bj for m + 1 � j � n is in A, or some ai for 1 �
i � k is in A; A satis�es a program � (or is a model of �) if A satis�es each rule r in
�. An interpretation A is an answer set of � if A is a subset-minimal model of the pro-
gram f�A =

�
r 2 � j fb1; : : : ; bmg � A; fbm+1; : : : ; bng \ A = ;

	
, which is called

the FLP-reduct of � with respect to A and consists of all rules whose body is satis�ed by
A [Faber et al., 2011]. For ordinary programs the FLP-reduct is equivalent to the seminal GL-
reduct introduced by Gelfond and Lifschitz (1991), but preferable for programs with aggregates
and HEX-programs.

Model building algorithms for such programs can be classi�ed in two major groups. The
�rst one consists of algorithms that translate the set of rules into another host logic (e.g., propo-
sitional logic or difference logic), for which one can apply specialized SAT solvers. This re-
sults in a reduction of the problem, i.e., the solutions to a constructed SAT instance can be
used to construct the answer sets of the original problem. Approaches of the second kind, on
which we focus in this thesis, search directly for models and are called genuine algorithms,
cf. Giunchiglia et al. (2008) and Baral (2002). The underlying idea of genuine algorithms, such
as those implemented by DLV or SMODELS, is to perform an intelligent (restricted) enumera-
tion of truth assignments to atoms used in the search for an answer set. That is, deterministic
consequences of the rules wrt. partial truth assignments are computed [Giunchiglia et al., 2008]
in order to set the truth values of further atoms; e.g., if the body of a rule is satis�ed, also its

1Strongly (classically) negated atoms :p can be seen as new atoms together with a constraint which forbids that
p and :p are simultaneously true.

2For now this de�nition of an interpretation suf�ces, although we will introduce a more general one in Section 2
in order to support also partial assignments.
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head must be satis�ed. If the assignment is still partial after all deterministic consequences have
been drawn, the value of a yet unde�ned atom is guessed in the style of DPLL algorithms for
SAT, and again deterministic consequences are determined, etc.; in case the guess leads to a
contradiction, the computation backtracks and the alternative value is considered.

In contrast to DLV and SMODELS, the CLASP system employs a con�ict-driven method cor-
responding to con�ict driven SAT solvers [Mitchell, 2005]. After some preprocessing steps (e.g.,
rewriting of optimization statements [Gebser et al., 2011a]), the solver creates a set of nogoods

for the input program [Gebser et al., 2007a], where a nogood is a set of literals that must not
occur simultanously in an answer set. For instance, it must never happen that all body literals of
some rule are true, but the body as a whole (represented by an auxiliary variable) is not. How-
ever, as there are exponentially many nogoods, some of them (the so called loop nogoods which
avoid cyclic justi�cations [Lin and Zhao, 2004; Gebser et al., 2007a]) are only introduced on the
�y. The basic operation of the algorithm is then unit propagation: if there is some nogood with
all except one literal satis�ed, then the last literal must be false. This inference step is repeated
as long as new literals can be derived, i.e., until a �xpoint is reached. If no further literal can
be derived but some atoms have no truth value yet, then the algorithm guesses a truth value for
some such atom just as explained before. However, the distinguishing feature of con�ict-driven
algorithms is nogood learning. Whenever a con�ict emerges, the literals which were initially re-
sponsible for the con�ict, are determined. This possibly results in adding further nogoods which
prevent the algorithm from reconstructing an interpretation with the same con�ict again. This
considerably restricts the search space: instead of backtracking linearly, the reasoner immedi-
ately jumps to the assignment that initially caused the contradiction, and guides the algorithm
into another part of the search space. As con�ict-driven algorithms are predominant in modern
SAT and ASP solving algorithms, we want to built upon them and introduce them formally and
in more detail in Chapter 2.

1.2.2 Grounding Methods

Non-ground answer set programs are like propositional programs, but the atoms in a rule are
of the form p(t1; : : : ; tn), where p is a (�rst-order) predicate and the ti are terms in a �rst order
language. The semantics of such a program � is de�ned in terms of its grounding, which consists
of all possible ground instances of the rules in �, i.e., variable-free rules that result by replacing
all variables in r by ground terms in the language in all possible ways. For ordinary ASP
programs the grounding is �nite, while it may be in�nite for certain extensions like ASP with
function symbols and HEX-programs. However, in practice suitable safety conditions guarantee
that only a �nite subset of the grounding is relevant for answer set computation. Finding such
safety conditions and developing ef�cient grounding algorithms for the resulting class of HEX-
programs will be in the focus of Chapter 4.

Most state-of-the-art ASP solvers (including DLV and CLASP) step to the grounding of a pro-
gram before the actual model �nding algorithms are started. However, this is not done naively
by plugging in each constant for each variable. Instead, the grounder usually employs advanced
optimization techniques which try to eliminate irrelevant rules upfront. Modern grounders,
like the ones incorporated in DLV [Faber et al., 1999; Leone et al., 2001; Calimeri et al., 2008b],
or LPARSE [Syrjänen, 2009; SMODELS Website, 2014], and the GRINGO system as part of the
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Potassco suite [Gebser et al., 2011b; GRINGO Website, 2014], in fact compute the answer set for
monotonic programs or program components, such that only nondeterministic choices need to
be handled by the actual solver.

In contrast to pre-grounding, lazy grounding generates ground instances of rules only during
reasoning when the positive part of the body of a rule is already satis�ed. This technique is used
for instance in GASP [Palø et al., 2009] and in the ASPeRiX solver [LefŁvre and Nicolas, 2009].
An advantage is that generating irrelevant ground rules can be avoided more effectively. How-
ever, the complexity of rule applications is higher than in the pre-grounding case since the match-
ing algorithm cannot compare rule bodies one-by-one with the current partial interpretation, but
must check if any grounded version is satis�ed. Empirical results by Palø et al. (2009) are en-
couraging. Because HEX-programs cannot simply be pre-grounded since parts of the relevant
domain may never appear in the input program, we will partially build upon lazy grounding tech-
niques. Actually, we will choose a hybrid approach in Chapter 4, which alternates evaluation
and grounding for fragments of HEX-programs. That is, we instantiate program components
larger than single rules, but we do not carry out to overall grounding prior to evaluation but
interleave the two processes.

1.2.3 External Sources and Domains

There exist formalisms other than HEX-programs which have a similar intention and support ex-
ternal sources of computation. We now recall them and describe the most important differences
to HEX-programs.

GRINGO and Lua interface

The GRINGO system is a grounder for ASP which provides an interface for calling functions
written in the scripting language Lua [Lua Website, 2014] at certain points during the grounding
process [Gebser et al., 2011b]. The functions may access GRINGO data structures and return
new values to later grounding phases, which allows, e.g., to sort the input, to retrieve tuples
from a relational database and add them as facts to the grounder, as well as to insert atoms of a
model into the database. This is well-suited for implementing, for instance, user-de�ned built-in
predicates. However, in contrast to HEX-programs, the communication between the ASP system
and external scripts is only possible between speci�c grounding phases and is not tightly coupled
to and interleaved with model building.

ASP modulo Theories

The ASP solver CLASP provides an interface for adding custom theory propagators to the rea-
soner, which are executed after unit and unfounded set propagation have �nished. This interface
was exploited by the CLINGCON system for integrating ASP with constraint satisfaction pro-
gramming [Ostrowski and Schaub, 2012; Gebser et al., 2009]. The CLINGCON approach can be
seen as a special case of HEX-programs: while it implements a solver for a speci�c theory, the
HEX formalism abstractly couples a large variety of different external sources to the solver.
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DLV-EX and DLV-Complex

DLV-EX, which is now part of DLV-Complex, is an extension of DLV which provides exter-
nal predicates similar to external atoms in HEX-programs. This allows for accessing sources of
computation that are de�ned outside the logic program [Calimeri et al., 2007], which is helpful
for functions that are not conveniently or not ef�ciently expressible by rules (for instance math-
ematical functions). As for HEX-programs, external computations possibly extend the Herbrand
universe of a logic program. Obviously, DLV-EX is related to HEX-programs, but a closer look
reveals that it is less general since it only allows for passing terms as input parameters to external
libraries, while HEX-programs allow for passing complete (or partial) interpretations by the use
of predicate parameters [Eiter et al., 2006a]. Consequently, external atoms in HEX-programs
are inherently more dif�cult to evaluate. The dif�culty comes especially from nonmonotonic
behavior, which is not possible if only terms can be input to external sources.

1.3 Contributions

The overall goal of this thesis is therefore the development of advanced reasoning algorithms

which avoid the simple ASP translation approach in order to overcome the evaluation bottleneck
of HEX-programs. This class of algorithms will be called genuine algorithms throughout this
thesis. In contrast to the translation approach, they consider external atoms as �rst-class citizens
and natively build model candidates from �rst principles and accesses external sources already
during the model search, which allows to prune candidates early. For this purpose, they may also
exploit meta-knowledge about the internals of external sources, such as asserted properties like
monotonicity and functionality. These ideas are integrated with modern SAT and ASP solving
techniques based on clause learning [Biere et al., 2009], which led to very ef�cient con�ict-

driven algorithms for (possibly disjunctive) answer-set computation [Drescher et al., 2008]. We
extend them to external sources, which is a major contribution of this work. Since typical rea-
soning tasks over HEX-programs such as cautious and brave reasoning are on the second level
of the polynomial hierarchy, the development of ef�cient algorithms is challenging.

As another important contribution we will also provide algorithms which handle programs
with variables and possible value invention, i.e., external sources which return constants that
do not show up in the original program. To this end, we will develop new safety criteria

which restrict the use of external sources less than other approaches, as e.g. those presented
by Gebser et al. (2007b) and Calimeri et al. (2007), but such that in�nite value invention is still
avoided. For this novel class of programs we then introduce an ef�cient grounding algorithm.

As a proof of concept, the new algorithm will be integrated into our prototype system
DLVHEX, which is, to the best of our knowledge, the only implementation of the HEX-semantics.
The implementation is designed in an extensible fashion, such that the provider of external
sources can specify re�ned learning functions which exploit domain-speci�c knowledge about
the source. Also the safety criteria for programs with variables are implemented in an extensible
fashion such that application-speci�c knowledge can be exploited in addition to built-in criteria.
The theoretical work is complemented with experiments that we conducted with our prototype
on synthetic benchmarks and programs motivated by real-world applications. In many cases,
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signi�cant performance improvements compared to the previous algorithm are obtained, which
shows the suitability and potential of the new techniques.

Finally, we discuss some existing and new applications and extensions of HEX-programs.
We will focus on those applications which emerged or have been signi�cantly extended during
the work on this thesis, but we will also brie�y discuss some traditional applications.

1.4 Organization of this Thesis

The remaining part of this thesis is organized as follows:

� In Chapter 2 we provide background about the concepts and techniques we will use
throughout this thesis. In particular, we introduce the syntax, semantics and the tradi-
tional evaluation algorithm for HEX-programs, which is based on a translation to ASP.
Moreover, we present state-of-the-art SAT and ASP solving algorithms based on con�ict-

driven clause learning.

� In Chapter 3 we present novel evaluation algorithms for ground HEX-programs, i.e.,
variable-free programs. Our approach integrates con�ict-driven algorithms with addi-
tional learning concepts related to techniques used in solvers for SAT modulo theories

(SMT) [Barrett et al., 2009]. We further develop new algorithms for minimality checking
of answer set candidates. This is an important topic because in many cases the major part
of the overall computational costs is caused by this check. The new minimality check is
tightly integrated with the con�ict-driven algorithms.

In this chapter, we will also consider syntactic fragments of HEX-programs, which often
allow for a more ef�cient evaluation.

� In Chapter 4 we address non-ground programs and value invention (also called domain

expansion) in particular. That is, we consider external sources which may introduce new
values which do not appear in the original program. This obviously prevents naive pre-
grounding, as used in ordinary ASP solving, and requires additional safety criteria.

As the traditionally used criteria are unnecessarily restrictive, an important goal in this
chapter will be to relax these criteria whenever possible. However, we do not simply
provide more liberal safety criteria, but a generic and extensible notion of safety, where
concrete (syntactic and semantic) safety criteria can be plugged in. We then provide ex-
amples for concrete safety criteria, and prove that they are already strictly more general

than various other notions from the literature.

After the theoretical work on safety of HEX-programs, we will provide a grounding algo-

rithm for the de�ned class of HEX-programs. This algorithm is then integrated into the

evaluation framework, which is extended for this purpose.

� In Chapter 5 we �rst provide some information about the implementation of our algo-
rithms in our prototype system DLVHEX. The system is available from http://www.kr.

tuwien.ac.at/research/systems/dlvhex as open-source software. Then we evaluate the
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system using a newly developed benchmark suite, which consists both of synthetic and
of real-world applications. We compare our algorithms to the traditional translation-based
algorithms and will be able to show a signi�cant, in some cases even exponential, speedup.
The evaluation addressed both the learning-based solving and the grounding algorithms
which we developed in Chapters 3 and 4, respectively.

� Chapter 6 discusses applications and extensions of HEX-programs. The focus is on new
applications which emerged during the work on this thesis or have been signi�cantly ex-
tended, but we will also recapitulate important traditional applications.

� Chapter 7 summarizes the main results, concludes the thesis, and gives an outlook on
future work.

� The HEX-encodings of benchmark problems are shown in Appendix A, lengthy proofs of
some presented results are outsourced in Appendix B.

1.5 Publications and Evolution of this Work

We now give a brief overview about the evolution of the techniques over time. We further give
references to the initial publications of the results presented this thesis.

This PhD project started started in October 2011 after the initial version of the model-
building framework has been introduced and the traditional algorithms have been integrated
into this framework. However, at this stage there was no tight integration of the ASP solver
used as backend with the reasoning algorithms for HEX-programs. In particular, there were no
learning techniques which consider external atoms as �rst-class citizens. Instead, the evaluation
of the logic program and the external sources were strictly separated, which not only turned out
to be an ef�ciency bottleneck in the evaluation, but also required strong syntactic limitations.

Thus, the goal in the �rst phase of the project from October 2011 to December 2012 was the
development of novel evaluation algorithms for ground HEX-programs presented in Chapter 3.
The main task was the development of the guess and check algorithm from Section 3.1, which
adds new learning techniques that are speci�c for ASP with external sources. We developed
the concept of learning functions in order to abstractly deal with external sources and allow for
�exible instantiation for concrete applications. The results were initially published in the Journal

of Theory and Practice of Logic Programming (TPLP) in September 2012 [Eiter et al., 2012a]
and included preliminary benchmark results. In parallel to this part of the theoretical work,
GRINGO and CLASP were integrated into our prototype system and replaced DLV as default
reasoning backend. This work was mainly carried out during a research visit at the University
of Potsdam, Germany in the group of Prof. Dr. Torsten Schaub in January and February 2012.

A subprocedure of this algorithm is the minimality check from Section 3.2. While the tra-
ditional approach used an explicit search for smaller models, the new approach is based on un-
founded sets, which were previously already exploited for normal logic programs and disjunctive
ASP. We presented the new minimality checking algorithm and initial benchmark results at the
Thirteenth European Conference on Logics in Arti�cial Intelligence (JELIA 2012) in September
2012 [Eiter et al., 2012c]. We then developed the idea that this step might not be necessary in
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all cases, which was soon con�rmed by formal results. This led to the identi�cation of a de-

cision criterion which was published in the proceedings of the Fifth Workshop on Answer Set

Programming and Other Computing Paradigms in September 2012 [Eiter et al., 2012b].

The minimality check was then further improved by using a more advanced encoding of the
unfounded set search. Compared to the initial technique, the improved version minimizes repet-
itive computation and led to a further speedup. We presented the �nal version of this technique
and the respective benchmark encodings and results in a technical report [Eiter et al., 2013d]
and in the Journal of Arti�cial Intelligence Research in 2014 [Eiter et al., 2014b], which coin-
cide with the contents presented in this thesis.

In the second phase of this PhD project from January 2013 to March 2014 we considered
grounding and domain expansion. The results are presented in Chapter 4. The �rst goal in
this phase was the relaxation of the syntactic restrictions. The traditional grounding algorithm
assumes that all constants are known in advance whenever external atoms are involved in cycles.
This requires the user to obey restrictive safety conditions. It turned out that in many cases these
restrictions are unnecessary, i.e., better algorithms do not need such restrictions. Based on this
observation we developed a new notion of safety which we called liberal domain-expansion

safety (Section 4.2). However, this notion does not only relax the previous one but is also
extensible and customizable. This led to the concept of liberal safety which we presented at the
Twenty-Seventh AAAI Conference (AAAI 2013) in July 2013 [Eiter et al., 2013c].

The theoretical work was then complemented by a new grounding algorithm for HEX-
programs which are safe according to the new notion (Section 4.3). The algorithm and bench-
mark results were presented at the Second Workshop on Grounding and Transformations for

Theories with Variables (GTTV 2013) in September 2013 [Eiter et al., 2013a]. This work also
presents a new heuristics for the model-building framework (Section 4.5), which is tailored to
the properties of the new grounding algorithm and aims at avoiding the worst-case of this algo-
rithm, which is possible in many cases. However, this task is challenging since the heuristics
in�uences both the grounding and the solving algorithm and some strategies might reduce the
grounding time but increase the solving time or vice versa.

In parallel to both phases of the project we also continuously developed new applications

of HEX-programs and extended existing ones, some of which are presented in Chapter 6. In
particular, the idea of HEX-programs with nested program calls which was initially developed
by Redl (2010) and published in the proceedings of the Thirteenth International Symposium on

Practical Aspects of Declarative Languages (PADL 2011) in January 2011 [Redl et al., 2011]
was signi�cantly extended in order to serve as a development tool during the implementation
of the algorithms from this thesis. The results have been presented at the Nineteenth Inter-

national Conference on Applications of Declarative Programming and Knowledge Manage-

ment (INAP 2011) [Eiter et al., 2011b] and in more detail in the post-proceedings of the confer-
ence [Eiter et al., 2013f]. Another application are HEX-programs with existential quanti�cation

that were mainly developed in order to show the generality of the new grounding algorithm.
We presented them at the Twentieth International Conference on Applications of Declarative

Programming and Knowledge Management (INAP 2013) [Eiter et al., 2013b] and in more de-
tail in the post-proceedings [Eiter et al., 2014a]. Less related but still in context of this thesis
is an alternative semantics for ASP programs with aggregates and HEX-programs, for which
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1.5. Publications and Evolution of this Work

we provided an implementation which was presented in the Journal of Ari�cial Intelligence in
2014 [Shen et al., 2014].

The development of the previously mentioned applications was tightly coupled with the de-
velopment of the methods from this thesis and in�uenced their �ne-tuning. However, while
the work on this thesis was in progress some applications were also developed by end users
of the system. Although the core team was involved in those applications on a more abstract
level as well, the details were developed and implemented by persons who do not directly work
on the reasoning algorithms in the system core. Thus, the encodings of those applications can
not unintentionally bias the results by guiding the algorithms (i.e., avoiding problematic cases),
and can thus be considered as real-world applications. One such application is ACTHEX, which
has been signi�cantly extended during the work on this thesis3. The results have been pub-
lished in the proceedings of the Twelfth International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR 2013) in September 2013 [Fink et al., 2013]. In summer
2013 we further participated at the AngryBirds AI Competition4 with an agent based on HEX-
programs [Calimeri et al., 2013a]. The agent is called AngryHEX and was joint work of the
University of Calabria and the Vienna University of Technology5. Later, the system was sig-
ni�cantly extended, e.g., by introducing a second strategy layer for choosing among levels, and
more details were presented at the National Workshop and Prize on Popularize Arti�cial Intelli-

gence (PAI 2013) [Calimeri et al., 2013b], where we were conferred the best paper award; in the
competition the system was in the semi�nal. Finally, a prototypical implementation of constraint
ASP on top of HEX-programs was developed as part of a master’s thesis [Stashuk, 2013].

3The implementation was mainly carried out by our guest student Stefano Germano in summer 2012, to whom
the author is grateful for his work.

4Co-located with IJCAI 2013, Beijing, China; http://www.aibirds.org
5We are grateful to Daria Stepanova, who presented the poster as a deputy of the AngryHEX team.
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Chapter 2
Preliminaries

In this chapter we discuss the background of this thesis, which will also show the notions we
are going to use. We �rst introduce syntax and semantics of HEX-programs as an extension
of the answer set programming (ASP) paradigm. This knowledge representation and reason-
ing formalism, which was �rst introduced by Eiter et al. (2005) and described in more detail
by Schindlauer (2006), is in the focus of this thesis.

The �rst evaluation algorithm for HEX-programs was introduced by Schindlauer (2006), but
has been signi�cantly changed since then. In particular, a �exible model building framework

was introduced by Eiter et al. (2011a) and Schüller (2012), which evaluates HEX-programs by
modular decomposition of the input program, driven by some heuristics. The original algo-
rithms of Schindlauer (2006) are then obtained by instantiating the framework with a speci�c
decomposition heuristics. However, we will directly recapitulate the work of Schüller (2012)
instead of Schindlauer (2006) because it is strictly more general and leads to signi�cantly better
benchmark results.

We then present con�ict-driven SAT and answer set solving, following Mitchell (2005)
and Drescher et al. (2008), as this is a very promising technique which is fundamental to state-
of-the-art solvers. This is the basis for the algorithms developed in later chapters.

2.1 HEX-Programs

HEX-programs have been introduced by Eiter et al. (2005) as a generalization of (disjunctive)
extended logic programs under the answer set semantics [Gelfond and Lifschitz, 1991]. The
latter will sometimes be called ordinary ASP throughout this thesis to stress the absence of
external sources. In order to cater for the requirements of modern trends in distributed systems
and the World Wide Web, HEX-programs provide a universal bidirectional interface between the
logic program and external sources of computation, which is realized as external atom. External
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2. PRELIMINARIES

atoms allow for a tight integration of arbitrary sources, which are provided as plugins to the
reasoner, with the logic program.

We start our discussion with some basic notions that we need in order to formally de�ne
the syntax and semantics of HEX-programs. We assume that for a given program the alphabet
consists of mutually disjoint sets

� C of constants;

� P of predicates;

� V of variables; and

� X of external predicates.

Noticeably, C may be larger than the set of constants which explicitly show up in the program
and can even be in�nite. In our examples we adopt the following naming convention: constants
start with lower case letters at the beginning of the alphabet (a; b; : : :), predicates start with lower
case letters beginning from p (p; q; : : :), variables start with upper case letters (X;Y; : : :), and
external predicate names start with symbol & (&g ;&h; : : :). The set of terms is de�ned as C [V .
Note that we have no notion of function symbols because they are disallowed in HEX-programs,
but can be simulated by external atoms as we will show in Chapter 6.

For an ordinary predicate p 2 P , let ar(p) denote the arity of p and for an external predicate
&g 2 X , let ar I(&g) be the (�xed) input arity and ar O(&g) the (�xed) output arity of &g1.

As with ordinary ASP programs, the basic building blocks of HEX-programs are atoms.

De�nition 1 (Atom). An (ordinary) atom a is of form p(t1; : : : ; t‘), with predicate p 2 P and
‘ = ar(p) and terms t1; : : : ; t‘ 2 C [ V .

Sometimes we will call an atom also ordinary atom, to stress that we do not talk about
external atoms (which are formally introduced in the following). An atom p(t1; : : : ; t‘) is called
ground if all terms are constants, i.e., ti 2 C for all 1 � i � ‘.

In this thesis we will often use lists of elements l1; : : : ; l‘, which will be compactly notated
by bold face, i.e., l = l1; : : : ; l‘. For instance, an atom of form p(t1; : : : ; t‘) might be denoted
p(t). For a list l = l1; : : : ; l‘ we write l 2 l if l = li for some 1 � i � ‘. When we explicitly
write a list l = l1; : : : ; l‘ of length ‘ > 1, we may add parentheses for better readability, i.e., we
write (l1; : : : ; l‘). Moreover, whenever we write li in context of a list l whose elements are not
explicitly stated, we assume that li refers to the i-th element of the list, i.e., the list is implicitly
given by l = l1; : : : ; l‘.

Since we need to represent partial assignments in many sections of this thesis, we cannot
simply represent assignments as sets of atoms, as in the intuitive description in Chapter 1. This
would not allow for distinguishing between false and unde�ned atoms. Instead, we use the
following notion of assignments based on signed literals.

De�nition 2 (Signed Literal). A (signed) literal is a positive or negated ground atom Ta or Fa.

1For user convenience the implementation supports external predicates with variable input arity in some cases,
but we restrict our formal investigation to external predicates with �xed input arity.
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For a literal � = Ta or � = Fa, let � denote its opposite, i.e. Ta = Fa and Fa = Ta.

De�nition 3 (Assignment). An assignment A over a (�nite) set of atoms A is a consistent (i.e,
for any atom a 2 A, we have fTa;Fag 6� A) set of signed literals Ta or Fa, where Ta

expresses that a is true and Fa that it is false.
An assignment A is called complete wrt. a set of atoms A (or an interpretation of the atoms

in A), if Ta 2 A or Fa 2 A for all a 2 A.

We write AT to refer to the set of elements AT = fa j Ta 2 Ag and AF to refer to
AF = fa j Fa 2 Ag. In abuse of notation, we will sometimes write complete interpretations
A as the set of its positive signed literals fTa 2 Ag, or as the set of the atoms fa j Ta 2 Ag
which are true in A, if the set of atoms A is clear from context.

We will often need to refer to all tuples of arguments c, for which a certain predicate p is
true in an assignment A. This is called the extension of p in A.

De�nition 4 (Extension of a Predicate). The extension of a predicate p wrt. an assignment A is
de�ned as ext(p;A) = fc j Tp(c) 2 Ag.

Let further Ajp be the set of all signed literals over atoms of form p(c) in A. For a list
p = p1; : : : ; pk of predicates, we let Ajp = Ajp1 [ � � � [Ajpk .

2.1.1 Syntax

We are now ready to introduce HEX-programs formally. Ordinary ASP programs correspond
then to a fragment of HEX-programs, which we will describe subsequently. We start the in-
troduction of the syntax of HEX-programs with external atoms as the most speci�c part of the
language.

De�nition 5 (External Atom). An external atom is of the form

&g [Y1; : : : ; Yk](X1; : : : ; Xl),

where g 2 X is an external predicate name with ar I(&g) = k and ar O(&g) = l, Yi 2 C [P [V
for all 1 � i � k are input terms, and Xi 2 C [ V for all 1 � i � l are output terms.

The lists Y = Y1; : : : ; Yk and X = X1; : : : ; Xl are called input and output list, respectively.
A predicate in the input list is called an input predicate.

An external atom &g [Y1; : : : ; Yk](X1; : : : ; Xl) is ground, if Yi 2 C[P for all 1 � i � k and
Xi 2 C for all 1 � i � l. Using our list notation, we abbreviate &g [Y1; : : : ; Yk](X1; : : : ; Xl) as
&g [Y](X).

We further assume that the input parameters of every external predicate &g 2 X are typed
such that type(&g ; i) 2 fconst;predg for every 1 � i � ar I(&g). We make also the restric-
tion that Yi 2 P if type(&g ; i) = pred and Yi 2 C [ V otherwise. Intuitively, for a parameter
of type const the constant at the respective argument position is passed to the external source,
while for a parameter of type pred the extension of the given predicate name is passed. More-
over, we will sometimes assume that we know for predicate parameters if they are monotonic or
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nonmonotonic. A formal de�nition these properties will follow in Chapter 3, for now we only
use them as tags to the external source and explain them intuitively as follows. An external atom
is monotonic in a predicate parameter p, if the output of the external atom does not shrink if the
extension of p grows, otherwise it is nonmonotonic in p.

Example 1. A non-ground external atom is &di� [set1; set2](X), a ground external atom is
&di� [set1; set2](a), where type(&di� ; 1) = type(&di� ; 2) = pred. 2

HEX-programs are then de�ned similar to ordinary ASP programs.

De�nition 6 (HEX-programs). A HEX-program is a �nite set of rules of form

a1 _ � � � _ ak  b1; : : : ; bm; not bm+1; : : : ; not bn,

where each ai for 1 � i � k is an atom p(t1; : : : ; t‘) with terms tj , 1 � j � ‘, and each bi
for 1 � i � n is either an ordinary (classical) atom or an external atom. Moreover, we require
k + n > 0, and call a rule a constraint if k = 0, and a fact or disjunctive fact if n = 0; k = 1
or n = 0; k > 1, respectively. For facts and disjunctive facts we may omit . Sometimes we
terminate rules with a dot if this improves readability.

The head of a rule r is de�ned as H(r) = fa1; : : : ; ang and the body is de�ned as B(r) =
fb1; : : : ; bm; not bm+1; : : : ; not bng. We call b or not b in a rule body a default literal; B+(r) =
fb1; : : : ; bmg is the positive body, B�(r) = fbm+1; : : : ; bng is the negative body.

A rule is ground if all atoms and external atoms are ground. A program is ground if all rules
are ground.

Example 2. The following set of rules forms a non-ground HEX-program �:

sel(X) domain(X);&di� [domain;nsel ](X)

nsel(X) domain(X);&di� [domain; sel ](X)

domain(a) 

2

As already mentioned in Footnote 1 in Chapter 1, we do not formally introduce strong nega-
tion but see classical literals of form :a as new atoms together with a constraint which disallows
that a and :a are simultaneously true.

We next de�ne groundings of rules and programs similar to Gelfond and Lifschitz (1991).

De�nition 7 (Grounding). The grounding grndC(r) of a rule r wrt. a set of constants C is the set
of all rules f�(r) j � : V 7! Cg, where � is a grounding substitution mapping each variable to a
constant, and �(r) denotes the rule which results if each variable X in r is replaced by �(X).

The grounding of a program � is de�ned as grndC(�) =
S

r2� grndC(r).
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Example 3 (ctd.). Let � be the HEX-program from Example 2 and C = fag be a set of constants.
Then grndC(�) is:

sel(a) domain(a);&di� [domain;nsel ](a)

nsel(a) domain(a);&di� [domain; sel ](a)

domain(a) 

2

Note that grndC(r) and grndC(�) may be in�nite because C may be in�nite. It will be the
focus of Chapter 4 to identify classes of programs which have a �nite answer-set preserving
grounding, i.e., a �nite grounding with the same answer sets as the complete grounding wrt. C.

De�nition 8. The Herbrand base HB� of program � is the set of all ground atoms constructible
from the predicates occurring in � and the constants from C.

We further let A(r) and A(�) denote the set of ordinary atoms in a rule r or in a program �,
respectively, and EA(r) and EA(�) denote the set of external atoms in a rule r or in a program
�, respectively. Importantly, the sets A(�) and EA(�) include the atoms and external atoms,
which occur in default-negated form in the given rule or program.

2.1.2 Semantics

We start with the semantics of ordinary ground atoms wrt. an assignment.

De�nition 9 (Satisfaction of Ground Atoms). A ground atom p(c) is true in assignment A,
denoted A j= p(c), if Tp(c) 2 A, and false in assignment A, if Fp(c) 2 A.

To evaluate an external atom the reasoner passes the constants and extensions of the pred-
icates in the list of input terms to the external source associated with the external atom, which
is plugged into the reasoner. The external source computes a set of output tuples, which are
matched with the output list. The external atom evaluates then to true for every output tuple
which matches with any of the tuples returned from the external source.

The semantics of a ground external atom &g [y](x) wrt. an assignment A is given by the
value of a 1+k+l-ary Boolean oracle function f&g , where ar I(&g) = k and ar O(&g) = l, that
is de�ned for all possible values of A, y and x.

De�nition 10 (Satisfaction of Ground External Atoms). A ground external atom &g [y](x) is
true in assignment A, denoted A j= &g [p](c), if f&g(A; y; x) = 1, and false in assignment A
if f&g(A; y; x) = 0.

Importantly, in this thesis we restrict oracle functions f&g for a given external predicate
&g with input list y to computable functions s.t. the set fx j f&g(A; y; x) = 1g is �nite and
enumerable. We further assume that f&g(A; y; x) = f&g(A0; y; x) for all A, A0 s.t. Ajypred =
A0jypred where ypred is the sublist of y consisting of all input parameters pi at a position 1 � i �
ar I(&g) with type(&g ; i) = pred, i.e., only the extensions of predicates which occur explicitly
as input term of type pred in�uence the value of f&g(�; x; y).
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When specifying the semantics of external atoms throughout this thesis, we will sometimes
only explicitly de�ne under which conditions it is true and implicitly assume that it is false
otherwise; this will be stated as ‘iffdef’ expression, as demonstrated by the following example.

Example 4 (ctd.). The semantics of the external predicate &di� from Examples 2 and 3 is given
by the oracle function f&di� de�ned such that for predicates p and q, f&di� (A; p; q; x) = 1 iffdef

x 2 Ajp and x 62 Ajq for all assignments A, predicates p, q and constants x. Intuitively, &di�

computes the set difference of the extensions of p and q in A, i.e., the external atom is true for
all constants x which are in the extension of p but not in that of q. The external predicate &di�

is monotonic in the �rst parameter and nonmonotonic in the second. 2

De�nition 11. A ground default-literal of form not a (where a can be a ground ordinary or a
ground external atom), is true in assignment A, denoted A j= not a, if a is false in A.

The notion of extension ext(�;A) for external predicates &g with input lists y is naturally
de�ned as follows.

De�nition 12 (Extension of an External Predicate with Input List). The extension of an exter-

nal predicate &g with input list y wrt. an assignment A is de�ned as ext(&g [y];A) = fx j
f&g(A; y; x) = 1g.

Satisfaction of ordinary rules and ASP programs [Gelfond and Lifschitz, 1991] is then ex-
tended to HEX-rules and programs in the obvious way:

De�nition 13 (Satisfaction of Ground Rules). A ground rule r of form

a1 _ � � � _ ak  b1; : : : ; bm; not bm+1; : : : ; not bn

is satis�ed by A, denoted A j= r if one of ai for 1 � i � k is true in A, or one of bi for
1 � i � m is false in A, or one of bi for m+ 1 � i � n is true in A.

An assignment A is a model of a program �, denoted A j= �, if A j= r for all r 2 �.
We can now de�ne answer sets of HEX-programs similar to ordinary ASP programs, but

using the Faber-Leone-Pfeifer (FLP) reduct [Faber et al., 2011] instead of the classical Gelfond-
Lifschitz (GL-)reduct [Gelfond and Lifschitz, 1988]. The FLP-reduct and the GL-reduct are
equivalent for ordinary ASP programs, but the former is superior for programs with aggregates
as it eliminates unintuitive answer sets.

De�nition 14 (FLP-Reduct [Faber et al., 2011]). For an interpretation A over a ground program
�, the FLP-reduct f�A of � wrt. A is the set

�
r 2 � j A j= b for all b 2 B(r)

	
of all rules

whose body is satis�ed by A.

In contrast to the FLP-reduct, which simply removes all rules with unsatis�ed bodies, the
GL-reduct �A =

� W
ai2H(r) ai  

V
bi2B+(r) bi j r 2 �;A j= not b for all b 2 B�(r)

	
also

removes the default-negated literals from the remaining rules (where a rule as by De�nition 6 is
written as a1 _ � � � _ ak  b1 ^ : : : ^ bm ^ not bm+1 ^ : : : ^ not bn).
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De�nition 15. Given assignments A1, A2 we say that A1 is smaller than A2, denoted A1 �
A2, if fTa 2 A1g � fTa 2 A2g. We say that it is strictly smaller than, denoted A1 < A2, if
fTa 2 A1g ( fTa 2 A2g.

De�nition 16 (Answer Set). An answer set of a ground program � is a �-minimal model A of
f�A. An answer set of a program � is an answer set of grndC(�).

The set of all answer sets of a program � is denotedAS(�). We let�pos denote equivalence
of the answer sets of two programs � and �0 in their positive parts, i.e., we write � �pos �0 if�
AT j A 2 AS(�)

	
=

�
AT j A 2 AS(�0)

	
.

Example 5 (ctd.). Let � be the HEX-program from Example 2. Then the answer sets are A1 =
fTsel(a);Fnsel(a)g and A2 = fFsel(a);Tnsel(a)g because they are subset-minimal models
(in the positive atoms) of

f�A1 = fsel(a) domain(a);&di� [domain;nsel ](a); domain(a) g

and
f�A2 = fnsel(a) domain(a);&di� [domain; sel ](a); domain(a) g,

respectively. 2

Note that for a non-ground program, answer sets possibly contain an in�nite number of
signed literals because the grounding is possibly in�nite. However, in Chapter 4 we will identify
criteria which ensure the existence of a �nite grounding which preserves the �nite positive part
of answer sets.

To see why the FLP-reduct is preferable to the GL-reduct for HEX-programs, consider the
following example.

Example 6. Let � be the HEX-program �

p(a) not &not [p](a)

f  not p(a); not f

where f&not(A; p; a) = 1 iffdef a 62 ext(A; p).
Then we have four answer set candidates A1 = fTp(a);Ffg, A2 = fTp(a);Tfg, A3 =

fFp(a);Ffg and A4 = fFp(a);Tfg. Under the GL-reduct, we have �A1 = �A2 = fp(a)g,
�A3 = ffg and �A4 = ;. Then (the positive part of) A1 is the only model of �A1 , i.e., it
reproduces itself under the reduct and is thus a GL-answer set (while the other models do not
reproduce themselves under the respective reduct).

However, it is not intuitive that A1 is an answer set because p(a) supports itself. If we use
the FLP-reduct instead, then we get f�A1 = fp(a)  not &not [p](a)g. But now A1 is not a
minimal model of f�A1 because A3 is also a model of f�A1 and A3 < A1. Thus, under the
FLP-reduct all interpretations fail to be answer sets. 2

This concludes our introduction of the syntax and semantics of HEX-programs. The class
of (ordinary) ASP programs corresponds then simply to the class of HEX-programs without
external atoms.
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2.1.3 Atom Dependency Graph and Domain-Expansion Safety

To guarantee the existence of a �nite grounding of a program which preserves the answer sets of
the original program, we need additional safety criteria. The traditional safety criterion in ASP
is recapitulated as follows.

De�nition 17 (Safety). A rule r is safe, if every variable in r occurs in an ordinary positive body
atom b 2 B+(r) or in the output list of an external body atom b 2 B+(r) such that all variables
in its input list are safe. A program is safe if all its rules are safe.

However, the usual notion of safety is not suf�cient in presence of external sources as there
exist safe programs which do not have a �nite grounding which preserve all answer sets.

Example 7. Consider the following program � = fs(a); s(Y )  s(X);&concat [X; a](Y )g,
where for strings X , Y and C, &concat [X;Y ](C) is true iffdef C is the string concatenation
of X and Y . Then this program is safe, but it does not have a �nite grounding with the same
answer sets as the original program because it derives in�nitely many strings. 2

Therefore the additional notion of strong safety was introduced by Eiter et al. (2006a) and
further developed by Schüller (2012), which ensures that the output of cyclic external atoms
is limited. For de�ning strong safety formally, we need the notion of atom dependencies in a
program.

De�nition 18 (External Atom Dependencies). Let � be a HEX-program with external atoms in
different rules being standardized apart2.

� If a is an external atom of form &g [X1; : : : ; X‘](Y) in � and b = p(Z) is an atom in
the head of a rule in �. Then a depends external monotonically (nonmonotonically) on b,
denoted a !e

m b (resp. a !e
n b) if Xi = p for some 1 � i � ‘ and type(&g ; i) = pred

is a monotonic (nonmonotonic) predicate parameter3.

� If &g [X1; : : : ; X‘](Y); p(Z) 2 B+(r) for some r 2 � such that for some 1 � i � ‘ we
have type(&g ; i) = const and Xi 2 Z, then &g [X1; : : : ; X‘](Y)!e

m p(Z).

� If &g [X1; : : : ; X‘](Y);&h[V](U) 2 B+(r) for some r 2 � such that for some 1 � i � ‘
we have type(&g ; i) = const and Xi 2 U, then &g [X1; : : : ; X‘](Y)!e

m &h[V](U).

We de�ne!e=!e
m [ !

e
n. We further need the concept of uni�cation of atoms.

De�nition 19. An atom a uni�es with with atom b, denoted a � b, if there exist mappings
�a : V ! V [ C and �b : V ! V [ C such that �a(a) = �b(b), where �a(a) and �b(b) denote
the atoms constructed from a and b by replacing each variable X in a and Y in b by �a(X) and
�b(Y ), respectively.

2That is, we distinguish syntactically equal external atoms in different rules, e.g., by introducing new external
predicates de�ned by the same oracle function.

3Note that Schüller (2012) did not use monotonicity of single predicate parameters but only monotonicity of all
parameters. However, since the following concepts use only !e

m [ !e
n this de�nition is equivalent for our purposes.
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domain(a) domain(X)

sel(X) nsel(X)

&di� [domain;nsel ](X) &di� [domain; sel ](X)
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!m !m

!e
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m
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n

!e
n
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Figure 2.1: Atom Dependency Graph of the Program in Example 2

We then introduce atom dependencies as follows.

De�nition 20 (Atom Dependencies). For a HEX-program � and atoms a; b 2 A(�), we say:

(i) a depends monotonically on b, denoted a!m b, if

� some rule r 2 � has a 2 H(r) and b 2 B+(r); or

� there are rules r1; r2 2 � such that a 2 B+(r1)[B�(r1) and b 2 H(r2) and a � b;
or

� some rule r 2 � has a 2 H(r) and b 2 H(r).

(ii) a depends nonmonotonically on b, denoted a !n b, if there is some rule r 2 � such that
a 2 H(r) and b 2 B�(r).

Let!+ be the transitive closure of!=!m [ !n [ !
e
m [ !

e
n. We write a 6! b if a! b

does not hold; similar for the other types of relations.
We can now introduce a graph which represents these kinds of dependencies in a program.

De�nition 21 (Atom Dependency Graph). For a HEX-program �, the atom dependency graph

ADG(� ) = (VA; EA) of � has as nodes VA = A(�) [ EA(�) the (non-ground) ordinary and
external atoms occurring in � and as edges EA the dependency relations !m;!n;!

e
m;!

e
n

between these atoms in �, labeled with the type of the relation.

Example 8 (ctd.). The atom dependency graph of the program in Example 2 is shown in Fig-
ure 2.1 and those of Example 7 is shown in Figure 2.2. 2

This allows us to introduce strong safety as follows [Schüller, 2012].
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s(a)

s(Y )

s(X)

&concat [X; a](Y )

!e
m

!m

!m

!m

Figure 2.2: Atom Dependency Graph of the Programs in Example 7

De�nition 22 (Strong Safety). An external atom b in a rule r in a HEX-program � is strongly

safe wrt. r and � if either

(i) b 6!+ b, i.e., there is no cyclic dependency over b; or

(ii) every variable in the output list of b occurs also in a positive ordinary atom a 2 B+(r)
such that a does not depend on b in ADG(�).

Example 9 (ctd.). In the program in Example 7, &concat [X; a](Y ) is not strongly safe because
it occurs in a cycle and there is no ordinary body atom in the rule which binds Y and is not
involved in the cycle. To make the program strongly safe we have to add a domain predicate as
in �0 = fs(a); s(Y ) s(X);&concat [X; a](Y ); limit(Y )g. 2

These de�nitions can be used as follows to de�ne strong domain-expansion safety. Note
that Schindlauer (2006) and Schüller (2012) called this just domain-expansion safety. In this
thesis we call it strong, because we will develop a more liberal notion of domain-expansion
safety in Chapter 4, which gives the user more freedom when modelling a search problem in
HEX.

De�nition 23 (Strong Domain-Expansion Safety). A HEX-program � is strongly domain-ex-

pansion safe, if each rule in � is safe and each external atom in a rule r 2 � is strongly safe
wrt. r and �.

Tightly related to this notion of strong domain-expansion safety is that of pre-groundable

external atoms and pre-groundable HEX-programs [Schüller, 2012].

De�nition 24 (Pre-groundable External Atoms and Programs). An external atom b in a rule r in
a HEX-program � is pre-groundable wrt. r and � if for each variable X in the output list of b
there exists a positive ordinary atom a 2 B+(r) containing X such that a 6!+ b, i.e., a does not
transitively depend on b. A HEX-program � is pre-groundable if all external atoms in all rules
r 2 � are pre-groundable wrt. r and �.

This exactly re�ects Condition (ii) in De�nition 22.
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Example 10 (ctd.). In the program �0 in Example 9, the external atom &concat [X; a](Y ) is
pre-groundable wrt. rule s(Y ) s(X);&concat [X; a](Y ); limit(Y ) and �0 because Y occurs
in limit(Y ), which does not transitively depend on &concat [X; a](Y ). 2

This notion was then extended to extended pre-groundable HEX-programs [Schüller, 2012].
Intuitively, extended pre-groundable HEX-programs may contain external atoms which are not
pre-groundable, but then they do depend on facts but not on any other rules. Such external atoms
will sometimes be called outer external atoms. The truth values of outer external atoms can be
deterministically computed once the facts of the program are �xed.

De�nition 25 (Extended Pre-groundable Programs). A HEX-program is extended pre-ground-

able if for each external atom b in a rule r 2 � it holds that either b is pre-groundable wrt. r and
�, or every atom a that b depends on is the head of a non-disjunctive fact in �. That is, if atom
a occurs in a rule head in �, this rule must be of the form a .

Example 11. In the program � = fq(a); p(X) &id [q](X)g the external atom &id [p](X) is
not pre-groundable but the program is still extended pre-groundable because &id [p](X) depends
only on the fact q(a). 2

It is easy to see that an external atom in a strongly domain-expansion safe program, which
is not pre-groundable, does not cyclically depend on itself (Proposition 12 by Schüller (2012)).
This is because of Condition (i) in De�nition 22, which must hold if Condition (ii) does not hold.
This property will be exploited by the model-building framework (which is formally introduced
in Chapter 4) as follows. The overall program is split into fragments, called (evaluation) units,
such that every unit is extended pre-groundable. Each component can then be evaluated by an
algorithm which grounds the whole unit prior to evaluation. Intuitively, this means that value
invention occurs only between but not within evaluation units.

Extended pre-groundable HEX-programs can be evaluated by Algorithm EvaluateExtended-
PreGroundable, which computes the positive parts of all answer sets of a program, augmented
with facts from some input interpretation [Schüller, 2012]. The basic idea is to �rst evaluate all
external atoms which are not pre-groundable. As they depend only on facts, their input list must
be ground, because if there would be a variable in the input list, then the external atom would
depend on at least one non-ground atom. But then they can be immediately evaluated as soon
as the input interpretation A is known, thus also the truth values for all ground instances of the
external atom are �xed. An auxiliary fact of form e&g[y](z) is added for each (ground) output
tuple z 2 ext(A;&g [y]) of the external atom with input list &g [y], which uni�es (�) with the
output list X given in the program. Then each external atom &g [Y](X) 2 Eouter is replaced
by its auxiliary atom e&g[Y](X). The resulting program �0 is now pre-groundable because all
external atoms which were not pre-groundable have been resolved. Thus, the program can now
be grounded similar to ordinary ASP programs using the procedure, but taking variables in the
input to external atoms into account, as discussed in the next subsection; we abstractly use the
resulting grounding algorithm as GroundProgram. We do not discuss the grounding procedure
in detail because we will develop a strictly more general approach in Chapter 4. The resulting
ground program is then given to procedure EvalGroundHexProgram(�0

grnd ), which computes
the answer sets of the input ground HEX-program �0

grnd .
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At this point we do not discuss ground model building, i.e. the implementation of the proce-
dure EvalGroundHexProgram. The development of appropriate algorithms are one of the main
goals of this thesis and will we shown them in detail in Chapter 3. However, the traditional
algorithm sketched by Schindlauer (2006) works roughly as follows. Each (ground) external
atom is replaced by an auxiliary atom and its truth value is guessed. The resulting ordinary
ASP program is then solved by a state-of-the-art ASP solver to produce answer set candidates.
Each candidate is then checked for compliance with the external sources. If all guesses coincide
with the semantics of external atoms, then minimality of the candidate wrt. the FLP-reduct is
checked. If also this check is passed, an answer set has been found.

Algorithm EvaluateExtendedPreGroundable

Input: A HEX-program �, an input interpretation A

Output: Positive parts of all answer sets of � [ fa : j Ta 2 Ag without A

// determine non-disjunctive facts in � and add them to A

A0  A [ fTa j r 2 � such that H(r) = fag and B(r) = ;g
// determine external atoms that get input only from A0

Eouter  f&g [X](Y) in � j if &g [X](Y)!e b then Tb 2 A0g
// evaluate external atoms and create corresponding

// ground replacement atoms

Aaux  fTe&g[y](z) j &g [y](X) 2 Eouter ; z 2 ext(A0;&g [y]); z � Xg

// introduce auxiliary atoms for outer external atoms

�0  � with external atoms &g [Y](X) 2 Eouter replaced by auxiliaries e&g[Y](X)

// add input and auxiliaries as facts

�0  �0 [ (a : j Ta 2 A [Aaux )
// ground the program

�0
grnd  GroundProgram(�0)

// ground program evaluation and output projection

return
�
A00 n (A [Aaux [ fFa 2 A00g) j A00 2 EvalGroundHexProgram(�0

grnd )
	

2.1.4 External Atom Input Grounding

Following Schindlauer (2006) and Schüller (2012), we use the following precedure for ground-
ing the input of external atoms. We create for each external atom in the program an auxiliary
rule which computes the relevant substitutions for all variables in its input list. Then we evaluate
the set of all auxiliary rules and retrieve the tuples we need to substitute for the variables.

The following de�nition corresponds to De�nition 4.6.11 by Schindlauer (2006) and De�-
nition 23 by Schüller (2012). However, we call the following concept basic input auxiliary rule,
because we make use of a slightly adopted notion of input auxiliary rules in Chapter 4.

De�nition 26 (Basic Input Auxiliary Rule). Let � be a HEX-program, and let &g [Y](X) be
some external atom with input list Y occurring in a rule r 2 �. Then, for each such atom, a rule
r

&g
inp is composed as follows:
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� The head H
�
r

&g
inp

�
contains an atom g

&g
inp(Y) with a fresh predicate g&g

inp .

� The body B
�
r

&g
inp

�
of the auxiliary rule contains all body literals of r other than &g [Y](X)

that have at least one variable in its arguments (resp. in its output list if b is another external
atom) that occurs also in Y.

For each external atom in � we create such a rule and denote the resulting set of rules �inp .

Example 12 (adopted from Example 43 by Schüller (2012)). Consider the non-ground HEX-
program

� = fout(Y ) &concat [a; b](X);&concat [X; c](Y )g:

Then the program �inp consists of the single rule g&concat
inp (X)  &concat [a; b](X). If we

evaluate �inp we get the single answer set fTg&concat
inp (ab)g, which is used for grounding � to

�grnd = fout(Y ) &concat [a; b](ab);&concat [ab; c](Y )g. Then we can evaluate �grnd and
get the single answer set fTout(abc)g. 2

The process of creating auxiliary rules needs to be iterated in general. For instance, for the
program � = fout(Z)  &concat [a; b](X);&concat [X; c](Y );&concat [Y; d](Z)g, we �rst
compute the input to &concat [X; c](Y ), which is ab, and then the input to &concat [Y; d](Z),
which is abc.

2.1.5 Modular Evaluation of HEX-Programs

The evaluation of HEX-programs is based on a model-building framework [Eiter et al., 2011a;
Schüller, 2012], which splits the non-ground program into smaller program components, each
of which is extended pre-groundable.

At this point we do not recapitulate the details of the model-building framework because
they are not necessary for the general understanding of HEX-programs and for the development
of algorithms for ground HEX-program evaluation in Chapter 3. We rather delay the introduction
to Chapter 4. Here we only note that the decomposition is done for two reasons. First, this may
increase ef�ciency, as observed by Schüller (2012), and second, the decomposition is sometimes
even necessary because the actual evaluation in Algorithm EvaluateExtendedPreGroundable can
only handle extended pre-groundable HEX-programs. Thus, if the input program is not extended
pre-groundable, then the framework must split it such that each unit becomes extended pre-
groundable. It was shown by Schüller (2012) that such a splitting exists for every strongly
domain-expansion safe program. In Chapter 4 we will develop more advanced algorithms which
can handle a larger class of programs directly. This gives the framework more freedom in the
decision whether units are split or not.

2.2 Con�ict-Driven Learning and Nonchronological Backtracking

In this section we describe the basic algorithm of con�ict-driven SAT solvers. Con�ict-driven

clause learning (CDCL) for SAT was �rst introduced by Mitchell (2005) and has turned out to be
very ef�cient for practical applications. Later, the approach has been adopted to con�ict-driven

25



2. PRELIMINARIES

ASP solving [Gebser et al., 2007a] and to disjunctive ASP solving [Drescher et al., 2008]. Algo-
rithms based on con�ict-driven techniques also �t into the framework for abstract ASP solving,
which formalize reasoning as a state transition system [Lierler, 2011]. That is, unit propagation,
learning and forgetting (see below) are described in terms of changes which are made to the
clause set and to the assignment.

We will use nogoods instead of classical clauses, following Drescher et al. (2008). The ap-
proach is therefore referred to as con�ict-driven nogood learning (CDNL).

De�nition 27 (Nogood). A nogood fL1; : : : ; Lng is a set of (signed) literals Li; 1 � i � n.

Note that every classical clause can be transformed into an equivalent nogood and vice versa
by negating all literals.

De�nition 28. An assignment A is a solution to a nogood � (resp. a set of nogoods �), if � 6� A

(resp. � 6� A for all � 2 �).
If for a nogood � (resp. a set of nogoods �) we have � � A (resp. � � A for some � 2 �),

we say that A violates nogood � (resp. set of nogoods �).

DPLL-style SAT solvers rely on an alternation of drawing deterministic consequences and
guessing the truth value of an atom towards a complete interpretation [Davis et al., 1962]. De-
terministic consequences are drawn by the basic operation of unit propagation, i.e., whenever
all but one signed literals of a nogood are true, the last one must be false. The solver stores an
integer decision level dl , written @dl as post�x to the signed literal. An atom which is set by
unit propagation using nogood � gets the highest decision level of all already assigned atoms in
�, whereas guessing increments the current decision level.

Most modern SAT solvers are con�ict-driven, i.e., they learn additional nogoods when the
current assignment violates a nogood. Practical systems also implement heuristics for removal of
learned nogoods, which is called forgetting and prevents the reasoner from running into memory
problems, while learning prevents the solver from running into the same con�ict again. The
learned nogood is determined by initially setting the con�ict nogood to the violated one. As
long as it contains multiple literals on the same decision level, it is resolved with the reason of
one of these literals, i.e., the nogood which implied it4. This strategy is referred to as �rst unique

implication point or �rst UIP [Marques-Silva and Sakallah, 1999].

Example 13. Consider the nogoods

fTa;Tbg; fTa;Tcg; fFa;Tx;Tyg; fFa;Tx;Fyg; fFa;Fx;Tyg; fFa;Fx;Fyg

and suppose the assignment is A = fFa@1;Tb@2;Tc@3;Tx@4g. Then the third nogood is
unit and implies Fy@4, which violates the fourth nogood fFa;Tx;Fyg. As it contains multiple
literals (Tx and Fy) which were set at decision level 4, it is resolved with the reason for setting
y to false, which is the nogood fFa;Tx;Tyg. This results in the nogood fFa;Txg, which
contains the single literal Tx set at decision level 4, and thus is the learned nogood.

4If one sees nogoods as conjunctions of literals which imply falsity, this amounts to a resolution of implicants
which is known as rule of consensus, cf. Brown (2003).
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In standard clause notation, the nogood set corresponds to

(:a _ :b) ^ (:a _ :c) ^ (a _ :x _ :y) ^ (a _ :x _ y) ^ (a _ x _ :y) ^ (a _ x _ y)

and the violated clause is (a _ :x _ y). It is resolved with (a _ :x _ :y) and results in the
learned clause (a _ :x). 2

State-of-the-art SAT and ASP solvers backtrack then to the second-highest decision level in
the learned nogood. In Example 13, this is decision level 1. All assignments after decision level
1 are undone (Tb@2, Tc@3, Tx@4). Only variable Fa@1 remains assigned. This makes the
new nogood fFa;Txg unit and derives Fx at decision level 1.

In contrast, the classical DPLL algorithm without learning would only undo the last decision
level 4 and try the alternative guess Fx@4, which would produce another related con�ict.

2.3 Con�ict-Driven ASP Solving

In this subsection we summarize con�ict-driven answer-set solving and disjunctive answer-set
solving as described by Gebser et al. (2012) and Drescher et al. (2008). The fundamental algo-
rithm, which will be used as foundation for our techniques developed in Chapter 3, is shown in
Algorithm DASP-CDNL. It corresponds to Algorithm Hex-CDNL in Chapter 3 without Parts (c)
and (d). To employ con�ict-driven techniques from SAT solving in ASP, programs are repre-
sented as sets of nogoods. For a ground ASP program let BA(�) =

�
fB(r)g j r 2 �

	
be the

set of all rule bodies of �, where each body is viewed as a fresh atom, which are later projected
from the interpretations.

We �rst de�ne the set


(C) =
�
fFCg [ ft‘ j ‘ 2 Cg

	
[

�
fTC; f‘g j ‘ 2 C

	

of nogoods to encode that a set C of default literals must be assigned T or F in terms of the
conjunction of its elements, where t not a = Fa, ta = Ta, f not a = Ta, and fa = Fa. That
is, the conjunction is true iff each literal is true.

Example 14. For the set C = fa; not bg, which represents the conjunction of a and not b, we
have 
(C) =

�
fFC;Ta;Fbg; fTC;Fag; fTC;Tbg

	
. 2

Clark’s completion �� of a program � over atoms A(�) [ BA(�) amounts then to the
following set of nogoods [Clark, 1977]:

�� =
[

r2�



�
B(r)

�
[

�
fTB(r)g [ fFa j a 2 H(r)g

	

It encodes that the body of a rule is true iff each literal is true, and if the body is true, at least one
head atom must also be true. Unless a program is in the class of tight programs [Fages, 1994]5,
Clark’s completion does not fully capture the semantics of a program as unfounded sets may

5Without going into detail, tightness is a syntactic condition hinging on positive atom dependencies in the pro-
gram and is de�ned using level mappings.
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occur, i.e., sets of atoms which only cyclically support each other, also called a loop. We will
formally introduce unfounded sets in a more general fashion in Section 3.2 and give an intuitive
explanation for now.

Example 15. Consider � = fa b; b ag. Then Clark’s completion

�� =
�
fFfbg;Tbg; fTfbg;Fbg; fTfbg;Fag; fFfag;Tag; fTfag;Fag; fTfag;Fbg

	

has the solution A = fTa;Tb;Tfag;Tfbgg, but the projection of A to signed literals over
atoms from A(�), A\fTa;Fa j a 2 A(�)g = fTa;Tbg, it is not an answer set of � because
a and b support each other only cyclically. 2

Avoidance of unfounded sets requires additional loop nogoods, but as there are exponentially
many, they are only introduced on-the-�y (see below).

It is common for disjunctive programs to introduce additional nogoods �sh(�) which regu-
late support of singletons. They are based on a transformation sh(�) of the programm, called
shifted program. This allows for a more ef�cient implementation of UnfoundedSet because the
procedure can safely ignore head-cycle free program components. However, as this is not rele-
vant for the understanding of the overall algorithm and concerns only the ordinary ASP solver
but not the work in this thesis, we abstractly use them as �sh(�); for an exhaustive description
we refer to Drescher et al. (2008).

With these concepts we are ready to describe the basic algorithm for answer set computation,
which is shown in Algorithm DASP-CDNL. The algorithm keeps a set ��[�sh(�) of static no-
goods (from Clark’s completion and from the shifted program), and a setr of dynamic nogoods
which are learned from con�icts and unfounded sets. During construction of the assignment A,
the algorithm stores for each atom a 2 A(�) [ BA(�) [ BA(sh(�)) a decision level dl . The
decision level is initially 0 and incremented for each choice. Deterministic consequences of a
set of assigned values have the same decision level as the highest decision level in this set.

The main loop iteratively derives deterministic consequences using Propagation in Part (a)
trying to complete the assignment. This includes both unit propagation and unfounded set prop-
agation. Unit propagation derives d if � n fdg � A for some nogood �, i.e. all but one literal
of a nogood are true, therefore the last one needs to be false. Unfounded set propagation detects
atoms which only cyclically support each other and falsi�es them. For instance, in Example 15,
unfounded set propagation would immediately set one of a or b to false, and unit propagation
sets subsequently also the other one to false.

Part (b) checks if there is a con�ict, i.e. a violated nogood � � A. If this is the case the
algorithm needs to backtrack. For this purpose, the call to Analysis computes a learned nogood �
and a backtrack decision level k. The learned nogood is added to the set of dynamic nogoods,
and assignments above decision level k are undone. Otherwise, Part (c) checks if the assignment
is complete. In this case, a �nal unfounded set check is necessary due to disjunctive heads. If the
candidate is founded, i.e., no unfounded set exists, then it is an answer set. Otherwise, a violated
loop nogood � from the set

��(U) =

8
<
:f�1; : : : ; �mg j (�1; : : : ; �m) 2 fTa j a 2 Ug �

Y

r2sup�(U)

satr(U)

9
=
;
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of all loop nogoods for an unfounded set U is selected, where

satr(U) =
�
FfB(r)g

	
[

�
Ta j a 2 H(r) n U

	

is the set of all signed literals which satisfy r independently of U and

sup�(U) = fr 2 � j H(r) \ U 6= ;; B(r) \ U = ;g

is the set of rules which may be used to derive one of U without depending on U . Intuitively, the
nogoods in ��(U) encode that it must never happen, that an atom in the unfounded set is true,
but each rule which supports this atom is already satis�ed independently of U (because then the
rule cannot be used to justify this atom being true). After adding such a nogood, con�ict analysis
and backtracking is carried out. If no more deterministic consequences can be derived and the
assignment is still incomplete, some truth value is guessed in Part (d) and the decision level is
incremented. The function Select implements a variable selection heuristics. In the simplest
case it chooses an arbitrary signed literal � over a yet unassigned variable, but state-of-the-art
heuristics are more sophisticated. E.g., Goldberg and Novikov (2007) prefer variables which are
involved in recent con�icts. We will explain parts of the algorithm in more detail whenever this
becomes necessary throughout this thesis.

Note that the algorithm uses two variants of unfounded set detection. One is implemented in
the procedure Propagation and runs a priori, i.e., possible unfounded sets are already detected
before they have become manifest in the assignment. This form of unfounded set check runs in
polynomial time but cannot detect all kinds of unfounded sets. In contrast, the unfounded set
check UnfoundedSet in Part (c) runs a posteriori, i.e., after the assignment has been completed
and possibly contains the unfounded set. This unfounded set detection is only necessary due to
head-cycles in disjunctive programs and is co-NP-complete itself. The procedure UnfoundedSet
may be implemented as a SAT search problem itself, as described by Drescher et al. (2008). We
will make use of a related but more general approach in Section 3.2.

2.4 Complexity

We assume familiarity with basic concepts of complexity theory, e.g., Turing machines, com-
plexity classes and reductions; for details we refer to Papadimitriou (1994). We denote by P and
NP the classes of decision problems (i.e., computational problems with yes/no answer) which
can be solved in polynomial time by deterministic and nondeterministic Turing machines, re-
spectively. For a complexity classC, class co-C contains problems whose complement language
is in C. The polynomial hierarchy (PH) is a hierarchy of complexity classes �P

k , �P
k , �P

k , de-

�ned by �P
0 = �P

0 = �P
0 = P, and for k � 1, we have �P

k = NP
�P

k�1 and �P
k = co-�P

k

and �P
k = P

�P
k�1 . By PO (NPO) we denote the class of problems which can be solved by a

deterministic (nondeterministic) Turing machine in polynomial time if equipped with an oracle

for complexity class O, i.e., problems in O can be solved in one step. In particular, �P
1 = NP

and �P
1 = co-NP, which will be the most relevant complexity classes throughout this thesis.

We further have PH =
S

k�0 �P
k . Classes PSPACE resp. NPSPACE contain the decision prob-

lems solvable by deterministic resp. nondeterministic Turing machines with polynomial space.
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Algorithm DASP-CDNL

Input: A ground ASP program �
Output: An answer set of �, or ? if none exists

A ; // assignment over A(�) [ BA(�) [ BA
�
sh(�)

�

r  ; // dynamic nogoods

dl  0 // decision level

while true do

(a) (A;r) Propagation(�;r;A)
(b) if � � A for some � 2 �� [�sh(�) [r then

if dl = 0 then return ?
(�; k) Analysis(�;�;r;A)
r  r[ f�g
A A n

�
� 2 A j k < dl(�)

	

dl  k

(c) else if AT [AF = A(�) [ BA(�) [ BA
�
sh(�)

�
then

U  UnfoundedSet(�;A)
if U 6= ; then

Let � 2 ��(U) such that � � A

if
�
� 2 � j 0 < dl(�)

	
= ; then return ?

(�; k) Analysis(�;�;r;A)
r  r[ f�g
A A n

�
� 2 A j k < dl(�)

	

dl  k

else

return A \
�
Ta;Fa j a 2 A(�)

	

(d) else

�  Select(�;r;A)
dl  dl + 1
A A [ f�g
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The complexity classes EXPTIME resp. NEXPTIME contain the decision problems solvable by
deterministic resp. nondeterministic Turing machines in exponential time. It is known that

P � NP � PH � PSPACE = NPSPACE � EXPTIME.

Since P ( EXPTIME, at least one of the inclusions must be strict, but it is widely believed that
all of them are strict, although not proven. It is also believed that the classes �P

k , �P
k for k � 0

form a true hierarchy of in�nitely many levels.
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Chapter 3
Propositional HEX-Program Solving

In this chapter we present genuine evaluation algorithms for ground HEX-programs. The idea
is related to con�ict-driven disjunctive ASP solving [Drescher et al., 2008], but strictly more
general as it integrates additional novel learning techniques to capture also HEX-programs with
external atoms. The term learning refers to the process of adding further nogoods to the nogood
set, which represents the program at hand, during exploration of the search space.

While additional nogoods are traditionally derived from con�ict situations in order to avoid
similar con�icts during further search, we add a second type of learning which captures the be-
havior of external sources, called external behavior learning (EBL). Whenever an external atom
is evaluated, the algorithm might learn from the respective call. If we have no further informa-
tion about the internals of a source, we may learn only very general input-output relationships,
but if we have more information, we can learn more effective nogoods. In general, we will as-
sociate a learning-function with each external source which tells the system which nogoods to
learn. This learning function may be derived automatically from known properties of external
sources (such as monotonicity or functionality), but can also be overridden by the user in order
to give hints to the system why some tuple is in the output or why it is not in the output of an
external source.

All programs in this chapter are assumed to be ground. The algorithms introduced in this
chapter are intended to be used in place of EvalGroundHexProgram in Algorithm Evaluate-
ExtendedPreGroundable in Chapter 2. In particular, we will introduce two Algorithms Gues-
sAndCheckHexEvaluation and WellfoundedHexEvaluation. The Algorithm GuessAndCheck-
HexEvaluation may be applied to any ground HEX-program. Intuitively, the algorithm guesses
the truth values of all ground external atoms in the program, employs an ordinary ASP solver
to generate model candidates, and veri�es then the guesses; but in contrast to the traditional
algorithm, it learns during this process in order to guide the algorithm. Instead of guessing,
Algorithm WellfoundedHexEvaluation performs a �xpoint iteration. This is usually faster, but
can be applied only to purely monotonic programs.
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

We start our discussion with the algorithm GuessAndCheckHexEvaluation. We abstractly
make use of a set of nogoods learned from the evaluation of some external predicate with input
list &g [y] wrt. assignment A. This set is speci�ed by a learning function, denoted �(&g [y];A).
Based on this concept we then introduce the evaluation algorithm for HEX-programs. At this
point we use the minimality checker as a black box. Minimality checking of candidate answer
sets is an important issue because unfounded sets may involve the semantics of external sources
and are thus tricky to detect in some cases. However, we separate the construction of candidate
answer sets from the minimality check to make the presentation simpler.

Section 3.1.2 will then provide de�nitions of particular nogoods that can be learned for vari-
ous types of external sources, i.e., �(�; �) is instantiated. The learning functions are automatically
derived from known properties of external sources, which are asserted by the user.

In Section 3.2 we introduce concrete algorithms for the �nal minimality check of candidate
answer sets. We show that there is a rather straightforward approach which explicitly searches
for models smaller than the current candidate. But since this method does not scale well in
practice, we then present an advanced algorithm based on unfounded sets. Our approach is re-
lated to those of Drescher et al. (2008) but strictly more general because it also respects external
sources. We further provide a syntactic decision criterion, which allows for skipping the whole
minimality check or restricting it to relevant program components in some practically relevant
cases.

Finally, in Section 3.3 we present the Algorithm WellfoundedHexEvaluation which is ap-
plicable to a fragment of HEX, called monotonic HEX-programs, and is more ef�cient in many
cases.

3.1 Guess and Check Algorithm for General Ground

HEX-Programs

We assume that we have an arbitrary ground HEX-program � and want to compute all its an-
swer sets AS(�). Schindlauer (2006) and Schüller (2012) proposed algorithms which deter-
mine the answer sets of a HEX-program � using a transformation to ordinary ASP programs
as follows. Each external atom a = &g [y](x) in a rule r 2 � is replaced by an ordinary
ground (external) replacement atom â = e&g[y](x) (resulting in a rule r̂), and an additional
rule e&g[y](x)_ne&g[y](x) is added to the program. The answer sets of the resulting guessing

program �̂ are determined by an ordinary ASP solver and projected to non-replacement atoms.
However, the resulting assignments are not necessarily models of �, as the values of &g [y]
and e&g[y](x) relative to an interpretation may not coincide. Each answer set of �̂ is thus a can-

didate compatible set (or model candidate) which must be checked against the external sources.
If no discrepancy is found, the model candidate is a compatible set of �. More precisely,

De�nition 29 (Guessing Program). For a ground HEX-program �, let �̂ be the guessing program

where for each external atom &g [y](x)

� &g [y](x) in a rule r 2 � is replaced by an ordinary ground (external) replacement atom
e&g[y](x) (resulting in a rule r̂); and
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� a rule e&g[y](x) _ ne&g[y](x) is added to the program.

For an external atom &g [y](x), the rule e&g[y](x) _ ne&g[y](x)  is called ground external

atom guessing rule. In Chapter 4 we will also make use of non-ground external atom guessing

rules. Since in this chapter we always mean ground external atom guessing rules, we drop the
pre�x ground.

De�nition 30 (Compatible Set). A compatible set of a program � is an assignment Â

(i) which is an answer set [Gelfond and Lifschitz, 1991] of the guessing program �̂1; and

(ii) f&g(Â; y; x) = 1 if Te&g[y](x) 2 Â and f&g(Â; y; x) = 0 otherwise for all external atoms
&g [y](x) in �, i.e. the guessed values coincide with the values of the oracle functions.

Note that for each external atom a in a program �, a compatible set Â must assign exactly
one of ea and nea to true.

Proposition 3.1. Let Â be a compatible set of a program �. Then for each external atom a in

� we have
��fTea;Tneag \ Â

�� = 1.

Proof. Because of the guessing rules in �̂, at least one of ea and nea must be true for each exter-
nal atom a in �, otherwise the according guessing rule would be unsatis�ed, which contradicts
the assumption that Â is an answer set of �̂.

However, if both ea and nea would be true, then
�
Â n fTneag

�
[ fFneag would also be a

model of �̂ because the guessing rule corresponding to a would still be satis�ed and nea does
not occur elsewhere in �̂. But then by minimality of answer sets, Â cannot be an answer set of
�̂, which contradicts the assumption that it is a compatible set of �.

Proposition 3.1 allows us to slightly abuse notation by de�ning the truth value of only one
of ea or nea explicitly whenever we write compatible sets. We assume that the other atom has
implicitly the opposite truth value.

For a compatible set Â, let A be its projection to non-replacement atoms.

Example 16. Let � be the program

dom(a); dom(b)

p(a)  dom(a);&g [p](a)

p(b)  dom(b);&g [p](b)

where &g implements the following mapping from ext(A; p) to ext(A;&g [p]):

; 7! fbg; fag 7! fag; fbg 7! ;; fa; bg 7! fa; bg

1An assignment Â is an answer set of program �̂, if it is the minimal model of �̂Â.
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Then the guessing program �̂ is given by the following set of rules:

dom(a); dom(b)

p(a)  dom(a); e&g[p](a)

p(b)  dom(b); e&g[p](b)

e&g[p](a) _ ne&g[p](a)  

e&g[p](b) _ ne&g[p](b)  

The interpretation

Â = fTdom(a);Tdom(b);Tp(a);Fp(b);Te&g[p](a);Fne&g[p](a);Fe&g[p](b);Tne&g[p](b)g

is a compatible set of �̂. 2

The search for compatible sets will sometimes be called Main Search and is based on
con�ict-driven nogood learning (CDNL) as recapitulated in Section 2.3.

A compatible set is not necessarily an FLP answer set of a program, but the set of all com-
patible sets includes all FLP answer sets. More formally, an answer set A of a program �
corresponds to the compatible set

�(�;A) = A [
�
Tea;Fnea j a is an external atom in �;A j= a

	

[
�
Fea;Tnea j a is an external atom in �;A 6j= a

	
:

We will prove this formally below.
Identifying the answer sets under all compatible sets requires an additional minimality check.

That is, for each compatible set Â one needs to check whether A is a subset-minimal model of
f�A. Because the minimality is checked with respect to the FLP-reduct, this check will also be
called FLP check. However, we postpone the discussion of this check to later subsections but
�rst describe an algorithm which computes compatible sets of HEX-programs. The algorithm
is based on the traditional guess and check algorithm as shown above, but learns additional
nogoods from external source evaluations. The overall approach is visualized in Figure 3.1.

3.1.1 Learning-Based Evaluation Algorithm

It was observed that the naive guess and check approach suffers scalability problems. Although
the introduction of the model-building framework [Schüller, 2012] eased these problems, appli-
cability of the formalism to real-world applications is still moderate. The reasons for this can be
found in the blind guessing of all possible truth assignments to the external atoms. This leads
to an exponential number of candidate compatible sets, which have to be checked against the
external sources. In practice, many of them fail the check because of the same reason, i.e., there
might be repetitive computation. Therefore, it is a good idea to learn from evaluations of exter-
nal atoms such that assignments which violate the known behavior of external sources are not
generated again. The learned knowledge is represented by additional nogoods which are added
to the reasoner. Naively, one can simply observe the input-output relationships of external atoms
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�
Create Guess-
ing Program

Main Search (CDNL)

Check Unveri�ed
External Atom Guesses

FLP CheckAnswer
Sets

External Atom
Evaluation

�̂

Model Candidates

Compatible Sets

Figure 3.1: Visualization of the Overall Algorithm

during evaluation, but more advanced learning techniques are possible if side information about
properties of the external sources are known. As we will see, it is even possible to allow the user
for writing customized rules for nogood learning, which can exploit speci�c domain-dependent
knowledge for each external source.

In this section we abstractly use the set of nogoods �(&g [y];A) which are learned during the
evaluation of &g with input list y given the assignment A. Clearly, the learned information must
not be arbitrary but related to the actual behavior of the external source. The crucial requirement
is called correctness, which intuitively holds if the nogood can be added without eliminating
compatible sets.

De�nition 31 (Correct Nogoods). A nogood � is correct wrt. a program �, if all compatible
sets of � are solutions to �.

The overall algorithm consists of two parts. First, Algorithm Hex-CDNL computes model
candidates; it is essentially an ordinary ASP solver (cf. Algorithm DASP-CDNL), but includes
calls to external sources in order to learn additional nogoods. The external calls in this algo-
rithm are not required for correctness of the algorithm, but may in�uence performance dra-
matically as discussed in Chapter 5. Second, Algorithm GuessAndCheckHexEvaluation uses
Algorithm Hex-CDNL to produce model candidates and checks each of them against the exter-
nal sources (followed by a minimality check). Here, the external calls are crucial for correctness
of the algorithm.

For computing a model candidate, Algorithm Hex-CDNL basically employs the con�ict-
driven approach presented by Drescher et al. (2008) as summarized in Section 2, where the main
difference is the addition of Parts (c) and (d).
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

Algorithm GuessAndCheckHexEvaluation

Input: A HEX-program �
Output: All answer sets of �

�̂ � with all external atoms &g [y](x) replaced by e&g[y](x)
Add guessing rules for all external atoms to �̂
r  ; // set of dynamic nogoods

S  ; // set of all compatible sets

(a) while Ĉ 6= ? do

Ĉ ?
inconsistent  false

(b) while Ĉ = ? and inconsistent = false do

(c) Â Hex-CDNL(�; �̂;r)

if Â = ? then

inconsistent  true

else

compatible  true

(d) for all external atoms with input list &g [y] in � do

Evaluate &g [y] wrt. Â

(e) r  r[ �(&g [y]; Â)

Let Â&g[y](x) = 1, Te&g[y](x) 2 Â

if 9x : f&g(Â; y; x) 6= Â&g[y](x) then

Add Â to r
compatible  false

if compatible then Ĉ Â

if inconsistent = false then

// Ĉ is a compatible set of �

r  r[ fĈg

if FLPCheck(�; Ĉ;r) then

S  S [ fĈg

return
�
fTa 2 Ĉ j a 2 A(�)g j Ĉ 2 S
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Algorithm Hex-CDNL

Input: A program �, its guessing program �̂, a set of nogoods rof�
Output: An answer set of �̂ (candidate for a compatible set of �) which is a solution to

all nogoods d 2 r, or ? if none exists

Â ; // assignment over A(�̂) [ BA(�̂) [ BA
�
sh(�̂)

�

dl  0 // decision level

while true do

(Â;r) Propagation(�̂;r; Â)

(a) if � � Â for some � 2 ��̂ [�
sh(�̂) [r then

if dl = 0 then return ?

(�; k) Analysis(�; �̂;r; Â)
r  r[ f�g

Â Â n
�
� 2 Â j k < dl(�)

	

dl  k

(b) else if ÂT [ ÂF = A(�̂) [ BA(�̂) [ BA
�
sh(�̂)

�
then

U  UnfoundedSet(�̂; Â)
if U 6= ; then

Let � 2 ��̂(U) such that � � Â

if
�
� 2 � j 0 < dl(�)

	
= ; then return ?

(�; k) Analysis(�; �̂;r; Â)
r  r[ f�g

Â Â n
�
� 2 Â j k < dl(�)

	

dl  k

else

return Â \
�
Ta;Fa j a 2 A(�̂)

	

(c) else if Heuristics decides to evaluate &g [y] then

Evaluate &g [y] wrt. Â

r  r[ �(&g [y]; Â)

(d) else if Heuristics decides to do a UFS check then

Let �0 � � s.t. Â \
�
Ta;Fa j a 2 A(�̂0)

	
is a compatible set of �0

FLPCheck(�0;A;r)

(e) else

�  Select(�̂;r; Â)
dl  dl + 1

Â Â [ f�g
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Our extension in Part (c) is driven by the following idea: whenever unit and unfounded
set propagation does not derive any further atoms and the assignment is still incomplete, the
algorithm possibly evaluates external atoms with already known input instead of guesing truth
values. This might lead to the addition of new nogoods, which can in turn cause the propagation
procedure to derive further atoms. Guessing of truth values only becomes necessary if no de-
terministic conclusions can be drawn and the evaluation of external atoms does not yield further
nogoods, or evaluation of external atoms is denied by the heuristics. Our default heuristics evalu-
ates an external atom &g [y] whenever the input y is completely known. Different heuristics may
evaluate external atoms even if some of their input atoms are not yet assigned, i.e., they evalu-
ate external atoms wrt. partial assignments. This allows for adding nogoods in Part (c) which
imply the truth values of other, yet unassigned input atoms. This technique comes from the
�eld of SMT and is known as theory propagation [Nieuwenhuis and Oliveras, 2005]. However,
while our algorithm (and our implementation) fully supports theory propagation, the develop-
ment of concrete evaluation heuristics and learning functions which make use of this technique
is strongly application speci�c. As this is out of the scope of this thesis we will use the default
heuristics for all our benchmarks in Chapter 5.

Our second extension concerns Part (d), which may perform unfounded set checks already
during the search for compatible sets. Here we simply assume that this check does not eliminate
answer sets of �, i.e., FLPCheck(�0;A;r) does not add any nogoods torwhich are violated
by some answer set of �. Unfounded set checking will be described in Section 3.2, where we
also discuss how to do such checks wrt. partial assignments. For the minimality check, the
interpretation must be complete for a subprogram and the guesses of all external atoms in this
subprogram must be correct.

For a more formal treatment, let EI (�) be the set of all external predicates with input list that
occur in �, and let D(�) be the set of all signed literals over atoms in A(�) [ A(�̂) [ BA(�̂).

Then, a learning function for � is a mapping �: EI (�) � 2D(�) 7! 22D(�)
. We extend our

notion of correct nogoods to correct learning functions �(�; �), as follows:

De�nition 32. A learning function � is correct for program �, if every d 2 �(&g [y];A) is
correct for �, for all &g [y] in EI (�) and A 2 2D(�).

Restricting to learning functions that are correct for �, the following results hold.

Proposition 3.2. If for input �, �̂ and r, Algorithm Hex-CDNL returns (i) an interpretation

Â, then Â is an answer set of �̂ and a solution to r; (ii) ?, then � has no compatible set that

is a solution to r and such that its restriction to positive atoms is an answer set of �.

Proof. (i) The proof mainly follows Drescher et al. (2008). In our algorithm we have potentially
more nogoods, which can never produce further answer sets but only eliminate them. Hence,
each produced interpretation Â is an answer set of �̂.

(ii) By completeness of the algorithm of Drescher et al. (2008) we only need to justify that
adding nogoods in Parts (c) and (d) does not eliminate compatible sets whose restriction to
positive atoms are answer sets of �. In Part (c), adding the nogoods �(&g [y]; Â) after evaluation
of &g [y] does not eliminate compatible sets of �. For this purpose we need to show that when
one of the added nogoods is violated, the interpretation is incompatible with the external sources
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anyway. But this follows from the correctness of �(�; �) and (for derived nogoods) from the
completeness of the algorithm of Drescher et al. (2008). In Part (d), it holds by our assumption
about Algorithm FLPCheck that all answer sets of � are solutions to all added nogoods.

The basic idea of Algorithm GuessAndCheckHexEvaluation is to compute all compatible
sets of � by the loop at (a) and checking subset-minimality wrt. the FLP-reduct afterwards.
While minimality checking is explained in detail in Section 3.2, we �rst focus on the computa-
tion of compatible sets and assume that there is a proper implementation of Algorithm FLPCheck
which identi�es the FLP answer sets among all compatible sets of the program � at hand and
adds only nogoods to r such that all answer sets of � are solutions to them. However, it is
essential that the compatible sets restricted to ordinary atoms include all FLP answer sets, i.e.,
we do not miss answer sets. This is formalized as follows.

Proposition 3.3. For every program �, each answer set A can be extended to a compatible set

Â = �(�;A).

Proof. Let A be an answer set of � and let

Â = �(�;A) = A [
�
Tea;Fnea j a is an external atom in �;A j= a

	

[
�
Fea;Tnea j a is an external atom in �;A 6j= a

	
:

We show that Â is a compatible set of �.
Since A is an answer set of �, it is also a model. Since the truth values of all replacement

atoms in Â coincide with the oracle function of all corresponding external atoms in � wrt. A by
de�nition of Â, it satis�es all rules in r̂ 2 �̂ which result from a rule in r 2 � by substituting
external atoms by replacement atoms. Moreover, for each external atom &g [y](x) in �, exactly
one of e&g[y](x) or ne&g[y](x) is true in Â, thus it also satis�es the external atom guessing rules

in �̂ and is thus a model of �̂.
It remains to show that Â is also a subset-minimal model of f�̂Â. Suppose Â is not a

subset-minimal model of f�̂Â. We show that then A is also not a subset-minimal model of
f�A, i.e., it is not an answer set of �. If Â is not a subset-minimal model of f�̂Â, then there
is a smaller model Â0. Note that the truth values of the replacement atoms in Â and Â0 are
the same because Â contains exactly one of Te&g[y](x) or Tne&g[y](x) for each external atom

&g [y](x) in �. We show that the restriction A0 of Â0 to ordinary atoms is a model of f�A.

Because Â0 is a model of f�̂Â, it is a model of every rule r̂ 2 f�̂Â. But then either Th 2 Â0

for some h 2 H(r̂) or fb 2 Â0 for some b 2 B(r̂). However, in the latter case b cannot be a
(positive or default-negated) external atom replacement, because this would imply fb 2 Â (Â
and Â0 coincide on replacement atoms) and contradict the assumption that r̂ is in the reduct.

Observe that f�̂Â contains all rules from f�A, but with replacement atoms in place of
external atoms. The corresponding rule r 2 f�A of r̂ contains the same ordinary atoms in the
rule head and body as r̂. As A0 is the restriction of Â0 to ordinary atoms, we have A0 j= r.
Thus, A0 is a model of f�A, which contradicts the assumption that A is an answer set of �.
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For computing compatible sets, the loop at (b) uses Algorithm Hex-CDNL to compute an-
swer sets of �̂ in (c), i.e., candidate compatible sets of �, and subsequently checks compatibility
for each external atom in (d). Here the external calls are crucial for correctness. However, dif-
ferent from the translation approach, the external source evaluation serves not only for compati-
bility checking, but also for generating additional dynamic nogoods �(&g [y]; Â) in Part (e). We
have the following result, provided that Algorithm FLPCheck identi�es the answer sets among
the compatible sets of � and adds only nogoods to r s.t. all answer sets of � are solutions to
them.

Theorem 1 (Soundness and Completeness of Algorithm GuessAndCheckHexEvaluation). Al-

gorithm GuessAndCheckHexEvaluation computes all answer sets of �.

Proof. We �rst show that the loop at (b) yields after termination a compatible set Ĉ of � that is
a solution of r at the stage of leaving the loop iff such a compatible set does exist, and yields
Ĉ = ? iff no such compatible set exists.

Suppose that Ĉ 6= ? after the loop. Then Ĉ was assigned Â 6= ?, which was returned by
Hex-CDNL(�, �̂, r). From Proposition 3.2 (i) it follows that Ĉ is an answer set of �̂ and a
solution to r. Thus (i) of De�nition 30 holds. As compatible = true , the for loop guarantees
the compatibility with the external sources in (ii) of De�nition 30: if some source output on
input from Ĉ is not compatible with the guess, Ĉ is rejected (and added as nogood). Otherwise
Ĉ coincides with the behavior of the external sources, i.e., it satis�es (ii) of De�nition 30 and
no further nogoods are added. Thus, Ĉ is a compatible set of � wrt.r at the time of leaving the
loop.

Otherwise, after the loop Ĉ = ?. Then inconsistent = true , which means that the call
Hex-CDNL(�, �̂, r) returned ?. By Proposition 3.2 (ii) there is no answer set of �̂ which is
a solution to r. As only correct nogoods were added to r, there exists also no answer set of �̂
which is a solution to setr. Thus the loop at (b) operates as desired.

If Algorithm FLPCheck adds no nogoods to r, then the loop at (a) then enumerates one
by one all compatible sets of � and terminates: the update of r with Ĉ prevents recomputing
Ĉ, and thus the number of compatible sets decreases. If we assume that Algorithm FLPCheck
correctly identi�es the FLP answer sets among all compatible sets of �, as we will formally show
in Theorem 3 after introducing an algorithm which implements Algorithm FLPCheck, we have
shown that the overall algorithm correctly outputs all answer sets of �. If Algorithm FLPCheck
adds nogoods to r, then by assumption all answer sets of � are solutions to them. Thus, if
these nogoods eliminate compatible sets of �, then they are not relevant because they cannot be
answer sets anyway, thus we do not lose relevant interpretations.

Example 17. Let &empty be an external atom with one (nonmonotonic) predicate input p, such
that its output is c0 if the extension of p is empty and c1 otherwise. Consider the program �
consisting of the following rules:

p(c0); dom(c0); dom(c1); dom(c2)

p(X) dom(X);&empty [p](X)

42



3.1. Guess and Check Algorithm for General Ground HEX-Programs

Algorithm GuessAndCheckHexEvaluation transforms � into the guessing program �̂:

p(c0); dom(c0); dom(c1); dom(c2)

p(X) dom(X); e&empty[p](X)

e&empty[p](X) _ ne&empty[p](X) dom(X)

The traditional evaluation strategy without learning will then produce 23 model candidates in Al-
gorithm Hex-CDNL, which are subsequently checked in Algorithm GuessAndCheckHexEvalu-
ation. For instance, the guessed truth values of external atom replacements fTne&empty[p](c0);
Te&empty[p](c1);Tne&empty[p](c2)g lead to the candidate compatible set fTne&empty[p](c0);
Te&empty[p](c1); Tne&empty[p](c2); Tp(c1)g (neglecting false atoms and facts). This is also the
only model candidate which passes the compatibility check: p(c0) is always true, and therefore
e&empty[p](c1) must also be true due to de�nition of the external atom. This allows for deriving
p(c1) by the �rst rule of the program. All other atoms are false due to minimality of answer sets
(note that minimality wrt. the ordinary ASP program is already guaranteed by Hex-CDNL). 2

3.1.2 Concrete Learning Functions for External Behavior Learning

We now discuss nogoods generated for external behavior learning (EBL) in detail. EBL is trig-
gered by external source evaluations instead of con�icts. The basic idea is to integrate knowledge
about the external source behavior into the program to guide the search. The program evalua-
tion then starts with an empty set of learned nogoods and the preprocessor generates a guessing
rule for each ground external atom, as discussed above, but further nogoods are added during
the evaluation as more information about external sources becomes available. This is in con-
trast to traditional evaluation, where external atoms are assigned arbitrary truth values which are
checked only after the assignment was completed.

We will �rst show how to construct useful learned nogoods after evaluating external atoms, if
we have no further information about the internals of external sources, which we call uninformed

learning. In this case we can only learn simple input/output relationships. Subsequently we
consider informed learning, where additional information about properties of external sources
is available. This allows for using more elaborated learning strategies.

Uninformed Learning

We �rst assume that we do not have information about the internals and consider external sources
as black boxes. Hence, we can just apply very general rules for learning: whenever an external
predicate with input list &g [y] is evaluated wrt. an assignment A, we learn that the input Ajypred
for ypred = p1; : : : ; pn to the external atom &g produces the output ext(&g [y];A), where ypred

is the sublist of y containing all predicate input parameters. This can be formalized as the
following set of nogoods.

De�nition 33. The learning function for a general external predicate with input list &g [y] in
program � wrt. assignment A is de�ned as follows:

�g(&g [y];A) =
n
Ajypred [ fFe&g[y](x)g j x 2 ext(&g [y];A)

o
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Guess Learned Nogood
�

Te&empty[p](c0);Tne&empty[p](c1);
Tne&empty[p](c2)

� �
Tp(c0);Fp(c1);Fp(c2);Fe&empty[p](c1)

	

�
Te&empty[p](c0);Tne&empty[p](c1);
Te&empty[p](c2);Tp(c2)

� �
Tp(c0);Fp(c1);Tp(c2);Fe&empty[p](c1)

	

�
Te&empty[p](c0);Te&empty[p](c1);
Tne&empty[p](c2);Tp(c1)

� �
Tp(c0);Tp(c1);Fp(c2);Fe&empty[p](c1)

	

�
Te&empty[p](c0);Te&empty[p](c1);
Te&empty[p](c2);Tp(c1);Tp(c2)

� �
Tp(c0);Tp(c1);Tp(c2);Fe&empty[p](c1)

	

Table 3.1: Learned Nogoods of Example 18

In the simplest case, an external atom has no input and the learned nogoods are unary, i.e.,
of the form fFe&g[](x)g. Thus, it is learned that certain tuples are in the output of the external
source, i.e. they must not be false. For external sources with input predicates, the added rules
encode the relationship between the output tuples and the provided input.

Example 18 (ctd.). Recall � from Example 17. Without learning, the algorithms produce 23

model candidates and check them subsequently. It turns out that EBL allows for falsi�cation of
some of the guesses without actually evaluating the external atoms. Suppose the reasoner �rst
tries the guesses containing literal Te&empty[p](c0). While they are checked against the external
sources, the described learning function allows for adding the externally learned nogoods shown
in Table 3.1. Observe that the combination Tp(c0);Fp(c1);Fp(c2) will be reconstructed also for
different choices of the guessing variables. As p(c0) is a fact, it is true independent of the choice
between e&empty[p](c0) and ne&empty[p](c0). E.g., the guess Fe&empty[p](c0); Fe&empty[p](c1);
Fe&empty[p](c2) leads to the same extension of p. This allows for reusing the nogood, which is
immediately invalidated without evaluating the external atoms. Different guesses with the same
input to an external source allow for reusing learned nogoods, at the latest when the candidate is
complete, but before the external source is called for validation. However, very often learning al-
lows for discarding guesses even earlier. For instance, we can derive

�
Tp(c0);Fe&empty[p](c1)

	

from the nogoods above in 3 resolution steps. Such derived nogoods will be learned after run-
ning into a couple of con�icts. We can derive Te&empty[p](c1) from p(c0) even before the truth
value of Fe&empty[p](c1) is set, i.e., external learning guides the search while the traditional
evaluation algorithm considers the behavior of external sources only during postprocessing. 2

Lemma 3.1. Let � be a program which contains an external atom of form &g [y](�). For all

assignments A, the nogoods �g(&g [y];A) in De�nition 33 are correct wrt. �.

Proof. The added nogood for an output tuple x 2 ext(&g [y];A) contains Ajypred and the
negated replacement atom Fe&g[y](x). If the nogood is violated, then the guess was wrong as
the replacement atom is guessed false but the tuple (x) is in the output. Hence, the interpretation
is not compatible and cannot be a compatible set anyway.
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Informed Learning

The learned nogoods of the above form can become quite large as they include the whole input
to the external source. However, known properties of external sources can be exploited in order
to learn smaller and more general nogoods. For example, if one of the input parameters of an
external source is monotonic, it is not necessary to include information about false atoms in its
extension, as the output will not shrink given larger input.

Properties for informed learning can be stated either on the level of predicates or on the level
of individual external atoms (see Chapter 5). The former means that all usages of the predicate
have the property. To understand this, consider predicate &union which takes two predicate
inputs p and q and computes the set of all elements which are in at least one of the extensions of
p or q. It will be always monotonic in both parameters, independently of its usage in a program.
While an external source may lack a property in general, it may hold for particular usages.

Example 19. Consider an external atom &db[r1; : : : ; rn; query ](y) as an interface to an SQL
query processor, which evaluates a given query (given as string) over tables (relations) provided
by predicates r1; : : : ; rn. In general, the atom will be nonmonotonic, but for special queries
(e.g., simple selection of all tuples), it will be monotonic. 2

Next, we discuss three particular cases of informed learning which customize the default
learning function for generic external sources by exploiting properties of external sources, and
�nally present examples where the learning of user-de�ned nogoods might be useful.

Monotonic and Antimonotonic Atoms. A predicate parameter pi of an external atom &g is
called monotonic, if f&g(A; y; x) = 1 implies f&g(A0; y; x) = 1 for all A0 with A0jpi � Ajpi
and A0jp0 = Ajp0 for all other predicate parameters p0 6= pi. It is called antimonotonic, if
f&g(A; y; x) = 0 implies f&g(A0; y; x) = 0 for all A0 with A0jTpi � AjTpi and A0jp0 = Ajp0

for all other predicate parameters p0 6= pi. It is called nonmonotonic, if it is neither monotonic
nor antimonotonic. The learned nogoods �(&g [y];A) after evaluating &g [y] are not required
to include Fpi(t1; : : : ; t‘) for monotonic pi 2 y or Tpi(t1; : : : ; t‘) for antimonotonic pi 2 y.
That is, for an external predicate with input list &g [y] with monotonic predicate input param-
eters pm � y, antimonotonic predicate input parameters am � y and nonmonotonic predicate
parameters pn = y n (pm [ pa), the set of learned nogoods can be restricted as follows.

De�nition 34. The learning function for an external predicate &g with input list y in program �
wrt. assignment A, such that &g is monotonic in predicate input parameters pm � y and anti-
monotonic in predicate input parameters pa � y, is de�ned as follows:

�m(&g [y];A) =

�
fTa 2 Ajpm

g [ fFa 2 Ajpa
g [

Ajpn
[ fFe&g[y](x)g

��� x 2 ext(&g [y];A)

�

Example 20. Consider the external atom &di� [p; q](X) which computes the set of all ele-
ments X that are in the extension of p, but not in the extension of q. Suppose it is evaluated
wrt. A, s.t. ext(p;A) = fTp(a);Tp(b);Fp(c)g and ext(q;A) = fFq(a);Tq(b);Fq(c)g. Then
the output of the atom is ext(&di� [p; q];A) = fag and the (only) naively learned nogood is
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�
Tp(a);Tp(b);Fp(c);Fq(a);Tq(b);Fq(c);Fe&di� [p;q](a)

	
. However, due to monotonicity of

&di� [p; q] in p and antimonotonicity in q, it is not necessary to include Fp(c) or Tq(b) in the no-
good; the output of the external source will not shrink even if p(c) becomes true or q(b) becomes
false. Therefore the (more general) nogood

�
Tp(a);Tp(b);Fq(a);Fq(c);Fe&di� [p;q](a)

	
suf-

�ces to correctly describe the input-output behavior. 2

Lemma 3.2. Let � be a program which contains an external atom of form &g [y](�). For all

assignments A, the nogoods �m(&g [y];A) in De�nition 34 are correct wrt. �.

Proof. We must show that negative input literals over monotonic parameters and positive input
literals over antimonotonic parameters can be removed from the learned nogoods without affect-
ing correctness. For uninformed learning, we argued that for output tuple x 2 ext(&g [y];A),
the replacement atom e&g[y](x) must not be guessed false if the input to &g [y](x) is Ajypred .
However, as the output of &g grows (shrinks) monotonically with the extension of a monotonic
(antimonotonic) parameter p 2 pm (p 2 pa), the same applies for any A0 s.t. p has a larger
(smaller) extension wrt. A0, i.e., fTa 2 A0jpg � fTa 2 Ajpg (fTa 2 A0jpg � fTa 2 Ajpg)
and consequently fFa 2 A0jpg � fFa 2 Ajpg (fFa 2 A0jpg � fFa 2 Ajpg). Hence, the neg-
ative literals over monotonic parameters and the positive literals over antimonotonic parameters
are not relevant wrt. output tuple x and can be removed from the nogood.

Functional Atoms. When evaluating &g [y] with some &g that is a function wrt. assign-
ment A, only one output tuple can be contained in ext(&g [y];A), formally: for all assign-
ments A and all x, if f&g(A; y; x) = 1 then f&g(A; y; x0) = 0 for all x0 6= x. Therefore the
following nogoods may be added right from the beginning.

De�nition 35. The learning function for a functional external predicate &g with input list y in
program � wrt. assignment A is de�ned as follows:

�f (&g [y];A) =
�
fTe&g[y](x);Te&g[y](x

0)g j x 6= x0
	

However, our implementation of this learning rule does not generate all pairs of output tuples
beforehand. Instead, it memorizes all generated output tuples xi, 1 � i � k during evaluation of
external sources. Whenever a new output tuple x0 is added, it also adds all nogoods which force
previously derived output tuples xi to be false.

Example 21. Consider the rules

out(X) &concat [A; x](X); strings(A); dom(X)
strings(X) dom(X); not out(X)

where &concat [X;Y ](C) is true iffdef string C is the concatenation of strings X and Y , and
observe that the external atom is involved in a cycle through negation. As the extension of
the domain dom can be large, many ground instances of the external atom are generated. The
traditional evaluation algorithm guesses their truth values in a completely uninformed fashion.
E.g., e&concat(x; x; xx) (the replacement atom of &concat [A; x](X) with A = x and X = xx,
where dom(x) and dom(xx) are supposed to be facts) is in each guess set randomly to true
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or to false, independent of previous guesses. In contrast, with learning from external sources,
the algorithm learns after the �rst evaluation that e&concat(x; x; xx) must be true. Knowing that
&concat is functional, all atoms e&concat(x; x;O) with O 6= xx must be false. 2

Lemma 3.3. Let � be a program which contains an external atom of form &g [y](�) s.t. &g is

functional. For all assignments A, the nogoods �f (&g [y];A) in De�nition 35 are correct wrt. �.

Proof. We must show that the nogoods
�
fTe&g[y](x);Te&g[y](x

0)g j x 6= x0
	

are correct. Due
to functionality, the external source cannot return more than one output tuple for the same input.
Therefore no such guess can be part of a compatible set. Hence, the nogoods do not eliminate
possible compatible sets.

Linear Atoms. In some cases the evaluation of an external atom in fact answers multiple
independent queries simultanously. Splitting such queries into simpler ones might increase the
effects of learning. To this end, we call an external predicate &g with input list y linear wrt. a
partitioning A1; � � � ;An of an assignment A if ext(A;&g [y]) =

Sn
i=1 ext(Ai;&g [y]).

Example 22. External predicate with input list &di� [p; q] is linear in partitionings A1; � � � ;An

s.t. for all c, Tp(c);Tq(c) 2 A implies Tp(c);Tq(c) 2 Ai for some i.
For example, the assignment A = fTp(a);Tp(b);Fp(c);Tq(a);Fq(b);Tq(c)g can be

partitioned into A1 = fTp(a);Tq(a)g;A2 = fTp(b);Fq(b)g;A3 = fFp(c);Tq(c)g. Ob-
viously ext(A;&di� [p; q]) = fbg =

S3
i=1 ext(Ai;&di� [p; q]). In contrast, the partitioning

A0
1 = fTp(a)g;A0

2 = fTp(b);Tq(a);Fq(b);Fp(c);Tq(c)g is illegal (i.e., &di� [p; q] is not
linear wrt. it) because

S2
i=1 ext(A0

i;&di� [p; q]) = fag [ fbg 6= fbg. 2

Linearity often allows for learning more general nogoods. In the above example, the sug-
gested partitioning allows for learning the nogood fTp(b);Fq(b);Fe&di� [p;q](b)g, while with-
out exploiting linearity (but using monotonicity and antimonotonicity) the less general nogood�
Tp(a);Tp(b);Fq(b);Fe&di� [p;q](b)

	
is learned.

De�nition 36. The learning function for an external predicate &g with input list y in program
�, wrt. assignment A is de�ned as

�l(&g [y];A) =

n[

i=1

�m(&g [y];Ai);

where A1; � � � ;An is a partitioning of A s.t. &g [y] is linear wrt. it.

Lemma 3.4. For all assignments A, the nogoods �l(&g [y];A) in De�nition 36 are correct

wrt. �.

Proof. By assumption A1; � � � ;An is a partitioning of A s.t. &g [y] is linear wrt. it. Hence,
ext(A;&g [y]) =

Sn
i=1 ext(Ai;&g [y]). The correctness of �l(&g [y];A) follows then from

correctness of �m(&g [y];Ai) for all 1 � i � n (Lemma 3.2).
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Two special cases of linearity are linearity on the level of atoms and on the level of tuples. We
say that &g [y] is linear on the level of atoms if it is linear wrt. partitioning

�
flg j l 2 A

	
for all

assignments A, i.e., the assignment can be fully decomposed into assignments containing only
one signed literal each. We say that &g [y] is linear on the level of tuples if ypred = p1; : : : ; pn
are predicate input parameters, the arities of all pi, 1 � i � n are the same, and it is linear
wrt. partitioning

�
fTpi(x);Fpi(x) 2 A j 1 � i � ng j x 2 S

	
with S = fx j Tpi(x) 2

A or Fpi(x) 2 A for some 1 � i � ng for all assignments A, i.e., the assignment can be
decomposed into multiple assignments containing all input atoms over the same argument tuple.

Example 23. A useful learning function for &di� [p; q](X) is the following: whenever an el-
ement is in p but not in q, it belongs to the output of the external atom. This function works
elementwise and produces nogoods with three literals each, which models linearity on the level
of tuples. In contrast, the naive learning function from the Section 3.1.2 includes the complete
extensions of p and q in the nogoods, which are less general. 2

Apart from linearity on the level of atoms or on the level of tuples, customized types of lin-
earity may be used for speci�c external sources to decompose the query into smaller subqueries.
In all cases the validity of the decomposition must be asserted by showing that the source is
indeed linear in the respective sense.

User-De�ned Learning. In many cases the developer of an external atom has more informa-
tion about the internal behavior. This allows for de�ning more effective nogoods. It is therefore
bene�cial to give the user the possibility to customize learning functions. Currently, user-de�ned
functions may either specify the learned nogoods directly, or by ASP-style rules (the details are
discussed in Chapter 5).

Example 24. Consider the program

r(X;Y ) _ nr(X;Y ) d(X); d(Y )

r(V;W ) &tc[r](V;W ); d(V ); d(W )

It guesses, for some set of nodes d(X) of an undirected graph, all subgraphs of the complete
graph. Suppose &tc[r] checks if the edge selection r(X;Y ) is transitively closed; if this is the
case, the output is empty, otherwise the set of missing transitive edges is returned. For instance,
if the extension of r is f(a; b); (b; c)g, then the output of &tc will be f(a; c)g, as this edge is
missing in order to make the graph transitively closed. The second rule eliminates all subgraphs
which are not transitively closed. Note that &tc is nonmonotonic. The guessing program is

r(X;Y ) _ nr(X;Y ) d(X); d(Y )

r(V;W ) e&tc[r](V;W ); d(V ); d(W )

e&tc[r](V;W ) _ ne&tc[r](V;W ) d(V ); d(W )

The naive implementation guesses for n nodes all 2
n(n�1)

2 subgraphs and checks the transitive
closure for each of them, which is costly. Consider the domain D = fa; b; c; d; e; fg. After
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checking one selection with r(a; b); r(b; c);nr(a; c), we know that no selection containing these
three atoms will be transitively closed. This can be formalized as a user-de�ned learning func-
tion. Suppose we have just checked our �rst guess r(a; b); r(b; c), and nr(x; y) for all other
(x; y) 2 D � D. Compared to the nogood learned by the general learning function, the no-
good

�
Tr(a; b);Tr(b; c);Fr(a; c);Fe&tc[r](a; c)

	
is a more general description of the con�ict

reason, containing only relevant edges. It is immediately violated and future guesses containing
fTr(a; b);Tr(b; c);Fr(a; c)g are avoided. 2

For user-de�ned learning, correctness of the learning function must be asserted.

Using Negative Information. Up to now we have learned positive facts about the output of
external sources, i.e., the learned nogoods in �(&g [y];A) encode under which conditions the
atoms in ext(A;&g [y]) become true.

However, there is no reason to restrict learning to positive examples. Signed literals of
kind Te&g[y](x) can be used to encode that a certain ground external atom must not be true, i.e.
tuple (x) is not in the output of the external source. Since we could in principle learn arbitrary
many negative facts, an important question is which tuples x to consider. We call this the scope

S of tuples. Clearly, it is unnecessary to consider tuples which do not occur in the program. Our
current implementation considers all tuples which were previously wrongly guessed to true.

De�nition 37. The negative learning function for an external predicate &g with input list y in
program � wrt. assignment A, such that &g is monotonic in predicate input parameters pm � y

and antimonotonic in predicate input parameters pa � y, and a �nite set of tuples S (scope) is
de�ned as follows:

�:(&g [y];A) =

�
fFa 2 Ajpm

g [ fTa 2 Ajpa
g [

Ajpn
[ fTe&g[y](x)g

��� x 2 S; x 62 ext(&g [y];A)

�

Lemma 3.5. For all assignments A, the nogoods �:(&g [y];A) in De�nition 37 are correct

wrt. �.

Proof. We �rst focus on external sources without monotonic or antimonotonic input parameters.
Then a nogood encodes that e&g[y](x) must not be true if (x) 62 ext(&g [y];A) and the external
atom input is as in A. Such nogoods cannot eliminate compatible sets, because if e&g[y](x)
would be true, the assignment would not pass the compatibility check anyway.

We now show that positive input literals over monotonic parameters and negative input lit-
erals over antimonotonic parameters can be removed from the learned nogoods without affect-
ing correctness. Above, we argued that for output tuple x 62 ext(&g [y];A), the replacement
atom e&g[y](x) must not be guessed true if the input to &g [y](x) is Ajypred . However, as the
output of &g shrinks with growing (shrinking) extension of a antimonotonic (monotonic) pa-
rameter p 2 pm (p 2 pa), the same applies for any A0 in which the extension of p is larger
(smaller), i.e., fTa 2 A0jpg � fTa 2 Ajpg (fTa 2 A0jpg � fTa 2 Ajpg) and consequently
fFa 2 A0jpg � fFa 2 Ajpg (fFa 2 A0jpg � fFa 2 Ajpg). Hence, the negative literals over
antimonotonic parameters and the positive literals over monotonic parameters are not relevant
wrt. non-output tuple x and can be removed from the nogood.
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3.2 Minimality Check

We now turn to the last statement of Algorithm GuessAndCheckHexEvaluation, which is the
minimality check, due to the use of the FLP-reduct subsequently also called the FLP check.
This check identi�es assignments A extracted from compatible sets Â of a program � that are
also answer sets of �, i.e., subset-minimal models of f�A. It appears that in many practical
applications most assignments extracted from compatible sets Â pass the FLP check. More-
over, this check is computationally costly: in a naive realization all models of f�A must be
enumerated, along with calls to the external sources to ensure compatibility. Even worse, as one
needs to search for a smaller model and not just for a smaller compatible set, f�A usually has
even more models then the original program. The explicit FLP check (explicit minimality check)

corresponds to the search for compatible sets of the following program:

Check(�;A) = f�̂Â [
�
 a j a 2 A(�);Ta 62 Â

	
[

�
a _ a0  : j Ta 2 Â

	

[
�
 not smaller

	
[

�
smaller  not a j a 2 A(�);Ta 2 Â

	

It consists of the reduct f�̂Â and rules that restrict the search to proper sub-interpretations of
Â, where smaller is a new atom. Moreover, as one actually needs to search for models and not
just compatible sets, rules of the form a_a0  (where a0 is a new atom for each Ta 2 Â) make
sure that atoms can be arbitrarily true without having a justifying rule in �.

Proposition 3.4. Let A be an interpretation extracted from a compatible set Â of a program �.

Program Check(�;A) has an answer set A0 such that f&g(A0; y; x) = 1 iff Te&g[y](x) 2 A0 for

all external atoms &g [y](x) in �, if and only if A is not an answer set of �.

Proof. ()) Let A0 be an answer set of program Check(�;A) such that f&g(A0; y; x) = 1 iff
Te&g[y](x) 2 A0 for all external atoms &g [y](x) in �.

Since Â is a compatible set of �, f&g(A; y; x) = 1 iff Te&g[y](x) 2 Â for all external

atoms &g [y](x) in �. Thus, f�̂Â is the same as f�A with replacement atoms in place of
external atoms, and with additional guessing rules for replacement atoms. Since A0 is a model

of Check(�;A) it is also a model of f�̂Â. Let A00 = fTa 2 A0 j a 2 A(�)g [ fFa 2 A0 j
a 2 A(�)g. Since f&g(A0; y; x) = f&g(A00; y; x) = 1 iff Te&g[y](x) 2 A0 for all external atoms

&g [y](x) in � by assumption, A00 is a model of f�A.
Since A0 is an answer set of Check(�;A), and  a 2 Check(�;A) for all a 2 A(�)

with Ta 62 Â (and thus Ta 62 A), we have fTa 2 A00 j a 2 A(�)g � A. Finally, due to
f not smallerg [ fsmaller  not a j a 2 A(�);Ta 2 Âg 2 Check(�;A), there is at least
one a 2 A(�) s.t. Ta 2 Â (and thus also Ta 2 A), but Fa 2 A0 (and thus also Fa 2 A00).
Therefore fTa 2 A00 j a 2 A(�)g ( A is a model of �, and thus A is not an answer set of �.

(() If A is not an answer set of �, then there is a model A00 of f�A which is smaller in the
positive part, i.e., fTa 2 A00g ( fTa 2 Ag.

Let

A0 = �(�;A00) [ fTa0 j Ta 2 Â;Fa 2 A00g [ fFa0 j Ta 2 Â;Ta 2 A00g [ fTsmallerg.
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We show that A0 is an answer set of Check(�;A) such that f&g(A0; y; x) = 1 iff Te&g[y](x) 2
A0 for all external atoms &g [y](x) in �.

Since A has been extracted from a compatible set Â of �, f�̂Â is the same as f�A with
replacement atoms in place of external atoms, and with additional guessing rules for replace-
ment atoms. Since A00 is a model of f�A, the truth values of all replacement atoms in A0

coincide with the oracle functions by de�nition of �(�;A00), and exactly one of ea or nea for
each external atom a in � is set to true (and thus the guessing rules for replacement atoms

are satis�ed), A0 is a model of f�̂Â. Since fTa 2 A00g ( fTa 2 Ag and thus also
fTa 2 A0 j a 2 A(�)g ( fTa 2 Âg, no constraint of type  a in Check(�;A) with
a 2 A(�);Ta 62 Â is violated. Moreover, for each a with Ta 2 Â we have either Ta 2 A0

or Ta0 2 A0, thus the corresponding rule a _ a0  in Check(�;A) is satis�ed. Finally, since
Tsmaller 2 A0, the rules fsmaller  not a j a 2 A(�);Ta 2 Âg are satis�ed and the
constraint not smaller does not �re. Thus A0 is a model of Check(�;A).

We show now that A0 is also a subset-minimal model of fCheck(�;A)A
0
. Observe that

fCheck(�;A)A
0

= f�̂Â [
�
a _ a0  : j Ta 2 Â

	

[
�

smaller  not a j a 2 A(�);Ta 2 Â
	
:

However, if an atom a 2 A(fCheck(�;A)A
0
) with Ta 2 A0 is changed to false, then the inter-

pretation is not a model anymore because the corresponding rule a _ a0  remains unsatis�ed
since only one of a and a0 is true in A0 by de�nition, thus no interpretation which is smaller
in the positive part than A0 can be a model of fCheck(�;A)A

0
, thus A0 is an answer set of

Check(�;A).
Finally, f&g(A0; y; x) = 1 iff Te&g[y](x) 2 A0 for all external atoms &g [y](x) in � by

de�nition of �(�;A00).

Example 25 (ctd.). Consider the program � = fp &id [q](); q  pg Then the corresponding
guessing program is �̂ = fp e&id [q](); q  p; e&id [q]() _ ne&id [q]() g and yields the com-

patible sets Â1 = fFp;Fq;Fe&id [p]g and Â2 =
�
Tp;Tq;Te&id [p]

	
. While A1 = fFp;Fqg

is also a �-minimal model of f�A1 = ;, A2 = fTp;Tqg is not a �-minimal model of
f�A2 = �. Indeed, the program

Check(�;A2) = �̂ [
�
p _ p0  ; q _ q0  ; e&id [q]() _ e

0
&id [q]() 

	

[
�
 not smaller

	

[
�

smaller  not p; smaller  not q
	

[
�

smaller  not e&id [q]()
	

has the answer set A0 = fFp;Tp0;Fq;Tq0;Fe&id [q]();Tne&id [q]();Te
0
&id [q]();Tsmallerg and

f&id (A0; q; �) = 0 (where � denotes the empty output list) and Fe&id [q]() 2 A0. 2

Because of the guessing rules a _ a0  for all a with Ta 2 Â, the rules in the reduct f�̂Â,
except for the guesses on replacement atoms, can be rewritten to constraints. This might be more
more ef�cient.

51



3. PROPOSITIONAL HEX-PROGRAM SOLVING

We de�ne

CheckOpt(�;A) = �f�̂Â [
�
 a j a 2 A(�);Ta 62 Â

	
[

�
a _ a0  : j Ta 2 Â

	

[
�
 not smaller

	
[

�
smaller  not a j a 2 A(�);Ta 2 Â

	
,

where �f�̂Â denotes the FLP-reduct of �̂ wrt. interpretation Â with each rule (cf. De�nition 6)
except guessing rules for replacement atoms being rewritten to

 not a1; : : : ; not ak; b1; : : : ; bm; not bm+1; : : : ; not bn.

Proposition 3.5. Let A be an interpretation extracted from a compatible set Â of a program �.

Program CheckOpt(�;A) has an answer set A0 such that f&g(A0; y; x) = 1 iff Te&g[y](x) 2 A0

for all external atoms &g [y](x) in �, if and only if A is not an answer set of �.

Proof. The proof is very similar to the one of Proposition 3.4.
()) Let A0 be an answer set of program CheckOpt(�;A) such that f&g(A0; y; x) = 1 iff

Te&g[y](x) 2 A0 for all external atoms &g [y](x) in �.

Since Â is a compatible set of �, f&g(A; y; x) = 1 iff Te&g[y](x) 2 Â for all external

atoms &g [y](x) in �. Thus, �f�̂Â is the same as �f�A with replacement atoms in place of
external atoms, and with additional guessing rules for replacement atoms. Since A0 is a model

of CheckOpt(�;A) it is also a model of �f�̂Â. Let A00 = fTa 2 A0 j a 2 A(�)g [ fFa 2
A0 j a 2 A(�)g. Since f&g(A0; y; x) = 1 iff Te&g[y](x) 2 A0 for all external atoms &g [y](x)

in � by assumption, A00 is a model of �f�A. But then it is also a model of f�A.
Since A0 is an answer set of CheckOpt(�;A), and  a 2 CheckOpt(�;A) for all a 2

A(�) with Ta 62 Â (and thus Ta 62 A), we have fTa 2 A00 j a 2 A(�)g � A. Finally, due
to f not smallerg [ fsmaller  not a j a 2 A(�);Ta 2 Âg 2 CheckOpt(�;A), there
is at least one a 2 A(�) s.t. Ta 2 Â (and thus also Ta 2 A), but Fa 2 A0 (and thus also
Fa 2 A00). Therefore fTa 2 A00 j a 2 A(�)g ( A is a model of �, and thus A is not an
answer set of �.

(() If A is not an answer set of �, then there is a model A00 of f�A which is smaller in the
positive part, i.e., fTa 2 A00g ( fTa 2 Ag.

Let

A0 = �(�;A00) [ fTa0 j Ta 2 Â;Fa 2 A00g [ fFa0 j Ta 2 Â;Ta 2 A00g [ fTsmallerg.

We show that A0 is an answer set of program CheckOpt(�;A) such that f&g(A0; y; x) = 1 iff
Te&g[y](x) 2 A0 for all external atoms &g [y](x) in �.

Since A has been extracted from a compatible set Â of �, f�̂Â is the same as f�A with
replacement atoms in place of external atoms, and with additional guessing rules for replacement
atoms. Since A00 is a model of f�A, and the truth values of all replacement atoms in A0

coincide with the oracle functions by de�nition of �(�;A00), and exactly one of ea or nea for
each external atom a in � is set to true (and thus the guessing rules for replacement atoms are

satis�ed), A0 is a model of f�̂Â. But then it is also a model of �f�̂Â. Since fTa 2 A00g (
fTa 2 Ag and thus also fTa 2 A0 j a 2 A(�)g ( fTa 2 A j a 2 A(�)g, no constraint
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of type  a in CheckOpt(�;A) with a 2 A(�);Ta 62 Â is violated. Moreover, for each a
with Ta 2 Â we have either Ta 2 A0 or Ta0 2 A0, thus the corresponding rule a _ a0  
in CheckOpt(�;A) is satis�ed. Finally, since Tsmaller 2 A0, the rules fsmaller  not a j
a 2 A(�);Ta 2 Âg are satis�ed and the constraint not smaller does not �re. Thus A0 is a
model of CheckOpt(�;A).

We show now that A0 is also a subset-minimal model of �fCheck(�;A)A
0
. Observe that

�fCheckOpt(�;A)A
0

= �f�̂Â [
�
a _ a0  : j Ta 2 Â

	

[
�

smaller  not a j a 2 A(�);Ta 2 Â
	
:

However, if an atom a 2 A( �fCheckOpt(�;A)A
0
) with Ta 2 A0 is changed to false, then

the interpretation is not a model anymore because the corresponding rule a _ a0  remains
unsatis�ed since only one a and a0 is true in A0 by de�nition, thus no interpretation which is
smaller in the positive part than A0 can be a model of fOptCheck(�;A)A

0
, thus A0 is an answer

set of OptCheck(�;A).
Finally, f&g(A0; y; x) = 1 iff Te&g[y](x) 2 A0 for all external atoms &g [y](x) in � by

de�nition of �(�;A00).

Our benchmarks in Chapter 5 use this optimized version of the explicit check.
Next, we present a novel FLP check algorithm based on unfounded sets (UFS). Instead of

explicitly searching for smaller models of the reduct, we check if the candidate answer set is
unfounded-free (see below), which implies that it is an answer set [Faber, 2005]. The unfounded
set-based check can be realized as a post-check (i.e., it is carried out only after the interpretation
has been completed), or also wrt. partial assignments (thus interleaving it with the main search
for compatible sets). We realized both, but our benchmarks show that unfounded set checking
wrt. partial assignments is counterproductive, roughly because the unfounded set check is too
expensive and should be done rarely. We use unfounded sets for logic programs as introduced
by Faber (2005) for programs with arbitrary aggregates.

De�nition 38 (Unfounded Set). Given a program � and an assignment A, let U be any set of
ordinary ground atoms appearing in �. Then, U is an unfounded set for � wrt. A if, for each
rule r having some atoms from U in the head, at least one of the following conditions holds,
where A

:
[ ::U =

�
A n fTa j a 2 Ug

�
[ fFa j a 2 Ug:

(i) some literal of B(r) is false wrt. A; or

(ii) some literal of B(r) is false wrt. A
:
[ ::U ; or

(iii) some atom of H(r) n U is true wrt. A.

Intuitively, an unfounded set U is a set of atoms for which no rule can be used to justify that
any of the atoms in U is true, because all rules are already satis�ed independently of U .

Answer sets can then be characterized in terms of unfounded sets (corresponds to Corollary 3
by Faber (2005)).
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De�nition 39 (Unfounded-Free Interpretations). An interpretation A of a program � is un-

founded-free (in �) if AT \ U = ;, for all unfounded sets U of � wrt. A.

Theorem 2. A model A of a program � is an answer set iff it is unfounded-free (in �).

Proof. See Appendix B, page 219.

Example 26. Consider the program � = fp  &id [p]()g and A = fTpg. Then U = fpg is
an unfounded set since U intersects with the head of p  &id [p]() and A

:
[ ::U 6j= &id [p]().

Therefore A is not unfounded-free and not an answer set. 2

3.2.1 Basic Encoding of the Unfounded Set Search

We realize the search for unfounded sets using nogoods, i.e., for a given � and an assignment A
we construct a set of nogoods, such that solutions to this set correspond to (potential) unfounded
sets. We then use a SAT solver to search for such unfounded sets.

Our encoding of the unfounded set detection is related to the one of Drescher et al. (2008)
but respects external atoms. It uses a set ��;A = �N

�;A[�O
�;A, of nogoods where �N

�;A contains

all necessary constraints and �O
�;A are optional optimization nogoods that prune irrelevant parts

of the search space. The idea is that the set of ordinary atoms which are true in a solution to
��;A represents a (potential) unfounded setU of � wrt. A, while the external replacement atoms
encode the truth values of the corresponding external atoms wrt. A

:
[ ::U .

Let B+
o (r) be the subset of B+(r) consisting of all ordinary atoms except external replace-

ment atoms, and Be(r) the subset of B(r) consisting of all external replacement literals. Then,
the nogood set ��;A is built over atoms A(��;A) = A(�̂) [ fhr; lr j r 2 �g, where hr, and
lr are new additional atoms for every rule r in �. The necessary part �N

�;A =
�
fFa j Ta 2

Ag
	
[

� S
r2� �R

r;A

�
consists of a nogood fFa j Ta 2 Ag, eliminating all unfounded sets that

do not intersect with true atoms in A, as well as nogoods �R
r;A for every r 2 �. The latter

consist of a head criterion �H
r;A and a conditional part �C

r;A for each rule, de�ned by:

� �R
r;A = �H

r;A [ �C
r;A, where

� �H
r;A =

�
fThrg [ fFh j h 2 H(r)g

	
[

�
fFhr;Thg j h 2 H(r)

	

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set; and

� �C
r;A =

8
>>>><
>>>>:

�
fThrg [

fFa j a 2 B+
o (r);A j= ag [ fta j a 2 Be(r̂)g [

fTh j h 2 H(r);A j= hg
	

if A j= B(r);

; otherwise

encodes that Condition (i), (ii) or (iii) of De�nition 38 must hold if hr is true.

More speci�cally, for an unfounded set U and a rule r withH(r)\U 6= ; (hr is true) it must
not happen that A j= B(r) (Condition (i) fails), no a 2 B+

o (r) with A j= a is in the unfounded
set and all a 2 Be(r̂) are true wrt. A

:
[ ::U (Condition (ii) fails), and all h 2 H(r) with A j= h

are in the unfounded set (Condition (iii) fails).
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Example 27. Consider � = fr1 : p  &id [p]()g and the compatible set Â= fTp;Te&id [p]g.

The nogood set �N
�;A is

�
fThr1 ;Fpg; fFhr1 ;Tpg; fThr1 ; Te&id [p]();Tpg

	
. 2

Towards computing unfounded sets, observe that they can be extended to solutions to the set
of nogoods ��;A over A(��;A). Conversely, the solutions to ��;A include speci�c extensions
of all unfounded sets, characterized by induced assignments: That is, by assigning true to all
atoms in U , to all hr such that H(r) intersects with U , and to all external replacement atoms
e&g[y](x) such that &g [y](x) is true wrt. A

:
[ ::U , and assigning false to all other atoms in

A(��;A). More formally, we de�ne:

De�nition 40 (Induced Assignment of an Unfounded Set wrt. ��;A). Let U be an unfounded
set of a program � wrt. assignment A. The assignment induced by U wrt. ��;A, denoted
I�(U;��;A;�;A), is

I�(U;��;A;�;A) = I0
�(U;�;A) [

�
Fa j a 2 A(��;A);Ta 62 I0

�(U;�;A)
	

, where

I0
�(U;�;A) =

�
Ta j a 2 U

	
[

�
Thr j r 2 �; H(r) \ U 6= ;

	
[�

Te&g[y](x) j &g [y](x) 2 EA(�);A
:
[ ::U j= &g [y](x)

	
:

For the next result we also require that the optimization part �O
�;A is conservative in the

sense that, for every unfounded set U of � wrt. A, it holds that I�(U;��;A;�;A) is a solution
to �O

�;A as well (which is shown for the different optimizations considered subsequently). Then,
the solutions to ��;A include all assignments induced by unfounded sets of � wrt. A, but not
every solution corresponds to such an induced assignment. Intuitively, this is because it does not
necessarily re�ect the semantics of external sources.

Proposition 3.6. Let U be an unfounded set of a program � wrt. assignment A such that AT \
U 6= ;. Then I�(U;��;A;�;A) is a solution to ��;A.

Proof. We prove this by contraposition and show that if I�(U;��;A;�;A) is not a solution to
��;A, then U cannot be an unfounded set.

First observe that the nogoods in �H
�;A demand Thr to be true for a rule r 2 � if and

only if some head atom h 2 H(r) of this rule is in U . As the conditions in these nogoods are
mutually exclusive and therefore consistent, and the truth value of hr in I�(U;��;A;�;A) is
de�ned exactly to this criterion, �C

r;A must be involved in a contradiction. Moreover, the nogood

fFa j Ta 2 Ag 2 �N
�;A eliminates I�(U;��;A;�;A) only if U does not intersect with the

positive atoms in A. This is no problem because we are only interested in such unfounded sets.
Therefore, if I�(U;��;A;�;A) is not a solution to ��;A, then for some rule r 2 � the no-

good in �C
r;A must be violated. That is, we know the following: Thr 2 I�(U;��;A;�;A) (and

therefore H(r) \ U 6= ;), Fa 2 I�(U;��;A;�;A) for all a 2 B+
o (r), ta 2 I�(U;��;A;�;A)

for all a 2 Be(r̂), and Th 2 I�(U;��;A;�;A) for all h 2 H(r) with A j= h. Moreover, we
have �C

r;A 6= ;. We now show that this implies that none of the conditions of De�nition 38 holds
for r wrt. U and A, which contradicts the assumption that U is an unfounded set.

Condition (i) does not hold for r because A j= B(r) (otherwise �C
r;A = ;).

Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be
some b 2 B(r) s.t. A

:
[ ::U 6j= b. Because �C

r;A 6= ;, we know that A j= b. We make a case
distinction on the type of b:
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� If b is a positive non-replacement atom, then Fb 2 I�(U;��;A;�;A) and therefore b 62
U . Consequently A

:
[ ::U j= b. Contradiction.

� If b is a negative non-replacement atom, then A j= b implies A
:
[ ::U j= b. Contradic-

tion.
� If b is a positive or default-negated replacement atom, then tb 2 I�(U;��;A;�;A). But

this implies, by de�nition of I�(U;��;A;�;A), that A
:
[ ::U j= b. Contradiction.

Condition (iii) does not hold for r because Th 2 I�(U;��;A;�;A) and thus, by de�nition
of I�(U;��;A;�;A), h 2 U for all h 2 H(r) with A j= h. Thus A 6j= a for all a 2 H(r) n U .

The next property allows us to �nd the unfounded sets of � wrt. A among all solutions to
��;A by using a post-check on the external atoms.

Proposition 3.7. Let S be a solution to ��;A such that

(a) Te&g[y](x) 2 S and A 6j= &g [y](x) implies A
:
[ ::U j= &g [y](x); and

(b) Fe&g[y](x) 2 S and A j= &g [y](x) implies A
:
[ ::U 6j= &g [y](x),

where U = fa j a 2 A(�);Ta 2 Sg. Then U is an unfounded set of � wrt. A.

Proof. Suppose U is not an unfounded set. Then there is an r 2 � s.t. H(r) \ U 6= ; and none
of the conditions in De�nition 38 is satis�ed. We show now that S cannot be a solution to ��;A.

Because Condition (i) does not hold, there is a nogood of form

N = fThrg [ fFa j a 2 B
+
o (r);A j= ag [ fta j a 2 Be(r̂)g [ fTh j h 2 H(r);A j= hg

in ��;A.
We now show that S contains all signed literals of N , i.e., the nogood is violated by S.
Because of H(r) \ U 6= ;, Thr 2 S (otherwise a nogood in �H

r;A is violated).
As U is not an unfounded set, Condition (ii) in De�nition 38 does not hold. Consider all

a 2 B+
o (r) s.t. A j= a. Then a 62 U , otherwise A

:
[ ::U 6j= a and we have a contradiction with

the assumption that Condition (ii) is unsatis�ed. But then Fa 2 S.
Now consider all &g [y](x) 2 EA(r). Then A

:
[ ::U j= &g [y](x) (as Condition (ii) is

violated). If A 6j= &g [y](x), then Condition (i) would be satis�ed, hence A j= &g [y](x). But
then Te&g[y](x) 2 S, otherwise A

:
[ ::U 6j= &g [y](x) by Condition (b) of this proposition.

Next consider all not &g [y](x) with &g [y](x) 2 EA(r). Then A
:
[ ::U 6j= &g [y](x) (as

Condition (ii) is violated). If A j= &g [y](x), then Condition (i) would be satis�ed, hence
A 6j= &g [y](x). But then Fe&g[y](x) 2 S, otherwise A

:
[ ::U j= &g [y](x) by Condition (a) of

this proposition. Therefore, we have ta 2 S for all a 2 Be(r̂).
Finally, because Condition (iii) in De�nition 38 does not hold, h 2 U and therefore also

Th 2 S for all h 2 H(r) with A j= a.
This concludes the proof that S cannot be a solution to ��;A satisfying (a) and (b), if U is

not an unfounded set.
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Informally, the proposition states that true non-replacement atoms in S which also appear
in � form an unfounded set, provided that truth of the external replacement atoms e&g[y](x) in

S coincides with the truth of the corresponding &g [y](x) wrt. A
:
[ ::U (as in De�nition 40).

However, this check is just required if the truth value of e&g[y](x) in S and of &g [y](x) in A

differ. This gives rise to an important optimization for the implementation: external atoms,
whose (known) truth value of &g [y](x) wrt. A matches the truth value of e&g[y](x) in S, do not
need to be post-checked.

We must further show that for an unfounded set U of a program � wrt. an interpretation,
the induced assignment ful�lls the conditions of Proposition 3.7, i.e., no unfounded sets are lost
during the post-check.

Proposition 3.8. Let U be an unfounded set of a program � wrt. assignment A such that AT \
U 6= ;. Then I�(U;��;A;�;A) ful�lls Conditions (a) and (b) of Proposition 3.7.

Proof. Let S = I�(U;��;A;�;A). If for an external atom &g [y](x) in � we have Te&g[y](x) 2

S, then by de�nition of I�(U;��;A;�;A) we have A
:
[ ::U j= &g [y](x) (satisfying (a)). If for

an external atom &g [y](x) in � we have Fe&g[y](x) 2 S, then by de�nition of I�(U;��;A;�;A)

we have A
:
[ ::U 6j= &g [y](x) (satisfying (b)).

Corollary 3.1. If ��;A has no solution which ful�lls the conditions of Proposition 3.7, then

U \AT = ; for every unfounded set U of �.

Proof. If there would be a UFSU of � wrt. A which intersects with AT, then by Proposition 3.6
I�(U;��;A;�;A) would be a solution to ��;A, and by Proposition 3.8 it would ful�ll the
conditions of Proposition 3.7.

Example 28 (ctd.). Reconsider program � = fr1 : p  &id [p]()g from Examples 26 and 27
and the compatible set Â= fTp;Te&id [p]g. The unfounded set search is encoded by the no-
good set ��;A =

�
fThr1 ;Fpg; fFhr1 ;Tpg; fThr1 ;Te&id [p]();Tpg

	
and has some solutions

S�fThr1 ;Tp;Fe&id [p]()g, which correspond to the unfounded set U = fpg. Here, Fe&id [p]()

represents that A
:
[ ::U 6j= &id [p](). 2

Note that due to the premises in Conditions (a) and (b) of Proposition 3.7, the post-check is
faster if it holds for many external atoms &g [y](x) in � that A j= &g [y](x) implies Te&g[y](x) 2
S. This can be exploited during the construction of S as follows: if it is not absolutely necessary
to set the truth value of e&g[y](x) differently, then carry over the value from &g [y](x) wrt. A.
Speci�cally, this is successful if e&g[y](x) does not occur in ��;A.

3.2.2 Uniform Encoding of the Unfounded Set Search

The encoding ��;A presented above has the disadvantage that it depends on the current assign-
ment A. Therefore it needs to be generated separately for every unfounded set check if the
assignment changed (which is very likely). As this causes signi�cant overhead, we present now
an advanced encoding which is reusable for any assignment. For this we introduce some addi-
tional variables which represent the truth values of the atoms in the current assignment. Before
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an unfounded set check, the current assignment is injected by setting the values of these vari-
ables to �xed values, which can be done using assumptions as supported by modern SAT solvers
such as CLASP [CLASP Website, 2014]. Changing assumptions is much easier than changing the
encoding, which leads to an additional speedup in some cases, especially for programs which
need many unfounded set checks. Moreover, this has the advantage that the solver instance for
the unfounded set check can keep running over the whole lifetime of the HEX solver; in contrast
to the creation of a separate instance for each unfounded set check, this preserves also learned
nogoods.

Our advanced encoding uses a set 
� of nogoods. As before, the idea is that the set of non-
replacement atoms of a solution to 
� represents a (potential) unfounded set U of � wrt. some
assignment A, while the external replacement atoms encode the truth values of the correspond-
ing external atoms wrt.A

:
[ ::U . The basic idea of the encoding is similar to the encoding ��;A.

However, unlike ��;A, the structure of the nogoods in 
� do not depend on the current inter-
pretation A, but A is merely a parameter, which is injected by setting dedicated atoms in the
encoding to �xed values. This allows for reusing the same problem encoding for all unfounded
set checks also wrt. different assignments. However, as the encoding 
� is conceptually more
complex than ��;A, the initialization is computationally (slightly) more costly, hence the ad-
vantages of our new encoding become visible for instances with many compatible sets and thus
many unfounded set checks, while it might be counterproductive for very small instances. The
development of a heuristics for dynamically choosing between the UFS search encodings is up
to future work.

The nogood set 
� is built over atoms

A(
�) = A(�̂) [
�
hr; lr j r 2 �

	
[

�
aA j a 2 A(�̂)

	
[�

a
A

:
[::U

; aA^U ; aA_U j a 2 A(�)
	

,

where we have the following fresh atoms which do not occur in �̂:

� hr and lr for every rule r in �

� aA and for every ordinary atom a 2 A(�̂) (i.e. ordinary atoms in � and external replace-
ment atoms)

� a
A

:
[::U

; aA^U ; aA_U for every ordinary atom a 2 A(�)

The auxiliary atoms aA, a
A

:
[::U

, aA^U , a
A_U are used to make the encoding reuable for any

assignment A. Only during the unfounded set check with respect to a certain assignment, we
will temporarily add assumptions to the solver which force certain truth values of the atoms aA
for all a 2 A(�̂) depending on the current assignment A.

To this end, a set of assumptionsA is a consistent set of signed literals. An interpretationA is
a solution of a set of nogoods � wrt. a set of assumptionsA if � 6� A for all � 2 � andA � A.
That is, assumptions �x the truth value of some atoms. Modern ASP and SAT solvers support
assumptions natively, which can be easily undone without a complete reset of the reasoner and
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recreating the whole problem instance. This is an essential feature for ef�ciently implementing
our improved encoding.

Intuitively, aA represents the truth value of a in A, a
A

:
[::U

represents the truth value of a in

A
:
[ ::U (where U is the currently constructed unfounded set), aA^U represents that a is true

in A and is contained in U , and a
A_U represents that a is false in A or it is contained in U . Our

encoding 
� is then as follows:

� 
� = 
N
� [ 
O

� with

� 
N
� = fFa j a 2 A(�)g [

S
a2A(�) 
D

a [
S

r2�

�

H
r [ 
C

r

�

as the necessary part, where

� fFa j a 2 A(�)g
encodes that we search for a nonempty unfounded set;

� 
D
a =

8
><
>:

�
fFaA^U ;TaA;Tag; fTaA^U ;FaAg; fTaA^U ;Fag

	
[�

fFa
A_U ;FaAg; fFaA_U ;Tag; fTaA_U ;TaA;Fag

	
[�

fTa
A

:
[::U

;FaAg; fTaA
:
[::U

;Tag; fFa
A

:
[::U

;TaA;Fag
	

encodes that aA^U is true iff aA and a are both true, a
A_U is true iff aA is false or a is

true, and a
A

:
[::U

is true iff aA is true and a is false;

� 
H
r =

�
fThrg [ fFh j h 2 H(r)g

	
[

�
fFhr;Thg j h 2 H(r)

	

encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set;

� 
C
r =

8
>>>><
>>>>:

�
fThrg [

fTaA j a 2 B
+(r̂)g [ fFaA j a 2 B

�(r̂)g [ (i)

fFaA^U j a 2 B
+
o (r)g [ fta j a 2 Be(r̂)g [ (ii)

fTh
A_U j h 2 H(r)g

	
(iii)

encodes that Condition (i), (ii) or (iii) of De�nition 38 must hold if hr is true.

More speci�cally, for an unfounded set U and a rule r with H(r) \ U 6= ; (hr is true) it
must not happen that A j= B(r) (Condition (i) fails), no a 2 B+

o (r) with A j= a is in
the unfounded set and all a 2 Be(r̂) are true wrt. A

:
[ ::U (Condition (ii) fails), and all

h 2 H(r) with A j= h are in the unfounded set (Condition (iii) fails).

Example 29. Reconsider program � = fr1 : p &id [p]()g from Example 26. The constructed
nogood set is


� =
�
fFpg; fFpA^U ;TpA;Tpg; fTpA^U ;FpAg; fTpA^U ;Fpg;

fFp �A_U ;FpAg; fFp �A_U ;Tpg; fTp �A_U ;TpA;Fpg;

fTp
A

:
[::U

;FpAg; fTpA
:
[::U

;Tpg; fFp
A

:
[::U

;TpA;Fpg;

fThr1 ;Fpg; fFhr1 ;Tpg; fThr1 ;Te&id [p]()A;Te&id [p]();Tp �A_Ug
	

.

2
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

Towards computing unfounded sets, observe that they can be extended to solutions to the
set of nogoods 
� over A(
�). Conversely, the solutions to 
� include speci�c extensions of
all unfounded sets, which are again characterized by induced assignments: that is, by assigning
true to all atoms in U , to all hr such that H(r) intersects with U , and to all external replacement
atoms e&g[y](x) such that &g [y](x) is true wrt. A

:
[ ::U , appropriate truth values to the auxiliary

atoms according to their intuitive meaning described above, and assigning false to all other atoms
in A(
�). More formally, we de�ne:

De�nition 41 (Induced Assignment of an Unfounded Set wrt. 
�). Let U be an unfounded set
of program � wrt. A. The assignment induced by U wrt. 
�, denoted I
(U;
�;�;A), is

I
(U;
�;�;A) = I0

(U;�;A) [

�
Fa j a 2 A(
�);Ta 62 I0


(U;�;A)
	

, where
I0


(U;�;A) =
�
Ta j a 2 U

	
[

�
Thr j r 2 �; H(r) \ U 6= ;

	
[�

Te&g[y](x) j &g [y](x) 2 EA(�);A
:
[ ::U j= &g [y](x)

	
[�

TaA j a 2 A(�);Ta 2 A
	
[�

Te&g[y](x)
A
j &g [y](x) 2 EA(�);A j= &g [y](x)

	
[�

TaA^U j a 2 A(�);Ta 2 A; a 2 U
	
[�

Ta
A

:
[::U

j a 2 A(�);Ta 2 A; a 62 U
	
[�

Ta
A_U j a 2 A(�);Fa 2 A or a 2 U

	
:

Then, the solutions to 
� with assumptions

AA =
�
TaA j a 2 A(�);Ta 2 A

	
[

�
FaA j a 2 A(�);Fa 2 A

	
[�

TâA j a 2 EA(�);A j= a
	
[

�
FâA j a 2 EA(�);A 6j= a

	

include all assignments induced by unfounded sets of � wrt. A. But as above, not every solution
corresponds to such an induced assignment.

As before, we assume that the nogoods in 
O
� are conservative in the sense that for every

unfounded set U of � wrt. A, it holds that I
(U;��;A;�;A) is a solution to 
O
� as well. We

will present concrete optimization nogoods which ful�ll this condition in the next section.

Proposition 3.9. Let U be an unfounded set of a program � wrt. assignment A such that AT \
U 6= ;. Then I
(U;
�;�;A) is a solution to 
� with assumptions AA.

Proof. We prove this by contraposition and show that if I
(U;
�;�;A) is not a solution to 
�

with assumptions AA, then U cannot be an unfounded set.
First observe that the nogoods in 
H

r demand Thr to be true for a rule r 2 � if and only
if some head atom h 2 H(r) of this rule is in U . Moreover, the nogoods in 
D

a for each
a 2 A(�) force a

A
:
[::U

to true if and only if Ta 2 A
:
[ ::U , aA^U to true if and only if

Ta 2 A and a 2 U , and a
A_U to true if and only if Fa 2 A or a 2 U . As the truth values of

hr for each r 2 �, and a
A

:
[::U

, aA^U and a
A_U for each a 2 A(�) in I
(U;
�;�;A) are

de�ned exactly to these criteria, a contradiction must involve 
C
r for some r 2 �. Moreover,

the nogood fFa j a 2 A(�)g eliminates I
(U;
�;�;A) only if U does not intersect with the
positive atoms in A. This is no problem because we are only interested in such unfounded sets.

Therefore, if I
(U;
�;�;A) is not a solution to 
�;A, then for some rule r 2 � the
nogood in 
C

r must be violated. That is, we know the following:
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3.2. Minimality Check

(I) Thr 2 I
(U;
�;�;A) (and therefore H(r) \ U 6= ;);

(II) TaA 2 I
(U;
�;�;A) for all a 2 B+(r̂) and FaA 2 I
(U;
�;�;A) for all a 2
B�(r̂);

(III) FaA^U 2 I
(U;
�;�;A) for all a 2 B+
o (r) and ta 2 I
(U;
�;�;A) for all a 2

Be(r̂); and

(IV) Th
A_U 2 I
(U;
�;�;A) for all h 2 H(r).

We now show that this implies that none of the conditions of De�nition 38 holds for r
wrt. U and A, which contradicts the assumption that U is an unfounded set (hr is true in
I
(U;
�;�;A), which implies H(r) \ U 6= ;).

Condition (i) does not hold for r because of (II), which implies, by de�nition of our assump-
tions AA, A j= B(r).

Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be
some b 2 B(r) s.t. A

:
[ ::U 6j= b. Since Condition (i) is already known to be violated, we can

assume that A j= b. We make a case distinction on the type of b:
� If b is a positive non-replacement atom, then b 2 U (otherwise A

:
[ ::U j= b). But

then we have by de�nition of I
(U;
�;�;A) that TbA^U 2 I
(U;
�;�;A), which
contradicts (III).
� If b is a negative non-replacement atom, then A j= b implies A

:
[ ::U j= b. Contradic-

tion.
� If b is a positive or default-negated replacement atom, then tb 2 I
(U;
�;�;A) be-

cause of (III). But this implies, by de�nition of I
(U;
�;�;A), that A
:
[ ::U j= b.

Contradiction.
Condition (iii) does not hold for r because Th

A_U 2 I
(U;
�;�;A) and thus, by def-
inition of I
(U;
�;�;A), h 2 U for all h 2 H(r) with A j= h. Thus A 6j= a for all
a 2 H(r) n U .

The next property allows us to �nd the unfounded sets of � wrt. A among all solutions to

� wrt. assumptions AA by using a post-check on the external atoms.

Proposition 3.10. Let S be a solution to 
� such that the assumptions AA are satis�ed and

(a) Te&g[y](x) 2 S and A 6j= &g [y](x) implies A
:
[ ::U j= &g [y](x); and

(b) Fe&g[y](x) 2 S and A j= &g [y](x) implies A
:
[ ::U 6j= &g [y](x)

where U = fa j a 2 A(�);Ta 2 Sg. Then U is an unfounded set of � wrt. A.

As for ��;A, the proposition states that true non-replacement atoms in S which also appear
in � form an unfounded set, provided that truth of the external replacement atoms e&g[y](x) in

S coincides with the truth of the corresponding &g [y](x) wrt. A
:
[ ::U (as in De�nition 40).

Again, this check is only required if the truth value of e&g[y](x) in S and of &g [y](x) wrt. A
differ.
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

Proof. Suppose U is not an unfounded set. Then there is a r 2 � s.t. H(r) \ U 6= ; and none
of the conditions in De�nition 38 is satis�ed. We show now that S cannot be a solution to 
�

s.t. the assumptions AA are satis�ed.
For rule r, 
� contains a nogood of form

N =fThrg [

fTaA j a 2 B
+(r̂)g [ fFaA j a 2 B

�(r̂)g [

fFaA^U j a 2 B
+
o (r)g [ fta j a 2 Be(r̂)g [

fTh
A_U j h 2 H(r)g:

We now show that S contains all signed literals of N , i.e., the nogood is violated by S.
Because of H(r) \ U 6= ;, Thr 2 S (otherwise a nogood in 
H

r is violated).
Because U is not an unfounded set, Condition (i) in De�nition 38 does not hold. Therefore

A j= B(r). But then our assumptions AA force TbA 2 S for all b 2 B+(r̂) and FbA 2 S for
all b 2 B�(r̂).

As U is not an unfounded set, Condition (ii) in De�nition 38 does not hold. Consider all
a 2 B+

o (r). Then A j= a and a 62 U . But a 62 U implies Fa 2 S. Then nogood fTaA^U ;Fag
implies FaA^U .

Now consider all &g [y](x) 2 EA(r). Then A
:
[ ::U j= &g [y](x) (as Condition (ii) is

violated). If A 6j= &g [y](x), then Condition (i) would be satis�ed, hence A j= &g [y](x). But
then Te&g[y](x) 2 S, otherwise A

:
[ ::U 6j= &g [y](x) by Condition (b) of this proposition.

Next consider all not &g [y](x) with &g [y](x) 2 EA(r). Then A
:
[ ::U 6j= &g [y](x) (as

Condition (ii) is violated). If A j= &g [y](x), then Condition (i) would be satis�ed, hence
A 6j= &g [y](x). But then Fe&g[y](x) 2 S, otherwise A

:
[ ::U j= &g [y](x) by Condition (a) of

this proposition. Therefore, we have ta 2 S for all a 2 Be(r̂).
Finally, because Condition (iii) in De�nition 38 does not hold, h 2 U and therefore also

Th 2 S for all h 2 H(r) with A j= a. That is, for each h 2 H(r), either FhA 2 S or Th 2 S.
But by the nogoods fFa

A_U ;FaAg; fFaA_U ;Tag 2 
D
a both cases imply Ta

A_U 2 S.
This concludes the proof that S cannot be a solution to 
� satisfying assumptions AA and

Conditions (a) and (b), if U is not an unfounded set.

Again, we must further show that for an unfounded set U of a program � wrt. an interpreta-
tion, the induced assignment ful�lls the conditions of Proposition 3.10.

Proposition 3.11. Let U be an unfounded set of a program � wrt. assignment A such that

AT \ U 6= ;. Then I�(U;��;A;�;A) ful�lls Conditions (a) and (b) of Proposition 3.10.

Proof. Let S = I
(U;
�;�;A). If for an external atom &g [y](x) in � we have Te&g[y](x) 2

S, then by de�nition of I
(U;
�;�;A) we have A
:
[ ::U j= &g [y](x) (satisfying (a)). If for

an external atom &g [y](x) in � we have Fe&g[y](x) 2 S, then by de�nition of I
(U;
�;�;A)

we have A
:
[ ::U 6j= &g [y](x) (satisfying (b)).

Corollary 3.2. If 
� has no solution which satis�es the assumptions AA and which ful�lls the

conditions of Proposition 3.10, then U \AT = ; for every unfounded set U of �.
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3.2. Minimality Check

Proof. If there would be a UFSU of � wrt. A which intersects with AT, then by Proposition 3.9
I
(U;
�;�;A) would be a solution to 
� with assumptions AA, and by Proposition 3.11 it
would ful�ll the conditions of Proposition 3.10.

Example 30 (ctd.). Reconsider program � = fr1 : p  &id [p]()g from Example 28 and the
compatible set A2 = fTp;Te&id [p]g.

The nogood set


� =
�
fFpg; fFpA^U ;TpA;Tpg; fTpA^U ;FpAg; fTpA^U ;Fpg;

fFp �A_U ;FpAg; fFp �A_U ;Tpg; fTp �A_U ;TpA;Fpg;

fTp
A

:
[::U

;FpAg; fTpA
:
[::U

;Tpg; fFp
A

:
[::U

;TpA;Fpg;

fThr1 ;Fpg; fFhr1 ;Tpg; fThr1 ;Te&id [p]()A;Te&id [p]();Tp �A_Ug
	

with assumptions AA2 = fTpAg has some solutions S�fThr1 ;Tp;TpA;Fe&id [p]; TpA^U ;

Tp �A_U ; FpA
:
[::U
g, which correspond to the unfounded set U = fpg. Here, Fe&id [p]() repre-

sents that A2
:
[ ::U 6j= &id [p](). 2

We will show in Chapter 5 that this encoding is superior to ��;A for many applications.
The effect becomes especially visible for programs which require many unfounded set checks,
which is roughly the case if there exist many answer sets. Then the reusability of the encoding
is valuable. In contrast, for very small programs with few answer sets, the higher costs for
generating the encoding sometimes exceed the savings due to reusability.

3.2.3 Optimization and Learning

In this section we �rst discuss some re�nements and optimizations of our encodings of the UFS
search. In particular, we add additional nogoods which prune irrelevant parts of the search space.
After that, we propose a strategy for learning nogoods from detected unfounded sets, avoiding
that the same unfounded set is generated again later.

The following optimizations turned out to be effective in improving the UFS search.

O1: Restricting the UFS Search to Atoms in the Compatible Set. Not all atoms in a pro-
gram are relevant for the unfounded set search. Formally one can show the following:

Proposition 3.12. If U is an unfounded set of � wrt. an interpretation A and there is an a 2 U
s.t. A 6j= a, then U n fag is an unfounded set of � wrt. A.

Proof. Let r 2 � s.t. H(r) \
�
U n fag

�
6= ;. We have to show that one of the conditions of

De�nition 38 holds wrt. A and U n fag.
BecauseU is an unfounded set of � wrt. A andH(r)\

�
U nfag

�
6= ; impliesH(r)\U 6= ;,

one of the conditions of De�nition 38 holds wrt. A and U . If this is Condition (i) or (iii), it also
holds wrt. U nfag because these condition depend only on r and A. Also if Condition (ii) holds,
it also holds wrt. U nfag because A

:
[ ::U is equivalent to A

:
[ ::

�
U nfag

�
since a 62 U .

The construction of the nogoods which implement this optimization is simple.
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

� For the encoding ��;A we add the conservative nogood fTag for each a 2 A(�) with
A 6j= a.

� For the encoding 
� we add the conservative nogood fFaA;Tag for each a 2 A(�).

O2: Avoiding Guesses of External Replacement Atoms. In some situations the truth value
of an external replacement atom b in a solution S to ��;A does not matter. That is, both

�
S n

fTb;Fbg
�
[fTbg and

�
SnfTb;Fbg

�
[fFbg are solutions to ��;A (resp. 
� with assumptions

AA), which represent the same unfounded set. Then we can set the truth value to an (arbitrary)
�xed value instead of inspecting both alternatives. The following provides a suf�cient criterion:

Proposition 3.13. Let b be an external replacement atom, and let S be a solution to ��;A (resp.


� with assumptionsAA). If for all rules r 2 �, such that A j= B(r) and where b 2 B+(r̂) or

b 2 B�(r̂), either

(a) for some a 2 B+
o (r) such that A j= a, it holds that Ta 2 S; or

(b) for some a 2 H(r) such that A j= a, it holds that Fa 2 S

then both
�
S n fTb;Fbg

�
[ fTbg and

�
S n fTb;Fbg

�
[ fFbg are solutions to ��;A (resp. 
�

with assumptions AA).

Proof. Suppose that changing the truth value of b in S turns the solution to a counterexample of
��;A (resp. 
�). Then there must be a violated nogood N 2 ��;A (resp. N 2 
�) containing
b, i.e., Tb 2 N or Fb 2 N .

For the encoding ��;A, this nogood corresponds to a rule with b 2 B+(r̂) or b 2 B�(r̂)
and A j= B(r), and it contains also the signed literals (1) Fa for all a 2 B+

o with A j= a and
(2) Ta for all a 2 H(r) with A j= a. By the precondition of the proposition we have either (a)
Ta 2 S for some a 2 B+

o (r) with A j= a, or (b) Fa for some a 2 H(r) with A j= a. But then
the nogood cannot be violated, because (a) contradicts one of (1) and (b) contradicts one of (2).

For the encoding 
�, this nogood also corresponds to a rule r with b 2 B+(r̂) or b 2 B�(r̂).
The nogood contains also the signed literals (1) TaA for all a 2 B+(r̂) and FaA for all a 2
B�(r̂), (2) FaA^U for all a 2 B+

o , and (3) Th �A_U for all h 2 H(r). Because of (1) and since
S is a solution to AA, A j= B(r). Then by the precondition of the proposition we have either
(a) Ta 2 S for some a 2 B+

o (r) with A j= a, or (b) Fa for some a 2 H(r) with A j= a. But
then the nogood cannot be violated, because (a) contradicts one of (2) by de�nition of AA and
aA^U , and (b) contradicts one of (3) by de�nition of AA and h �A_U .

This property can be utilized by adding the following additional nogoods. Recall that
A(��;A) and A(
�) contain atoms lr for every r 2 �. Intuitively, they are used to encode
for a solution S to ��;A resp. 
� with assumptions AA, whether the truth values of the exter-
nal atom replacements in B(r) are relevant, or whether they can be set arbitrarily for r. The
following nogoods label relevant rules r, forcing lr to be false iff one of the preconditions in
Proposition 3.13 holds.
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3.2. Minimality Check

� For the encoding ��;A we add the nogoods:

�L
r;A =

�
fTlr;Tag j a 2 B

+
o (r);A j= a

	
[

�
fTlr;Fag j a 2 H(r);A j= a

	
[�

fFlrg [ fFa j a 2 B
+
o (r);A j= ag [ fTa j a 2 H(r);A j= ag

	

� For the encoding 
� we add the nogoods:


L
r =

�
fTlr;Ta;TaAg j a 2 B

+
o (r)

	
[

�
fTlr;Fa;TaAg j a 2 H(r)

	
[�

fFlrg [ fFaA^U j a 2 B
+
o (r)g [ fTa �A_U j a 2 H(r)g

	

These constraints exclusively enforce Tlr or Flr. Hence, the truth value of lr deterministi-
cally depends on the other atoms, i.e., the nogoods do not cause additional guessing.

By Proposition 3.13 we can set the truth value of an external replacement atom b arbitrarily,
if lr is false for all r such that b 2 B+(r̂) or b 2 B�(r̂), and the resulting interpretation will
still be a solution to ��;A (resp. 
�). However, it must be ensured that changing the truth value
of replacement atoms does not harm the satisfaction of the conditions in Proposition 3.7 (resp.
Proposition 3.10).

As mentioned after Proposition 3.7, it is advantageous to set the truth value of e&g[y](x) to
the one of &g [y](x) wrt. A, because this can reduce the number of external atoms that must
be checked. Importantly, this also relaxes the antecedence of the conditions in Proposition 3.7
(resp. Proposition 3.10) and guarantees that they are not harmed. The following nogoods enforce
a coherent interpretation of the external replacement atoms.

� For the encoding ��;A we add the conservative nogoods:

�F
r;A =

�
fFlr j b 2 B

+(r̂) [B�(r̂)g [ fFbg j b 2 Be(r̂);A j= b
	
[

�
fFlr j b 2 B

+(r̂) [B�(r̂)g [ fTbg j b 2 Be(r̂);A 6j= b
	

� For the encoding 
� we add the conservative nogoods:


F
r =

�
fFlr j b 2 B

+(r̂) [B�(r̂)g [ fTbA;Fbg j b 2 Be(r̂)
	
[�

fFlr j b 2 B
+(r̂) [B�(r̂)g [ fFbA;Tbg j b 2 Be(r̂)

	

We give now an example for this optimization using our encoding ��;A.

Example 31. Consider the program � = fr1 : p  &id [p](); r2 : q  &id [q]()g, and the
compatible set Â = fTp;Tq;Te&id [p]();Te&id [q]()g. The necessary part of the encoding

��;A =
�
fThr1 ;Fpg; fFhr1 ;Tpg; fThr1 ;Te&id [p]();Tpg;

fThr2 ;Fqg; fFhr2 ;Tqg; fThr2 ;Te&id [q]();Tqg
	

has the solutions S1 � fThr1 ;Tp;Fe&id [p]();Fhr2 ;Fq;Fe&id [q]()g and S2 � fThr1 ;Tp;

Fe&id [p]();Fhr2 ;Fq;Te&id [q]()g (which represent the same unfounded set U = fpg). Here,

the optimization part for r2, �L
r2;A
[ �F

r2;A
=

�
fTlr2 ;Fqg; fFlr2 ;Tqg; fFlr2 ;Te&id [q]()g

	
,

eliminates solutions S2 for ��;A. This is bene�cial as for solutions S1 the post-check is easier
(e&id [q]() in S1 and &id [q]() in A have the same truth value). 2
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

Note that, strictly speaking, this optimization is not conservative, since for a UFS the induced
assignment is not necessarily a solution to the UFS search encodings with this optimization.
However, we have shown that there is a related solution for each UFS.

Also note that if this optimization is not used, then for all rules r the atom lr is in fact
not needed and thus unconstrained. To avoid an exponential increase of the number of UFS
candidates, these atoms should then be set to a �xed value.

O3: Exchanging Nogoods between UFS and Main Search. Some nogoods learned from
external sources during the search for compatible sets can be reused for the UFS search and
vice versa. This is because such nogoods are independent of the program resp. SAT instance but
depend only on the semantics of the external sources. For this purpose, we �rst de�ne nogoods
which correctly describe the input-output relationship of external atoms.

De�nition 42. A nogood of the formN =
�
Tt1; : : : ;Ttn;Ff1; : : : ;Ffm; �e&g[y](x)

	
, where �

is T or F, is a valid input-output relationship, if for all assignments A, Tti 2 A, for 1 � i � n,
and Ffi 2 A, for 1 � i � m, implies A j= &g [y](x) if � = F, and A 6j= &g [y](x) if � = T.

Here, the signed literals with atoms ti for 1 � i � n and fi for 1 � i � m re�ect the
relevant true resp. false atoms in the interpretation A, built over predicates which occur in the
input list y.

LetN be a nogood which is a valid input-output relationship learned during the main search,
i.e., the search for compatible sets of �, and let �F = T and �T = F.

De�nition 43 (Nogood Transformation T�). For a valid input-output relationship N and an
assignment A, the nogood transformation T� is de�ned as

T�(N;A) =

8
>>>><
>>>>:

; if Fti 2 A for some 1 � i � n;�
fFt1; : : : ;Ftng [

fTfi j 1 � i � m;A j= fig [

f�e&g[y](x)g
	

otherwise:

The next result states that T�(N;A) can be considered, for all valid input-output relation-
ships N wrt. all assignments A, without losing unfounded sets.

Proposition 3.14. Let N be a valid input-output relationship, and let U be an unfounded set

wrt. � and A. If �O
�;A contains only conservative nogoods, then I�(U;��;A;�;A) is a solution

to T�(N;A) (i.e., also the nogoods T�(N;A) are conservative).

Proof. If T�(N;A) = ; then the proposition trivially holds. Otherwise T�(N;A) = fCg and
we know that Tti 2 A for all 1 � i � n. SupposeC is violated. Then Fti 2 I�(U;��;A;�;A)
and therefore ti 62 U for all 1 � i � n, and Tfi 2 I�(U;��;A;�;A) for all 1 � i � m with
A j= fi, and �e&g[y](x) 2 I�(U;��;A;�;A).

But then A
:
[ ::U j= ti for all 1 � i � n and A

:
[ ::U 6j= fi for all 1 � i � m.

Because the nogood N is a valid input-output relationship, this implies A
:
[ ::U j= ��&g [y](x)

iff � = F. Then by de�nition of I�(U;��;A;�;A) we have ��e&g[y](x) 2 I�(U;��;A;�;A),
which contradicts the assumption that T�(N;A) is violated.
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3.2. Minimality Check

Hence, all valid input-output relationships for external atoms which are learned during the
search for compatible sets, can be reused (applying the above transformation) for the unfounded
set check. Moreover, during the evaluation of external atoms in the post-check for candidate
unfounded sets (solutions to ��;A), further valid input-output relationships might be learned.
These can in turn be used in further unfounded set checks (in transformed form) or directly in
the main search.

Example 32 (Set Partitioning). Consider the program �

sel(a) domain(a);&di� [domain;nsel ](a)

nsel(a) domain(a);&di� [domain; sel ](a)

domain(a) 

Informally, this program implements a choice from sel(a) and nsel(a). Consider the com-
patible set Â = fTdomain(a);Tsel(a);Te&di� [nsel ](a)g. Suppose the main search learned
the input-output relationship N =

�
Tdomain(a); Fnsel(a);Fe&di� [nsel ](a)

	
. Then the trans-

formed nogood is T (N;A)=
�
fFdomain(a);Fe&di� [nsel ](a)g

	
, which intuitively encodes that,

if domain(a) is not in the unfounded set U , then e&di� [nsel ](a) is true in A
:
[ ::U . This is clear

because e&di� [nsel ](a) is true in A and it can only change its truth value if domain(a) becomes
false. 2

Finally, an important note is that the optimizations O2 and O3 can not be used simultane-
ously (differently from O1 and O2 resp. O1 and O3), as this can result in contradictions due to
(transformed) learned nogoods. We thus disabled O2 in our experiments.

This learning technique can be adopted for the encoding 
� as follows.

De�nition 44 (Nogood Transformation T
). For a valid input-output relationshipN , the nogood
transformation T
 is de�ned as

T
(N) =
�
fTt1A;Ft1; : : : ;TtnA;Ftn;Ff1A

:
[::U

; : : : ;FfmA
:
[::U

; �e&g[y](x)g
	

.

Compared to the nogood transformation T�(N;A), the main difference is that T
(N) is
reusable for any assignment, similar to the de�nition of our unfounded set detection problem

�.

The next result states that T
(N) can be considered, for all valid input-output relationships
N wrt. all assignments A, without losing unfounded sets.

Proposition 3.15. Let N be a valid input-output relationship, and let U be an unfounded set

wrt. � and A. If 
O
� contains only conservative nogoods, then I
(U;
�;�;A) is a solution to

T
(N) (i.e., also nogoods T
(N) are conservative).

Proof. We know T
(N) = fCg Suppose C is violated. Then TtiA 2 I
(U;
�;�;A) and
therefore Tti 2 A, Fti 2 I
(U;
�;�;A) for all 1 � i � n, FfiR 2 I
(U;
�;�;A) and
therefore Ffi 2 A for all 1 � i � m, and �e&g[y](x) 2 I
(U;
�;�;A).

But then, by de�nition of I
(U;
�;�;A), Tti 2 A and ti 62 U for all 1 � i � n, hence
A

:
[ ::U j= ti for all 1 � i � n. Moreover, A

:
[ ::U 6j= fi for all 1 � i � m. Because nogood
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N is a valid input-output relationship, this implies A
:
[ ::U j= &g [y](x) iff � = F. Then

by de�nition of I
(U;
�;�;A) we have ��e&g[y](x) 2 I
(U;
�;�;A), which contradicts the
assumption that T
(N) is violated.

Hence, also with encoding 
� all valid input-output relationships for external atoms that are
learned during the search for compatible sets can be reused and vice versa.

Example 33 (ctd.). Reconsider the program � from Example 32. Consider the compatible set
Â = fTdomain(a);Tsel(a);Te&di� [nsel ](a)g. Suppose the main search has learned the input-
output relationship N = fTdomain(a); Fnsel(a);Fe&di� [nsel ](a)g. Then the transformed
nogood is

T
(N)=
�
fTdomain(a)A;Fdomain(a);Fnsel(a)

A
:
[::U

;Fe&di� [nsel ](a)g
	

,

which intuitively encodes that, if domain(a) is true in the current assignment but not in the
unfounded set U , and nsel(a) is false in A

:
[ ::U , then e&di� [nsel ](a) is true in A

:
[ ::U . This

is clear because e&di� [nsel ](a) is true in A and it can only change its truth value if domain(a)
becomes false. 2

The nogood exchange also bene�ts from the uniform encoding. With the encoding ��;A

the SAT instance needs to be built from scratch for every unfounded set check. Thus, nogoods
learned in the main search need to be transformed and added to the UFS detection problem for
every check (otherwise they are lost). With encoding 
� this needs to be done only once because
the solver instance for UFS detection keeps running all the time and thus also learned nogoods
are kept between multiple unfounded set checks. This also allows us the make use of advanced
forgetting heuristics in SAT solvers more effectively.

Learning Nogoods from Unfounded Sets. Until now only detecting unfounded sets has been
considered. A strategy to learn from detected unfounded sets for the main search for compatible
sets is missing. Here we develop such a strategy and call it unfounded set learning (UFL).

Example 34. Consider the program � = fp &id [p](); x1 _ x2 _ � � � _ xk  g. As we know
from Example 26, fpg is an unfounded set wrt. A= fTp;Te&id ()g, regarding just the �rst rule.
However, the same is true for any A0 � A regarding �, i.e., p must never be true. 2

The program in Example 34 has many compatible sets, and half of them (all where p is true)
will fail the UFS check for the same reason. We thus develop a strategy for generating additional
nogoods to guide the further search for compatible sets in a way, such that the same unfounded
sets are not reconsidered.

UFS-Based Learning. For an unfounded set U of � wrt. A we de�ne the following set of
learned nogoods:

L1(U;�;A) =
�
f�0; �1; : : : ; �jg j �0 2 fTa j a 2 Ug; �i 2 Hi for all 1 � i � j)

	
,

where Hi = fTh j h 2 H(ri) n U;A j= hg [ fFb j b 2 B+
o (ri);A 6j= bg and fr1; : : : ; rjg =

fr 2 � j H(r) \ U 6= ;; U \ B+
o (r) = ;g is the set of external rules of � wrt. U , i.e., all rules
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which do not depend on U . Intuitively, the nogoods encode that no atom in the unfounded set
must be true, if each rule, that could be used to derive it is already satis�ed independently of the
unfounded set.

Formally we can show that adding this set of nogoods does not eliminate answer sets of the
program:

Proposition 3.16. If U is an unfounded set of � wrt. A and A j= �, then every answer set of �
is a solution to the nogoods in L1(U;�;A).

Proof. Suppose there is an answer setA0 of � which is not a solution to a nogood inL1(U;�;A)
We show that then U is an unfounded set of � wrt. A0 which intersects with A0, contradicting
the assumption that A0 is an answer set.

Let f�0; �1; : : : ; �ng be a violated nogood. Let r 2 � be a rule such that H(r) \ U 6= ;.
We have to show that one of the conditions of De�nition 38 holds.

If B+
o (r) \ U 6= ;, then Condition (ii) holds, therefore we can assume B+

o (r) \ U = ;.
Hence r is an external rule of � wrt. U . But then there is a �i with 1 � i � n such that either (1)
�i = Th for some h 2 H(r) with h 62 U and A j= h, or (2) �i = Fb for some b 2 B+

o (r) with
A 6j= b. Because the nogood is violated by A0 by assumption, we have �i 2 A0. In Case (1)
Condition (iii) is satis�ed, in Case (2) Condition (i) is satis�ed.

Moreover, by de�nition of L1 there is an a 2 U s.t. Ta 2 A0, i.e., A0 intersects with U .

Example 35. Consider the program � from Example 34 and suppose we have found the un-
founded set U = fpg wrt. interpretation A = fTp;Tx1g [ fFxi j 1 < i � kg. Then the
learned nogood L2(U;A;�) = fTpg immediately guides the search to the part of the search
tree where p is false, i.e., roughly half of the guesses are avoided. 2

Reduct-Based Learning. We may also consider a different learning strategy based on the
models of f�A rather than the unfounded set U itself, hinging on the observation that for every
unfounded set U , the interpretation A

:
[ ::U is a model of f�A (hence U 6= ; refutes A as a

minimal model of f�A), cf. Faber et al. (2011).
We exploit this to construct nogoods from a nonempty UFS U wrt. a model A as follows.

The interpretation A
:
[ ::U is not only a model of f�A but a model of all programs �0 �

f�A. Hence, if an assignment A0 falsi�es the bodies of at least the same rules of � as A, and
A0T � (A

:
[ ::U)T, then A0 cannot be an answer set of �. This allows for generating the

following set of nogoods:

L2(U;�;A) =
�
fTa j a 2A

:
[ ::Ug [ f�0; �1; : : : ; �jg

j �0 2 fTa j a 2 Ug; �i 2 Hi for all 1 � i � j
	

,

where Hi = fta j a 2 B(r̂); Â 6j= ag for all 1 � i � j and fr1; : : : ; rj j r 2 �;A 6j= B(r)g is
the set of rules which are not in the FLP-reduct of � wrt. A.

That is, each nogood consists of the positive atoms from the smaller model of the reduct
A

:
[ ::U , one unfounded atom �0 (i.e. an atom which is true in A but not in A

:
[ ::U ), and

one false body literal �i (1 � i � j) for each rule of � with unsatis�ed body wrt. A.
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Formally, we can show the following proposition:

Proposition 3.17. If U is an unfounded set of � wrt. A and A j= �, then each answer set of �
is a solution to all nogoods in L2(U;�;A).

Proof. Suppose there is an answer set A0 of � which is not a solution to the nogoods in
L2(U;�;A). Let fTa j a 2 A

:
[ ::Ug [ f�0; �1; : : : ; �ng be a violated nogood. Because

�i 2 A0 for all 1 � i � n, we know A0 falsi�es (at least) all rules falsi�ed by A, thus
f�A0

� f�A. But then A
:
[ ::U is a model of �A0

because it is a model of �A by as-
sumption that it is an unfounded set. Moreover, Ta 2 A0 for all a 2 A

:
[ ::U , and therefore

A0T � (A
:
[ ::U)T. Because �0 2 A0, we conclude A0T ) (A

:
[ ::U)T, i.e., A0 is not a

subset-minimal model of �A0
.

Example 36. Let � = fp  &id [p](); q  &id [q]()g, where &id [a]() evaluates to true iffdef

a is true. Suppose A = fp; qg. Then U = fp; qg is an unfounded set wrt. A. In the above
construction rule we have A

:
[ ::U = fFp;Fqg, �0 2 fTp;Tqg and j = 0 (because both rule

bodies are satis�ed wrt. A). The learned nogoods are fTpg and fTqg. 2

In Example 36, the learned nogoods will immediately guide the search to the interpretation
fFp;Fqg, which is the only one which becomes an answer set. However, this strategy appeared
to be clearly inferior to the UFS-based learning strategy, basically because the nogoods are
too speci�c for the currently detected unfounded set. That is, they do not generalize to other
unfounded sets.

3.2.4 Unfounded Set Check wrt. Partial Assignments

In some cases, a detected unfounded set wrt. a partial assignment implies the existence of an
unfounded set wrt. any completion of that assignment. Clearly, a search for unfounded sets
wrt. incomplete assignments is only useful if we can be sure that detected unfounded sets will
remain unfounded for arbitrary completions of the assignment.

Formally, we can show the following:

Proposition 3.18. Let �0 be a program, let A0 be an assignment which is complete on �0, and

let U be an unfounded set of �0 wrt. A0. If � � �0 such that U \H(r) = ; for all r 2 � n �0,

then U is an unfounded set of � wrt. any interpretation A � A0.

Proof. Let �0 be a program, A0 be an assignment which is complete on �0, and U be an un-
founded set of �0 wrt. A0. Further let � � �0 and A � A0.

We have to show that if U \ H(r) 6= ; for some r 2 �, then one of the conditions in
De�nition 38 holds wrt. A andU . Let r 2 �. If r 2 �0, then one of the conditions holds because
U is an unfounded set of �0 wrt. A0 and A0 is complete on �0. If r 62 �0, then U \H(r) = ; by
assumption.

Intuitively, the proposition states that an unfounded set of a program wrt. some interpretation
will remain an unfounded set if the program is extended by rules which do not derive any of the
elements in the unfounded set.
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Corollary 3.3. If some assignment A0 is complete on a subprogram �0 � � and �0 has an

unfounded set U wrt. A0 which intersects with A0 and such that U\H(r) = ; for all r 2 �n�0,

then no A � A0 is an answer-set of �.

Proof. By Proposition 3.18, U is also an unfounded set of � wrt. any A � A0. But then by
Theorem 2, A cannot be an answer set of �.

This result can be used as follows. For a partial assignments A0 which is complete on a
subprogram �0 � �, if ��0;A0 [

�
fFag j r 2 � n �0; a 2 H(r)

	
resp. 
�0 [

�
fFag j r 2

� n �0; a 2 H(r)
	

with assumptions AA has a solution which passes the post-check, then no
completion of A0 can be an answer set of �.

Example 37. Consider again the program � from Examples 34 and 35 and suppose we have
the partial interpretation A0 = fpg, i.e., the guess over the xi for 1 � i � n was not done yet.
Nevertheless, we can already make an unfounded set check over the subprogram �0 = fp  
&id [p]()g because A0 is complete over this program. The detected unfounded set U = fpg does
not intersect with the head of a rule r 2 � n�0 = fx1 _ x2 _ : : : xn  g. Therefore U is also an
unfounded set of � wrt. arbitrary completions of A0 and we can immediatly backtrack, e.g., by
learning L2(U;A0;�0). 2

Corollary 3.3 ensures that Part (d) in Algorithm Hex-CDNL does not affect the correctness
of the overall algorithm as stated by Proposition 3.2 and Theorem 1.

3.2.5 Deciding the Necessity of the UFS Check

Although the minimality check based on unfounded sets is more ef�cient than the explicit mini-
mality check, computational costs are still high. Moreover, during evaluation of �̂ for computing
the compatible set Â, the ordinary ASP solver in Algorithm Hex-CDNL has already made an
unfounded set check, and we can safely assume that it is founded from its perspective. Hence,
all remaining unfounded sets which were not discovered by the ordinary ASP solver have to
involve external sources, as their behavior is not fully captured by the ASP solver.

In this section we formalize these ideas and de�ne a decision criterion which allows for
deciding whether a further UFS check is necessary for a given program. We eventually de�ne
a class of programs which does not require an additional unfounded set check. Intuitively, we
show that every unfounded set that is not already detected during the construction of Â contains
input atoms of external atoms which are involved in cycles. If no such input atom exists in the
program, then the UFS check is super�uous.

We start with a de�nition of atom dependency. Note that this de�nition is different from
De�nition 20 in Chapter 2 because it captures only positive dependencies; in this subsection we
never use dependencies according to Chapter 2.

De�nition 45 (Positive Atom Dependencies). For a ground program �, and ground atoms p(c)
and q(d), we say that

(i) p(c) depends (positively) on q(d), denoted p(c) !p q(d), if for some rule r 2 � we have
p(c) 2 H(r) and q(d) 2 B+(r); and
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(ii) p(c) depends externally on q(d), denoted p(c) !e
p q(d), if for some rule r 2 � we have

p(c) 2 H(r) and there is a &g [q1; : : : ; qn](e) 2 B+(r) [ B�(r) with qi = q for some
1 � i � n.

In the following, we consider positive atom dependency graphs GR
� for a ground program

�, where the set of vertices is the set of all ground atoms, and the set of edges is given by the
binary relation R =!p [ !

e
p, whose elements are also called ordinary edges and e-edges,

respectively.
The next de�nition and lemma allow to restrict our attention to the core of an unfounded

set, i.e., its most essential part. For our purpose, we can then focus on such cores, disregarding
atoms in a cut of GR

� which is de�ned as follows.

De�nition 46 (Cut). Let U be an unfounded set of � wrt. A. A set of atoms C � U is called a
cut of GR

�, if

(i) b 6!e
p a, for all a 2 C and b 2 U (C has no incoming or internal e-edges); and

(ii) b 6!p a and a 6!p b, for all a 2 C and b 2 U n C (there are no ordinary edges between C
and U n C).

We �rst prove that cuts can be removed from unfounded sets and the resulting set is still an
unfounded set.

Lemma 3.6 (Unfounded Set Reduction). Let U be an unfounded set of � wrt. an interpreta-

tion A, and let C be a cut of GR
�. Then, Y = U n C is an unfounded set of � wrt. A.

Proof. If Y = ;, then the result holds trivially. Otherwise, let r 2 � with H(r) \ Y 6= ;. We
show that one of the conditions in De�nition 38 holds. Observe that H(r) \ U 6= ; because
U � Y . Since U is an unfounded set of � wrt. A, one of the conditions of De�nition 38 holds.

If Condition (i) holds, then the condition also holds wrt. Y .
If Condition (ii) holds, let a 2 H(r) such that a 2 Y , and b 2 B(r) such that A

:
[ ::U 6j= b.

We make a case distinction: either b is an ordinary literal or an external one.
If it is an ordinary default-negated atom not c, then A

:
[ ::U 6j= b implies Tc 2 A and

c 62 U , and therefore also A
:
[ ::Y 6j= b. So assume b is an ordinary atom. If b 62 U then A 6j= b

and the case for (i) applies, so assume b 2 U . Because a 2 H(r) and b 2 B+(r), we have
a!p b and therefore either a; b 2 C or a; b 2 Y (because there are no ordinary edges between
C and Y ). But by assumption a 2 Y , and therefore b 2 Y , hence A

:
[ ::Y 6j= b.

If b is an external literal, then there is no q 2 U with a !e
p q and q 62 Y . Otherwise, this

would imply q 2 C and C would have an incoming e-edge, which contradicts the assumption
that C is a cut of GR

�. Hence, for all q 2 U with a !e
p q, also q 2 Y , and therefore the truth

value of b wrt. A
:
[ ::U and A

:
[ ::Y is the same. Hence A

:
[ ::Y 6j= b.

If Condition (iii) holds, then also A j= h for some h 2 H(r) n Y because Y � U and
therefore H(r) n Y � H(r) n U .

Example 38. Consider the following program (visualized in Figure 3.2):

� = fr  &id [r](); p &id [r](); p q; q  pg
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r p q
!p

!e
p

!e
p

Cut C of GR
�

Figure 3.2: Dependencies and Cut of the Program � from Example 38

Then we have p !p q, q !p p, r !e
p r and p !e

p r. Program � has the unfounded set

U = fp; q; rg wrt. A = fTp;Tq;Trg. Observe that C = fp; qg is a cut of GR
�, and therefore

U n C = frg is an unfounded set of � wrt. A. 2

Next we prove that for each unfounded set U of �, intuitively, either the input to some
external atom is unfounded itself, or U is already detected when �̂ is evaluated.

Lemma 3.7 (EA-Input Unfoundedness). Let U be an unfounded set of � wrt. an assignment A.

If GR
� has no edge x !e

p y such that x; y 2 U , then U is an unfounded set of �̂ wrt. the

compatible set Â corresponding to A.

Proof. If U = ;, then the result holds trivially. Otherwise, let r̂ 2 �̂ such that H(r̂) \ U 6= ;.
Let a 2 H(r̂)\U . Observe that r̂ cannot be an external atom guessing rule because U contains
only ordinary atoms. We show that one of the conditions in De�nition 38 holds for r̂ wrt. Â.

Because r̂ is no external atom guessing rule, there is a corresponding rule r 2 � containing
external atoms in place of replacement atoms. Because U is an unfounded set of � and H(r) =
H(r̂), one of the conditions of De�nition 38 holds.

If Condition (i) holds, let b 2 B(r) such that A 6j= b and b̂ the corresponding literal in B(b̂)
(which is the same if b is ordinary and the corresponding replacement literal if b is external).
Then also Â 6j= b̂ because Â is compatible.

If Condition (ii) holds, let b 2 B(r) such that A 6j= b. We make a case distinction: either b
is ordinary or external.

If b is ordinary, then b 2 B(r̂) and Â
:
[ ::U 6j= b holds because A and Â are equivalent for

ordinary atoms.
If b is an external atom or default-negated external atom, then no atom p(c) 2 U is input to

it, i.e. p is not a predicate input parameter of b; otherwise we had a !e
p p(c), contradicting our

assumption that U has no internal e-edges. But then A
:
[ ::U 6j= b implies A 6j= b because the

truth value of b in A
:
[ ::U and A is the same. Therefore we can apply the case for (i).

If Condition (iii) holds, then also Â j= h for some h 2 H(r̂) n U because H(r) = H(r̂)
contains only ordinary atoms and A is equivalent to Â for ordinary atoms.

Example 39. Reconsider the program � from Example 38. Then the unfounded set U 0 = fp; qg
wrt. A0 = fTp;Tq;Frg is already detected when

�̂ =
�
e&id [r]() _ ne&id [r]() ; r  e&id [r](); p e&id [r](); p q; q  p
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is evaluated by the ordinary ASP solver because p !e
p q 62 R and q !e

p p 62 R. In contrast,
the unfounded set U 00 = fp; q; rg wrt. A00 = fTp;Tq;Trg is not detected by the ordinary ASP
solver because p; r 2 U 00 and p!e

p r
2. 2

The essential property of unfounded sets of � wrt. A, that are not recognized during the
evaluation of �̂, is cyclic dependencies including input atoms of some external atom. Towards
a formal characterization of a class of programs without this property, i.e., that do not require
additional UFS checks, we de�ne cycles as follows.

De�nition 47 (Cycle). A cycle wrt. a binary relation � is a sequence C = c0; c1; : : : ; cn; cn+1

of elements with n � 0, such that (ci; ci+1) 2 � for all 0 � i � n and c0 = cn+1. We say that a
set S contains a cycle wrt. �, if there is a cycle C = c0; c1; : : : ; cn; cn+1 wrt. � such that ci 2 S
for all 0 � i � n+ 1.

The following proposition states, intuitively, that each unfounded set U of � wrt. A, which
contains no cycle through the input atoms to some external atom, has a corresponding unfounded
set U 0 of �̂ wrt. Â. That is, the unfoundedness is already detected when �̂ is evaluated.

Let!d
p = !p [  p [ !

e
p, where p is the inverse of!p, i.e. p =

�
(x; y) j (y; x) 2

!p

	
. A cycle c0; c1; : : : ; cn; cn+1 wrt. !d

p is called an e-cycle, if it contains e-edges, i.e., if
(ci; ci+1) 2!e

p for some 0 � i � n. We say that a set S contains e-edges, if there are x; y 2 S
such that (x; y) 2!e

p.

Proposition 3.19 (Relevance of e-cycles). Let U 6= ; be an unfounded set of � wrt. an inter-

pretation A such that AT does not contain any e-cycle wrt.!d
p. Then, there exists a nonempty

unfounded set of �̂ wrt. Â.

Proof. We de�ne the reachable set R(a) from some atom a as

R(a) =
�
b j (a; b) 2 f!p [  pg

�
	

,

where f!p [  pg
� is the re�exive and transitive closure of!p [  p, i.e., R(a) is the set of

atoms b 2 U reachable from a using edges from!p [  p only but no e-edges.
We �rst assume that U contains at least one e-edge, i.e. there are x; y 2 U such that x!e

p y.
Now we show that there is a u 2 U with outgoing e-edge (i.e. u!e

p v for some v 2 U ), but such
that R(u) has no incoming e-edges (i.e. for all v 2 R(u) and b 2 U , b 6!e

p v holds). Suppose to
the contrary that for all a with outgoing e-edges, the reachable setR(a) has an incoming e-edge.
We now construct an e-cycle wrt.!d

p, which contradicts our assumption. Start with an arbitrary
node with an outgoing e-edge c0 2 U and let p0 be the (possibly empty) path (wrt.!p [  p)
from c0 to the node d0 2 R(c0) such that d0 has an incoming e-edge, i.e. there is a c1 such that
c1 !

e
p d0. Note that c1 62 R(c0): whenever x !e

p y for x; y 2 U , then there is no path from x

to y wrt.!p [  p, because otherwise we would immediately have an e-cycle wrt.!d
p.

By assumption, also some node d1 in R(c1) has an incoming e-edge (from some node c2 62
R(c1)). Let p1 be the path from c1 to d1, etc. By iteration we can construct the concatenation

2Out formal results only imply that it is not necessarily detected. However, it is easy to verify that U 00 is indeed
not an unfounded set of �̂ wrt. Â00 = A

00 [ fTe&id[r]()g.
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of the paths p0; (d0; c1); p1; (d1; c2); p2; : : : ; pi; (di; ci+1); : : :, where the pi from ci to di are the
paths within reachable sets, and the (di; ci+1) are the e-edges between reachable sets. However,
as U is �nite, some nodes on this path must be equal, i.e., a subsequence of the constructed
sequence represents an e-cycle (in reverse order).

This proves that there is a node u with outgoing e-edge but such that R(u) has no incoming
e-edges. We next show that R(u) is a cut of GR

�. Condition (i) is immediately satis�ed by
selection of u. Condition (ii) is shown as follows. Let u0 2 R(u) and v0 2 U n R(u). We have
to show that u0 6!p v

0 and v0 6!p u
0. Suppose, towards a contradiction, that u0 !p v

0. Because
of u0 2 R(u), there is a path from u to u0 wrt.!p [  p. But if u0 !p v

0, then there would also
be a path from u to v0 wrt.!p [  p and v0 would be in R(u), a contradiction. Analogously,
v0 !p u

0 would also imply that there is a path from u to v0 because there is a path from u to u0,
again a contradiction.

Therefore, R(u) � U is a cut of GR
�, and by Lemma 3.6, it follows that U n R(u) is

an unfounded set. Observe that U n R(u) contains one e-edge less than U because u has an
outgoing e-edge and is removed from the unfounded set. Further observe that U n R(u) 6= ;
because there is a w 2 U such that u !e

p w but w 62 R(u). By iterating this argument, the
number of e-edges in the unfounded set can be reduced to zero in a nonempty core.

Eventually, or if the unfounded set did not contain any e-edges already at the beginning,
Lemma 3.7 applies, proving that the remaining set is an unfounded set of �̂.

Corollary 3.4. If there is no e-cycle wrt.!d
p and �̂ has no nonempty unfounded set wrt. Â, then

A is unfounded-free for �.

Proof. Suppose there is an unfounded set U of � wrt. A. Then it contains no e-cycle because
there is no e-cycle wrt. !d

p. Then by Proposition 3.19 there is an unfounded set of �̂ wrt. Â,
which contradicts our assumption.

This corollary can be used as follows to increase performance of an evaluation algorithm:
if there is no cycle wrt. !d

p containing e-edges, then an explicit unfounded set check is not

necessary because the unfounded set check made during evaluation of �̂ suf�ces. Note that
this test can be done ef�ciently (in fact in linear time, similar to deciding strati�ability of an
ordinary logic program). Moreover, in practice one can abstract from !d

p by using analogous
relations on the level of predicates instead of atoms. Clearly, if there is no e-cycle in the predicate
dependency graph, then there can also be no e-cycle in the atom dependency graph. Hence, the
predicate dependency graph can be used to decide whether the unfounded set check can be
skipped. In our implementation the check is done on the atom level.

Example 40. The program � = fout(X)  &di� [set1; set2](X)g [ F does not require an
unfounded set check for any set of facts F because there is no e-cycle wrt. !d

p, where di�

computes the set difference of the extensions of set1 and set2.
Also � = fstr(Z)  dom(Z); str(X); str(Y ); not &concat [X;Y ](Z)g does not need

such a check; there is a cycle over an external atom, but no e-cycle wrt.!d
p. 2

Note that Corollary 3.4 amounts to a static analysis of e-cycles in the program, whereas
Proposition 3.19 has a dynamic view, i.e., it takes also the current unfounded set (and thus the
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3. PROPOSITIONAL HEX-PROGRAM SOLVING

assignment) into account. The direct application of Proposition 3.19 possibly eliminates more
unnecessary unfounded set checks than Corollary 3.4 because e-cycles in the program may be
broken with respect to the assignment. However, in order to apply Proposition 3.19 directly,
the existence of e-cycles has to be decided before every unfounded set check, and the computa-
tional overhead might easily exceed the savings due to avoided unfounded set checks, whereas
the static approach requires only one such check. Therefore we have decided to apply the deci-
sion criterion in form of Corollary 3.4. A closer analysis of the effects of direct application of
Proposition 3.19 is up to future work.

Moreover, the following proposition states that, intuitively, if �̂ has no unfounded sets
wrt. Â, then any unfounded set U of � wrt. A must contain an atom which is involved in a
cycle wrt.!d

p that has an e-edge.

De�nition 48 (Cyclic Input Atoms). For a program �, an atom a is a cyclic input atom, if there
is an atom b such that b!e

p a and there is a path from a to b wrt.!d
p.

Let CA(�) denote the set of all cyclic input atoms of program �.

Proposition 3.20 (Unfoundedness of Cyclic Input Atom). Let U 6= ; be an unfounded set of �
wrt. A such that U does not contain cyclic input atoms. Then, �̂ has a nonempty unfounded set

wrt. Â.

Proof. If U contains no cyclic input atoms, then all cycles wrt. !d
p containing e-edges in the

atom dependency graph of � are broken, i.e., U does not contain an e-cycle wrt.!d
p. Then by

Proposition 3.19 there is an unfounded set of �̂ wrt. Â.

Proposition 3.20 allows for generating the additional nogood fFa j a 2 CA(�)g and adding
it to ��;A. Again, considering predicates instead of atoms is possible to reduce the overhead
introduced by the dependency graph.

3.2.6 Program Decomposition

The usefulness of the decision criterion can be increased by decomposing the program into
components such that the criterion can be applied component-wise. This allows for restricting
the unfounded set check to components with e-cycles, whereas e-cycle-free components can be
ignored in the check.

Related to our splitting set technique is the work by Drescher et al. (2008), where a similar
program decomposition is used, yet for ordinary programs only. While we consider e-cycles,
which are speci�c for HEX-programs, the interest of Drescher et al. (2008) is with head-cycles
with respect to disjunctive rule heads. In fact, our implementation may be regarded as an exten-
sion of their work since the evaluation of �̂ follows their principles of performing UFS checks
in case of head-cycles. Note that our splitting is also different from the well-known splitting
technique [Lifschitz and Turner, 1994] as we consider only positive dependencies for ordinary
atoms.

Let Comp be a partitioning of the ordinary atoms A(�) of � into subset-maximal strongly
connected components wrt.!p [ !

e
p. We de�ne for each partition C 2 Comp the subprogram

�C associated with C as �C =
�
r 2 � j H(r) \ C 6= ;

	
.
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We next show that if a program has an unfounded set U wrt. A, then U \C is an unfounded
set wrt. A for the subprogram �C associated with some strongly connected component C.

Proposition 3.21. Let U 6= ; be an unfounded set of � wrt. A. Then, for some �C with

C 2 Comp it holds that U \ C is a nonempty unfounded set of �C wrt. A.

Proof. Let U be a nonempty unfounded set of � wrt. A. Because Comp is a decomposition of
A(�) into strongly connected components, the component dependency graph



Comp; f(C1; C2) j C1; C2 2 Comp; 9a1 2 C1; a2 2 C2 : (a1; a2) 2!p [ !

e
pg

�

is acyclic. Following the hierarchical component dependency graph from the nodes without
predecessor components downwards, we can �nd a ‘�rst’ component which has a nonempty
intersection with U , i.e., there exists a component C 2 Comp such that C\U 6= ; but C 0\U =
; for all transitive predecessor components C 0 of C.

We show that U \ C is an unfounded set of �C wrt. A. Let r 2 �C be a rule such that
H(r) \ (U \ C) 6= ;. We have to show that one of the conditions of De�nition 38 holds for r
wrt. A and U \ C.

Because U is an unfounded set of � wrt. A andH(r)\ (U \C) 6= ; impliesH(r)\U 6= ;,
we know that one of the conditions holds for r wrt. A and U . If this is Condition (i) or (iii), then
it trivially holds also wrt. A and U \C because these conditions depend only on the assignment
A, but not on the unfounded set U .

If it is Condition (ii), then A
:
[ ::U 6j= b for some (ordinary or external) body literal

b 2 B(r). We show next that the truth value of all literals in B(r) is the same in A
:
[ ::U and

A
:
[ ::(U \ C), which proves that Condition (ii) holds also wrt. A and U \ C.
If b = not a for some atom a, then Ta 2 A and a 62 U and consequently a 62 U \C, hence

A
:
[ ::(U \ C) 6j= b. If b is an ordinary atom, then either Fb 2 A, which implies immediately

that A
:
[ ::(U \C) 6j= b, or b 2 U . But in the latter case b is either in a predecessor component

C 0 of C or in C itself (since h!p b for all h 2 H(r)). But since U \C 0 = ; for all predecessor
components ofC, we know b 2 C and therefore b 2 (U\C), which impliesA

:
[ ::(U\C) 6j= b.

If b is a positive or default-negated external atom, then all input atoms a to b are either in a
predecessor component C 0 of C or in C itself (since h !e

p a for all h 2 H(r)). We show with

a similar argument as before that the truth value of each input atom a is the same wrt. A
:
[ ::U

and A
:
[ ::(U \ C): if A

:
[ ::U j= a, then Ta 2 A and a 62 U , hence a 62 (U \ C) and

therefore A
:
[ ::(U \ C) j= a. If A

:
[ ::U 6j= a, then either Fa 2 A, which immediately

implies A
:
[ ::(U \ C) 6j= a, or a 2 U . But in the latter case a must be in C because

U \ C 0 = ; for all predecessor components C 0 of C. Therefore a 2 (U \ C) and consequently
A

:
[ ::(U \ C) 6j= a. Because all input atoms a have the same truth value wrt. A

:
[ ::U and

A
:
[ ::(U \ C), the same holds also for the positive or default-negated external atom b itself.

This proposition states that a search for unfounded sets can be done independently for the
subprograms �C for all C 2 Comp. If there is an unfounded set of � wrt. an assignment, then
there is also one of at least one program component wrt. this assignment. However, we know
by Corollary 3.4 that programs � without e-cycles cannot contain unfounded sets, which are not
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r p q
!p

!e
p

!e
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Figure 3.3: Decomposition of the Program from Example 41

already detected when �̂ is solved. If we apply this proposition to the subprograms �C , we can
safely ignore e-cycle-free program components.

Example 41. Reconsider the program � from Example 38. Then Comp contains the compo-
nents C1 = fp; qg and C2 = frg and we have �C1 = fp  &id [r ](); p  q; q  pg
and �C2 = fr  &id [r ]()g (see Figure 3.3). By Proposition 3.21, each unfounded set of �
wrt. some assignment can also detected in one of the components. Consider e.g. U = fp; q; rg
wrt. A = fTp;Tq;Trg. Then U \ frg = frg is also an unfounded set of �C2 wrt. A.

By separate application of Corollary 3.4 to the components, we can conclude that there can
be no unfounded sets over �C1 that are not already detected when �̂ is evaluated (because it
has no e-cycles). Hence, the additional unfounded set check is only necessary for �C2 . In-
deed, the only unfounded set which is not detected when �̂ is evaluated is frg of �C2 wrt. any
interpretation A � fTrg. 2

Finally, one can also show that splitting, i.e., the component-wise check for foundedness,
does not lead to spurious unfounded sets.

Proposition 3.22. If U is an unfounded set of �C wrt. A such that U � C, then U is an

unfounded set of � wrt. A.

Proof. If U = ;, then the result holds trivially. By de�nition of �C we have H(r) \ C = ; for
all r 2 �n�C . By the precondition of the proposition we have U � C. But thenH(r)\U = ;
for all r 2 � n�C and U is an unfounded set of � wrt. A.

More generally, unfounded set checks may also be performed over program components
larger than single strongly connected components, but we leave this extension for future work.

3.2.7 Minimality Checking Algorithm

We now summarize the results from the previous subsections algorithmically and integrate them
into Algorithm GuessAndCheckHexEvaluation. Intuitively, the idea is to construct the nogood
set for unfounded set detection (using one of the two encodings) and to enumerate its solutions
until either a solution passes the post-check or all solutions have been exhausted. In the for-
mer case an unfounded set has been found, in the latter it is proven that there does not exist
an unfounded set. The procedure is formalized in Algorithm FLPCheck and summarized in
Figure 3.4.
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Algorithm FLPCheck

Input: A program �, a compatible set Â, a set of nogoods r of �
Output: true if A is an answer set of � and false otherwise, learned nogoods added tor

(a) for C 2 Comp do

(b) if there is an e-cycle of �C wrt.!d
p then

if encoding � then

SAT instance is ��C ;A

Let T (N) be T�(N)

if encoding 
 then

SAT instance is 
�C
with assumptions AA

Let T (N) be T
(N)

(c) while SAT instance has more solutions do

Let S be the next solution of the SAT instance
Let U be the unfounded set candidate encoded by S

isUFS  true

(d) for all external atoms &g [y](x) in �C do

Evaluate &g [y]
r  r[ �(&g [y];A)
Add T (N) to the SAT instance for all N 2 �(&g [y];A)

if Te&g[y](x) 2 S, A 6j= &g [y](x) and A
:
[ ::U 6j= &g [y](x) then

isUFS  false

if Fe&g[y](x) 2 S, A j= &g [y](x) and A
:
[ ::U j= &g [y](x) then

isUFS  false

(e) if isUFS then

Let N 2 L1(U;�C ;A) be a nogood learned from the UFS
r  r[ fNg
return false

return true
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Figure 3.4: Visualization of Algorithm FLPCheck

One can show that it identi�es all answer sets among the compatible sets of a program. This
property is essential for the correctness and completeness of Algorithm GuessAndCheckHexE-
valuation as stated by Theorem 1. Thus, the collection of all algorithms developed in this section
is sound and complete for the HEX-semantics for arbitrary ground HEX-programs.

Theorem 3 (Soundness and Completeness of Algorithm FLPCheck). For every program �
(i) Algorithm FLPCheck returns true if and only if the restriction A of Â to atoms A(�) is

an answer set of �. (ii) All answer sets of � are solutions to all nogoods added to r by Algo-

rithm FLPCheck.

Proof. (i) The loop at (a) enumerates all subset-maximal strongly connected components of the
ordinary atoms of � wrt. !p [ !

e
p. By Theorem 2, A is an answer set of � if and only if it

is unfounded-free. By Propositions 3.21 and 3.22, there is a nonempty unfounded set of some
�C wrt. A if and only if there a nonempty unfounded set of � wrt. A. Thus, the proposition is
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proved if we can prove that the algorithm returns false if and only if there is an unfounded set
of �C wrt. A.

In Part (b), components without e-cycles are skipped. If there is a nonempty unfounded set
U of some �C wrt. A s.t. no e-cycle of �C wrt.!d

p exists, then by Proposition 3.19 there is also

a nonempty unfounded set U 0 of �̂C wrt. Â = �(�;A). However, U 0 is then also an unfounded
set of �̂ wrt. Â because U 0 \ H(r̂) = ; for all r̂ 2 �̂ n �̂C . Because Â is a compatible set
of � by assumption, it is an answer set of �̂. Thus Â is unfounded-free wrt. �̂, i.e., U 0 cannot
exist. Thus, for components without e-cycles, no unfounded set can be detected and they can be
ignored.

If there are e-cycles of �C wrt. !d
p, then we choose an encoding � or 
 and setup the

according SAT instance. The loop at (c) enumerates all solutions S to ��;A, which encode can-
didate unfounded sets and include all unfounded sets of � wrt. A by Proposition 3.6 resp. 3.9.
The loop at (d) evaluates all external atoms, and adds the learned valid input-output relationships
to the main search (via r) and in transformed form to the UFS search. This is conservative by
Propositions 3.14 and 3.15. The loop further implements the post-check formalized by Propo-
sitions 3.7 and 3.10. Thus, isUFS is set to true and the if at (e) returns false if and only if the
post-check is passed for some solution S, i.e., an unfounded set of � wrt. A exists; otherwise
true is returned after the loop at (c).

(ii) The algorithm adds only a nogood N 2 L1(U;�C ;A) if U is an unfounded set of �C

wrt. A. The claim follows then from Proposition 3.16.

3.3 Wellfounded Evaluation Algorithm for Monotonic Ground

HEX-Programs

For monotonic programs the evaluation is much simpler, both from a conceptual and from a
computational point of view. To this end, we introduce monotonic HEX-programs as follows.

De�nition 49. A HEX-program � is monotonic, if

(i) for any a; b 2 A(�), a !e
n b or a !n b in the atom dependency graph ADG(�) implies

that b : 2 �, i.e., b is a fact; and

(ii) � does not contain disjunctions.

The intuition behind this de�nition is that there is no nondeterminism in the program, once
the facts have been �xed.

Example 42. The program �0 = fs(a); s(Y )  s(X);&concat [X; a](Y ); limit(Y )g from
Example 9 is monotonic. 2

The evaluation of such programs is carried out by Algorithm WellfoundedHexEvaluation.
This algorithm was sketched by Schindlauer (2006), but not formalized. It starts with an assign-
ment consisting of all Ta for all facts a  in the program. Then the assignment is iteratively
expanded by adding the (single) head atoms of all rules whose bodies are satis�ed by A, if the
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unassigned atoms are assumed to be false. As the program is �nite, this procedure will eventu-
ally reach a �xpoint, i.e., the assignment is not changed anymore, or a constraint �res. In the
latter case there does not exist an answer set of �, otherwise the �xpoint, extended by Fa for all
atoms a which were not derived, is the unique answer set.

Algorithm WellfoundedHexEvaluation

Input: A monotonic ground HEX-program �
Output: All answer sets of �

A ;
// iteratively expand the assignment by all atoms derived

by rules with satisfied bodies

while A changed do

A A [
�
Ta j r 2 �; a 2 H(r);A [ fFa j a 2 A(�);Ta 62 Ag j= B(r)

	

if A [ fFa j a 2 A(�);Ta 62 Ag j= B(r) for constraint r 2 � then

return ;

// add false literals for all atoms which were not derived

return
�
A [ fFa j a 2 A(�);Ta 62 Ag

	

One can formally show that this algorithm is sound and complete wrt. the HEX-semantics.

Proposition 3.23. If Algorithm WellfoundedHexEvaluation returns (i) a set containing one

interpretation, then it is the unique answer set of �; (ii) ;, then there is no answer set of �.

Proof. (i) We �rst show that, if the algorithm returns a set containing one interpretation, then
this interpretation is an answer set. Suppose Algorithm WellfoundedHexEvaluation returns an
interpretation A. Then all rules in � are satis�ed, because otherwise for some rule r 2 �, the
body B(r) is satis�ed and the head H(r) is not. But this is impossible, because in this case the
loop would not have terminated and a 2 H(r) would have been added as positive literal to A.
Moreover, A is also subset-minimal wrt. f�A because for any interpretation A0 < A, at least
one rule body B(r) for r 2 � is satis�ed by A0 but such that the corresponding head H(r) is
not. Otherwise the atom a 2 H(r) would not have been added to A. As A0 j= B(r) implies
A j= B(r) by monotonicity of our program, this means that we have also r 2 f�A. Hence, A0

is not a model of the reduct of � wrt. A.
Moreover, A must be contained in any answer set A0 of � since otherwise some rule would

be violated (a rule which derives some atom that is true in A but false in A0). But then by
minimality of answer sets we can conclude that A is the only answer set.

(ii) Now we show that, if the algorithm returns ;, then there does not exist an answer set
of �. Suppose the algorithm returns ;. Then for the intermediate result A of our algorithm
just before ; is returned, a constraint in � is violated. Since � is monotonic, the only way of
satisfying the constraint is to change some signed literals in A from true to false (note that the
constraint cannot contain any not a in its body such that a could become true in a later iteration,
since this contradicts monotonicity of the program). But then the resulting assignment A0 keeps
at least one rule unsatis�ed, because otherwise no a such that Ta 2 A;Fa 2 A0 would have
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been set to true by our algorithm. Hence, neither A, nor any smaller or incomparable assignment
can be an answer set of �. By monotonicity of the constraint, also no larger assignment can be
an answer set, i.e., � has no answer set.

Corollary 3.5. Algorithm WellfoundedHexEvaluation returns all answer sets of a monotonic

HEX-program �.

Proof. If the algorithms returns an interpretation which is not an answer set we have a contra-
diction with Proposition 3.23 (i). If it misses to return an answer set we have a contradiction
with Proposition 3.23 (ii).

This allows for using Algorithm WellfoundedHexEvaluation in place of EvalGroundHex-
Program in EvaluateExtendedPreGroundable in Chapter 2. It is easy to see that this algorithm
is polynomial (modulo complexity of external atom evaluations) because the number of iter-
ations is bounded by A(�) and each iteration is bounded by the total number of body atoms
in the program (if implemented naively). Thus, the algorithm is usually more ef�cient than
Algorithm GuessAndCheckHexEvaluation.

3.4 Related Work and Summary

The chapter is concluded with a discussion of related work. We then give a summary and an
outlook on future work.

3.4.1 Related Work

The basic idea of our con�ict-driven algorithm is related to constraint ASP solving, which is
an extension of ASP programs by constraint atoms (comparisons of terms, e.g. X � 5), and
global constraints such as domain restrictions of constraint variables. Algorithms for constraint
ASP solving have been presented by Gebser et al. (2009) and by Ostrowski and Schaub (2012)
and are realized in the CLINGCON system. External atom evaluation in our algorithm can su-
per�cially be regarded as constraint propagation. However, while both Gebser et al. (2009)
and Ostrowski and Schaub (2012) consider a particular application, we deal with a more ab-
stract interface to external sources. An important difference between CLINGCON and external
behavior learning (EBL) is that the constraint solver is seen as a black box, whereas we ex-
ploit known properties of external sources. Moreover, we support user-de�ned learning, i.e.,
customization of the default construction of con�ict clauses to incorporate knowledge about the
sources, as discussed in Section 3.1.1. Another difference is the construction of con�ict clauses.
Constraint ASP has special constraint atoms, which may be contradictory, e.g. T(X > 10) and
T(X = 5). The learned clauses are sets of constraint literals, which are kept as small as pos-
sible. In our algorithm we have usually no con�icts between ground external atoms as output
atoms are mostly independent of each other (excepting e.g. functional sources). Instead, we have
a strong relationship between the input and the output. This is re�ected by con�ict clauses which
usually consist of (relevant) input atoms and the negation of one output atom. As in constraint
ASP solving, the key for ef�ciency is keeping con�ict clauses small.
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Unfounded set checking has been established as a fruitful approach in ASP solving. Found-
edness is besides grounding one of the main differences between ASP and SAT solving. Histor-
ically, different kinds of unfounded set checks with different complexities have been developed
for various program classes. Normal logic programs without external sources require already an
unfounded set check which runs, however, in polynomial time and is frequently realized using
source pointers [Simons et al., 2002]. Intuitively, the reasoner stores for each atom a pointer to
a rule which possibly supports this atom. The list of source pointers is updated during propaga-
tion. If at some point there is no supporting rule for an atom, then it can be concluded that this
atom must be false. The approach has then been extended to disjunctive logic programs. Related
to our work is the one of Koch et al. (2003), which reduces stable model checking for disjunc-
tive logic programs to unsatis�ability testing of CNFs, which, like answer set checking from
FLP-reducts, is co-NP-complete [Faber et al., 2011]. The approach of Koch et al. (2003) was
then extended to con�ict-driven learning and unfounded set checking by Drescher et al. (2008).
Here, two instances of the reasoner generate and check answer set candidates. As a further exten-
sion we considered unfounded set checking for disjunctive logic programs with external atoms.
In our setting, we need in addition to respect the semantics of external sources, thus the results
there do not carry over immediately. External sources prevent encoding the whole unfounded set
search in a SAT instance since their semantics is in general not known a priori. Thus, we devel-
oped a SAT encoding combined with a post-check. The technique of Drescher et al. (2008) was
recently, in parallel to our work, re�ned by exploiting assumptions such that the encoding of the
unfounded set search does not need to be adapted to the current assignment [Gebser et al., 2013].
This is related to our uniform encoding of the unfounded set search, but still restricted to dis-
junctive ASP without external sources. From a complexity point of view, the difference between
ordinary disjunctive programs and FLP programs with external atoms is that co-NP-hardness
holds for the latter already for Horn programs with nonmonotonic external atoms that are de-
cidable in polynomial time. For computationally harder external atoms, the complexity might
increase relative to an oracle for the external function [Faber et al., 2011]. However, the results
from this thesis do still apply in such cases.

Moreover, Drescher et al. (2008) also use a splitting technique related to our program de-
composition, yet for ordinary programs only. While we consider e-cycles, which are speci�c
for HEX-programs, the interest of Drescher et al. (2008) is with head-cycles with respect to
disjunctive rule heads. In fact, our technique may be regarded as an extension of the work
by Drescher et al. (2008), since the evaluation of �̂ follows their principles of performing UFS
checks in case of head-cycles. Note that our splitting is different from the well-known splitting
technique [Lifschitz and Turner, 1994] as we consider only positive dependencies for ordinary
atoms.

The unfounded set check presented in this work is needed for the FLP semantics, but other
semantics may not need on such a check. For instance, Shen (2011), Shen and Wang (2011)
and Shen et al. (2014) present a semantics where unfounded set checking is essentially replaced
by a �xpoint iteration which, intuitively, tests if a model candidate reproduces itself. This might
be more ef�cient in some cases.

84



3.4. Related Work and Summary

3.4.2 Summary and Future Work

In this chapter we have �rst introduced a novel guess and check evaluation algorithm for ground
HEX-programs. It is related to con�ict-driven disjunctive ASP solving [Drescher et al., 2008],
but extends the techniques to programs with external atoms. In contrast to the previous transla-
tion approach, the new algorithms respect external atoms as �rst-class citizens.

Whenever the algorithm calls external sources, which is not only done after a model candi-
date has been created but possibly also during model construction, it possibly learns additional
nogoods from the call. While the algorithm is designed in a generic form which uses learned
nogoods abstractly de�ned by learning functions, we have also speci�ed concrete learning func-
tions for external atoms with frequent properties, such as functionality and monotonicity. We
have shown that adding these nogoods to the solver is correct in the sense that it does not elimi-
nate compatible sets. Hence, the nogoods help restricting the search space by exploiting part of
the known input-output behavior of external atoms.

Answer sets are subset-minimal. Checking the minimality is in general (in presence of dis-
junctive rule heads and/or nonmonotonic external atoms) a co-NP-complete task and requires
special attention. We have designed a minimality check based on the concept of unfounded
sets [Faber, 2005]. The search for unfounded sets is realized as a separate search problem which
is encoded as SAT instance, for which we discussed two encodings. That is, the solutions to the
SAT instance contain representations of all unfounded sets, but not all solutions are such rep-
resentations. However, the unfounded sets can be identi�ed among all solutions by a relatively
simple post-check. We have then shown several optimizations of the basic minimality check and
tightly coupled the minimality check and the search for unfounded sets by nogood exchanging,
i.e., nogoods learned in one search problem can be reused for the other one.

We have shown a decision criterion which allows for skipping the entire minimality check
for certain practically relevant program classes. The fundamental idea is exploiting the absence
of cycles over external atoms. This criterion can not only be applied on the overall HEX-program,
but also on program components wrt. a program decomposition introduced in this chapter.

Finally, we have provided an alternative algorithm for programs (or program components in
our model-building framework) which are monotonic. This algorithm has lower computational
costs as it is based �xpoint iteration instead of guessing, which runs in polynomial time.

Empirical benchmark results are postponed to Chapter 5. They will show that the new algo-
rithms lead to signi�cantly better runtimes, where the gain is potentially even exponential.

We now discuss some starting points for future work. The identi�cation of further proper-
ties for informed learning is an important topic. Another issue is the development of heuristics
for several purposes. First, our algorithm can perform unfounded set checks already during the
search. Second, we have introduced two encodings for unfounded set checking and observe in
Chapter 5 that each of them might be more ef�cient in some cases. A heuristics for dynami-
cally choosing between the two encodings might be subject to future work. Third, our algorithm
evaluates external atoms whenever their input is complete. However, this is only one possible
strategy. It is also possible to delay external atom evaluation although the input is already com-
plete, which may be advantageous for external sources with high computational costs. On the
other hand, it might also be useful in some cases to evaluate external atoms already with partial
input (e.g., for monotonic external atoms), since this could derive further nogoods which can
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already falsify the partial assignments. Thus, the development of a heuristics for deciding when
to evaluate external atoms is also an interesting point for future work.
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Chapter 4
Grounding and Domain Expansion

In this chapter we consider programs with variables and appropriate grounding algorithms, i.e.,
transformations of programs with variables into propositional programs. While ef�cient ground-
ing algorithms for ordinary ASP programs already exist, the presence of external atoms calls for
new grounding techniques. In particular, value invention is a special challenge, i.e., programs
with external sources which return constants that do not show up in the original program. While
naive support of value invention leads to programs with in�nite groundings and answer sets in
general, suitable safety conditions can be used to restrict the use of value invention such that this
is avoided. Traditionally, the notion of strong domain-expansion safety as by Eiter et al. (2006a)
(recapitulated in Chapter 2) was used. However, this notion is unnecessarily restrictive because
it prevents value invention in many cases although the program can be �nitely grounded.

After recapitulating the model-building framework for HEX-programs in Section 4.1, re-
laxing the safety conditions is thus a main concern in this chapter and will be addressed in
Section 4.2. This will lead to a new class of programs which is in contrast to strongly domain-
expansion safe HEX-programs from Chapter 2 and will be called liberally domain-expansion

safe HEX-programs.

Based on this new class we then develop a new grounding algorithm in Section 4.3. While
the traditional grounding algorithm cannot directly process arbitrary strongly domain-expansion
safe programs but relies on a decomposition into extended pre-groundable HEX-fragments, as
already brie�y discussed in Chapter 2, the new algorithm will be able to ground arbitrary liber-
ally and strongly domain-expansion safe HEX-programs as the latter are a strict generalization
of liberally domain-expansion safe programs. While, program decomposition is not necessary
anymore, it still can be useful in some cases. This gives the designer of evaluation heuristics for
the model-building framework more freedom. The new algorithm is integrated into the model-
building framework, which is recapitulated in Section 4.1, in Section 4.4.

Finally, we will develop a new evaluation heuristics for the model-building framework which
aims at two opposite goals. The program shall be split as rarely as possible because this is
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advantageous for the evaluation algorithms from Chapter 3. However, in some cases splits are of
great importance for our new grounding algorithm from Section 4.3 for ef�ciency reasons. Thus,
the new heuristics splits the program whenever this is advantageous for grounding purposes
(although not necessary), but not more often.

4.1 The Model-Building Framework for HEX-Programs

The evaluation of HEX-programs is traditionally based on a model-building framework intro-
duced by Eiter et al. (2011a) and described in more detail by Schüller (2012). The idea is to
split the non-ground program into (possibly overlapping) smaller program components, called
evaluation units or units in short, where each evaluation unit is an extended pre-groundable
HEX-program as described in Chapter 2. The decomposition is achieved by application of a gen-
eralized version of the Splitting Theorem [Lifschitz and Turner, 1994] and the Global Splitting

Theorem [Schindlauer, 2006]. For this purpose, a dependency graph between non-ground rules
of the program is constructed, which is in contrast to former evaluation techniques that used
dependencies between atoms instead of rules [Eiter et al., 2006b; Schindlauer, 2006].

The decomposition of the overall program into evaluation units is done for two reasons.
First, this may increase ef�ciency in some cases, as observed by Schüller (2012). And second,
the decomposition is sometimes even necessary because the actual evaluation in Algorithm Eval-
uateExtendedPreGroundable (see Chapter 2) can only handle extended pre-groundable HEX-
programs. Thus, if the input program is not extended pre-groundable, the framework must split
it such that each unit becomes extended pre-groundable. It was shown by Schüller (2012) that
such a splitting exists for every strongly domain-expansion safe program. In later subsections
of this chapter, we will develop a more advanced algorithm which can handle a larger class of
programs directly. This gives the framework more freedom in the decision whether units are
split or not.

The work by Eiter et al. (2011a) and Schüller (2012) focuses on the evaluation framework as
a whole and uses black-box ASP solvers for evaluating the single evaluation unit, i.e., for imple-
menting Algorithm EvaluateExtendedPreGroundable. In this sense, a macroscopic perspective
is chosen. In contrast, this thesis puts the focus on the evaluation of the units and therefore
has a microscopic point of view. Nevertheless we describe the main aspects of the evaluation
framework to provide a complete picture of the evaluation methods.

Our running example in this subsection will be the following.

Example 43. Let � be the following ground program with facts employee(a); employee(b);
employee(c) and quali�cation(c):

r1 : team1(a) _ team1(b) 
r2 : team1(b) _ team1(c) 
r3 : team2(X) &di� [employee; team1](X)
r4 : team1a(X) &di� [team1; quali�cation](X)
r5 : team1b(X) team1(X); quali�cation(X)
r6 : bonus(X) team2(X)
r7 : bonus(X) team1b(X)
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Intuitively, the program considers a company with employees de�ned using predicate employee,
some of which have a certain quali�cation . The program forms then two teams team1 and
team2 such that certain restrictions concerning the assignment of employees to team1, encoded
by r1 and r2, are satis�ed. By r3, everyone who is not in team1 shall be in team2. Then team1
is further divided into two sub-teams team1a and team1b, where team1b shall consist of all
employees who have the quali�cation (r5); the others are assigned to team1a (r4). Finally, all
employees working in team2 or in team1b shall be eligible for a bonus (r6 and r7). 2

4.1.1 Formalization of the Model-Building Framework

The model-building framework is based on a notion of rule dependencies, which is in contrast to
the previous approach [Schindlauer, 2006] based on the atom dependency graph ADG(�). This
has the advantage that many theorems by Schüller (2012) become simpler. Moreover, the new
framework is also more �exible because it abstractly uses evaluation graphs which de�ne the
ordering of program evaluation, while the former approach hard-coded this in the algorithms.

De�nition 50 (Rule Dependencies). Let � be a program with rules r; s 2 �. We denote by
r !m s (resp. r !n s) that r depends monotonically (resp. depends nonmonotonically) on s.
We de�ne:

(i) If a 2 B+(r); b 2 H(s) and a � b, then r !m s.

(ii) If a 2 B�(r); b 2 H(s) and a � b, then r !n s.

(iii) If a 2 H(r); b 2 H(s) and a � b, then both r !m s and s!m r.

(iv) If a 2 B(r) is an external atom of form &g [Y](X) where Y = Y1; : : : ; Yn, the input Yi = p

for 1 � i � ar I(&g) has type(&g ; i) = pred, and b 2 H(s) is an atom of form p(Z),
then

� r !m s if &g is monotonic (in all predicate parameters) and a 2 B+(r); and

� r !n s otherwise.

Note that the dependency in Condition (iv) is considered monotonic only if the external atom
is monotonic in all parameters. This is because the former formalization (and implementation) of
HEX did not distinguish between different parameters, i.e., there was only a global monotonicity
attribute of each external predicate. In this thesis we have a more �ne-grained approach and use
a separate monotonicity attribute for each predicate parameter, which allows for using a more
liberal de�nition of rule dependencies (monotonic dependencies are usually advantageous over
nonmonotonic ones). However, as this thesis does not focus on the evaluation framework, we
stick with the former de�nition at this point and leave the formalization of the relaxed notion for
future work.

Example 44 (ctd.). For the program from Example 43 we have the following dependencies,
which are visualized in Figure 4.1:

� r1 !m r2 and r2 !m r1 by (iii)
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r1 r2

r3 r4

r5

r6

r7

!m

!n !n

!n

!n

!m

!m

!m

!m

Figure 4.1: Rule Dependencies of the Program from Examples 43 and 44

� r3 !n r1 and r3 !n r2 by (iv)

� r4 !n r1 and r4 !n r2 by (iv)

� r5 !m r1 and r5 !m r2 by (i)

� r6 !m r3 by (i)

� r7 !m r5 by (i)

2

The dependency graph is used to construct the evaluation graph which controls the overall
evaluation of the program. The evaluation graph is composed of extended pre-groundable HEX-
programs as nodes, which are called evaluation units in this context. The edges of the evaluation
graph connect the evaluation units acyclically and are derived from the dependency relation
between rules. More formally, we introduce the following concepts [Schüller, 2012].

De�nition 51 ((Evaluation) Unit). An (evaluation) unit is an extended pre-groundable HEX-
program.

De�nition 52 (Evaluation Graph). An evaluation graph E = hV;Ei of a program � is a directed
acyclic graph; vertices V are evaluation units and E has the following properties:

(a)
S

u2V u = �, i.e., every rule r 2 � is contained in at least one unit;

(b) for every non-constraint r 2 �, it holds that
��fu 2 V j r 2 ug

�� = 1, i.e., r is contained in
exactly one unit;

(c) for each nonmonotonic dependency r !n s between rules r; s 2 � and for all u 2 V with
r 2 u and v 2 V with s 2 v s.t. u 6= v, there exists an edge (u; v) 2 E, i.e., nonmonotonic
dependencies between rules have corresponding edges everywhere in E ; and
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(d) for each monotonic dependency r !m s between rules r; s 2 �, there exists one u 2 V
with r 2 u such that E contains all edges (u; v) with v 2 V , s 2 v and v 6= u, i.e.,
there is (at least) one unit in E where all monotonic dependencies from r to other rules have
corresponding outgoing edges in E .

We denote by predsE(u) the predecessors of unit u in E = hV;Ei, i.e., predsE(u) =
�
v 2

V j (u; v) 2 E
	

. For units u, w we write u < w if there exists a path from u to w in E
and u � w if u < w or u = w. Moreover, for a unit u 2 V let u< =

S
w2U;u<w w and

u� = u< [ fug.
Informally, the edges of E cover the rule dependencies in the sense that if r 2 v depends on

s 2 w with w 6= v 2 V , then there must be an edge from v to w in E. For the sake of simplicity
of the formal results, it is advantageous to introduce an empty �nal evaluation unit u�nal which
depends on all other units, as shown in the following example.

Example 45 (ctd.). A valid evaluation graph for the program in Example 43 is E = hV;Ei with

V =
�
u1 = fr1; r2g; u2 = fr3g; u3 = fr4g; u4 = fr5g; u5 = fr6; r7g; u�nal = ;

	

E =
�

(u2; u1); (u3; u1); (u4; u1); (u5; u2); (u5; u4);

(u�nal ; u1); (u�nal ; u2); (u�nal ; u3); (u�nal ; u4); (u�nal ; u5)
	

as visualized in Figure 4.2 (where u�nal is omitted). 2

team1(a) _ team1(b)  
team1(b) _ team1(c) 

team2(X) &di�

[employee; team1](X)
team1a(X) &di�

[team1; quali�cation](X)
team1b(X) team1(X);

quali�cation(X)

bonus(X)  team2(X)
bonus(X) team1b(X)

u1

u2 u3 u4

u5

Figure 4.2: Evaluation Graph of Example 45 without u�nal

Note that there exist in general multiple valid evaluation graphs for a given program. How-
ever, it was shown in Proposition 16 by Schüller (2012) that every strongly domain-expansion
safe HEX-program has at least one evaluation graph, which is crucial for the applicability of the
framework in the general setting. The construction of a concrete evaluation graph is the job of
so-called evaluation heuristics which can be plugged into the framework. The heuristics may
have signi�cant in�uence on ef�ciency [Eiter et al., 2011a] and we will develop a new heuristics
in Section 4.5.
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5
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mO
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7
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8
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9

fteam1a(a)g
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12
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3)
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13
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14

;
mO

15

team2(b);
team1b(c)

mI
16

team2(a);
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mI
17
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bonus(c)g
mO

18

fbonus(a);
bonus(c)g
mO

19

u1

u2
u3 u4

u5

Figure 4.3: Answer Set Graph of Example 48

An important concept for the model building process is that of �rst ancestor intersection

units. This will allow us in the following to decide whether the output models of multiple
predecessor units origin from the same ancestor.

De�nition 53 (First Ancestor Intersection Unit (FAI)). For an evaluation graph E = hV;Ei and
distinct units v; w 2 V , we say that w is a �rst ancestor intersection unit (FAI) of v if there exist
paths p1 6= p2 from v to w in E such that p1 and p2 share no nodes apart from v and w. We
denote by fai(v) the set of all FAIs of a unit v.

Example 46 (ctd.). In the evaluation graph from Example 44, u1 is the only FAI of u5 because
there exist two paths u5; u2; u1 and u5; u4; u1 from u5 to u1, but no other. 2

Evaluation is then based on an answer set graph, which interrelates models at evaluation
units in the evaluation graph. Each unit u has assigned a set of input models i -ints(u) and a set
of output models o-ints(u).
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De�nition 54 (Interpretation Structure). An interpretation structure for an evaluation graph E =
hV;Ei is a labeled directed acyclic graph I = hM;F; unit ; type; intiwhere each nodeM � Iid

is from a countable set Iid of identi�ers, e.g., from N, and unit : M ! V , type : M ! fI; Og
and int : M ! 2HB� are total node labeling functions.

Given a unit u 2 V of an evaluation graph E = hV;Ei, we denote for an interpretation struc-
ture I by i -intsI(u) =

�
m 2 M j unit(m) = u and type(m) = I

	
the input interpretations,

and by o-intsI(u) =
�
m 2 M j unit(m) = u and type(m) = O

	
the output interpretations

at unit u, respectively. Given vertex m 2M , we further denote by

int+(m) = int(m) [
[ �

int(m0) j m0 2M and m0 is reachable from m in I
	

the expanded interpretation of m.
An interpretation structure is called interpretation graph, if the edge relation satis�es some

further properties [Schüller, 2012].

De�nition 55 (Interpretation Graph). An interpretation graph I = fM;F; unit ; type; intg for
an evaluation graph E = hV;Ei is an interpretation structure which ful�lls for every u 2 V the
following properties:

(IG-I) I-connectedness: for every m 2 o-intsI(u) the structure contains exactly one outgoing
edge (m;m0) 2 F and m0 2 i -intsI(u) is an i-interpretation at unit u;

(IG-O) O-connectedness: for every m 2 i -intsI(u) and for every predecessor unit ui 2
predsE(u) of u, there is exactly one outgoing edge (m;mi) 2 F and mi 2 o-intsI(ui)
(every mi is an o-interpretation at the respective unit ui);

(IG-F) FAI intersection1: for every m 2 i -intsI(u), let I 0 be the subgraph of I reachable
from m, and let E 0 be the subgraph of E reachable from u. Then I 0 contains exactly one
o-interpretation at each evaluation unit of E 0; and

(IG-U) Uniqueness: for each pair of distinct verticesm1;m2 2M;m1 6= m2 with unit(m1) =
unit(m2) = u the expanded interpretation of m1 and m2 differs, formally int+(m1) 6=
int+(m2).

Example 47 (ctd.). Figure 4.3 shows an interpretation graph for the evaluation graph of Exam-
ple 44. Actually it shows an answer set graph, which is a special interpretation graph and is
introduced next. 2

It is intended that an output model mO of a unit u results from the corresponding input
modelmI, if Algorithm EvaluateExtendedPreGroundable is called for the program u augmented
by mI interpreted as facts, and corresponds to an answer set of u�. However, the de�nition

1This property is called FAI intersection because it implies that for any units u and v 2 fai(u), all paths in the
interpretation graph from some m 2 i-intsI(u) to an output model m0 2 o-intsI(v) share the same m0, i.e., the
paths ‘intersect’ at FAI units. In fact, in order to check the property for a unit u, it suf�ces to consider all v 2 fai(u)
because other ancestor units between u and v are not reachable via multiple paths, thus the property cannot be
violated (cf. the proof of Proposition 17 by Schüller (2012)).
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of an interpretation graph does not refer to the HEX-programs in the evaluation units. Thus,
it is not yet guaranteed that the output interpretations of the �nal evaluation unit are really
the intended answer sets of the program. This requires the further notion of an answer set

graph [Schüller, 2012].

De�nition 56 (Answer Set Graph). Given an evaluation graph E = hV;Ei, an answer set graph

is an interpretation graph I for E such that for each unit u 2 V it holds that

(i) every expanded input interpretation in i -intsI(u) is an answer set of u<, i.e., int+(m) 2
AS(u<) for all m 2 i -intsI(u);

(ii) every expanded output interpretation in i -intsI(u) is an answer set of u�, i.e., int+(m) 2
AS(u�) for all m 2 o-intsI(u); and

(iii) every input interpretation at u is the union of the output interpretations it depends on, i.e.,
int(m) =

S
(m;mi)2F int(mi).

4.1.2 Using the Framework for Model Building

For the description of the evaluation algorithm we need to introduce the concept of joins. This
will allow us to decide which combinations of output models of predecessor units serve as an
input model to a successor unit.

De�nition 57 (Join). Let I = hM;F; unit ; type; inti be an interpretation graph for an evalua-
tion graph E = hV;Ei. Let u 2 V be an evaluation unit and u1; : : : ; uk be all units on which u
depends. Let mi 2 o-ints(ui) for 1 � i � k be output models of predecessor units of u.

Then the join m1 1 � � � 1 mk =
S

1�i�kmi is de�ned if for each u0 2 fai(u) there exists
exactly one model m0 2 o-ints(u0) reachable from some model mi, 1 � i � k, and unde�ned
otherwise.

Intuitively, the concept ensures that only those combinations of output models form an input
model to an evaluation unit, which result from one common ancestor model in the model graph.

During program evaluation, Algorithm BuildAnswerSets starts from an empty answer set
graph and expands it to the �nal answer set graph as follows. The algorithm iteratively selects
an evaluation unit u such that all direct predecessors u1; : : : ; uk have already been processed.
Then the algorithm computes in the �rst step all input interpretations in Parts (a) and (b) (which
is the empty interpretation for units without predecessors) and in a second step all output inter-
pretations of u in Part (d). Both steps can be described in terms of updates to the answer set
graph. The input interpretations of u�nal correspond then to the answer sets of � (cf. Part (c)),
which is formalized by the following theorem.

Theorem 4 (Theorem 15 by Schüller (2012)). Given an evaluation graph E = (V;E) of a

program �, BuildAnswerSets returns AS(�).

This is demonstrated with a �nal example.
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Algorithm BuildAnswerSets

Input: Evaluation graph E = (V;E) for a HEX-program � with a unit u�nal that depends
on all other units in V

Output: All answer sets of �

M  ;; F  ;; unit  ;; type  ;; int  ;; U  V

while U 6= ; do

Choose u 2 U s.t. predsE(u) \ U = ;
Let fu1; : : : ; ukg = predsE(u)

(a) if k = 0 then

m max (M) + 1
M  M [ fmg
unit(m) u; type(m) I; int(m) ;

(b) else

for m1 2 o-ints(u1); : : : ;mk 2 o-ints(uk) do

if J = m1 1 � � � 1 mk is de�ned then

m max (M) + 1
M  M [ fmg
F  F [

�
(m;mi) j 1 � i � k

	

unit(m) u; type(m) I; int(m) J

(c) if u = u�nal then

return i -ints(u�nal )

(d) for m0 2 i -ints(u) do

O  EvaluateExtendedPreGroundable
�
u; int(m0)

�

for o 2 O do

m max (M) + 1
M  M [ fmg
F  F [

�
(m;m0) j 1 � i � k

	

unit(m) u; type(m) O; int(m) o

U  U n fug
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Example 48 (ctd.). We now describe the construction of the answer set graph as depicted in
Figure 4.3 (without �nal unit u�nal ). The evaluation graph in Example 44 has a single unit u1

without predecessors. Its only input model is the empty one, i.e., i -ints(u1 ) = fmI
1 = ;g.

The algorithm chooses u1 and computes the set of output models for input model ;, which
is o-ints(u1 ) =

�
mO

2 = fteam1(a); team1(c)g;mO
3 = fteam1(b)g

	
.

In the next step, one of the components u2, u3 or u4 can be chosen for evaluation because for
each of them the single predecessor unit u1 has already been processed. For u2 and input model
mI

4 = mO
2 = fteam1(a); team1(c)g, the unique output model is mO

6 = fteam2(b)g, and for in-
put model mI

5 = mO
3 = fteam1(b)g, the unique output model is mO

7 = fteam2(a); team2(c)g.
For u3 and input model mI

8 = mO
2 = fteam1(a); team1(c)g, the unique output model is

mO
10 = fteam1a(a)g, and for input model mI

9 = mO
3 = fteam1(b)g, the unique output model

is mO
11 = fteam1a(b)g. For u4 and input model mI

12 = mO
2 = fteam1(a); team1(c)g, the

unique output model is mO
14 = fteam1b(c)g, and for input model mI

13 = mO
3 = fteam1(b)g,

the unique output model is mO
15 = ;.

Then the algorithm chooses u5 for evaluation. The �rst step is the computation of the input
models of u5. Because u5 has two predecessor units u2 and u4 and each of them has two output
models mO

6 , mO
7 resp. mO

14, mO
15, there are four possible combinations. However, only the joins

mI
16 = mO

6 1 mO
14 = fteam2(b); team1b(c)g andmI

17 = mO
7 1 mO

15 = fteam2(a); team2(c)g
are de�ned, because for the common ancestor unit u1 of u5, there is exactly one output model
mO

2 2 o-ints(u1) reachable from mO
6 ;m

O
14 resp. mO

3 2 o-ints(u1) from mO
7 ;m

O
15. In con-

trast, from mO
6 ;m

O
15 and mO

7 ;m
O
14, both output models mO

2 ;m
O
3 of u1 are reachable. In the

second step, the output models of u5 are determined: formI
16 the unique output model ismO

18 =
fbonus(b); bonus(c)g and for mI

17 the unique output model is mO
19 = fbonus(a); bonus(c)g.

Finally, unit u�nal is chosen for evaluation. Actually, as this is the �nal unit and contains no
rules, only the input models need to be determined. We have 5 units with 2 output models each,
thus we have 25 possible combinations. However, only mI

20 = mO
2 1 mO

6 1 mO
10 1 mO

14 1

mO
18 = fteam1(a); team1(c); team1a(a); team1b(c); team2(b); bonus(b); bonus(c)g (with the

single reachable model mO
2 at the common ancestor unit u1) and mI

21 = mO
3 1 mO

7 1 mO
11 1

mO
15 1 mO

19 = fteam1(b); team1a(b); team2(a); team2(c); bonus(a); bonus(c)g (with the sin-
gle reachable model mO

3 at the common ancestor unit u1) are de�ned. These models are the
answer sets of the program. 2

4.2 Liberal Safety Criteria for HEX-Programs

In this section we want to relax the traditional safety criteria as formalized by strong domain-
expansion safety in De�nition 23. We start with an example to demonstrate that some programs
which are not strongly domain-expansion safe are still �nitely groundable, i.e., a �nite subset of
the grounding suf�ces to compute the answer sets.

Example 49. Consider the program �:

�=

(
r1 : t(a); r3 : s(Y ) t(X);&concat [X; a](Y )

r2 : dom(aa); r4 : t(X) s(X); dom(X)

)
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where &concat [X; a](Y ) returns in Y the string in X with a appended, has an in�nite ground-
ing. Note that this program is not strongly domain-expansion safe due to the external atom in
rule r3. However, only rules using a and aa are relevant for program evaluation because the
cycle is ‘broken’ by dom(X) in r4. 2

Note that external sources are largely black boxes to the reasoner. Thus the set of relevant
constants for grounding might be intuitively clear, but not formally. Predetermining is in general
not possible. We call a program �nitely restrictable if a �nite portion of the grounding of the
program is suf�cient to preserve all answer sets, i.e., a �nite grounding has the same answer sets
(wrt. the true atoms) as the complete grounding. This is ensured by additional safety criteria. As
the example demonstrates, strong domain-expansion safety as by De�nition 23 is unnecessarily
restrictive.

Our overall objective in this section is thus to introduce a more liberal notion of safety that
still ensures �nite restrictability. However, rather than to merely generalize an existing notion,
we aim for a generic notion at a conceptual level that may incorporate besides syntactic also se-
mantic information about sources. We will introduce a new notion of liberal domain-expansion

safety which incorporates both syntactic and semantic properties of the program at hand. In the
following, domain-expansion safety refers to liberal domain-expansion safety, unless we explic-
itly say strong domain-expansion safety. Compared to the latter, this gives us a larger class of
programs which are guaranteed to have a �nite grounding that preserves all answer sets. Un-
like strong domain-expansion safety, liberal domain-expansion safety is not a property of entire
atoms but of attributes, i.e., pairs of predicates and argument positions. Intuitively, an attribute
is domain-expansion safe, if the number of different terms in an answer-set preserving ground-
ing (i.e., in a grounding which has the same answer sets if restricted to the positive atoms as
the original program) is �nite. A program is domain-expansion safe, if all its attributes are
domain-expansion safe.

4.2.1 Liberally Domain-Expansion Safe HEX-Programs

Our notion of liberal domain-expansion safety (de-safety) is designed in an extensible fash-
ion, i.e., such that several safety criteria can be easily integrated. For this we parameterize
our de�nition of domain-expansion safety by a term bounding function (TBF), which identi�es
variables in a rule that are ensured to have only �nitely many instantiations in the answer set
preserving grounding. Finiteness of the overall grounding follows then from the properties of
TBFs. Concrete syntactic and semantic properties are realized in our de�nitions of concrete
TBFs (cf. Section 4.2.2).

De�nition 58 (Attributes). For an ordinary predicate p 2 P , let p�i be the i-th attribute of p for
all 1 � i � ar(p). For an external predicate &g 2 X with input list Y in rule r, let &g [Y]r�T i
with T 2 fI; Og be the i-th input resp. output attribute of &g [Y] in r for all 1 � i � arT (&g).

For a program �, the range of an attribute is, intuitively, the set of ground terms which occur
in the position of the attribute. Formally:
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De�nition 59 (Range). For an attribute p�i we de�ne range(p�i;�) = fti j p(t1; : : : ; tar(p)) 2

A(�)g; for an attribute &g [Y]r�T i we de�ne range(&g [Y]r�T i;�) = fxTi j &g [xI](xO) 2
EA(�)g, where xT = xT1 ; : : : ; x

T
arT (&g).

Example 50. Some attributes of the program � from Example 49 are t�1, &concat [X; a]r3�I2
and &concat [X; a]r3�O1. We further have range(t�1;�) = fag. 2

De�nition 60 (Grounding Operator G�). We use the following monotone operator to compute
by �xpoint iteration a �nite subset of grndC(�) for a program �:

G�(�0) =
S

r2�

�
r� j 9A � A(�0);A 6j= ?;A j= B+(r�)

	
,

where A(�0) =
�
Ta;Fa j a 2 A(�0)

	
n fFa j a  : 2 �g and r� is the instance of r under

variable substitution � : V ! C.

Note that in this de�nition, A might be partial, but by convention we assume that all atoms
which are not explicitly assigned to true are false. Moreover, ranges are de�ned also for non-
ground programs.

That is, G� takes a ground program �0 as input and returns all rules from grndC(�) whose
positive body is satis�ed by some assignment over the atoms of �0. Intuitively, the operator iter-
atively extends the grounding by new rules if they are possibly relevant for the evaluation, where
relevance is in terms of satisfaction of the positive rule body by some assignment constructible
over the atoms which are possibly derivable so far.

Obviously, the least �xpoint G1
� (;) of this operator is a subset of grndC(�); we will show

that it is �nite if � is domain-expansion safe according to our new notion. Moreover, we will
show that this grounding preserves all answer sets because all rule instances which are not added
have unsatis�ed bodies anyway.

Example 51. Consider the following program �:

r1 :s(a); r2 : dom(ax ); r3 : dom(axx )
r4 :s(Y ) s(X);&concat [X;x](Y ); dom(Y )

The least �xpoint of G� is the following ground program:

r0
1 : s(a); r0

2 : dom(ax ); r0
3 : dom(axx )

r0
4 : s(ax ) s(a);&concat [a; x](ax); dom(ax)
r0

5 : s(axx ) s(ax);&concat [ax; x](axx); dom(axx)

Rule r0
4 is added in the �rst iteration and rule r0

5 in the second. 2

Towards a formal de�nition of domain-expansion safety, we introduce the following notions.

De�nition 61 (Bounded Terms). A term in a rule is bounded, if the number of substitutions in
G1

� (;) for this term is �nite.

Boundedness of terms is abstractly formalized using term bounding functions (TBFs). That
is, a TBF declares terms as bounded.
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De�nition 62 (Term Bounding Function (TBF)). A term bounding function b(�; r; S;B) maps
a program �, a rule r 2 �, a set S of domain-expansion safe attributes, and a set B of bounded
terms in r to an enlarged set of bounded terms b(�; r; S;B) � B, such that all t 2 b(�; r; S;B)
have �nitely many substitutions in G1

� (;) if

(i) the attributes S have a �nite range in G1
� (;); and

(ii) each term in terms(r) \B has �nitely many substitutions in G1
� (;).

Intuitively, a TBF gets a set of already bounded terms and a set of already domain-expansion
safe attributes. The TBF then derives under these preconditions further terms which are also
bounded.

Our concept derives domain-expansion safety of attributes and programs from the bounded-
ness of variables according to a TBF. We use a mutually inductive de�nition that starts from the
empty set of domain-expansion safe attributes S0(�) and then derives in each step n � 1, �rst
the set Bn(r;�; b) of bounded terms for all rules r, and then an enlarged set Sn(�) of domain-
expansion safe attributes. The set of domain-expansion safe attributes in step n+1 thus depends
on the TBF, which in turn depends on the domain-expansion safe attributes from step n.

De�nition 63 ((Liberal) Domain-Expansion Safety). Let b be a TBF. The set of bounded terms

Bn(r;�; b) in a rule r 2 � in step n � 1 is de�ned as

Bn(r;�; b) =
[

j�0

Bn;j(r;�; b),

where Bn;0(r;�; b) = ; and for j � 0,

Bn;j+1(r;�; b) = b(�; r; Sn�1(�); Bn;j).

The set of domain-expansion safe attributes S1(�) =
S

i�0 Si(�) of a program � is itera-
tively constructed, where S0(�) = ; and for Sn+1(�) with n � 0 we have

� p�i2Sn+1(�) if for each r 2 � and atom p(t1; : : : ; tar(p)) 2 H(r), ti 2 Bn+1(r;�; b),
i.e., ti is bounded;

� &g [Y]r�Ii2Sn+1(�) if each Yi is a bounded variable, or Yi is a predicate input parameter
p and p�1; : : : ; p�ar(p) 2 Sn(�); and

� &g [Y]r�Oi2Sn+1(�) if r contains an external atom &g [Y](X) such that either Xi is
bounded or &g [Y]r�I1; : : : ;&g [Y]r�Iar I(&g) 2 Sn(�).

A program � is (liberally) domain-expansion safe, if it is safe and all its attributes are
domain-expansion safe.

An example is delayed until we have introduced concrete TBFs in Section 4.2.2. However,
the intuition is as follows. In each step, the TBF �rst derives terms which are bounded, exploiting
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e.g. syntactic or semantic criteria. This possibly makes additional attributes domain-expansion
safe, which may trigger in turn further terms to become bounded in the next step.

One can show that S1(�) is �nite, thus the inductive de�nition can be used for computing
S1(�): the iteration can be aborted after �nitely many steps. We �rst note this and other desired
properties.

Proposition 4.1. The set S1(�) is �nite.

Proof. The sets P , X and � are �nite and each ordinary and external predicate has a �nite (input
and output) arity. Therefore there exists only a �nite number of attributes.

Moreover, domain-expansion safe attributes have a �nite range in G1
� (;).

Proposition 4.2. For every TBF b and n � 0, if � 2 Sn(�), then the range of � in G1
� (;) is

�nite.

Proof. We prove this by induction on n.
For n = 0 we have S0(�) = ; and the proposition holds trivially.
For the induction step n 7! n+1, assume that the attributes in Sn(�) are domain-expansion

safe (outer induction hypothesis). We �rst show that for each rule r and term t 2 Bn+1(r;�; b),
the set of ground instances of r in G1

� (;) contains only �nitely many different substitutions
for t. We consider Bn+1;j(r;�; b) and again prove this by induction on j. For j = 0 we have
Bn+1;0(r;�; b) = ; and the proposition holds trivially. For the induction step j 7! j + 1,
assume that the terms in Bn+1;j(r;�; b) are bounded (inner induction hypothesis). Let t 2
Bn+1;j+1(r;�; b). If t 2 Bn+1;j(r;�) then the claim follows from the inner induction hypothe-
sis. Otherwise t is added in step j + 1. By the outer induction hypothesis all attributes in Sn(�)
have a �nite range in G1

� (;). By the inner induction hypothesis there are only �nitely many
substitutions for all terms t 2 Bn+1;j(r;�; b) in G1

� (;). This ful�lls the conditions of TBFs
(De�nition 62). Since b is a TBF, this implies that there are also only �nitely many substitutions
for all t 2 b(r; Sn(�); Bn+1;j). This proves the inner induction statement and, by de�nition
of Bn(r;�; b), also that for each t 2 Bn+1(r;�; b) the set of ground instances of r in G1

� (;)
contains only �nitely many different substitutions for t.

If p�i 2 Sn+1(�), then for each rule r 2 � and atom p(t1; : : : ; tar(p)) 2 H(r) we have
ti 2 Bn+1(r;�; b). As we have shown, this means that there are only �nitely many different
substitutions for ti in the ground instances of r in the set G1

� (;). As there are also only �nitely
many different rules in �, and the number of substitutions for the term ti in the head of r is
�nite, this implies that also the set

�
ti j p(t1; : : : ; tar(p)) 2 A(G1

� (;))
	

is �nite.
If &g [Y]r�Ii 2 Sn+1(�), then the i-th input parameter is either of type constant and Yi is a

constant or a variable, or it is of type predicate. If it is of type constant and Yi is a constant, then
there exists only one ground instance. If it is of type constant and Yi is a variable, then Yi 2
Bn+1(r;�; b), for which we have shown that there are only �nitely many different substitutions
for Y . If it is of type predicate input parameter p, then the range of all attributes p�1; : : : ; p�ar(p)
in G1

� (;) is �nite by the (outer) induction hypothesis.
If &g [Y]r�Oi 2 Sn+1(�), then either &g [Y]r�I1; : : : ;&g [Y]r�Iar I(&g) 2 Sn(�), or r con-

tains an external atom &g [Y](X) s.t. Yi is bounded. If &g [Y]r�I1; : : : ;&g [Y]r�Iar I(&g) 2
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Sn(�), then the range of all input parameters in G1
� (;) is �nite by the (outer) induction hy-

pothesis. But then there exist only �nitely many oracle calls to &g . As each such call can
introduce only �nitely many new values, also the range of each output parameter in G1

� (;) is
�nite. If r contains an external atom &g [Y](X) such that Yi is bounded, then only �nitely many
substitutions for &g [Y]r�Oi can satisfy the rule body, thusG1

� (�) will also contain only �nitely
many values for &g [Y]r�Oi. Thus, the (outer) induction hypothesis holds for n+1, which proves
the statement.

Corollary 4.1. If � 2 S1(�), then range
�
�;G1

� (;)
�

is �nite.

Proof. If a 2 S1 then a 2 Sn for some n � 0 and the claim follows from Proposition 4.2.

From this result if follows that also G1
� (;) is �nite.

Corollary 4.2. If � is a domain-expansion safe program, then G1
� (;) is �nite.

Proof. Since � is domain-expansion safe by assumption, a 2 S1(�) for all attributes a of �.
Then by Corollary 4.1, the range of all attributes of � in G1

� (;) is �nite. But then there exists
also only a �nite number of ground atoms in G1

� (;). Since the original non-ground program �
is �nite, this implies that also the grounding is �nite.

It follows from these propositions that S1(�) is also �nitely constructible. Note that they
hold independently of a concrete TBF, which is because the properties of TBFs are suf�ciently
strong.

4.2.2 Concrete Term Bounding Functions

We now introduce concrete term bounding functions that exploit syntactic and semantic prop-
erties of external atoms to guarantee boundedness of variables. Consequently this ensures also
�niteness of the ground program given by G1

� (;).

Syntactic Criteria

We �rst identify syntactic properties that can be exploited for our purposes.

De�nition 64 (Syntactic Term Bounding Function). We de�ne bsyn(�; r; S;B) such that we
have t 2 bsyn(�; r; S;B) if

(i) t is a constant in r; or

(ii) there is an ordinary atom q(s1; : : : ; s‘) 2 B+(r) s.t. t = sj , for some 1 � j � ‘ and
q�j 2 S; or

(iii) for some external atom &g [Y](X) 2 B+(r), we have that t = Xi for some Xi 2 X, and
for each Yi 2 Y,(

Yi 2 B; if type(&g ; i) = const;

Yi�1; : : : ; Yi�ar(Yi) 2 S; if type(&g ; i) = pred:
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Intuitively, Case (i) de�nes a constant as bounded because it is never substituted by other
terms in the grounding. In Case (ii) the precondition that an attribute q�j for some 1 � j � ar(q)
is domain-expansion safe, and thus has a �nite range in G1

� (;), implies that the term at this
attribute is bounded. Case (iii) essentially states that if the input to an external atom is �nite,
then also its output is �nite.

Lemma 4.1. Function bsyn(�; r; S;B) is a TBF.

Proof. If t is in the output of bsyn(�; r; S;B), then one of the conditions holds.
If Condition (i) holds, then t is a constant, hence there is only one ground instance.
If Condition (ii) holds, then t must also occur as value for q�j, which has a �nite range by

assumption.
If Condition (iii) holds, then t is output of an external atom such that there are only �nitely

many substitutions of its constant inputs and the attributes of all predicate inputs have a �nite
range by assumption. Thus there are only �nitely many different oracle calls with �nite output
each.

Example 52 (ctd.). Consider program � from Example 51. We get the set S1(�) = fdom�1;
&cat [X;x]r4�I2g, as B1(r2;�; bsyn) = faxg, B1(r3; �; bsyn) = faxxg and B1(r4; �; bsyn) =
fxg (by (i) in De�nition 64), i.e., the derived terms in all rules that have dom�1 in their head
are known to be bounded. In the next iteration, we get B2(r4;�; bsyn) = fY g (by (ii) in De�-
nition 64) as dom�1 is already known to be de-safe. Since we also have B2(r1;�; bsyn) = fag,
the terms derived by r1 and r4 are bounded, hence s�1 2 S2(�). Moreover, &cat [X;x]r4�O1 2
S2(�) because Y is bounded. The third iteration yields that attribute &cat [X;x]r4�I1 2 S3(�)
because X 2 B3(r4;�; bsyn) due to (ii) in De�nition 64. Thus, all attributes are de-safe. 2

Semantic Properties

We now de�ne a TBF exploiting meta-information about external sources in three properties.
The �rst property is based on malign cycles in positive attribute dependency graphs, which

are the source of any in�nite value invention. Intuitively, the positive attribute dependency graph

GA(�) has as nodes the attributes of � and its edges model the information �ow between the
attributes. For instance, if for rule r we have p(X) 2 H(r) and q(Y)2B+(r) s.t. Xi=Yj for
some Xi2X and Yj2Y, then we have a �ow from q�j to p�i. Formally:

De�nition 65 (Positive Attribute Dependency Graph). The positive attribute dependency graph

GA(�) = hAttr ; Ei of a program � has as nodes Attr the set of all attributes in � and as edges
the least set E such that for all r 2 �:

� If p(X) 2 H(r), q(Y) 2 B+(r) and for some i; j we have thatXi = Yj is a variable, then
(q�j; p�i) 2 E.

� If &g [Y](X) 2 B+(r), p(Z) 2 B+(r) and for some i; j we have that Zi = Yj and
type(&g ; i) = const, then (p�i;&g [Y]r�Ij) 2 E.

� If &g [Y](X) 2 B+(r), &h[U](V) 2 B+(r) and for some i; j we have that Ui = Xj and
type(&h; i) = const, then (&g [Y]r�Oj;&h[U]r�Ii) 2 E.
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dom�1

&concatr4�I1 &concatr4�I2

&concatr4�O1

s�1

Figure 4.4: Positive Attribute Dependency Graph GA(�) of the Program � from Example 51
with a Cycle (dashed)

� If &g [Y](X) 2 B+(r), then (&g [Y]r�Ii;&g [Y]r�Oj) 2 E for all 1 � i � ar I(&g) and
1 � j � ar O(&g).

� If p(X) 2 H(r), &g [Y](Z) 2 B+(r) and for some i; j we have thatXi = Zj is a variable,
then (&g [X]r�Oj; p�i) 2 E.

� If &g [Y](X) 2 B+(r) such that p = Yi and type(&g ; i) = pred, then (p�k;&g [Y]r�Ii) 2
E for all 1 � k � ar(p).

Example 53 (ctd.). The positive attribute dependency graph of the program from Example 51
is as shown in Figure 4.4. 2

Graph GA(�) models the direct information �ow in �, while its transitive closure models
the indirect information �ow.

De�nition 66 (Benign and Malign Cycles). A cycle K in GA(�) is benign wrt. a set S of safe
attributes, if there exists a well-ordering �C of C, s.t. for every &g [Y]r�Oj 62 S in the cycle,
f&g(A; y1; : : : ; ym; t1; : : : tn) = 0, whenever

� for some input parameter 1 � i � ar I(&g), type(&g ; i) = pred, &g [Y]r�Ii 62 S is in the
cycle K, (s1; : : : ; sar(yi)) 2 ext(A; yi), and tj 6�C sk for some 1 � k � ar(yi); or

� some yi for 1 � i � ar I(&g) is a constant input parameter, &g [Y]r�Ii 62 S is in K, and
tj 6�C yi.

A cycle in GA(�) is called malign wrt. S if it is not benign.

Intuitively, a cycle is benign if external atoms never deliver larger values wrt. to their yet
unsafe cyclic input. As there is a least element, this ensures a �nite grounding.

Example 54 (ctd.). The cycle (dashed) in GA(�) of � from Example 51 (see Figure 4.4) is
malign wrt. S = ; because there does not exist a well-ordering as required by De�nition 66.
Intuitively, this is because the external atom in�nitely extends the string. However, it is benign
wrt. S = fs�1g. 2
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Three other properties involve meta-information which directly ensures that an output at-
tribute of an external source is �nite.

De�nition 67 (Finite Domain). An external predicate &g 2 X has the �nite domain property

wrt. output i 2
�

1; : : : ; ar O(&g)
	

, if
�
xi j y 2 (P [ C)ar I(&g); x 2 Car O(&g); f&g(A; y; x) = 1

	

is �nite for all assignments A.

Here, the provider of the external source explicitly states that the output at a certain position
in the output tuple is �nite. This is perhaps the most direct way to ensure boundedness of the
respective term.

Example 55. An external atom &md5 [S](Y ) computing the MD5 hash value Y of a string S is
�nite domain wrt. the (single) output element, as its domain is �nite (yet very large). 2

A relaxed notion of �niteness allows for open domains, but forbids constants in the output of
an external source which do not already appear in the extension of the respective input predicate
parameter.

De�nition 68 (Relative Finite Domain). An external predicate &g 2 X has the relative �nite

domain property wrt. output argument i 2
�

1; : : : ; ar O(&g)
	

and predicate input argument

j 2 1; : : : ; ar I(&g), if
�
xi j y 2 (P [ C)ar I(&g); x 2 Car O(&g); f&g(A; y; x) = 1

	
�

�
c 2 c j

c 2 ext(A; yj)
	

is �nite for all assignments A.

Example 56. An external atom &di� [dom; set ](Y ) has the relative �nite domain property
wrt. output argument 1 and predicate input argument 1 because each constant c must already
occur in the extension of dom wrt. A if f&g(A; dom; set ; c) = 1. 2

While the previous properties conclude that an output term of an external atom is bounded
if there are only �nitely many different input constants and interpretations, we now reverse the
direction. An external atom may have the property that only a �nite number of different inputs
can yield a certain output, which is formalized as follows.

De�nition 69 (Finite Fiber). An external predicate &g 2 X has the �nite �ber property, if�
y j y 2 (P[C)ar I(&g); f&g(A; y; x) = 1

	
is �nite for every A and x 2 Car O(&g).

Example 57. Let &square[X](S) be an external atom that computes the square S of the number
X . Then for some given S, there are at most two distinct values for X . 2

The four properties above lead to the following TBF.

De�nition 70 (Semantic Term Bounding Function). We de�ne bsem(�; r; S;B) such that we
have t 2 bsem(�; r; S;B) if

(i) t is captured by some attribute � in B+(r) that is not reachable from malign cycles in
GA(�) wrt. S, i.e., if � = p�i then t = ti for some body atom p(t1; : : : ; t‘) 2 B+(r),
and if � = &g [Y]r�T i then t = Y T

i for some &g [YI](YO) 2 B+(r) where YT =
XT

1 ; : : : ; Y
T

ar (&g); or
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(ii) t = Xi for some &g [Y](X) 2 B+(r), where &g has the �nite domain property in i; or

(iii) t = Xi for some &g [Y](X) 2 B+(r), where &g has the relative �nite domain property in

output argument i and predicate input argument j and Yj�k 2 S for all 1 � k � ar(Yj);
or

(iv) t 2 Y for some &g [Y](X) 2 B+(r), where X 2 B for every X 2 X and &g has the �nite

�ber property.

This TBF is directly motivated by the introduced properties.

Lemma 4.2. Function bsem(�; r; S;B) is a TBF.

Proof. If t is in the output of bsem(�; r; S;B), then one of the conditions holds.
If Condition (i) holds, then there is no information �ow from malign cycles wrt. S to t.

However, such cycles are the only source of in�nite groundings: the attributes in S have a �nite
domain by assumption. For the remaining attributes in the cycle, the well-ordering guarantees
that only �nitely many different values can be produced in the cycle.

If Condition (ii) holds, then the claim follows immediately from �niteness of the domain of
the respective external atom.

If Condition (iii) holds, then the external atom cannot introduce new constants. Because the
set of constants in the extension of the respective input parameter Yj is �nite by assumption that
Yj�k 2 S for all 1 � k � ar(Yj), it follows that also the set of constants in the output of the
external atom is �nite.

If Condition (iv) holds, then there are only �nitely many different substitutions for t because
the output of the respective external atom is bound by the precondition of TBFs and the �nite
�ber ensures that there are only �nitely many different inputs for each output.

4.2.3 Combination of Term Bounding Functions

The concept of liberal domain-expansion safety based on term bounding functions can be fruit-
fully exploited for easy extensions. In particular, multiple term bounding functions may be
combined in order to further relax the syntactic and semantic criteria.

The following proposition allows us to construct TBFs modularly from multiple TBFs.

Proposition 4.3. If bi(�; r; S;B), 1 � i � ‘, are TBFs, then the union of the term bounding

functions

b(�; r; S;B) =
[

1�i�‘

bi(�; r; S;B)

is also a TBF.

Proof. For t 2 b(�; r; S;B), t 2 bi(�; r; S;B) for some 1 � i � ‘. Then there are only �nitely
many substitutations for t in G1

� (;) because bi is a TBF.
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In particular, a TBF which exploits syntactic and semantic properties simultaneously is

bsynsem(�; r; S;B) = bsyn(�; r; S;B) [ bsem(�; r; S;B);

which we will use subsequently.

4.2.4 Finite Restrictability

We now make use of the results from above to show that domain-expansion safe programs are
�nitely restrictable in an effective manner. Recall that �pos denotes equivalence of the answer
sets in their positive parts.

Theorem 5 (Finite Restrictability of Domain-Expansion Safe Programs). Let � be a domain-

expansion safe program. Then � is �nitely restrictable and G1
� (;) �pos �.

Proof. We construct the grounding grndC(�) as the least �xpoint G1
� (;) of the grounding

operatorG�(X), which is known to be �nite by Corollary 4.2. The setC is then implicitly given
by the set of constants appearing in grndC(�). It remains to show that indeed grndC(�) �pos

grndC(�). To make the proof reusable for Proposition 4.5, we will show the more general
proposition grndC(�) �pos grndC0(�) for any C 0 � C.

()) Suppose A 2 AS
�
grndC(�)

�
. Let A0 = A [

�
Fa j a 2 A

�
grndC0(�)

�
;Ta 62 A

	
,

i.e., the completion of A to all atoms in grndC0(�) by setting all additional atoms to false.
Then fTa 2 Ag = fTa 2 A0g. We show now that A0 is an answer set of grndC0(�). First
observe that A0 6j= B+(r) for all r 2 grndC0(�) n grndC(�); otherwise r 2 G�

�
grndC(�)

�
,

which contradicts the assumption that grndC(�) is the least �xpoint of G�(;). Hence, A0 j=
grndC0(�). Moreover fgrndC(�)A = fgrndC0(�)A

0
, hence A0 is a subset-minimal model of

the FLP-reduct of grndC0(�) iff A is a subset-minimal model of the FLP-reduct of grndC(�),
which is the case because A 2 AS

�
grndC(�)

�
. Therefore A0 2 AS

�
grndC0(�)

�
.

(() Now suppose A 2 AS
�
grndC0(�)

�
. Then A0 = A \

�
Ta;Fa j a 2 A

�
grndC(�)

�	

is a model of grndC(�). Let A00 = A0 [ fFa j a 2 A
�
grndC0(�)

�
;Ta 62 A0g, i.e., the

completion of A0 to all atoms in grndC0(�) by setting all additional atoms to false. Then A00 6j=
B+(r) for all r 2 grndC0(�)ngrndC(�); otherwise r 2 G�

�
grndC(�)

�
, which contradicts the

assumption that grndC(�) is the least �xpoint ofG�(;). Therefore, A00 j= grndC0(�). But this
implies that A = A00: by construction ofA00 we have A00T � AT, and A00T ( AT would imply
that A is not subset-minimal, which contradicts the assumption that A 2 AS

�
grndC0(�)

�
.

Moreover, fgrndC(�)A
0

= fgrndC0(�)A
00
. Hence A0 is a subset-minimal model of the FLP-

reduct of grndC(�) iff A00 is a subset-minimal model of the FLP-reduct of grndC0(�), which
is the case because A00 2 AS

�
grndC0(�)

�
. Therefore A0 2 AS

�
grndC(�)

�
. The observation

fTa 2 A0g = fTa 2 A00g concludes the proof.

This proposition holds independently of a concrete term bounding function. However, func-
tions that are too liberal are excluded by the preconditions in the de�nition of TBFs.

The operatorG� is exponential in the number of ground atoms as it considers all assignments
A � A(�0) in every step. As this compromises ef�ciency, a better alternative is:

R�(�0) =
[

r2�

�
r� j fTa j a 2 A(�0)g j= B+(r�)

	
.
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Intuitively, instead of enumerating exponentially many assignments it simply maximizes the
output of external atoms by setting all input atoms to true, which is possible due to monotonicity.

Proposition 4.4. Let � be a domain-expansion safe program s.t. each nonmonotonic predicate

input parameter to external atoms occurs only in facts. Then G1
� (;) = R1

� (;).

Proof. It suf�ces to show for any intermediate result X that we have A j= B+(r) for some
A �

�
Ta;Fa j a 2 A(X)

	
n fFa j a  : 2 �g if and only if A0 j= B+(r) for A0 =

�
Ta j

a 2 A(X)
	

.
()) B+(r) contains only positive ordinary atoms a, hence A j= a implies A0 j= a. For

external atoms e, A j= e but A0 6j= e is only possible if for some input atom a to e over
a nonmonotonic predicate parameter we have Fa 2 A but Ta 2 A0. But by assumption,
nonmonotonic predicate parameters do only occur in facts, hence Fa 2 A is impossible.

(() Trivial.

Thus, for such programs we may compute a suf�cient �nite subset of grndC(�) using instead
G� the more ef�cient R�.

Example 58 (ctd.). In Example 51, &concat [X;x](Y ) is monotonic, hence we can use R� for
restricted grounding. 2

The operator can also be optimized in a different way. External atoms that are not rele-
vant for domain-expansion safety can be removed from the �xpoint iteration without affect-
ing correctness of the grounding. For each r 2 �, let �r = H  B be any rule such that
r = H  b1; : : : ; bh; B where b1; : : : ; bh 2 EA(r) and var(r) = var(�r), where var(r) denotes
the set of variables from V appearing in rule r. That is, �r results from r by possibly dropping
external atoms from B+(r) but such that �r contains all variables of r, and let �� = f�r j r 2 �g
by a liberally domain-expansion safe program.

We then de�ne the following monotone operator:

Q�(�0) =
[

r2�

�
r� j 9A � A(�0);A 6j= ?;A j= B+(�r�)

	
.

The intuition is that removing atoms from rule bodies makes rule applicability (possibly)
more frequent, which may result in a larger (but still �nite) grounding. As this grounding is a
superset of the one computed by G�(�0), it is still answer set preserving.

Proposition 4.5. For every program �, Q1
� (;) � grndC(�) is �nite and Q1

� (;) �pos G1
� (;).

Proof. Clearly, satisfaction of rule bodyB+(r) implies satisfaction of the correspondingB+(�r).
Thus Q1

� (;) � G1
� (;). It follows then from the proof of Theorem 5 that G1

� (;) �pos Q1
� (;).

Moreover, since �� is still domain-expansion safe by assumption, G1
��

(;) is still �nite by
Theorem 5. But then also Q1

� (;) is �nite because the only difference between G1
��

(;) and
Q1

� (;) is that the latter may contain additional external atoms in the rule bodies.
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Example 59 (ctd.). In the program in Example 51, the external atom &concat [X;x](Y ) is not
needed to establish domain-expansion safety, hence we might drop it during �xpoint iteration.
2

The combination of the optimizations is especially valuable. One can �rst eliminate external
atoms with nonmonotonic input other than facts and check then rule body satisfaction as in R�.
If an external atom b is strongly safe wrt. the according rule and the program, then it is very often
(as in Example 51) not necessary for establishing domain-expansion safety and b is a candidate
for being removed. That is, the traditional strong safety criterion is now used as a weak criterion,
which is not strictly necessary but may help to reduce grounding time. We will build upon this
idea when designing our new grounding algorithm in Section 4.3.

4.2.5 Applications

Pushdown Automaton. As a demonstration of our relaxed notion of safety, we model a push-

down automaton in a HEX-program, which can be of use if context-free languages must be
parsed under further constraints that cannot be easily expressed in the production rules; the
HEX-program may be extended accordingly, where the declarative nature of HEX is versatile for
parsing and constraint checking in parallel as opposed to a generate-and-�lter approach.

For instance, consider RNA sequences over the alphabet fa; g; c; ug and suppose we want
to accept all sequences ww0 such that w0 is the complementary string of w, where (a; u) and
(g; c) are complementary pairs. Because complementary strings within one sequence in�u-
ence the secondary structure of an RNA molecule, this duality is important for its proper func-
tion [Zuker and Sankoff, 1984]. This language is easily expressed by the production rules

fS ! aSu; S ! uSa; S ! gSc; S ! cSg; S ! �g

with start symbol S. Now suppose that we want to check in addition the occurrence of cer-
tain subsequences, e.g., because they have a known function. A concrete example would be a
promoter sequence which identi�es the location where a new gene starts and might be used to
distinguish between coding and non-coding sequences. Modeling this in the production rules
makes the grammar much more complex. Moreover, we might want to keep the grammar inde-
pendent of concrete subsequences but import them from a database. Then it might be useful to
model the basic language as automaton in a logic program and check side conditions by addi-
tional constraints.

Recall that a pushdown automaton is a �nite-state machine with an additional stack; follow-
ing Sipser (2012), this is formalized as a tuple (Q;�;�; �; q0; Z; F ), where

� Q is a �nite set of states;

� � is a �nite input alphabet;

� � is a �nite stack alphabet;

� � � Q�
�
� [ f�g

�
� ��Q� �� is the transition relation;
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� q0 2 Q is the initial state;

� Z 2 � is the initial stack symbol; and

� F � Q is the set of �nal states.

The transition relation maps the current state, an input symbol and the topmost stack symbol to
a successor state and a �nite word over the stack alphabet, which is pushed onto the stack after
removing the topmost symbol.

We make the assumption that there are no �-transitions, i.e., � � Q�����Q���; such
an automaton is easily obtained from a normalized grammar, if one is not interested, as in our
example, in the empty word.

We use the following external atoms:

� &car [S ](H ;T ) splits S into �rst symbol H and rest T ;

� &concat [A;B ](C ) joins A and B to C;

� &inc[I](I1 ) increments the integer I to I1 = I+1; and

� &len[S](L) returns the length L of string S.

Then the automaton can be modeled as follows:

str(Word ; 0) input(Word) (1)

str(R; I1 ) str(W ; I );&car [W ](C ;R);&inc[I ](I1 ) (2)

char(C ; I ) str(W ; I );&car [W ](C ;R) (3)

in(start ; z; 0) (4)

in(NewState;NewStack ;NewPos) (5)

in(State;Stack ;Pos); char(Pos;Char);

&car [Stack ](SChar ;SRest);

transition(State;Char ;SChar ;NewState;Push);

&concat [Push;SRest ](NewStack);&inc[Pos](NewPos)

accept  input(W );&len[W ](L); in(S ; z;L);�nal(S ) (6)

 not accept (7)

An atom in(state; stack ; step) encodes that when processing symbol step, the machine is
in state state with stack content stack . Rules (1)-(3) split the input string into characters, and
the remaining ones model the automaton. The program starts in the initial state start with the
initial stack symbol z as stack content (fact (4)). Transition rule (5) splits the current stack
content into its topmost symbol SChar and its rest SRest and uses the predicate transition to
(nondeterministically) determine the successor state and the string to push onto the stack. The
rules (6)-(7) ensure that the input is accepted if eventually a �nal state is reached such that the
input has been completely processed and the stack content is z. Side conditions can now be
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modeled, e.g., by additional constraints which restrict the stack content, or by additional body
atoms in the transition rule.

The program is not strongly safe as all external atoms occur in cycles and their output is not
bounded by ordinary atoms from outside. However, it is domain-expansion safe if we exploit
semantical information. String splitting with &car yields � or a shorter string, i.e., a well-
ordering exists. Hence the output terms of &car are safe by Proposition 4.2 due to De�nition 70
(i). Each transition step pushes a �nite word onto the stack, and only �nitely many steps happen
(as no �-transitions occur); hence only �nitely many stack contents are possible, i.e., &concat

has a �nite output domain. Thus the output terms are safe due to De�nition 70 (ii). The domain
of &inc is �nite for the same reason, which bounds NewPos . Hence, all variables are bounded
and all attributes are domain-expansion safe.

Further Applications. We now brie�y discuss other applications which exploit the concept
of domain-expansion safety. Recursive processing of data structures, such as trees or lists, can
easily violate traditional safety criteria. However, in a concrete program the use of the external
sources may satisfy syntactic or semantic conditions such that �niteness of the grounding is still
guaranteed. For instance, if a list is only subdivided but not recursively extended, then there
exists a well-ordering as de�ned above and the grounding may be �nite. Additional application-
speci�c safety criteria can be easily integrated into our framework by customized term bounding
functions. We will discuss a concrete application in detail in Chapter 5.

Another application is route planning, which we also discuss in Chapter 5 as a benchmark
(the details of the encoding can be found in Appendix A). Importing the complete map a priori
into the logic program is too expensive due to the large amount of data. The alternative is to
query direct location between nodes in a recursive fashion. But if the set of nodes is not known
in advance, then such queries do not satisfy traditional strong safety. However, as the map is
�nite our notion of domain-expansion safety, the existence of a �nite grounding is guaranteed.

4.3 Grounding Algorithm for Liberally Domain-Expansion Safe

HEX-Programs

In this section we present a grounding algorithm for liberally domain-expansion safe HEX-
programs. It is based on the following idea. Iteratively ground the input program and then
check if the grounding contains all relevant ground rules. The check works by evaluating ex-
ternal sources wrt. relevant interpretations and testing if they introduce any new values which
were not respected in the grounding. If this is the case, then the set of constants is expanded and
the program is grounded again. If the check does not identify additional constants which must
be respected in the grounding, then it is guaranteed that the unrespected constants from C are
irrelevant in order to ensure that the grounding has the same answer sets as the original program.
For liberally domain-expansion safe programs, this procedure will eventually reach a �xpoint,
i.e., all relevant constants are respected in the grounding.
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4.3.1 Grounding Algorithm

We start with some concepts and de�ne external atoms which are relevant for domain-expansion
safety. Throughout the remainder assume that rules are standardized apart (i.e., have no variables
in common). Let R be a set of external atoms and let r be a rule. By rjR we denote the rule
obtained by removing all external atoms which are not in R, i.e., such that

H(rjR) = H(r) and Bs(rjR) =
�
Bs(r) \A(r)

�
[

�
Bs(r) \R

�

for s 2 f+;�g. Similarly, �jR =
S

r2� rjR, for a program �.

De�nition 71 (Liberal Domain-Expansion Safety Relevance). A set R of external atoms is rel-

evant for liberal de-safety of a program �, if �jR is liberally de-safe and var(r) = var(rjR),
for all r 2 �.

Note that for a program, the set of de-safe relevant external atoms is not necessarily unique,
leaving room for heuristics. In the following we choose a speci�c set.

We further need the concepts of input auxiliary and external atom guessing rules. We say
that an external atom &g [Y](X) joins an atom b from the input list Y (output list X), if some
variable from Y (X) occurs in b, where in case b is an external atom, the occurrence is in the
output list of b. Note that this notion is slightly different from the one in previous work, as
recapitulated as basic input auxiliary rule in Chapter 2. In particular, our new notion makes use
of de-safety relevance.

De�nition 72 (Input Auxiliary Rule). Let � be a HEX-program, and let a = &g [Y](X) be some
external atom with input list Y occurring in a rule r 2 �. Then, for each such atom, a rule rainp

is composed as follows:

� The head is H
�
rainp

�
=

�
g

&g
inp(Y)

	
, where g&g

inp is a fresh predicate.

� The body B
�
rainp

�
contains each b 2 B+(r) n fag such that a joins b in Y, and b is

de-safety relevant if it is an external atom.

The atom g
&g
inp(Y) in the head of such a rule is called input (auxiliary) atom.

Example 60. Consider the following non-ground HEX-program:

� = fout(Y ) &concat [a; b](X);&concat [X; c](Y ); limit(X); limit(Y )g

Then the input auxiliary rule for &concat [a; b](X) is g&concat
inp (a; b)  (a fact), and that for

&concat [X; c](Y ) is h&concat
inp (X; c) &concat [a; b](X). 2

Input auxiliary rules are used to derive all ground input tuples y with which the external atom
needs to be evaluated. Next, we need non-ground external atom guessing rules. Note that this
concept is different from ground external atom guessing rules used in Chapter 3, which always
have an empty body. In this chapter we always mean non-ground external atom guessing rules
and thus drop the pre�x non-ground.
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De�nition 73 (Non-ground External Atom Guessing Rule). Let � be a HEX-program, and let
a = &g [Y](X) be some external atom. Then a rule raguess is composed as follows:

� The head is H
�
raguess

�
=

�
er;&g[Y](X);ner;&g[Y](X)

	
.

� The body B
�
raguess

�
contains

(i) each b 2 B+(r) n fag such that a joins b in Y or X, and b is de-safety relevant if it
is an external atom; and

(ii) g&g
inp(Y).

It guesses the truth value of external atoms using a choice between the external replacement

atom er;&g[Y](X), and fresh atom ner;&g[Y](X).

Example 61 (ctd.). Consider the HEX-program � from Example 60. Then the external atom
guessing rule for &concat [a; b](X) is

er;&concat [a;b](X) _ ner;&concat [a;b](X) g&concat
inp (a; b); limit(X)

and that for &concat [X; c](Y ) is

er;&concat [X;c](Y ) _ ner;&concat [X;c](Y ) h&concat
inp (X; c); limit(Y ).

2

Our approach is based on a grounder for ordinary ASP programs. Compared to the naive
grounding grndC(�), which substitutes all constants for all variables in all possible ways, we
allow the ASP grounder GroundASP to optimize rules by eliminating rules if their body is always
false, and ordinary body literals from the grounding if they are always true, as long as this does
not change the answer sets.

De�nition 74. We call rule r0 an o-strengthening of r, if H(r0) = H(r), B(r0) � B(r) and
B(r) nB(r0) contains no external atoms and no external atom replacements.

De�nition 75. An algorithm GroundASP is a faithful ASP grounder for a safe ordinary program
�, if it outputs an equivalent ground program �0 such that

� �0 consists of o-strengthenings of rules in grndC�
(�);

� if r 2 grndC�
(�) has no o-strengthening in �0, then every answer set of grndC�

(�)
falsi�es some ordinary literal in B(r); and

� if r 2 grndC�
(�) has some o-strengthening r0 2 �0, then every answer set of grndC�

(�)
satis�es all default-literals in B(r) nB(r0).
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The formalization of the algorithm is shown in Algorithm GroundHEX. Our naming conven-
tion is as follows. Program � is the non-ground input program. Program �p is the non-ground
ordinary ASP prototype program, which is an iteratively updated variant of � (with replacement
atoms in place of external atoms) with additional rules. In each step, the preliminary ground

program �pg is produced by grounding �p using a standard ASP grounding algorithm. Program
�pg converges against a �xpoint from which the �nal ground HEX-program �g is extracted.

The algorithm �rst chooses a set of de-safety relevant external atoms, e.g., all external atoms
as a naive and conservative approach, or following a greedy approach as in our implementation,
and then introduces input auxiliary rules rainp for every external atom a = &g [Y](X) in a rule r in
� in Part (a). For all non-relevant external atoms, external atom guessing rules are introduced to
ensure that the ground instances of the corresponding external replacement atoms are introduced
in the grounding, even if they are not explicitly added. Then, all external atoms &g [Y](X) in all
rules r in �p are replaced by ordinary replacement atoms er;&g[Y](X). This allows the algorithm
to use a faithful ASP grounder GroundASP in the main loop at (b). After the grounding step, the
algorithm checks whether the grounding is large enough, i.e., if it contains all relevant constants.
For this, it traverses all relevant external atoms at (c) and all relevant input assignments and tuples
at (d) and at (e); Ym, Ya and Yn refer to the sublists of Y consisting of monotonic, antimonotonic
and nonmonotonic input predicates, respectively. Then, constants returned by external sources
are added to �p at (f); if the constants were already respected, then this will have no effect.
Thereafter the main loop starts over again. The algorithm will �nd a program which respects
all relevant constants. It then removes input auxiliary rules and translates replacement atoms to
external atoms at (g).

We illustrate our grounding algorithm with the following example.

Example 62. Let � be the following program:

f1 : d(a); f2 : d(b); f3 : d(c); r1 : s(Y )  &di� [d; n](Y ); d(Y )
r2 : n(Y ) &di� [d; s](Y ); d(Y )
r3 : c(Z)  &count [s](Z)

Here, &count [s](i) is true for the integer i corresponding to the number of elements in the
extension of s. The program �rst partitions the domain (extension of d) into two sets (exten-
sions of s and n) and then computes the size of s. The external atoms &di� [d; n](Y ) and
&di� [d; s](Y ) are not relevant for de-safety. Thus, program �p at the beginning of the �rst iter-
ation is as follows (neglecting input auxiliary rules, which are propositional facts in this example
and are not needed for the further processing). Let e1(Y ), e2(Y ) and e3(Z) be shorthands for
er1;&di� [d;n](Y ), er2;&di� [d;s](Y ), and er3;&count [s](Z), respectively.

f1 : d(a); f2 : d(b); f3 : d(c); r1 : s(Y )  e1(Y ); d(Y )
g1 : e1(Y ) _ ne1(Y ) d(Y ); r2 : n(Y ) e2(Y ); d(Y )
g2 : e2(Y ) _ ne2(Y ) d(Y ); r3 : c(Z)  e3(Z)

The ground program �pg contains no instances of r3 because the optimizer recognizes that
er3;&count [s](Z) occurs in no rule head and no ground instance can be true in any answer set.
Then the algorithm comes to the checking phase. It does not evaluate the external atoms in r1 and
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Algorithm GroundHEX

Input: A liberally de-safe HEX-program �
Output: A ground HEX-program �g s.t. �g�

pos�
(a) Choose a set R of de-safety relevant external atoms in �

�p  � [
�
rainp j a = &g [Y](X) in r 2 �

	

�p  �p [
�
raguess j a = &g [Y](X) in r 2 �; a 62 R

	

Replace all external atoms &g [Y](X) in all rules r in �p by er;&g[Y](X)

(b) repeat

// partial grounding

�pg  GroundASP(�p)
// evaluate all de-safety relevant external atoms

(c) for a = &g [Y](X) 2 R in a rule r 2 � do

Let g&g
inp be the unique predicate in the head of rainp

Ama  
�
Tp(c) j p(c) 2 A(�pg); p 2 Ym

	
[

�
Fp(c) j p(c) 2 A(�pg); p 2 Ya

	

// do this wrt. all relevant assignments

(d) for Anm � fTp(c);Fp(c) j p(c) 2 A(�pg); p 2 Yng s.t. @a : Ta;Fa 2 Anm do

A 
�
Ama [Anm [ fTa j a : 2 �pgg

�
n fFa j a : 2 �pgg

(e) for y 2
�

c j g&g
inp(c) 2 A(�pg)

	
do

(f) O  fx j f&g(A; y; x) = 1g
// add the respective ground guessing rules

�p  �p [
�

er;&g[y](x) _ ner;&g[y](x) : j x 2 O
	

until �pg did not change

(g) �g  �pg

Remove input auxiliary rules and external atom guessing rules from �g

Replace all e&g[y](x) in �g by &g [y](x)

return �g

r2, because they are not relevant for de-safety due to the domain predicate d(Y ). But it evaluates
&count [s](Z) wrt. all A � fs(a); s(b); s(c)g because the external atom is nonmonotonic in s.
Then the algorithm adds the rules

�
e3(z) _ ne3(z)  : j z 2 f0; 1; 2; 3g

	
to �p. After the

second iteration, the algorithm terminates. 2

4.3.2 Soundness and Completeness

One can show that Algorithm GroundHEXNaive is sound and complete. Towards a proof we �rst
consider a computationally slower but conceptually simpler variant of the algorithm, for which
we show these properties. Afterwards we prove that the optimizations in Algorithm GroundHEX
do not harm soundness and completeness.

Compared to the naive Algorithm GroundHEXNaive, Algorithm GroundHEX contains the
following modi�cations. The �rst change concerns the ordinary ASP grounder. We allow the
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grounder to optimize the grounding as formalized by De�nition 75, whereas Algorithm Ground-
HEXNaive uses the naive grounding grndC(�p).

The second change concerns the external atoms. Intuitively, an external atom may be skipped
if it can only return constants, which are guaranteed to appear also elsewhere in the grounding.
Thus, Algorithm GroundHEX evaluates only de-safety relevant external atoms, whereas Algo-
rithm GroundHEXNaive evaluates all of them.

The third optimization concerns the enumeration of assignments. Note that Step (c) in Algo-
rithm GroundHEXNaive enumerates all models of �pg . That is, in order to ground the program,
a solver must be called. This is computationally expensive and in fact not necessary. Step (d) in
Algorithm GroundHEX simply enumerates assignments, which are directly extracted from the
partial grounding, and which are constructed such that it is guaranteed that all relevant ground
instances of the external atoms are represented in the grounding.

Algorithm GroundHEXNaive

Input: A liberally de-safe HEX-program �
Output: A ground HEX-program �g s.t. AS(�g) �pos AS(�)

(a) �p  � [
�
rainp j a = &g [Y](X) in r 2 �

	

Replace all external atoms &g [Y](X) in all rules r in �p by er;&gY(X)
(b) repeat

// partial grounding

�pg  grndC(�p) with constants C in �p

// check if the grounding is large enough

(c) for all models A of �pg over A(�pg) do

// evaluate all external atoms

(d) for a = &g [Y](X) in a rule r 2 � do

Let g&g
inp be the unique predicate in the head of rainp

(e) for y 2
�

c j Tg&g
inp(c) 2 A

	
do

(f) O  fx j f&g(A; y; x) = 1g
// add the respective ground guessing rules

�p  �p [
�

er;&g[y](x) _ ner;&g[y](x) : j x 2 O
	

until �pg did not change

(g) �g  �pg

Remove input auxiliary rules and external atom guessing rules from �g

Replace all er;&g[y](x) in �g by &g [y](x)

return �g

We now illustrate the algorithm with an example.

Example 63. Let

� = fd(x) _ d(y); q(Y ) d(X);&concat [X; a](Y )g
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be the input program. In the �rst iteration we have

�p = fd(x) _ d(y); q(Y ) d(X); er;&concat [X;a](Y ); g&g
inp(X) d(X)g,

where g&concat
inp is the unique input auxiliary predicate for &concat [X; a](Y ). The grounding

step yields

�pg =
�
d(x) _ d(y)

	
[

�
q(c2) d(c1); er;&concat [c1;a](c2); g&concat

inp (c1; a) d(c1) j c1; c2 2 fx; yg
	

.

Now the algorithm comes to the checking phase at (c) and (d). Note that g&concat
inp (x; a) and

g&concat
inp (y; a) appear in all models A of �pg . Therefore the algorithm will evaluate &concat

with inputs (x; a) and (y; a) and collect all output tuples x s.t. f&g(A; x; a; x) = 1 resp.
f&g(A; y; a; x) = 1 holds. This holds for the unary output tuples (xa) and (ya). Thus, Step (f)
adds the rules

er;&g[x;a](xa) _ ner;&g[x;a](xa) and er;&g[y;a](xa) _ ner;&g[y;a](ya) 

to �p and grounding starts over again. In the next iteration,

q(xa) d(x); er;&concat [x;a](xa) and q(ya) d(y); er;&concat [y;a](ya)

will appear in �pg . As no new atoms g&concat
inp (y) appears in any of the models of the updated

�pg , the loop terminates after the second iteration. 2

Soundness and completeness of Algorithm GroundHEXNaive is formalized by the following
proposition.

Proposition 4.6. If � is a liberally de-safe HEX-program, then � �pos GroundHEXNaive(�).

Proof. See Appendix B, page 220.

It can be shown that also the optimized algorithm is sound and complete.

Theorem 6 (Correctness of Algorithm GroundHEX). If � is a liberally de-safe HEX-program,

then GroundHEX(�)�pos�.

Proof. See Appendix B, page 225.

4.4 Integration of the Algorithm into the Model-Building

Framework

We are now ready to embed our grounding algorithm into the overall evaluation framework and
get Algorithm BuildAnswerSetsGeneralized. For this, we �rst introduce an algorithm which
computes the answer sets of a liberally de-safe HEX-program.

We �rst show that Algorithm EvaluateDomainExpansionSafe returns all answer sets of
domain-expansion safe HEX-programs.

116



4.4. Integration of the Algorithm into the Model-Building Framework

Algorithm EvaluateDomainExpansionSafe

Input: A liberally de-safe HEX-program �, an input interpretation A

Output: All answer sets of � [ fa : j Ta 2 Ag without A
// add input facts and ground the program

�0
grnd  GuessAndCheckHexEvaluation

�
� [ fa : j Ta 2 Ag

�

// ground program evaluation and output projection

return
�
A0 n

�
A [ fFa 2 A0g

�
j A0 2 EvalGroundHexProgram(�0

grnd )
	

Proposition 4.7. Given a domain-expansion safe HEX-program � and an input assignment A,

Algorithm EvaluateDomainExpansionSafe returns

�
A0 n

�
A [ fFa 2 A0g

�
j A0 2 AS

�
� [ fa : j Ta 2 Ag

�	
,

i.e., the positive parts of all answer sets of � augmented with the positive atoms in A.

Proof. The proposition follows from Theorem 6, which shows that the grounding �0
grnd has

the same answer sets as � (if restricted to their positive parts), and from the soundness and
completeness of the evaluation algorithms for ground HEX-programs introduced in Chapter 3.

We now replace Algorithm EvaluateExtendedPreGroundable in Algorithm BuildAnswer-
Sets by Algorithm EvaluateDomainExpansionSafe which computes the answer sets of the sin-
gle units. However, the formal incorporation of our algorithms into the framework described
by Schüller (2012) and recapitulated in Section 4.1 is nontrivial, because two of the fundamen-
tal de�nitions of the framework are that of an evaluation unit and of an evaluation graph, which
use extended pre-groundable HEX-programs (cf. De�nition 25) as units. Our goal is to support
the generalized class of liberally domain-expansion safe programs as units. Because of The-
orem 4, which proves soundness and completeness of Algorithm BuildAnswerSets, and many
intermediate results of Schüller (2012) depend (transitively) on those basic de�nitions, they do
not immediately carry over to a generalized notion of evaluation units. However, a look into
the proofs by Schüller (2012) reveals that there is in fact only one proposition (Proposition 13)
which directly makes use of the property that evaluation units are extended pre-groundable. We
will introduce and prove an equivalent proposition for our generalized class of programs. Then
all other results still hold.

We have already shown that it is possible to �nitely ground and evaluate domain-expansion
safe programs, i.e., the new algorithms work correctly within single evaluation units. However,
it remains to show that this is still compatible with the model-building framework introduced
in Chapter 2. In particular, we need to show that Theorem 4 still holds if evaluation units are
not necessarily extended pre-groundable but liberally domain-expansion safe HEX-programs. To
this end, we introduce a generalized notion of evaluation units and evaluation graphs (cf. De�-
nitions 51 and 52).

De�nition 76 (Generalized (Evaluation) Unit). A generalized (evaluation) unit is a liberally
domain-expansion safe HEX-program.
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Algorithm BuildAnswerSetsGeneralized

Input: Generalized evaluation graph E = (V;E) for a HEX-program � with a unit u�nal

that depends on all other units in V
Output: All answer sets of �

M = ;; F = ;; unit = ;; type = ;; int = ;; U = V

while U 6= ; do

Choose u 2 U s.t. predsE(u) \ U = ;
Let fu1; : : : ; ukg = predsE(u)

(a) if k = 0 then

m max (M) + 1
M  M [ fmg
unit(m) u; type(m) I; int(m) ;

(b) else

for m1 2 o-ints(u1); : : : ;mk 2 o-ints(uk) do

if J = m1 1 � � � 1 mk is de�ned then

m max (M) + 1
M  M [ fmg
F  F [

�
(m;mi) j 1 � i � k

	

unit(m) u; type(m) I; int(m) J

(c) if u = u�nal then

return i -ints(u�nal )

(d) for m0 2 i -ints(u) do

O  EvaluateDomainExpansionSafe
�
u; int(m0)

�

for o 2 O do

m max (M) + 1
M  M [ fmg
F  F [

�
(m;m0) j 1 � i � k

	

unit(m) u; type(m) O; int(m) o

U  U n fug
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De�nition 77 (Generalized Evaluation Graph). A generalized evaluation graph E = hV;Ei of
a program � is a directed acyclic graph; vertices V are generalized evaluation units and E has
the following properties:

(a)
S

u2V u = �, i.e., every rule r 2 � is contained in at least one unit;

(b) for every non-constraint r 2 �, it holds that
��fu 2 V j r 2 ug

�� = 1, i.e., r is contained in
exactly one unit;

(c) for each nonmonotonic dependency r !n s between rules r; s 2 � and for all u 2 V with
r 2 u and v 2 V with s 2 v s.t. u 6= v, there exists an edge (u; v) 2 E, i.e., nonmonotonic
dependencies between rules have corresponding edges everywhere in E ; and

(d) for each monotonic dependency r !m s between rules r; s 2 �, there exists one u 2 V
with r 2 u such that E contains all edges (u; v) with v 2 V , s 2 v and v 6= u, i.e.,
there is (at least) one unit in E where all monotonic dependencies from r to other rules have
corresponding outgoing edges in E .

Example 64. Graph E from Example 45 is an evaluation graph and also a generalized evaluation
graph of program �. Another generalized evaluation graph, which is not an evaluation graph, is
E 0 =



fu1 = �; u�nalg; f(u�nal ; u1)g

�
. 2

We show now that for a generalized evaluation graph E = (V;E), BuildAnswerSetsGener-
alized still returns AS(�).

Theorem 7 (Soundness and Completeness of Algorithm BuildAnswerSetsGeneralized). Algo-

rithm BuildAnswerSetsGeneralized applied to a generalized evaluation graph E = (V;E) of a

HEX-program � returns AS(�).

Proof. The proposition corresponds to Theorem 4, which is Theorem 15 by Schüller (2012),
but with generalized evaluation units in place of evaluation units, i.e., units may be domain-
expansion safe programs which are not extended pre-groundable.

The proofs by Schüller (2012) on which Theorem 15 depends in fact make use of pre-
groundability only in a single part. This is in Proposition 13, which states that for an extended
pre-groundable HEX-program � and an input interpretation A, Algorithm EvaluateExtended-
PreGroundable returns

�
A0 n (A [ fFa 2 A0g) j A0 2 AS(� [ fa : j Ta 2 Ag)

	
, i.e., the

positive parts of all answer sets of � augmented with A.

However, we have shown in Proposition 4.7 that Algorithm EvaluateDomainExpansionSafe
behaves exactly like this for domain-expansion safe HEX-programs. Because the remaining parts
of the proofs by Schüller (2012) do not make use of the property of extended pre-groundability,
Theorem 15 goes through also for domain-expansion safe programs if Algorithm EvaluateEx-
tendedPreGroundable is replaced by Algorithm EvaluateDomainExpansionSafe.
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4.5 Greedy Evaluation Heuristics

The motivation for the evaluation framework introduced by Eiter et al. (2011a) and described in
more detail by Schüller (2012) was performance enhancement. However, not every strongly safe
program is extended pre-groundable; thus program decomposition is in some cases indispens-

able for program evaluation. This is in contrast to the grounding algorithm introduced above,
which can directly ground any liberally de-safe, and thus strongly safe, program.

Example 65. Program � from Example 62 cannot be grounded by the traditional HEX algo-
rithms as it is not extended pre-groundable. Instead, it needs to be partitioned into two units
u1 = ff1; f2; f3; r1; r2g and u2 = fr3g with u1 !n u2. Now u1 and u2 are extended pre-
groundable HEX-programs. Then the answer sets of u1 must be computed before u2 can be
grounded. Our algorithm can ground the whole program immediately. 2

Therefore, in contrast to the previous algorithms one can keep the whole program as a single
unit, but also still apply decomposition with liberally de-safe programs as units. While program
decomposition led to performance increase for the traditional solving algorithms, it is counter-
productive for new learning-based algorithms because learned knowledge cannot be effectively
reused. In guess-and-check ASP programs, existing heuristics for the generation of the evalu-
ation graph frequently even split the guessing from the checking part, which is derogatory to
the learning. Thus, from this perspective is advantageous to have few units. However, for the
grounding algorithm a worst case is that a unit contains an external atom that is relevant for
de-safety and receives nonmonotonic input from the same unit. In this case it needs to consider
exponentially many assignments.

Example 66. Reconsider program � from Example 62. The algorithm evaluates &count [s](Z)
wrt. all A � fs(a); s(b); s(c)g because it is nonmonotonic and de-safety relevant. Now assume
that the program contains the additional constraint

c1 :  s(X); s(Y ); s(Z); X 6= Y;X 6= Z; Y 6= Z,

i.e., no more than two elements can be in set s. Then the algorithm would still check all
A � fs(a); s(b); s(c)g, but it is clear that the subset with three elements, which introduces
the constant 3, is irrelevant because this interpretation will never occur in an answer set. If
the program is split into units u1 = ff; r1; r2; c1g and u2 = fr3g with u2 !n u1, then
fs(a); s(b); s(c)g does not occur as an answer set of u1. Thus, u2 never receives this inter-
pretation as input and never is evaluated wrt. this interpretation. 2

Algorithm GroundHEX evaluates the external sources wrt. all interpretations such that the
set of observed constants is maximized. While monotonic and antimonotonic input atoms are
not problematic (the algorithm can simply set all to true resp. false), nonmonotonic parameters
require an exponential number of evaluations. Thus, in such cases program decomposition is still
useful as it restricts grounding to those interpretations which are actually relevant in some answer
set. Program decomposition can be seen as a hybrid between traditional and lazy grounding
(cf. e.g. Palø et al. (2009)), as program parts are instantiated which are larger than single rules
but smaller than the whole program.

120



4.5. Greedy Evaluation Heuristics

We thus introduce a heuristics in Algorithm GreedyGEG for generating a good generalized
evaluation graph, which iteratively merges units. Condition (d) maintains acyclicity, while the
condition at (e) deals with two opposing goals: (1) minimizing the number of units, and (2)
splitting the program whenever a de-relevant nonmonotonic external atom would receive input
from the same unit. It greedily gives preference to (1).

Algorithm GreedyGEG

Input: A liberally de-safe HEX-program �
Output: A generalized evaluation graph E = hV;Ei for �

(a) G h�;!m [ !ni
Let V be the set of (subset-maximal) strongly connected components of G
Update E

(b) while V was modi�ed do

(c) for u1; u2 2 V such that u1 6= u2 do

(d) if there is no indirect path from u1 to u2 (via some u0 6= u1; u2) or vice versa

then

(e) if no de-relevant &g [y](x) in some u2 has a nonmonotonic predicate input

from u1 then

V  
�
V n fu1; u2g

�
[ fu1 [ u2g

Update E

return E = hV;Ei

We illustrate the heuristics with an example.

Example 67. Reconsider program � from Examples 62 and 66. Then Algorithm GreedyGEG
creates a generalized evaluation graph with the two units u1 = ff1; f2; f3; r1; r2; c1g and u2 =
fr3g with u2 !n u1, which is as desired. 2

It is not dif�cult to show that the heuristics yields a sound result.

Proposition 4.8. For a liberally de-safe program �, Algorithm GreedyGEG returns a suitable

generalized evaluation graph of �.

Proof. The initial set of nodes de�ned at (a) is the set of all subset-maximal strongly connected
components of the rules of � wrt. !m [ !n. This ensures that the graph is acyclic, that
every rule (including constraints) is contained in exactly one unit, and that unit dependencies are
updated according to the rule dependencies. Thus the initial decomposition forms a generalized
evaluation graph.

Loop (b) then iteratively merges two different units, where Condition (d) ensures that the
graph remains acyclic. As the algorithm also updates E according to the rule dependencies, all
conditions of a generalized evaluation graph remain satis�ed.
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4.6 Related Work and Summary

In this section, we discuss some other notions of safety from the literature and discuss their
relationship to liberal domain-expansion safety. We will establish that our concept is strictly
more general than many other notions of safety. In particular, we formally compare our notion
to strong safety, VI-restricted programs and logic programs with functions symbols. Afterwards
we summarize the chapter and give an outlook on future work.

4.6.1 Related Work

Our notion of liberal domain-expansion safety using bsynsem compares to the traditionally used
strong domain-expansion safety and to other formalizations.

Strong Safety. We have de�ned strong safety in De�nitions 22 and 23. One can show that
(liberal) domain-expansion safety is strictly less restrictive.

Theorem 8. Every strongly domain-expansion safe program � is domain-expansion safe.

Proof. Suppose � is strongly safe. We show that for any attribute � of �, we have a 2 Sn(�)
for some n � 0, i.e., a is domain-expansion safe.

Let a be an attribute of � and let j be the number of malign cycles wrt. ; in GA(�) from
which a is reachable. We prove by induction that if a is reachable from j � 0 malign cycles
wrt. ; in GA(�), then a is domain-expansion safe.

If j = 0 we make a case distinction. Case 1: if a is of form p�i, then there is no information
�ow from a malign cycle wrt. ; to p�i. Therefore, for every rule r with p(t1; : : : ; t‘) 2 H(r) we
have that ti 2 Bn+1(r;�; bsynsem) for all n � 0 due to Condition (i) in De�nition 70. But then
p�i is domain-expansion safe.

Case 2: if a is of form &g [Y]r�Ii, then for every variable Yi 2 Y with type(&g ; i) = const

we have Yi 2 Bn+1(r;�; bsynsem) due to Condition (i) in De�nition 70, and for every predicate
pi 2 Y with type(&g ; i) = pred we have that pi�j is domain-expansion safe for every 1 � j �
ar(pi) by Case 1; note that pi�j is not reachable from any malign cycle wrt. ; because this would
by transitivity of reachability mean that also &g [Y]r�Ii is reachable from such a cycle, which
contradicts our assumption. But then also &g [Y]r�Ii is domain-expansion safe by De�nition 63.

Case 3: if a is of form &g [Y]r�Oi, then no &g [Y]r�Ij for 1 � j � ar I(&g) is reachable
from a malign cycle wrt. ;, because then also &g [Y]r�Oi would be reachable from such a cycle.
But then by De�nition 63, &g [Y]r�Oi is domain-expansion safe. Hence, attributes of any kind,
which are not reachable from malign cycles wrt. ;, are domain-expansion safe.

Induction step j 7! j + 1: If a is reachable from j + 1 malign cycles wrt. ;, then there is
an attribute �0 in such a cycle C from which a is reachable. The malign cycle C wrt. ; contains
an attribute of kind &g [Y]r�Oi, corresponding to an external atom &g [Y](X) in rule r. Since
&g [Y]r�Oi is cyclic in GA(�), &g [Y](X) is cyclic in ADG(�). Then by strong safety of �,
each variable in Y occurs in a body atom p(t1; : : : ; t‘) 2 B

+(r) which is not part of C, i.e., it
is captured by p�k for some 1 � k � ar(p). But since p(t1; : : : ; t‘) is not part of the cycle C
in ADG(�), also p�k is not part of it. Therefore p�k is reachable from (at least) one malign
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cycle wrt. ; less than a, i.e., it is reachable from at most j malign cycles. Thus p�k is domain-
expansion safe by induction hypothesis. But then by Condition (ii) in De�nition 64, also a is
domain-expansion safe.

The converse does not hold, as there are domain-expansion safe programs that are not
strongly safe, cf. Example 49.

VI-Restricted Programs. The notion of VI-restrictedness for VI programs was introduced by
Calimeri et al. (2007) and amounts to the class of HEX-programs in which all input parameters
to external atoms are of type const. More formally:

De�nition 78 (VI-Programs). A VI-program is a HEX-program � such that for every external
atom &g [X](Y) in � we have type(&g ; i) = const for all 1 � i � ar I(&g).

The notion of attribute dependency graph by Calimeri et al. (2007) is related to our notion
of ADG(�), which is more �ne-grained for attributes of external predicates. While we use
a separate node &g [Y]r�T i for each external predicate &g with input list Y in a rule r and
T 2 fI; Og for all 1 � i � arT (&g), Calimeri et al. (2007) use just one attribute &g�i for each
i 2 f1; : : : ; ar I(&g)+ar O(&g)g independent of Y. Thus, neither multiple occurrences of &g

with different input lists in a rule, nor of the same attribute in multiple rules are distinguished;
this collapses distinct nodes in our attribute dependency graph into one. We call the graph
G �A(�), which possibly contains (spurious) cycles not visible in GA(�).

Example 68. Consider the program

� = fr1 : t(X) s(Y );&e[Y ](X); r2 : r(X) t(Y );&e[Y ](X)g.

The attributes are s�1, t�1, r�1, &e[Y ]r1�I1, &e[Y ]r1�O1, &e[Y ]r2�I1 and &e[Y ]r2�O1.
We get the following edges from the �rst rule:

(s�1;&e[Y ]r1�I1),(&e[Y ]r1�I1;&e[Y ]r1�O1) and (&e[Y ]r1�O1; t�1)

We get the following edges from the second rule:

(t�1;&e[Y ]r2�I1),(&e[Y ]r2�I1;&e[Y ]r2�O1) and (&e[Y ]r2�O1; r�1)

In contrast, Calimeri et al. (2007) have the attributes s�1, t�1, r�1, &e�1 and &e�2 with the
following edges:

(s�1;&e�1),(&e�1;&e�2),(&e�2; t�1),(t�1;&e�1) and (&e�2; r�1)

The graphs GA(�) and G �A(�) are visualized in Figure 4.5. 2

Towards a de�nition of the class of VI-restricted programs we use the following notions:

� A rule r poisons an attribute p�i, if p(t1; : : : ; t‘) 2 H(r) and ti is a variable.
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s�1

&e[Y ]r1�I1

&e[Y ]r1�O1 t�1 &e[Y ]r2�I1

&e[Y ]r2�O1

r�1

(a) GA(�) without Cycles

s�1 &e�1

t�1

&e�2r�1

(b) G �A(�) with a Cycle (dashed)

Figure 4.5: Visualization of the Program � from Example 68

� A rule r is dangerous, if it poisons an attribute p�i which is in a cycle in G �A(�); p�i is
called dangerous attribute in r.

The sets of dangerous and of savior attributes are de�ned in a mutually recursive fashion as
the least sets satisfying the following conditions:

� If r is dangerous, then a dangerous attribute p�i capturing X is blocked in r, if for every
&g [Y](X) with X 2 X, it holds that for every variable Y 2 Y there is a body atom
q(t1; : : : ; t‘) 2 B+(r) such that X = ti for some 1 � i � ar(q) and attribute q�i is
savior.

� An attribute p�i is savior, if for every rule r 2 � with p(t1; : : : ; t‘) 2 H(r):

� ti is a constant; or

� there is some ordinary atom q(s1; : : : ; sar(q)) 2 B
+(r) such that ti = sj for some

1 � j � ar(q) and q�j is savior; or

� p�i is blocked in r.

We now introduce a class of VI-programs as follows.

De�nition 79 (VI-restricted Programs). A rule r 2 � is VI-restricted, if all its dangerous at-
tributes are blocked; a program � is VI-restricted, if all its dangerous rules are VI-restricted.

Using bsynsem , we can show:

Theorem 9. Every VI-restricted program � is domain-expansion safe.
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Proof. We �rst reformulate the de�nitions of blocking and savior attributes in an inductive way,
which is possible because criteria are monotonic.

Blocking:

� blocked0(r) = ; for all r 2 �

� blockedn+1(r) =
�
p�i j p�i is dangerous in r and p�i captures X in r and

for every &g [Y](X) with X 2 X;

for every variable Y 2 Y there is a body atom q(t1; : : : ; t‘)
s.t. X = ti for some 1 � i � ar(q) and q�i 2 saviorn

	
,

for all n � 0

� blocked1(r) =
S

n�0 blockedn(r)

Savior attributes:

� savior0 = ;

� saviorn+1 =
�
p�i j for all r 2 � with p(t1; : : : ; t‘) 2 H(r); either

ti is a constant; or
ti is captured by some q�j 2 saviorn in B+(r); or
p�i 2 blockedn(r)

	
,

for all n � 0

� savior1 =
S

n�0 saviorn

We show now by induction on n for all n � 0:

� If p�i 2 blockedn(r) and p�i captures variable X in r, then X 2 Bn(r;�; S; bsynsem).

� If p�i 2 saviorn for some n � 0, then p�i 2 Sn(�).

For n = 0 this is trivial.
For the induction step n 7! n + 1, suppose p�i 2 blockedn+1(r). Then p�i is dangerous

and captures some X in r. For every &g [Y](X) with X 2 X and for every variable Y 2 Y there
is a body atom q(t1; : : : ; t‘) such that X = tj for some 1 � j � ar(q) and q�j 2 saviorn

Then, by the induction hypothesis, q�j is domain-expansion safe. But then by Condition (ii)
in De�nition 64 all input variables Y 2 Y are declared bounded in the �rst step, i.e., Y 2
Bn+1;1(r;�; bsynsem). Then by Condition (iii) in De�nition 64 also all output variables X 2 X

are declared bounded in the second step, i.e., X 2 Bn+1;2(r;�; bsynsem). Thus we have X 2
Bn+1(r;�; Sn(�); bsynsem).

Now suppose p�i in saviorn+1. Then we have for every rule r 2 � with p(t1; : : : ; t‘) 2
H(r) that

(i) ti is a constant; or

(ii) ti is captured by some q�j 2 saviorn in B+(r); or
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(iii) p�i 2 blockedn(r).

In Case (i), ti 2 Bn+1(r;�; Sn(�); bsynsem) by Condition (i) in De�nition 64. In Case (ii),
q�j is domain-expansion safe by the induction hypothesis and thus ti is declared bounded by
Condition (ii) in De�nition 64. In Case (iii), ti 2 Bn+1(r;�; S; bsynsem) as shown above.

This shows that all dangerous (but blocked) attributes are domain-expansion safe. It remains
to show that also all non-dangerous attributes are domain-expansion safe. Let a be such an
attribute. If it occurs in a cycle in GA(�), then it occurs also in a cycle in G �A(�) because in
this graph nodes from GA(�) may be merged, i.e., the graph is less �ne-grained. If it is of
type p�i, then it is dangerous and we already know that it is domain-expansion safe. Otherwise
it is an external input attribute of form &g [X]r�Ii or output attribute of form &g [X]r�Oi. If
it is an input attribute, then we know that its cyclic input depends (possibly transitively) on
domain-expansion safe ordinary attributes. As the output attributes of external atoms become
domain-expansion safe as soon as the input becomes domain-expansion safe by De�nition 63,
domain-expansion safety will be propagated by Condition (iii) in De�nition 64 along the cycle,
beginning at the ordinary predicates, i.e., the input parameter will be declared domain-expansion
safe after �nitely many steps (since the cycle is of �nite length). This shows that all attributes in
cycles in GA(�) are domain-expansion safe.

As all attributes in cycles are domain-expansion safe, the remaining attributes (attributes
which depend on a cycle but are not in a cycle) will also be declared domain-expansion safe
after �nitely many steps by De�nition 63.

The converse does not hold, as there are domain-expansion safe VI-programs (e.g. due to
semantic criteria) that are not VI-restricted.

Example 69. Consider the program � = fp(Y )  p(X);&le[X](Y )g where f&le(A; x; y) =
1 iffdef 0 � y � x, for all assignments A. Then � is not VI-restricted because the attribute
p�1 appears in a cycle in G �A(�) and is thus dangerous and not blocked because X does not
occur in a savior body atom. However, the program is domain-expansion safe by Condition (i)
in De�nition 70 using the well-ordering �. 2

This shows that our notion of domain-expansion safety is strictly more liberal than VI-
restrictedness.

Logic Programs with Function Symbols. Another related notion is that of !-restricted logic

programs by Syrjänen (2001), which allow function symbols under a level mapping to control
the introduction of new terms with function symbols to ensure decidability.

In this paragraph we assume that a program is a set of rules of form

a b1; : : : ; bm; not bm+1; : : : ; not bn,

with k + n > 0 where each ai for 1 � i � k is an atom p(t1; : : : ; t‘) with function terms tj ,
1 � j � ‘, and each bi for 1 � i � n is a classical atom.

The notion of !-restricted logic programs hinges on the concept of predicate dependencies.

De�nition 80. For a program �, the predicate dependencies are de�ned as follows.
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� Sets P+
1 (�) resp. P�

1 (�) are the least sets such that for all p1; p2 2 P it holds that
(p1; p2) 2 P+

1 (�) resp. (p1; p2) 2 P�
1 (�) whenever p1 occurs in an atom inH(r) and p2

occurs in an atom in B+(r) resp. B�(r) for some r 2 �.

� Set P+(�) is the transitive closure of P+
1 (�) [ P�

1 (�).

� For all p1; pn 2 P it holds that (p1; pn) 2 P�(�) if there is a sequence hp1; p2; : : : ; pni
with (pi; pi+1) 2 P+

1 (�) [ P�
1 (�) for all 1 � j < n and (pj ; pj+1) 2 P�

1 (�) for some
1 � j < n.

Intuitively, a predicate p1 depends positively on a predicate p2, if there is a derivation path
from an atom over p2 to an atom over p1 in the program. It depends negatively on p2 if at least
one derivation step in such a path uses default-negation.

We then recall the de�nition of !-restricted logic programs as follows.

De�nition 81. An !-strati�cation of a program � is a function s : P ! N [ f!g such that

� for all p1; p2 2 P , if (p1; p2) 2 P+(�) then s(p1) � s(p2); and

� for all p1; p2 2 P , if (p1; p2) 2 P�(�) then s(p1) > s(p2) or s(p1) = !.

By convention, ! > n for all n 2 N.
For a rule r 2 � with p(t) 2 H(r) and an !-strati�cation, let


(r; s) = s(p)

and

(v; r; s) = min

��
s(q) j q(t0) 2 B+(r) and v 2 var(q(t0))

	
[ f!g

�
.

A program � is !-restricted if it holds for all r 2 � that

for all v 2 var(r) we have 
(v; r; s) < 
(r; s).

Intuitively, if a predicate p1 depends positively on p2, then its stratum must be at least as
high as the stratum of p2. If p1 depends negatively on p2, then the stratum of p1 must be higher
as those of p2 or both must be on the !-stratum.

It was observed that such programs � can be rewritten to VI-programs F (�) using spe-
cial external predicates that compose/decompose terms from/into function symbols and a list of
arguments, such that F (�) is VI-restricted [Calimeri et al., 2007].

We introduce for each k 2 N two external predicates &compsek and &decompsek with
ar I(&composek ) = 1 + k and ar O(&composek ) = 1, and ar I(&decomposek ) = 1 and
ar O(&decomposek ) = 1 + k. We de�ne

f&composek
(A; f;X1; : : : ; Xk; T ) = f&decomposek

(A; T; f;X1; : : : ; Xk) = v

with v = 1 if T = f(X1; : : : ; Xk) and v = 0 otherwise.
Then composition and decomposition of function terms can be simulated using these exter-

nal predicates. Intuitively, function terms are replaced by new variables and appropriate external
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atoms with predicate &composek or &decomposek are added to the rule body to compute their
values (cf. Example 70).

As every VI-restricted program, viewed as a HEX-program, is by Proposition 9 also domain-
expansion safe, we obtain:

Theorem 10. For every logic program with function symbols �, if � is !-restricted, then F (�)
is domain-expansion safe and there is a 1-to-1 mapping between the answer sets of � and F (�).

Proof. By Theorem 6 of Calimeri et al. (2007), F (�) is VI-restricted, and thus by Theorem 9
also domain-expansion safe using bsynsem(�; r; S;B). The correspondence of the answer sets
of � and F (�) follows from Proposition 3 of Calimeri et al. (2007).

As for the converse there exist programs � with function terms which are not !-restricted but
such that F (�) is VI-restricted, VI-restrictedness is strictly more liberal than !-restrictedness.
It turns out that domain-expansion safety is even more liberal because there exist programs �
with function terms which are not !-restricted such that F (�) is not VI-restricted but domain-
expansion safe.

Example 70. Consider the program � = fp(f(f(f(a)))); p(X)  p(f(X))g. We get the
translation F (�) = fp(f(f(f(a)))); p(X)  p(T );&decompose1 [T ](f;X)g. This program
is not VI-restricted (and thus � is not !-restricted) because p�1 occurs in a cycle in GA(�)
and cannot be declared domain-expansion safe by syntactic criteria. However, the program is
domain-expansion safe by Condition (i) in De�nition 70 using the well-ordering �strlen

C s.t.
x �eq

C y if the length of the string x is shorter or equal to the one of y. Clearly, we have
X �strlen

C T for all output terms X of &decompose1 with input T . Thus, the cycle in GA(�)
turns out to be benign, which makes the program domain-expansion safe by Condition (i) in
De�nition 70. 2

The reason why the program in Example 70 is not VI-restricted but domain-expansion safe is
that it cannot be detected by syntactic criteria alone that the cycle produces only strictly smaller
terms in each iteration. This requires semantic insights, which are captured by our notion of
semantic term bounding function in De�nition 70.

More expressive variants of !-restricted programs are �-restricted [Gebser et al., 2007b] and
argument-restricted programs [Lierler and Lifschitz, 2009]. There are argument-restricted pro-
grams � s.t. F (�) is not domain-expansion safe wrt. bsynsem . The reason is that speci�c prop-
erties of the external atoms for term (de)composition are exploited, while our approach uses
general external sources. However, these classes of programs can be captured within our frame-
work as well if tailored TBFs are used. This is not surprising as TBFs have full access to
the program, thus the criteria of �-restricted and argument-restricted programs can be checked
by the TBF and all terms can be declared bounded if they hold. This shows the �exibility of
our modular approach. The extension of argument-restricted programs by Greco et al. (2013),
which is called bounded programs, also uses parameterization of safety criteria but focuses on
programs with function symbols rather than general external sources; this notion might also be
captured in our approach by using dedicated term bounding functions.
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Similarly, by means of dedicated external atoms for (de)composing terms and a specialized
TBF, so-called FD programs [Calimeri et al., 2008a] map into our framework. Finitary pro-

grams [Bonatti, 2001; Bonatti, 2002] and FG programs [Calimeri et al., 2008a], however, dif-
fer more fundamentally from our approach and cannot be captured as domain-expansion safe
wrt. appropriate TBFs, as they are not effectively recognizable (and the former are in general
not even �nitely restrictable, i.e., there is no �nite grounding which has the same answer sets as
the original program).

Term Rewriting Systems. A term rewriting system is a set of rules for rewriting terms to
other terms, cf. Klop (1992). Termination is usually shown by proving that the right-hand side
of every rule is strictly smaller than its left-hand side [Zantema, 1994; Zantema, 2001]. Our
notion of benign cycles is similar, but different from term rewriting systems the values do not
need to strictly decrease. While terms that stay equal may prevent termination in term rewriting
systems, they do not harm in our case because they cannot expand the grounding in�nitely.

Other Notions of Safety. Related to semantic properties in our safety concept are the works
by Sagiv and Vardi (1989), Ramakrishnan et al. (1987) and Krishnamurthy et al. (1996). They
exploit �niteness of attributes (cf. Condition (ii) in De�nition 70) in sets of Horn clauses and de-
rive �niteness of further attributes using �niteness dependencies. This is related to Condition (iii)
in De�nition 70 and Condition (iii) in De�nition 64.

Also related is the work of Heymans et al. (2004), who exploit syntactic restrictions to guar-
antee tree-shapedness of the models of the program. But unlike our approach, this does not
guarantee �niteness of the model but only �nite representability.

Less related to our approach are the works of Lee et al. (2008), Cabalar et al. (2009), and
Bartholomew and Lee (2010), who extend safety, resp. argument restrictedness, to arbitrary
�rst-order formulas without/with function symbols under the stable model semantics, rather
than generalizing the concepts.

4.6.2 Summary and Future Work

We have presented a framework for obtaining classes of HEX-programs that allow for �nite
groundings suf�cient for evaluation over an in�nite domain (which arises by value invention in
calls of external sources). It is based on term bounding functions (TBFs) and enables modular
exchange and enhancement of such functions, and an easy combination of hitherto separate
syntactic and semantic criteria into a single notion of liberal domain expansion safety. Our
work pushes the classes of HEX-programs with evaluation via �nite grounding considerably,
leading to strictly larger classes than available via well-known criteria for answer set programs
over in�nite domains. We provided two concrete TBFs that capture syntactic criteria similar
to but more �ne-grained than the ones by Calimeri et al. (2007), and semantic criteria related
to those of Sagiv and Vardi (1989), Ramakrishnan et al. (1987) but targeting model generation
(not query answering).

We have then presented an algorithm for grounding arbitrary liberally domain-expansion
safe HEX-programs. The algorithm is based on iterative grounding and checking whether the
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grounding is large enough. The algorithm incorporates several optimizations which try to avoid
the (expensive) evaluation of external atoms. A worst-case scenario for the grounding algorithm
is a program, that contains cyclic dependencies of nonmonotonic external atoms. However, this
worst-case can be effectively avoided in many programs using a newly developed decomposition
heuristics (see below).

Next, we integrated the grounding algorithm into the existing evaluation framework for HEX-
programs, which is extended for this purpose. In particular, we de�ned the notion of generalized

evaluation graphs, which allows for using arbitrary liberally domain-expansion safe programs as
units. In contrast to the traditional notion of evaluation graphs, splitting of programs is not nec-
essary anymore, but still useful an some cases. Thus we developed a new evaluation heuristics
which tries to achieve two contrary goals: splitting the program as rarely as possible (because
this is harmful to the learning-based algorithms), but as often as necessary in order to avoid the
worst-case for the grounding algorithm.

Issues for ongoing and future work are the identi�cation of further TBFs and suitable well-
orderings of domains in practice. On the algorithmic side, further re�nement and optimizations
are an interesting topic. The grounding algorithm may be extended in the future such that the
worst-case can be avoided in more cases. Also other optimizations to the algorithm are possible,
e.g., by reusing previous results of the grounding step instead of iterative regrounding of the
whole program. Moreover, the new evaluation heuristics for the (extended) evaluation frame-
work may be re�ned. Currently, the heuristics tries to avoid fusion of evaluation units whenever
this would introduce cyclic dependencies of nonmonotonic external atoms, which is a worst-case
for the grounding algorithm. However, sometimes this worst-case is not practically relevant be-
cause the concerned external atom has only few output tuples. Detecting such cases would allow
for fewer evaluation units in some cases, which is an advantage for the solving algorithms.

The setup of a library of TBFs, which exploit speci�c properties of concrete external sources,
is also a possible starting point for future work on the system side. Currently, the available TBFs
exploit rather generic properties of external atoms. However, it is expected that domain-speci�c
knowledge can be used to further relax safety criteria or speedup the grounding algorithm.
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Chapter 5
Implementation and Evaluation

In this chapter we discuss the practical aspects of our work. We start with a description of the
system implementation in Section 5.1, including its architecture, command-line options which
are relevant in the context of this thesis, and the realization of speci�c features.

Then we present benchmark results for our new system implementation and compare them
to the traditional algorithms for HEX-evaluation, which will show a signi�cant speedup in many
use cases. We �rst discuss evaluation of the learning-based algorithms for ground HEX-programs
that we developed in Chapter 3 in Section 5.2. Although the encodings of our benchmark prob-
lems may involve variables and value invention, the hardness of the programs stems clearly
from ground HEX-program solving rather than from grounding. The grounding algorithm from
Chapter 4 is evaluated in Section 5.3, using a different benchmark suite for which grounding is
computationally more sophisticated.

5.1 Implementation

In this section we give some details on the implementation of the techniques developed in this
thesis. Our prototype system is called DLVHEX and is written in C++. It is available from
http://www.kr.tuwien.ac.at/research/systems/dlvhex as open-source software. The sourcecode is
hosted by https://github.com under https://github.com/hexhex. The system was initially released
as version 1.0.0 in 2006. After major parts of the system were rewritten for architectural and
ef�ciency reasons, and the model-building framework from Section 4.1 was introduced, version
2.0.0 appeared in March 2012. The current version (released in December 2013) is 2.3.0 and
integrates all solving and grounding techniques from this thesis.

We �rst describe the general architecture, the major components, and their interplay. Then
we give an overview about the command-line options of the system in general, and the new
features compared to the previous version by Schüller (2012) speci�cally. We further show how
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external source providers can de�ne user-de�ned learning functions. Moreover, we show some
language extensions developed during the work on this thesis.

5.1.1 System Architecture

The DLVHEX system architecture is shown in Figure 5.1. The arcs model both control and data
�ow within the system. The evaluation of a HEX-program works as follows.

First, the input program is read from the �le system or from standard input and passed to
the evaluation framework described in Section 4.1 1
. The evaluation framework creates then
a generalized evaluation graph depending on the chosen evaluation heuristics. This results in
a number of interconnected generalized evaluation units. While the interplay of the units is
managed by the evaluation framework, the individual units are handeled by model generators of
different kinds.

As described in Chapter 3, general program components use a guess-and-check algorithm,
while monotonic program components may use a more ef�cient �xpoint iteration. This is re-
alized as different model generators. Each instance of a model generator takes care of a single
evaluation unit, receives input interpretations from the framework (which are either output by
predecessor units or come from the input facts for leaf units), and sends output interpretations
back to the framework 2
, which manages the integration of these interpretations to �nal answer
sets.

Internally, the model generators make use of a grounder and a solver for ordinary ASP pro-
grams. The architecture of our system is �exible and supports multiple concrete backends which
can be plugged in. Currently it supports DLV, GRINGO 3.0.4 and CLASP 2.1.3, and an internal
grounder and a solver which were built from scratch during the work on this thesis (mainly for
testing purposes); they use basically the same core algorithms as GRINGO and CLASP, but with-
out any kind of optimizations. The reasoner backends GRINGO and CLASP are statically linked
to our system, thus no interprocess communication is necessary. The model generator within the
DLVHEX core sends a non-ground program to the HEX-grounder, as described in Chapter 4, and
receives a ground program 3
. The HEX-grounder in turn uses an ordinary ASP grounder as sub-
module 4
 and accesses external sources to handle value invention 5
. The ground-program is
then sent to the solver and answer sets of the ground program (i.e. candidate compatible sets) are
returned 6
. Note that the grounder and the solver are separated and communicate only through
the model generator, which is in contrast to previous implementations of DLVHEX where the
external grounder and solver were used as a single unit (i.e., the non-ground program was sent
and the answer sets were retrieved). Separating the two units became necessary because the
DLVHEX core needs access to the ground-program. Otherwise important structural information,
such as cyclicity as used in Section 3.2, would be hidden.

The solver backend makes callbacks to the post propagator in the DLVHEX core once a
model has been found or after unit and unfounded set propagation has been �nished (actually,
with DLV backend there are no callbacks during model building but only after a candidate com-
patible set has been found). During the callback, a complete or partial model is sent from
the solver backend to the post propagator, and learned nogoods are sent back to the external
solver 7
. In case of CLASP as backend, we exploit its SMT interface, which was previously
used for the special case of constraint answer set solving [Gebser et al., 2009]. The post propa-
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Figure 5.1: Architecture of DLVHEX

gator has then two key tasks: compatibility checking with learning and unfounded set detection.
Compatibility checking, as formalized in Part (d) in Algorithm GuessAndCheckHexEvaluation
and in Part (c) in Algorithm Hex-CDNL, checks whether the guesses of the external atom re-
placements by the ordinary ASP solver coincide with the actual semantics of the external source.
This check also requires calls to the plugins, which implement the external sources. The input
list is sent to the external source and the truth values and possibly user-de�ned learnt nogoods
are returned to the post propagator 9
. Moreover, the post propagator also sends the (complete
or partial) model to the unfounded set checker (UFS checker) to �nd unfounded sets which are
not detected by the ordinary ASP solver (unfounded sets caused by external sources). For this,
the UFS checker employs a SAT solver 11
, which can either be CLASP or the internal solver.
The UFS checker possibly returns nogoods learned from unfounded sets to the post propaga-
tor 8
. UFS detection also needs to call the external sources for guess veri�cation, as shown in
Algorithm FLPCheck 10
. The post propagator sends all learned nogoods (either directly from
external sources or from unfounded sets) back to the ASP solver. This makes sure that eventually
only valid answer sets arrive at the model generator 6
.

Finally, after the evaluation framework has built the �nal answer sets from the output inter-
pretations of the individual evaluation units, they are output to the user 12
.
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5.1.2 Command-Line Options

DLVHEX supports various command-line options which control the algorithms. An exhaustive
overview is available as online help which is printed if DLVHEX is run without arguments, i.e.,
$ dlvhex2.

The following list gives an overview about the most relevant options in the scope of this
thesis and describes the possible parameter values.

� --heuristics=[old,easy,monolithic,greedy]

Chooses the heuristics for the construction of the evaluation graph.
old and easy are described by Eiter et al. (2011a)
monolithic creates a single evaluation unit for the whole program
greedy is the new default heuristics as described in Section 4.5

� --solver=[dlv,genuineii,genuineic,genuinegi,genuinegc]
Selects the grounder and solver backend.
dlv uses DLV for grounding and solving
genuineii uses the internal grounder and solver
genuineic uses the internal grounder and CLASP

genuinegi uses GRINGO and the internal solver
genuinegc uses GRINGO and CLASP

� --eaevalheuristics=[never,inputcomplete,always]
Controls the heuristics for external atom evaluation in Part (c) of Algorithm Hex-CDNL
Hex-CDNL.
never does not evaluate external atoms during model building
inputcomplete evaluates external atoms whenever their input is fully known
always evaluates whenever the solver backend makes a callback to the post propagator

� --ufscheckheuristics=[post,periodic,max]
Controls how often the UFS checker is invoked.
post invokes it only for complete interpretations
periodic invokes it in regular intervals
max invokes it whenever the solver backend makes a callback to the post propagator

� --flpcheck=[explicit,ufs,ufsm,aufs,aufsm]
Selects the algorithm for the FLP check.
explicit uses the reduct as introduced at the beginning of Section 3.2
ufsm uses the UFS algorithm with encoding � but without program decomposition
ufs uses the UFS algorithm with encoding � and program decomposition
aufsm uses the UFS algorithm with encoding 
 but without program decomposition
aufs uses the UFS algorithm with encoding 
 and program decomposition

� --ufslearn=[none,ufs,reduct]
Selects a strategy for learning from unfounded sets.
none uses no learning
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ufs learns as formalized by L1(U;�;A) in Section 3.2.3
reduct learns as formalized by L2(U;�;A) in Section 3.2.3

� --extlearn=[none,iobehavior,monotonicity,functionality,
linearity,neg,user]

Chooses one or more strategies for learning from external sources as described in Sec-
tion 3.1.2.
none uses no learning
iobehavior learns in an uninformed fashion as described in Section 3.1.2
monotonicity learns as described in Section 3.1.2 by exploiting (anti-)monotonicity
functionality learns as described in Section 3.1.2 by exploiting functionality
linearity learns as described in Section 3.1.2 by exploiting linearity
neg learns as described in Section 3.1.2 by exploiting negative information
user exploits user-de�ned learning functions (if provided by the plugin developer)
If --extlearn is passed without any speci�c values, then all learning functions are
activated (for those external sources which have the respective properties).

� --noflpcriterion
Do not apply the decision criterion developed in Section 3.2.5.

� --liberalsafety
Use liberal domain-expansion safety from Section 4.2 instead of strong domain-expansion
safety.

A typical example for a complete call to DLVHEX is as follows:

$ dlvhex2 --heuristics=monolithic --solver=genuinegc --extlearn \
--flpcheck=aufs --liberalsafety setpartitioning.hex

The syntax of the input language is very similar to the one used in this thesis, but with :-
instead of and letter v for _. Moreover, rules must be terminated with a dot.

Example 71. The program � from Example 2 is encoded in �le setpartitioning.hex
follows:

sel(X) :- domain(X), &diff[domain, nsel](X).

nsel(X) :- domain(X), &diff[domain, sel](X).

domain(a).

2

It uses monolithic evaluation heuristics, GRINGO and CLASP as solver backends, turns
all options for learning from external sources on, uses the UFS-based FLP check with encoding

, and uses liberal de-safety.
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5.1.3 Heuristics for External Atom Evaluation and Unfounded Set Checking

Our implementation supports customized heuristics for steps (c) and (d) in Algorithm Hex-
CDNL. A customized heuristics for external atom evaluation gets as input a partial assignment
and an external atom in the program and decides whether this external atom shall be evalu-
ated. In the positive case, the system evaluates the learning function associated with the ex-
ternal atom and its input list wrt. to the partial assignment (which may not even fully de�ne
the input to the external atom), and adds the respective nogoods to the set of dynamic no-
goods. Note that this allows for learning nogoods which imply the truth values of yet unas-
signed input or output atoms of the external atom; this technique is well-known as theory prop-

agation [Nieuwenhuis and Oliveras, 2005]. However, exploiting the power of this technique
requires user-de�ned learning functions (see below) which need to be tightly coordinated with
the external atom heuristics such that useful nogoods can be learned even wrt. partial interpreta-
tions. This step is strongly application dependent and beyond the scope of this thesis. However,
our system provides a user-friendly programming interface for adding such learning functions
and heuristics. In our benchmarks we used our default heuristics which evaluates external atoms
whenever their input is completely known.

Customized heuristics for unfounded set checking also take as input a partial assignment
and decide whether an unfounded set check shall be done. In the positive case, the unfounded
set check is performed only over the subset-maximal subprogram over which the interpretation
is already complete. As described in Section 3.2.4, this ensures that detected unfounded sets
remain unfounded wrt. any completion of the assignment. We provide three concrete heuristics:

(1) Start unfounded set checking only wrt. complete interpretations.

(2) Start unfounded set checks periodically.

(3) Start unfounded set checks whenever no other propagation method yields additional assign-
ments (i.e., before guessing).

However, our experiments have shown that (1) is superior to the other two methods in all our
benchmarks. This is the case because unfounded set checking with external sources is a very
expensive check, while the bene�t of detecting unfounded sets earlier is marginal as learning
effectively avoids the regeneration of unfounded sets anyway. Thus, we stick with heuristics (1)
in our benchmarks.

5.1.4 User-De�ned Learning Functions

User-de�ned learning functions as described in Section 3.1.2 can be implemented in two ways.
The learned nogoods may be stated either directly as sets of signed literals, or encoded as (pos-
sibly non-ground) ASP rules. Stating them directly requires the user for writing some lines of
C++ code to assemble the learned nogoods during evaluation of the external source. This may
be more ef�cient than using ASP but less convenient. The traditional DLVHEX API for writing
plugins requires the plugin developer to provide an implementation of the method:

void retrieve(const Query& query, Answer& answer);
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It needs to transform a query object, containing the input list of the external atom and the ex-
tensions of the relevant predicates, into an answer object, containing all output tuples for which
the external atom shall be true. This was described by Schüller (2012). While this method ex-
ploits speci�c properties of external sources, as described in Section 3.1.2, the user may specify
custom learning methods by overriding the following method instead:

void retrieve(const Query& query, Answer& answer, NogoodContainerPtr ngcont);

Here, access to a nogood container is provided (roughly corresponding to the ASP solver),
which allows for adding custom nogoods by appropriate function calls. The construction of the
learned nogoods out of single literals is up to the user, but is supported by a library of helper
functions, which may be used to construct parts of the nogoods automatically. For instance,
there is a helper method which automatically constructs the set of all input atoms in the query
object.

One particular helper function allows for writing learning rules in a fragment of ASP itself.
The idea can be described as follows. Each rule speci�es the preconditions for learning in terms
of signed literals in the current assignment in its body. The head atom speci�es the output tuples
generated by the external source, i.e., they encode which atoms will be in the output (resp. not in
the output) under these preconditions. We used the predicates ini for 1 � i � n (for n-ary input)
in the learning rule body and out resp. nout in its head. For instance, for external predicate with
input list &g [p1; : : : ; pn] the atom in2(c) in the body of a learning rule is true, if c is in the
extension of the second input parameter, which is p2 in this case. The atom out(c) in the head
of a learning rule states that c is in the output of the external source whenever the body of the
learning rule is satis�ed. Note that we have to use anonymized predicates ini, 1 � i � n instead
of the predicate names used in a certain external atom, because the learning rule must work also
for different external atoms (but using the same external predicate).

Example 72. The behavior of external predicate with input list &di� [p; q] can compactly be
described by the rule out(X) in1 (X); not in2 (X). 2

The application of a learning rule during evaluation of an external atom under assignment A
works then as follows.

1. First, all predicates out resp. nout are replaced by the auxiliary name e&g[y] for the re-
spective external predicate with input list &g [y].

2. Then, all signed literals Ta 2 A from the current assignment A which are input atoms to
the external atom (i.e. a = pi(c) for some c and pi 2 y) are transformed into facts a .

3. The facts and the learning rule form the learning program, which is grounded in the third
step. It is crucial to do the grounding without optimization. State-of-the-art grounders are
highly optimized and evaluate the deterministic part of a program already during ground-
ing as far as possible. This means in particular that atoms which are known to be true in
all answer sets, are removed from rule bodies. If a program is strati�ed, which is usually
the case for learning programs, it is completely evaluated to a set of facts. However, this is
undesired here: because we want to use the ground rule to construct a learned nogood, we
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have to ensure that it is correct also for future assignments, which may be different from
the one wrt. which the external atom is currently evaluated.

4. Finally, the algorithm learns for each ground rule r of type H(r)  B+(r); notB�(r)
the nogood

�
Fh j h 2 H(r)

	
[

�
Tp j p 2 B+(r)

	
[

�
Fn j n 2 B�(r)

	
.

Example 73 (ctd.). Continuing Example 72, the rule after renaming all predicates according to
the external atom is e&di� [p;q](X) p(X); not q(X). Let A = fTp(a);Tp(b);Fp(c); Tq(a);
Fq(b); Tq(c)g, then the grounded learning program is e&di� [p;q](b)  p(b); not q(b) and the
nogood which is learned by the system is fFe&di� [p;q](b);Tp(b);Fq(b)g. 2

Observe that optimization during grounding would lead to an incorrect nogood. The ground
rule would be e&di� [p;q](b)  in this case, which leads to the nogood fFe&di� [p;q](b)g that
encodes that b is always in the output of the external source. However, this is only the case
for the current input interpretation, the precondition p(b); not q(b) was lost due to grounding
optimization.

5.1.5 Language Extension for Property Speci�cation

The development of the algorithms presented in Chapters 3 and 4 required lots of experiments
with external sources of different kinds. Recall that our algorithms exploit syntactic and seman-
tic properties of external sources, such as monotonicity. Such properties are in practical use
reasonably speci�ed by the provider of the respective external atoms. For this purpose, our C++
API offers property lists which can be assigned to external atoms. The properties of external
sources are usually �xed once the plugin has been developed.

However, during the work on this thesis it was of great interest to experiment with different
property lists for the same external atom. For instance, it was important to see what happens
if an external atom is monotonic, but not declared as such, i.e., the property is concealed from
the system. Then the system might be forced to use a more general and slower algorithm than
if the property was known. Conversely, it was sometimes also interesting to see how the system
behaves if a property is wrongly asserted, e.g., some nonmonotonic source is declared to be
monotonic. On the one hand, this was useful for making the system more robust against user
errors and programming errors in plugins, on the other hand the observations also led to a better
intuitive understanding of the algorithms.

It would have been cumbersome to change the C++ code of external sources for every ex-
periment with a different property list. Thus, the following extension of the HEX-language was
developed. External atoms &g [y](x) can now be post-�xed by inline property lists directly in
the HEX-program, which are of kind hP1; : : : ; Pni where the Pi for 1 � i � n are property

assertions, such as monotonic yk to de�ne that &g is monotonic in predicate input parameter
yk 2 y, or �nitedomain 2 to de�ne that the second output element x2 has a �nite domain. For
an exhaustive description of the supported property assertions, we refer to the system documen-
tation.
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5.2 Evaluation of the Learning-based Algorithms

We evaluated the implementation on a Linux server with two 12-core AMD 6176 SE CPUs with
128GB RAM running an HTCondor load distribution system1 which ensures robust runtimes
(i.e., multiple runs of the same instance have negligible deviations) and using DLVHEX version
2.3.0. The grounder and solver backends for all benchmarks are GRINGO 3.0.4 and CLASP

2.1.3. For each instance, we limited the CPU usage to two cores and 8GB RAM. The timeout
for all instances was 300 seconds. The instances of all benchmarks discussed in this section
are available as compressed tar archives from http://www.kr.tuwien.ac.at/staff/redl/aspext. The
required plugins are available from the repository (https://github.com/hexhex).

For evaluating the solving algorithms for ground HEX-programs, there is a large number of
combinations of the techniques developed in this thesis. We may either activate or deactivate
external behavior learning (EBL) and use either the explicit or the UFS-based minimality check.
In the latter case, we can further use unfounded set learning (UFL), the decision criterion for
skipping the unfounded set check can be exploited or ignored, and program decomposition might
be used. Moreover, we can choose between the encodings � and 
.

However, we will restrict our discussion to some interesting con�gurations. In general, we
will activate the developed features stepwise such that in our tables the ef�ciency increases from
left to right. We will start with the traditional algorithm based on an explicit minimality check
without any learning techniques described in this thesis (i.e., only con�ict-driven learning in-
side CLASP is used). In the next step we will add external behavior learning (EBL), while UFL
is not possible with the explicit check. Then we switch from the explicit minimality check to
the UFS-based one without learning and without exploiting the decision criterion and program
decomposition. Nevertheless, this naive kind of the UFS-based minimality checking is usually
already more ef�cient than the explicit minimality check with EBL. In the next step, we add the
decision criterion and program decomposition. In the following, monolithic (mol.) means that
both the decision criterion and the program decomposition are off, and modular (mod.) that they
are on. Then we add EBL and UFL to the UFS-based minimality check, which leads usually
to a signi�cant speedup. Finally, we switch the encoding from � to 
; in our experiments we
always enable modular decomposition and the decision criterion if encoding 
 is used. Since the
two encodings have different variables and clauses, their respective search spaces are of a differ-
ent structure, which may prefer or penalize the one or the other encoding for a given instance.
However, the systematic difference between the encodings is that 
 needs to be constructed
only once, which is an advantage and often leads to a smaller overall runtime. We might skip
some of the steps for speci�c benchmarks and argue why they are uninteresting in the respective
cases. The numbers in parentheses indicate the number of instances and the number of time-
outs in the respective categories. In all benchmarks of this section we used the monolithic
decomposition heuristics, i.e., we do not split the program.

We can see a clear improvement both for synthetic and for application instances, due to the
UFS check and EBL. Since some benchmarks are motivated by real applications, they will be
discussed in more detail in Chapter 6. Here we only give a brief description as far as this is
necessary to understand the benchmark results. A closer analysis shows that the UFS check in

1http://research.cs.wisc.edu/htcondor

139

http://www.kr.tuwien.ac.at/staff/redl/aspext
https://github.com/hexhex
http://research.cs.wisc.edu/htcondor


5. IMPLEMENTATION AND EVALUATION

do
m

ai
n All Answer Sets First Answer Set

explicit UFS � UFS � UFS 
 explicit UFS � UFS � UFS 

+EBL mol. mod. +EBL +EBL +EBL mol. mod. +EBL +EBL

1 (1) 0.05 (0) 0.05 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0)
2 (1) 0.28 (0) 0.20 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.09 (0) 0.10 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0)
3 (1) 4.65 (0) 2.82 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.70 (0) 0.70 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.04 (0)
4 (1) 69.66 (0) 36.64 (0) 0.14 (0) 0.14 (0) 0.06 (0) 0.06 (0) 6.34 (0) 6.35 (0) 0.04 (0) 0.04 (0) 0.05 (0) 0.05 (0)
5 (1) 300.00 (1) 300.00 (1) 0.33 (0) 0.32 (0) 0.09 (0) 0.07 (0) 54.02 (0) 53.80 (0) 0.05 (0) 0.05 (0) 0.05 (0) 0.05 (0)
6 (1) 300.00 (1) 300.00 (1) 0.77 (0) 0.81 (0) 0.12 (0) 0.10 (0) 300.00 (1) 300.00 (1) 0.04 (0) 0.05 (0) 0.06 (0) 0.06 (0)
7 (1) 300.00 (1) 300.00 (1) 1.73 (0) 1.78 (0) 0.20 (0) 0.13 (0) 300.00 (1) 300.00 (1) 0.06 (0) 0.06 (0) 0.06 (0) 0.07 (0)
8 (1) 300.00 (1) 300.00 (1) 4.35 (0) 4.17 (0) 0.31 (0) 0.16 (0) 300.00 (1) 300.00 (1) 0.07 (0) 0.06 (0) 0.07 (0) 0.07 (0)
9 (1) 300.00 (1) 300.00 (1) 10.42 (0) 10.21 (0) 0.47 (0) 0.23 (0) 300.00 (1) 300.00 (1) 0.08 (0) 0.07 (0) 0.08 (0) 0.09 (0)

10 (1) 300.00 (1) 300.00 (1) 26.31 (0) 25.13 (0) 0.53 (0) 0.29 (0) 300.00 (1) 300.00 (1) 0.09 (0) 0.09 (0) 0.11 (0) 0.12 (0)
15 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 2.83 (0) 0.79 (0) 300.00 (1) 300.00 (1) 0.19 (0) 0.15 (0) 0.27 (0) 0.26 (0)
20 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 12.98 (0) 1.95 (0) 300.00 (1) 300.00 (1) 0.38 (0) 0.29 (0) 0.57 (0) 0.57 (0)
25 (1) 300.00 (1) 300.00 (1) 300.00 (1) 300.00 (1) 45.18 (0) 4.11 (0) 300.00 (1) 300.00 (1) 0.70 (0) 0.47 (0) 1.09 (0) 1.08 (0)

Table 5.1: Set Partitioning � Benchmark Results

some cases not only decreases the runtime but also the numbers of enumerated candidates (UFS
candidates resp. model candidates of the FLP-reduct) and of external atom evaluations.

5.2.1 Detailed Benchmark Description

Set Partitioning. This benchmark extends the program from Example 32 by the additional
constraint  sel(X); sel(Y ); sel(Z); X 6= Y;X 6= Z; Y 6= Z and varies the size of domain .
The results are shown in Table 5.1. We can observe a big advantage of the UFS check over
the explicit check, both for computing all answer sets and for �nding the �rst one. A closer
investigation shows that the improvement is mainly due to the optimizations described in Sec-
tion 3.2.3 which make the UFS check investigate signi�cantly fewer candidates than the explicit
FLP check. Furthermore the UFS check requires fewer external computations.

Both the explicit and the UFS-based minimality check bene�t from EBL if we compute all
answer sets, but the results show that the UFS-based check bene�ts more. In contrast, UFL (not
shown in the table) does not lead to a further speedup because no unfounded sets will be detected
in this program. Also the decision criterion and program decomposition (not shown in the table)
do not help because there is a cycle which involves the whole program.

If we compute only one answer set, then EBL turns out to be counterproductive. This is
because learning is involved with additional overhead, while the algorithm cannot pro�t much
from the learned knowledge if it aborts after the �rst answer set, hence the costs exceed the
bene�t.

Using the encoding 
 instead of � increases the ef�ciency in this case, because there is not
only a large number of answer sets but also a large number of answer set candidates. Thus, a
reusable encoding is very bene�cial, even if we compute only one answer set.

Multi-Context Systems (MCSs). Multi-context systems [Brewka and Eiter, 2007] are a for-
malism for interlinking knowledge based systems. So-called bridge rules are used to intercon-
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