1. Answer Set Programs and HEX-Programs

An Answer Set (ASP)-Program is a set of rules of kind
\[
a_1 \vee \ldots \vee a_k \leftarrow b_1, \ldots, b_m, \neg b_{m+1}, \ldots, \neg b_n,
\]
where \(q_i \) for \(1 \leq i \leq k \) and \(b_i \) for \(1 \leq i \leq n \) are classical atoms. An answer set of such a program \(P \) is an interpretation \(I \) (a set of atoms), which is a subset-minimal model of the GL-reduct \(P^I \).

HEX-programs extend ASP by external sources:
- Rule bodies may contain external atoms of the form \(\varphi[q_1, \ldots, q_k](t_1, \ldots, t_l) \),

 where

 \(p \) : external predicate name,

 \(q \) : predicate names or constants: \(\tau(\varphi, i) \in \{ \text{pred}, \text{const} \} \),

 \(t \) : terms.

Semantics:
\[1 + k + \ell \text{-ary Boolean oracle function } f_{\varphi} \cdot \varphi[q_1, \ldots, q_k](t_1, \ldots, t_l) \text{ is true under assignment } A \]
if \(f_{\varphi}(A, q_1, \ldots, q_k, t_1, \ldots, t_l) = T \).

Answer sets are defined similarly as for ordinary ASP, but using the FLP-reduct \(P^F \) [Faber et al., 2011] instead of the GL-reduct \(P^I \).

Example: Set Partitioning

\[
P = \begin{cases}
 d(a_1), \ldots, d(a_n), \\
r_1: p(X) \leftarrow d(X), \text{diff}[d, q](X) \\
r_2: q(X) \leftarrow d(X), \text{diff}[d, p](X)
\end{cases}
\]

2. Motivation

Equivalence of ASP-programs:
- Deciding equivalence of ASP-programs under program extensions received attention in the past.
- Possible application: program transformations and optimizations.

Existing equivalence notions: programs \(P \) and \(Q \) are called
- strongly equivalent [Lifschitz et al., 2001]

 if \(P \cup R \) and \(Q \cup R \) have the same answer sets for any program \(R \);

 uniformly equivalent [Eiter and Fink, 2003]

 if \(P \cup Q \) and \(Q \cup R \) have the same answer sets for any set of facts \(R \);

 \((\mathcal{H}, \mathcal{B}) \)-equivalent [Wolpert, 2007]

 if \(P \cup R \) and \(Q \cup R \) have the same answer sets for all programs \(R \in \mathcal{P}(\mathcal{H}, \mathcal{B}) \) whose head resp. body atoms come only from \(\mathcal{H} \) resp. \(\mathcal{B} \).

Question 1: How can we decide if two programs have the same answer set?

Question 2: What can we say about inconsistency of HEX-programs?

Challenge: The support for external atoms and the use of the FLP-instead of the GL-reduct make the extension non-trivial.

Contributions:
- A generalization of the notion of \((\mathcal{H}, \mathcal{B}) \)-equivalence to HEX-programs, i.e., a formal criterion for deciding if two HEX-programs are \((\mathcal{H}, \mathcal{B}) \)-equivalent.
- This subsumes strong and uniform equivalence.
- A related criterion for deciding inconsistency of a HEX-program.
- Notably, the notion is also applicable to special cases of HEX-programs, such as well-known ASP extensions, e.g., aggregates, DL-programs and constraint ASP.

3. The Equivalence Criterion

The following result is a generalization of the one by Wolpert:

Definition

Given sets \(\mathcal{H}, \mathcal{B} \) of atoms, a pair \((X, Y) \) of interpretations is an \((\mathcal{H}, \mathcal{B}) \)-model of a program \(P \) if

1. \(Y \models P \) and for each \(Y' \subseteq Y \) with \(Y' \models P \) we have \(Y' \models \mathcal{H} \cup \mathcal{B} \); and
2. if \(X \subseteq Y \) then there exists an \(X' \subseteq Y \) with \(X' \models \mathcal{H} \cup \mathcal{B} \) such that \((X', Y) \) is \(\mathcal{H}, \mathcal{B} \)-maximal for \(P \).

We denote the set of all \((\mathcal{H}, \mathcal{B}) \)-models of a program \(P \) by \(\sigma(\mathcal{H}, \mathcal{B})(P) \).

Theorem (Equivalence of HEX-Programs)

For sets \(\mathcal{H}, \mathcal{B} \) of atoms and HEX-programs \(P \) and \(Q \), we have

\[P \equiv_Q (\mathcal{H}, \mathcal{B}) \] if and only if \(\sigma(\mathcal{H}, \mathcal{B})(P) = \sigma(\mathcal{H}, \mathcal{B})(Q) \).

Proof Idea: A technique for external source inlining [Redl, 2017] can be exploited to apply proof ideas by Wolpert.

4. The Inconsistency Criteria

We provide two criteria based on models of the redact and unfounded sets (UFS) [Faber, 2005], respectively. Let \(P \) be a HEX-program. Then:

Theorem (Inconsistency of a Program based on Its Reduct)

Program \(P \cup R \) is inconsistent for all \(R \in \mathcal{P}(\mathcal{H}, \mathcal{B}) \) iff for each model \(Y \) of \(P \) there is an \(Y' \subseteq Y \) such that \(Y' \models P^F \) and \(Y' \models \mathcal{H} \).

Theorem (Inconsistency of a Program based on Unfounded Sets)

Program \(P \cup R \) is inconsistent for all \(R \in \mathcal{P}(\mathcal{H}, \mathcal{B}) \) iff for each model \(Y \) of \(P \) there is a UFS \(U \neq \emptyset \) of \(P \) w.r.t. \(Y \) s.t. \(U \cap Y \neq \emptyset \) and \(U \cap \mathcal{H} = \emptyset \).

The latter theorem is especially useful for solver development since implementations do not usually explicitly construct the reduct.

5. Conclusion and Outlook

Main results:
- Decision criteria for
 1. equivalence and
 2. inconsistency of HEX-programs.

Future work:
- Extension of the results to non-ground programs.
- Applications: program transformations for solver optimizations.

6. References