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Abstract

This thesis makes a contribution to the research e�orts of integrating rule-based inference
methods with current knowledge representation formalisms in the Semantic Web. Ontol-
ogy languages such as OWL and RDF Schema seem to be widely accepted and successfully
used for semantically enriching knowledge on the Web and thus prepare it for machine-
readability. However, these languages are of restricted expressivity if it comes to inferring
new from existing knowledge. On the other side, rule formalisms have a long tradition
in logic programming, being a common and intuitive tool for problem speci�cations. It
is evident that the Semantic Web needs a powerful rule language complementing its on-
tology formalisms in order to facilitate sophisticated reasoning tasks. Ontology languages
commonly derive from Description Logics. As a fragment of �rst-order logic, their seman-
tics diverge signi�cantly from logic programming languages like Datalog and its various
descendants � especially if we consider the powerful category of non-monotonic logic pro-
gramming. In order to overcome this gap, di�erent approaches have been presented how
to combine Description Logics with rules, varying in the degree of integration.

Answer-set programming (ASP) is one of the most prominent and successful semantics
for non-monotonic logic programs. The speci�c treatment of default negation under ASP
allows for the generation of multiple models for a single program, which in this respect
can be seen as the encoding of a problem speci�cation. Highly e�cient reasoners for ASP
are available, each extending the core language by various sophisticated features such as
aggregates or weak constraints.

In the �rst part of this thesis, we propose a combination of logic programming under
the answer-set semantics with the description logics SHIF(D) and SHOIN (D), which
underly the Web ontology languages OWL Lite and OWL DL, respectively. This combi-
nation allows for building rules on top of ontologies but also, to a limited extent, building
ontologies on top of rules. We introduce description logic programs (dl-programs), which
consist of a description logic knowledge base L and a �nite set of description logic rules
(dl-rules) P . Such rules are similar to usual rules in logic programs with negation as failure,
but may also contain queries to L, possibly default-negated, in their bodies. We show that
consistent strati�ed dl-programs can be associated with a unique minimal Herbrand model
that is characterized through iterative least Herbrand models. We then de�ne strong and
weak answer-set semantics which both properly generalize answer sets of ordinary normal
logic programs, based on a reduction to the least model semantics of positive dl-programs
and to the answer-set semantics of ordinary logic programs respectively. We also present a
de�nition of the well-founded semantics for dl-programs, based on a generalization of the
notion of unfounded sets. We then give �xpoint characterizations for the (unique) minimal
Herbrand model semantics of positive and strati�ed dl-programs as well as for the well-
founded semantics, and show how to compute these models by �nite �xpoint iterations.
Furthermore, we give a precise picture of the complexity of deciding answer set existence
for a dl-program, and of brave, cautious, and well-founded reasoning. We lay out possible
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applications of dl-programs and present the implementation of a prototype reasoner.
In the second part of the thesis, we generalize our approach to hex-programs, which

are nonmonotonic logic programs under the answer-set semantics admitting higher-order
atoms as well as external atoms. Higher-order features are widely acknowledged as useful for
performing meta-reasoning, among other tasks. Furthermore, the possibility to exchange
knowledge with external sources in a fully declarative framework such as ASP is particularly
important in view of applications in the Semantic Web area. Through external atoms,
hex-programs can model some important extensions to ASP, and are a useful KR tool
for expressing various applications. We de�ne syntax and semantics of hex-programs
and show how they can be deployed in the context of the Semantic Web. We give a
picture of the computation method of hex-programs based on the theory of splitting sets,
followed by a discussion on complexity. Then, the implementation of a prototype reasoner
for hex-programs is outlined, along with a description how to extend this framework by
custom modules. Eventually, we show the usability and versatility of hex-programs and
our prototype implementation on the basis of concrete, real-world scenarios.



Kurzfassung

Diese Dissertation ist ein Beitrag zu aktuellen Forschungsbestrebungen Bereich des Seman-
tic Web, speziell bezüglich der Möglichkeiten, regelbasierte Schlussmethoden mit bereits im
Einsatz be�ndlichen Wissensrepräsentationen zu kombinieren. Formalismen und Sprachen
zur Darstellung von ontologischenWissensbasen scheinen weitgehend akzeptiert zu sein, um
Wissen im World Wide Web semantisch zu annotieren und damit maschinell verarbeitbar
zu machen. Diese Ontologie-Sprachen sind jedoch nur von begrenzter Expressivität, wenn
neues Wissen aus vorhandenem geschlossen werden soll. Diese Aufgabenestellung ist seit
langem eine Domäne von logikbasierten Regelsprachen, die das Spezi�zieren von Proble-
men auf intuitive Weise erlauben. Es ist allgemein anerkannt, daÿ zusätzlich zu Ontologien
ein ausdrucksstarker Regelformalismus für komplexes Schliessen innerhalb des Semantic
Web unerläÿlich ist. Ontologie-Sprachen stammen ursprünglich von Beschreibungslogiken
ab und sind ein Fragment der Prädikatenlogik erster Stufe. Dadurch unterscheiden sie
sich wesentlich von der Semantik von logischen Programmiersprachen, wie z.B. Datalog
und speziell von nichtmonotononen logischen Programmiersprachen. Verschiedene Ansätze
wurden vorgeschlagen, um diese Diskrepanz zu überwinden und Beschreibungslogiken mit
Regelsprachen zu kombinieren.

Answer-Set Programmierung (ASP) ist einer der bekanntesten und erfolgreichsten Ver-
treter aus der Familie der nichtmonotononen logischen Programmiersprachen. ASP erlaubt
es, durch eine spezi�sche Interpretation der schwachen Negation mehrere Modelle zu ei-
nem logischen Programm � in diesem Zusammenhang auch als Kodierung eines Problems
gesehen � zu generieren. Mehrere e�ziente Inferenzmaschinen für ASP sind verfügbar,
wobei jede davon die Kernsprache von ASP mit eigenen Konstrukten, z.B. Aggregaten
oder schwachen Constraints, erweitert.

Der erste Teil dieser Arbeit ist einer speziellen Kombination von logischer Program-
mierung unter der Answer-Set Semantik mit den Beschreibungslogiken SHIF(D) und
SHOIN (D) gewidmet, die jeweils den Ontologiesprachen OWL Lite und OWL DL zu-
grunde liegen. Diese Kombination erlaubt sowohl das Aufsetzen von Regeln auf Ontologien,
aber auch bis zu einem gewissen Grad das Aufsetzen von Ontologien auf Regeln. Wir führen
sogenannte description logic programs (dl-programs) ein, die aus einer Beschreibungslogik-
Wissensbasis L und einer �niten Anzahl von description logic rules (dl-rules) P beste-
hen. Diese Regeln basieren auf herkömmlichen Regeln in logischer Programmierung mit
schwacher Negation, können zusätzlich jedoch Abfragen von Informationen aus L in ihren
Regelrümpfen enthalten. Wir zeigen, daÿ konsistente und strati�zierte dl-Programme mit
einem eindeutigen minimalen Herbrand-Modell assoziierbar sind, das durch iterative klein-
ste Herbrand-Modelle charakterisiert ist. Wir de�nieren Starke und Schwache Answer-Set
Semantik, beide als Verallgemeinerung von Answer Sets herkömmlicher normaler logischer
Programme, basierend auf einer Reduktion auf die Semantik kleinster Modelle von positi-
ven dl-Programmen bzw. der Answer-Set Semantik von gewöhnlichen logischen Program-
men. Weiters de�nieren wir eine Well-Founded Semantik für dl-Programme, basierend auf
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einer Verallgemeinerung des Begri�es des Unfounded Sets. Wir charakterisieren sowohl
die (eindeutige) minimale Herband-Modell Semantik von positiven und strati�zierten dl-
Programmen als auch die Well-Founded Semantik über einen Fixpunkt und zeigen, wie sol-
che Modelle über endliche Fixpunkt-Iterationen zu berechnen sind. Darüber hinaus zeich-
nen wir ein präzises Bild der Komplexität der Entscheidbarkeit der Existenz von Answer-
Sets eines dl-Programms. Wir präsentieren mögliche Anwendungen von dl-Programmen
und stellen die Implementierung eines Prototyps zur Evaluierung von dl-Programmen vor.

Im zweiten Teil dieser Arbeit verallgemeinern wir diesen Ansatz zu sogenannten hex-
Programmen, nichtmonotononen logischen Programmen unter der Answer-Set Semantik,
die sowohl Higher-Order Atome als auch Externe Atome zur Verfügung stellen. Higher-
Order Atome ermöglichen die Spezi�kation von Meta-Regeln, während Externe Atome
eine Schnittstelle zum Austausch von Informationen mit externen Quellen von Wissen
darstellen. Letzteres ist speziell im Hinblick auf das Semantic Web von groÿem Interesse,
da somit verschiedenartige Informationen in einem einzigen deklarativen Formalismus zu-
sammengeführt und verarbeitet werden können. Wir de�nieren Syntax und Semantik von
hex-Programmen und zeigen, auf welche Weise diese im Kontext des Semantic Web ein-
gesetzt werden können. Wir beschreiben Methoden zur Evaluierung von hex-Programmen
und untersuchen ihre Komplexität. Weiters stellen wir eine Applikation zur Auswertung
von hex-Programmen vor, ergänzt durch eine Beschreibung, wie dieses System mit indivi-
duellen externe Schnittstellen erweitert werden kann. Schlussendlich demonstrieren wir die
Sinnhaftigkeit und Flexibilität von hex-Programmen anhand von konkreten, realistischen
Szenarien.
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Chapter 1

Introduction

The title of this thesis brings together two prominent themes in the �eld of knowledge
representation and reasoning. Answer-set programming on one hand is a fairly young,
yet very successful descendant of a long tradition of logic programming formalisms. The
Semantic Web on the other hand, even younger, denotes the current e�orts of injecting
machine intelligence into the Internet by semantic enrichment in a structured way. Roughly
put, in this work we will investigate di�erent approaches how these two lines of research
can bene�t from each other.

1.1 Answer-Set Programming

In recent years, the answer-set programming (ASP) paradigm [Gelfond and Lifschitz, 1991]
has emerged as an important tool for declarative knowledge representation and reasoning.
This approach is rooted in semantic notions and is based on methods to compute models.
More speci�cally, problems are represented in terms of (�nite) theories such that the models
of the latter determine the solutions of the original problem.

Among the di�erent ASP techniques proposed in literature, logic programming under
the stable model semantics and, as a generalization thereof, the answer-set semantics are
two of the most widely used approaches. Both semantics are inherently nonmonotonic,
i.e., the set of logical consequences does, in general, not necessarily grow monotonically
with increasing information, due to the use of the negation-as-failure operator; moreover,
in contrast to procedural semantics like Prolog, they are fully declarative.

The answer-set semantics extends the stable model semantics in that the former is
de�ned on a syntactically richer class of programs than the latter. More speci�cally, the
answer-set semantics is de�ned for extended logic programs (ELPs), in which not only
negation as failure may occur in program rules, but also strong negation (also often referred
to as classical negation) and disjunctions. On the other hand, the stable model semantics
is associated with normal logic programs (NLPs), in which only negation as failure occurs
as basic operator. The answer-set semantics has recently been extended by Lifschitz et al.
[1999] also to a more general class of programs (so-called nested logic programs), in which
arbitrary Boolean expressions may occur in program rules, albeit this does not yield an
enhanced expressibility compared to extended logic programs [Pearce et al., 2001].

Generally speaking, the answer-set semantics is a suitable formalism for handling in-
complete and inconsistent information, as well as for expressing non-deterministic features.
One of the main reasons for the increasing popularity of both the answer-set semantics as
well as the stable model semantics is in large part due to the availability of sophisticated
solvers for these languages. On the one hand, the system DLV [Leone et al., 2002] is a state-
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of-the-art implementation for the answer-set semantics for ELPs, and, on the other hand,
the Smodels system [Niemelä and Simons, 1997] implements the stable model semantics.

Furthermore, in view of its inherent expressibility, the answer-set semantics is a suit-
able tool to serve as a host language for capturing specialized advanced reasoning tasks.
Consequently, in accordance to the general methodology of the answer-set programming
paradigm, ASP solvers can be used as underlying reasoning engines for evaluating such
dedicated tasks. Di�erent such tasks have been implemented, e.g., on top of the DLV sys-
tem. In particular, DLV provides front-ends for planning [Eiter et al., 2001a] and diagnostic
reasoning [Eiter et al., 1999a], as well as computing the semantics of updates of nonmono-
tonic knowledge bases represented as logic programs [Eiter et al., 2001b], or the semantics
of inheritance programs [Buccafurri et al., 2002]. Furthermore, the plp front-end [Del-
grande et al., 2001] to DLV allows the computation of di�erent preference approaches under
the answer-set semantics, and extensions of the core DLV syntax allow the natural formal-
ization of optimization problems, in terms of so-called weak constraints [Buccafurri et al.,
2000]. A similar �exibility and applicability applies to the Smodels system as well, which
can also be used as a C++-library called from user programs, or as a stand-alone program
together with suitable front-ends.

The increasing interest in ASP is also documented by the establishment of the �Work-
ing Group on Answer Set Programming (WASP)� which was supported by the European
Commission (IST-2001-37004) from 2002 to 2005.

1.2 The Semantic Web

The World Wide Web is impressively successful. Both the information that is stored in
the Web and the number of its human users have been growing exponentially in the recent
years, now being by far the largest and most frequently-accessed data repository available.
For many people, the Web has started to play a fundamental role as a means of providing
and searching for information. However, searching the Web in its current form is not
always a joyful experience, since today's search engines often return a huge number of
answers, many of which are completely irrelevant, while some relevant answers are not
returned. One of the main reasons for this problem is that the current Web is designed
for human consumption, but not for automated processing through machines, since the
HTML standard only allows for describing the layout of Web pages, but not their semantic
content. This shortcoming is clearly recognized by the scienti�c community and there is
currently extensive work under way to build the foundations of the next-generation Web
addressing these issues.

The Semantic Web [Berners-Lee, 1999, Berners-Lee et al., 2001, Fensel et al., 2002]
is an extension of the current Web by standards and technologies that help machines to
�understand� the information on the Web so that they can support richer discovery, data
integration, navigation, and automation of tasks. The Semantic Web will not only allow for
more exact answers when we search for information, but also provide knowledge necessary
for integrating and comparing information from di�erent sources, and allow for various
forms of automated services. Roughly, the main idea behind the Semantic Web is to add a
machine-readable meaning to Web pages, to use ontologies for a precise de�nition of shared
terms in Web resources, to make use of knowledge representation technology for automated
reasoning from Web resources, and to apply cooperative agent technology for processing
the information of the Web.

The development of the Semantic Web proceeds in layers of Web technologies and stan-
dards, where every layer is lying on top of lower layers, as shown in Figure 1.1. According
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Figure 1.1: The Semantic Web Layer Cake.

to Berners-Lee [1998], and following Hendler [2002], the Semantic Web can be divided into
the following layers:

• At the bottom layer, we �nd standards for identifying resources (URI: uniform re-
source identi�er) and for representing typed text (Unicode);

• the next layer contains languages for annotating information items, like XML (in-
cluding namespaces and XML Schema);

• the third layer provides formalisms to express meta-data expressions by means of the
Resource Description Framework (RDF) and its extension RDF Schema;

• the fourth layer contains ontology vocabularies to express relative semantics to con-
cepts (like ��ying is a form of traveling�); and

• the �nal layers deal with logic, proof, and trust issues.

The Digital Signature layer is supposed to provide means to identify the proper origin of
a speci�c resource.

The highest layer that has currently reached a su�cient maturity is the ontology layer
in the form of the OWL Web Ontology Language [McGuinness and van Harmelen, 2004,
Horrocks et al., 2003], which has been accepted as standard by the W3C. However, still an
open issue is the speci�cation of the �nal layers of the Semantic Web. To quote Berners-Lee
et al. [2001]:

The challenge of the Semantic Web, therefore, is to provide a language that
expresses both data and rules for reasoning about the data and that allows rules
from any existing knowledge-representation system to be exported onto the Web.

The next and ongoing step in the development of the Semantic Web is the realization
of the rules, logic, and proof layers, which will be developed on top of the ontology layer,
and which should o�er sophisticated representation and reasoning capabilities. A �rst, yet
mostly syntactical e�ort in this direction was RuleML (Rule Markup Language) [Boley
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et al., 2001], fostering an XML-based markup language for rules and rule-based systems,
while the OWL Rules Language [Horrocks and Patel-Schneider, 2004] is a �rst proposal for
extending OWL by Horn clause rules. Other contributions in this �eld mostly stem from
attempts to combine Description Logics, the theoretical underpinning of OWL, with rules.

1.3 Combining Rules and Ontologies

As we have seen, a key requirement of the layered architecture of the Semantic Web is to
integrate the rules and the ontology layer. In particular, it is crucial to allow for building
rules on top of ontologies, that is, for rule-based systems that use vocabulary speci�ed
in ontology knowledge bases. Another type of combination is to build ontologies on top
of rules, which means that ontological de�nitions are supplemented by rules or imported
from rules. In the �rst part of this thesis, we propose a combination of nonmonotonic
logic programming under the answer-set semantics (and partly also under well-founded
semantics) with Description Logics, focusing here on SHIF(D) and SHOIN (D), allowing
for both strategies within a single logical framework. Importantly, we adopt the view of a
loose interface between a logic program and a DL knowledge base, keeping both semantics
strictly separated. This eases di�culties that arise when the two formalisms are tightly
integrated, such as rule safety, in�nite domains and undecidability. On the other hand
it puts the responsibility of coupling two di�erent semantics in a single framework in the
hands of the user. This awareness is signi�cant, recalling the fundamental di�erences
between description logics as a fragment of �rst-order logic and logic programming. For
instance, weak negation in rule bodies allows for nonmonotonic inferences, while ontologies
in general behave in a monotonic way. Closely related is the di�erence between the closed-
world assumption taken in logic programming, whereas reasoning in Description Logics
happens in an open domain. These di�erences result in a semantic gap which is not
straightforward to bridge. In this work we will closely examine these problems and show
how we circumnavigated them.

As it turns out in practice, it is desirable for a rule formalism for the Semantic Web to be
versatile enough not only to integrate ontological inferences, but also other kinds of external
knowledge. The second part of the thesis presents a further extension of the answer-set
semantics towards a more general approach of importing knowledge from arbitrary external
sources while at the same time facilitate higher order reasoning, which lets one specify
rules for meta-reasoning in a very concise and intuitive way. Here, we generalized the
aforementioned interface, yet still keeping the loose integration paradigm.

1.4 Thesis Organization

The rest of the work is organized as follows: In Chapter 2 we introduce some preliminaries
about the domain of logic programming in general and answer-set program in particular
as well as the language OWL and its underlying theory of Description Logics. Chapter 3
describes a novel type of answer-set programs, so-called dl-programs, which provide means
to interface ontological knowledge bases. We introduce the syntax and di�erent semantics
of this formalism and investigate possible ways of computation as well as the complexity
of various reasoning tasks regarding dl-programs. In this part, we also consider possible
application scenarios for dl-programs in the domain of the Semantic Web, making use of
their nonmonotonic semantics. The chapter concludes with a presentation of a prototype
reasoner for this type of programs. Chapter 4 introduces another type of extended answer-
set programs, the so-called hex-programs, which can be seen as a generalization of the
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previous chapter's approach. Again, we describe syntax and semantics and survey pos-
sible application scenarios for hex-programs. Also, we investigate their complexity and
�nally lay out various computation procedures to evaluate them. The description of an
implemented solver for hex-programs is given in Chapter 5. There, we also explain how
to make use of the �exibility of this reasoning framework and create tailored extensions.
Real-world applications of hex-programs and the respective solver, demonstrating their
usefulness and versatility, are presented in Chapter 6. Chapter 7 eventually concludes this
thesis.

The results contained in this thesis have been published as refereed articles in the
proceedings of several international conferences and workshops. We introduced our novel
dl-programs �rst in the proceedings of the �9th International Conference on of Knowledge
Representation and (KR 2004 )� [Eiter et al., 2004a] (also available as technical report
[Eiter et al., 2003]) and extended the answer-set semantics to well-founded semantics in
the proceedings of the �3rd International Workshop on Rules and Rule Markup Languages
for the Semantic Web (RuleML 2004 )� [Eiter et al., 2004b]. A survey on this formalism was
given as an invited paper in the �Annals of Mathematics, Computing and Teleinformatics�
[Antoniou et al., 2004]. Computation and optimization techniques for dl-programs were
presented in the proceedings of the �12th International Conference on for Programming
Arti�cial Intelligence Reasoning (LPAR 2004 )� [Eiter et al., 2005a]. The second exten-
sion to answer-set programming, our hex-program formalism, was �rst published in the
proceedings of the �19th International Joint on Arti�cial Intelligence (IJCAI 2005 )� [Eiter
et al., 2005d]. Reasoning prototypes for both languages were presented in the poster session
of the �4th International Semantic Web Conference (ISWC 2005 )� [Eiter et al., 2005b,c].
A survey on both reasoning frameworks was also given at the doctoral consortium of the
�21st International Conference Logic Programming (ICLP 2005 )� [Schindlauer, 2005]. A
�rst account on the techniques implemented by the solver dlvhex was �rst given at the �20th
Workshop on Logic Programming and Systems (WLP 06 )� [Eiter et al., 2006b], which was
succeeded by the more detailed descriptions in the proceedings of the �11th International
Workshop on Reasoning (NMR-2006, Answer Set Track)� [Eiter et al., 2006c] and the pro-
ceedings of the �3rd European Conference on Semantic Web (ESWC 2006 )� [Eiter et al.,
2006f], where our paper received the Best Paper Award. A presentation of dlvhex and its
possibilities was given in the informal proceedings of the �Workshop on Applications of
Logic Programming in the Semantic Web and Semantic Web Services (ALPSWS 2006 )�
at the ICLP 2006 [Eiter et al., 2006d]. A survey on reasoning with dl- and hex-programs
appeared in the lecture notes of the �Reasoning Web Second International Summer School�
[Eiter et al., 2006a]. A concrete example of using dlvhex in a Semantic Web reasoning con-
text was presented at the poster track of the �5th International Semantic Web Conference
(ISWC 2006 )� [Polleres and Schindlauer, 2006]. A practical demonstration of dlvhex will
be given at the �IEEE Web Intelligence (WI 2006 )� [Eiter et al., 2006e].
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Chapter 2

Preliminaries

In this chapter, we will outline the basics and principles of answer-set programming, its
complexity and existing implementations. Moreover, we will introduce Description Logics
as a formal base of various knowledge representation languages in the area of the Semantic
Web.

2.1 Declarative Logic Programming

For central reasoning sub-tasks that can be identi�ed when looking for solutions to the
main problems of advanced information access such as priority handling and dealing with
incomplete information, methods of declarative logic programming constitute a promising
approach. In the logic programming model the programmer is responsible for specifying the
basic logical relationships and does not specify the manner in which the inference rules are
applied. An example shall illustrate the di�erence between a procedural and a logic-based
approach.

Example 2.1.1 The following procedure represents knowledge about birds:

function bird(x): boolean;

if x = 'tweety' then return true;

else if x = 'sam' then return true;

else if penguin(x) then return true;

else return false;

The corresponding logic program would be

P = {bird(tweety); bird(sam); bird(X )← penguin(X ); }

3

If it comes to extending the knowledge (e.g., by the fact that ostriches are birds),
the logic program is obviously more modular and �exible. Furthermore, the reasoning
capabilities of the procedural method are restricted to the information if an object is a
bird. The implicit knowledge of the procedure cannot be used to answer explicit queries,
like �which birds do you know?�. The same question posed to the logic program would
yield all known birds of the representation.

The most widespread tool for programming in logic is Prolog, which processes �rst-order
predicate logic expressed by Horn clauses. Prolog ful�lls many of the requirements for a
high-level programming language, but it has some drawbacks when it comes to expressing
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pure declarative semantics. Prolog is implemented as a sequential programming language
by processing goals from left to right and selecting rules in textual order. This means
that the rule order as well as the predicate order within a rule can in�uence the program's
result. Furthermore Prolog provides extra-logical features to control the execution of the
program. For example, the cut rule � ! � does not have a logical meaning. The dependence
of the result on the rule order and non-logical predicates cause Prolog semantics to depart
from the pure declarative meaning.

A di�erent paradigm of logic programming that will be presented in this chapter is
the answer-set semantics [Gelfond and Lifschitz, 1991], which is based on view of program
statements as constraints on the solution of a given problem. Subsequently, each model of
the program encodes a solution to the program itself.

2.2 Logic Programs under the Answer-Set Semantics

Answer-set programming has its roots in the stable model semantics of normal logic pro-
grams [Gelfond and Lifschitz, 1988] (also known as general logic programs), which are
characterized by the occurrence of negation as failure. This kind of negation is closely re-
lated to Reiter's Default Logic [Reiter, 1980], hence it is also know as default negation. Since
negation as failure is di�erent from classical negation in propositional logic, Gelfond and
Lifschitz proposed a logic programming approach that allows for both negations [Gelfond
and Lifschitz, 1990]. Moreover, Gelfond and Lifschitz [1991] extended their semantics to
disjunction in rule heads. Similar de�nitions for general logic programs and other classes
of programs can be found in the literature (cf. e.g., [Lifschitz and Woo, 1992]). For an
overview on other semantics for extended logic programs, see also [Dix, 1995].

2.2.1 Syntax

Let σpred, σcon and σvar be disjoint sets of predicate, constant, and variable symbols
from a �rst-order vocabulary Φ, respectively, where σvar is in�nite and σpred and σcon are
countable. In accordance with common ASP solvers such as DLV, we assume that elements
from σcon and σpred are string constants that begin with a lowercase letter or are double-
quoted, where elements from σcon can also be integer numbers. Elements from σvar begin
with an uppercase letter. A term is either a constant or a variable. Given p ∈ σpred an
atom is de�ned as p(t1, . . . , tk), where k is called the arity of p and each t1, . . . , tk are
terms. Atoms of arity k = 0 are called propositional atoms.

A classical literal (or simply literal) l is an atom p or a negated atom ¬p, where �¬� is the
symbol for true (classical) negation. Its complementary literal is ¬p (resp., p). A negation
as failure literal (or NAF-literal) is a literal l or a default-negated literal not l. Negation
as failure is an extension to classical negation, denoting a fact as false if all attempts to
prove it fail. Thus, not L evaluates to true if it cannot be foundedly demonstrated that L
is true, i.e., if either L is false or we do not know whether L is true or false.

A rule r is an expression of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , n ≥ 0 ,m ≥ k ≥ 0 , (2.1)

where a1, . . . , an, b1, . . . , bm are classical literals. We say that a1, . . . , an is the head of
r, while the conjunction b1, . . . , bk, not bk+1, . . . ,not bm is the body of r, where b1, . . . , bk

(resp., not bk+1, . . . ,not bm) is the positive (resp., negative) body of r. We use H(r) to
denote its head literals, and B(r) to denote the set of all its body literals B+(r) ∪B−(r),
where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule r without head literals
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(i.e., n = 0) is an integrity constraint. A rule r with exactly one head literal (i.e., n = 1)
is a normal rule. If the body of r is empty (that is, k = m = 0), then r is a fact, and we
often omit �←�.1 An extended disjunctive logic program (EDLP, or simply program) P is a
�nite set of rules r of the form (2.1).

Programs without disjunction in the heads of rules are called extended logic programs
(ELPs). A Program P without negation as failure, i.e., for all r ∈ P , B−(r) = ∅ is called
positive logic program. If, additionally, no strong negation occurs in P , i.e., the only form of
negation is default negation in rule bodies, then P is called a normal logic program (NLP).
The generalization of an NLP by allowing default negation in the heads of rules is called
generalized logic program (GLP).

2.2.2 Semantics

The semantics of extended disjunctive logic programs is de�ned for variable-free programs.
Thus, we �rst de�ne the ground instantiation of a program that eliminates its variables.

The Herbrand universe of a program P , denoted HUP , is the set of all constant symbols
C ⊂ σcon appearing in P . If there is no such constant symbol, then HUP = {c}, where c
is an arbitrary constant symbol from Φ. As usual, terms, atoms, literals, rules, programs,
etc. are ground i� they do not contain any variables. The Herbrand base of a program P ,
denoted HBP , is the set of all ground (classical) literals that can be constructed from the
predicate symbols appearing in P and the constant symbols in HUP . A ground instance of
a rule r ∈ P is obtained from r by replacing every variable that occurs in r by a constant
symbol from HUP . We use ground(P ) to denote the set of all ground instances of rules
in P .

The semantics for EDLPs is de�ned �rst for positive ground programs. A set of literals
X ⊆ HBP is consistent i� {p,¬p} 6⊆X for every atom p ∈ HBP . An interpretation I
relative to a program P is a consistent subset of HBP . We say that a set of literals S
satis�es a rule r if H(r) ∩ S 6= ∅ whenever B+(r) ⊆ S and B−(r) ∩ S = ∅. A model of
a positive program P is an interpretation I ⊆ HBP such that I satis�es all rules in P .
An answer set of a positive program P is the least model of P w.r.t. set inclusion.

To extend this de�nition to programs with negation as failure, we de�ne the Gelfond-
Lifschitz transform (also often called the Gelfond-Lifschitz reduct) of a program P relative
to an interpretation I ⊆ HBP , denoted P I , as the ground positive program that is obtained
from ground(P ) by

(i) deleting every rule r such that B−(r) ∩ I 6= ∅, and
(ii) deleting the negative body from every remaining rule.

An answer set of a program P is an interpretation I ⊆ HBP such that I is an answer set
of P I .

Example 2.2.1 Consider The following program P :

p← not q.

q ← not p.

Let I1 = {p}; then, P I1 = {p←} with the unique model {p} and thus I1 is an answer set
of P . Likewise, P has an answer set {q}. However, the empty set ∅ is not an answer set of
P , since the respective reduct would be {p←; q ←} with the model {p, q}. 3

1In this thesis, we will use both forms �a←� and �a.� to denote that a is a fact in a logic program.
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Example 2.2.2 Let P be the following program:

path(X, Y )← arc(X, Y ).
path(X, Y )← path(X, Z), arc(Z, Y ).
arc(a, b). arc(b, c). arc(b, d).

The grounding of P contains these rules:

path(a, a)← arc(a, a).
path(a, b)← arc(a, b).
path(a, c)← arc(a, c).
path(a, a)← path(a, a), arc(a, a).
path(a, b)← path(a, b), arc(b, a).
path(a, c)← path(a, c), arc(c, c).

. . .

arc(a, b). arc(b, c). arc(b, d).

From all models that satisfy these ground rules, the minimal model contains the following
facts:

{arc(a, b), arc(b, c), arc(b, d), path(a, b), path(b, c), path(b, d), path(a, c), path(a, d)}

3

A constraint is used to eliminate �unwanted� models from the result, since its head is
implicitly assumed to be false. A model that satis�es the body of a constraint is hence
discarded from the set of answer sets.

The main reasoning tasks that are associated with EDLPs under the answer-set seman-
tics are the following:

• decide whether a given program P has an answer set;

• given a program P and a ground formula φ, decide whether φ holds in every (resp.,
some) answer set of P (cautious (resp., brave) reasoning);

• given a program P and an interpretation I ⊆ HBP , decide whether I is an answer
set of P (answer set checking); and

• compute the set of all answer sets of a given program P .

In the following, we will de�ne speci�c syntactical restrictions with bene�cial semantic
properties on EDLPs.

Head-Cycle-Free Logic Programs

In [Ben-Eliyahu and Dechter, 1994] an alternative de�nition for answer sets is given for so
called head-cycle-free EDLPs (HEDLPs). For that, we �rst have to de�ne the dependency
graph of an EDLP: The dependency graph of an EDLP P is a directed graph where each
predicate occurring in P is a node and there is an edge from p to p′ if there is a rule in
P such that in p ∈ H(r) and p′ ∈ B+(r). We now say that p is head-cycle-free i� its
dependency graph does not contain directed cycles that go through two literals occurring
in the same rule head. For such HEDLPs Ben-Eliyahu and Dechter [1994] showed the
following:
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Theorem 2.2.1 (cf. [Ben-Eliyahu and Dechter, 1994]) Given a HEDLP P , a consistent
set S ⊆ Lit(P ) is an answer set i�

1. S satis�es each rule in P , and

2. there is a function φ : Lit(P ) 7→ N+ such that for each literal l in S there is a rule r
in P with

(a) B+(r) ⊆ S

(b) B−(r) ∩ S = ∅
(c) l ∈ H(r)

(d) S ∩ (H(r) \ {l}) = ∅
(e) φ(l′) < φ(l) for each l′ ∈ B+(r)

The key essence of this theorem is that HEDLPs (in contrast to EDLPs in general)
allow for a leveled evaluation of the logic program if we know the function φ. Later
results by Babovich et al. [2000] which generalize Fages' theorem [Fages, 1994] resemble this
theorem resulting in similar alternative de�nitions of answer sets for normal logic programs.
Head-cycle-free disjunction in fact does not increase the expressive power compared with
normal logic programs, as head-cycle-free negation can be shifted to the rule bodies by a
semantically equivalent rewriting where any disjunctive rule:

h1 ∨ . . . ∨ hl ← Body .

is substituted by l normal rules:

h1 ← not h2,not h3, . . . ,not hl,Body .

h2 ← not h1,not h3, . . . ,not hl,Body .
...

hl ← not h1,not h2, . . . ,not hl−1,Body .

For programs with head-cycles, this rewriting is not possible which can be easily shown
by the following example:

Example 2.2.3 Let P2 be the following simple DLP:

p← q. q ← p. p ∨ q.

Obviously, P2 has the single answer set S = {p, q}. On the other hand, when substituting
the last rule with the pair of rules {p ← not q. q ← not p.}, the resulting program has no
answer sets at all. 3

Strati�ed Logic Programs

An even stronger restriction than head-cycle-freeness is strati�cation. The concept of
strati�cation was introduced for logic programs independently by Apt et al. [1988] and
by van Gelder [1988]. Przymusinski generalized it to constraint-free DLPs [Przymusinski,
1988, 1991].

We say that a constraint-free DLP P is strati�ed i� there exists a function
Strat : Lit(P ) 7→ N+ such that for every rule r of the form (2.1) there exists a c ∈ N
with
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1. Strat(h) = c for all h ∈ H(r)

2. Strat(b) ≤ c for all b ∈ B+(r)

3. Strat(b) < c for all b ∈ N−(r)

It is well-known that such a strati�cation Strat can e�ciently be found, if existent. In
particular, positive programs are always strati�ed. Note that strati�cation does not imply
head-cycle-freeness or vice versa. However, strati�ed programs also allow for an even
more e�cient evaluation. In case P is free of integrity constraints, strati�ed programs
always have at least one answer set. Note that EDLPs are not considered, since extended
programs with classical negation always contain �implicit� integrity constraints ← a,¬a.
for any complementary pair of literals.

2.2.3 Available Systems: Restrictions and Extensions

Among the available systems for computing answer sets of logic programs the two most
successful over the past years have been DLV [Eiter et al., 1998, 2000a, Leone et al., 2002]
and Smodels [Niemelä, 1999, Simons et al., 2002] which allow for e�cient declarative
problem solving.

DLV

The DLV system2 has been developed for several years as joint work of the University of
Calabria and Vienna University of Technology and is still actively maintained. It is an
e�cient engine for computing answer sets accepting as core input language logic programs
as de�ned above which ful�ll the following safety restriction (cf. [Ullman, 1989]):

De�nition 2.2.1 A rule r of the form (2.1) is called safe if every variable X occurring
in literals in H(r) ∪B−(r) also occurs in at least one literal B+(r). A logic Program P is
safe if all of its rules are safe.

Note that this restriction is only syntactical but does not really a�ect the expressive
power of the language in any way. We refer for instance to [Leone et al., 2006] for a detailed
discussion.

Weak Constraints Furthermore, DLV extends the logic programs by so-called weak con-
straints, cf. [Buccafurri et al., 1997, 2000]:

De�nition 2.2.2 A weak constraint is a construct

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l] (2.2)

where w (weight) and l (level) are integer constants or variables occurring in b1, . . . , bk and
all bi are classical literals. If l is not speci�ed, it defaults to 1, and we can just write [w :].
The body of a weak constraint c, B(c) is de�ned as for (2.1).

The level l intuitively allows to specify a priority layer after the colon, where 1 is the lowest
priority.

The syntactical safety restriction from above is extended to weak constraints as follows:
A weak constraint c is safe if in addition to the conditions above whenever w (or l, resp.)
is a variable it has to occur in at least one literal B+(c).

2http://www.dlvsystem.com

http://www.dlvsystem.com
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An extended disjunctive logic program with weak constraints (EDLPw) is then a �nite
set of rules, constraints and weak constraints.

The ground instantiation for an EDLPw is de�ned like in Subsection 2.2.2 with the
obvious extension to weak constraints. Furthermore, we impose another syntactical re-
striction on weak constraints related to safety mentioned above: A weak constraint c is
only admissible, if all possible weights and levels are integers. Thus, if either w or l is a
variable, then P must guarantee that w, l can only be bound to integers. This restriction
can easily be checked (for instance during grounding), which is done by DLV.

The answer sets of an EDLPw P without weak constraints are de�ned as above. The
answer sets of a program P with weak constraints are de�ned by selection of so called
optimal answer sets from the answer sets S of the weak-constraint free part P ′ of P
(referred to as candidate answer sets).

Again, we will de�ne the semantics of optimal answer sets in terms of the ground
instantiation of a program. A weak constraint c of the form (2.2) is violated, if it is satis�ed
with respect to the candidate answer set S, i.e., {b1, . . . , bk} ⊆ S and {bk+1, . . . , bm}∩S =
∅. We are interested in those answer sets with minimal weights of the violated weak
constraints in the highest priority level. Among those, the ones with the minimal weight
on the next lower level are considered as optimal, etc. This can be expressed by an objective
function HP (A) for a program P with weak constraints WC and an answer set A as follows,
where fP is an auxiliary function that guarantees the prioritization of levels over weights
(cf. [Leone et al., 2006]):

fP (1) = 1,

fP (n) = fP (n− 1) · |WC (P )| · wP
max + 1, n > 1,

HP (A) = ΣlPmax
i=1 (fP (i) · Σw∈NP

i (A)weight(w)),

where |WC (P )| denotes the number of weak constraints in P , and wP
max and lPmax denote

the maximum weight and maximum level over the weak constraints in P , respectively.
NP

i (A) denotes the set of weak constraints in level i that are violated by A, and weight(w)
denotes the weight of the weak constraint w.

Example 2.2.4 Let us consider the following program P :

p ∨ q.

¬q ← p.

:∼ p. [3 : 1] :∼ q. [1 : 2]

This program has the two answer sets A1 = {p,¬q} and A2 = {q}. Having de�ned two
levels by weak constraints, f(1) = 1 and f(2) = 7 and thus HP (A1) = 3 and HP (A2) = 7.
It follows that A2 is the single optimal answer set of P . 3

Example 2.2.5 The following program computes the minimum spanning trees of a weigh-

ed directed graph.

root(a).
node(a). node(b). node(c). node(d). node(e).
edge(a, b, 4). edge(a, c, 3). edge(c, b, 2). edge(c, d, 3). edge(b, e, 4). edge(d, e, 5).

in_tree(X, Y,C) ∨ out_tree(X, Y )← edge(X, Y,C), reached(X).
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← root(X), in_tree(_, X,C).
← in_tree(X, Y,C), in_tree(Z, Y, C), X 6= Z.

reached(X)← root(X).
reached(Y )← reached(X), in_tree(X, Y,C).
← node(X),not reached(X).

:∼ in_tree(X, Y,C). [C : 1]

The single optimal answer set of this program (modulo the original facts) is:

{reached(a), reached(b), reached(c), reached(d), reached(e),
in_tree(a, c, 3), in_tree(b, e, 4), in_tree(c, b, 2), in_tree(c, d, 3),
out_tree(a, b), out_tree(d, e)}

with the cost [12 : 1]. 3

Built-In Predicates The built-in predicates �A < B�, �A <= B�, �A > B�, �A >= B�,
and �A ! = B� with the obvious meanings of less-than, less-or-equal, greater-than, greater-
or-equal, and inequality for strings and numbers can be used in the positive bodies of DLV
rules and constraints.

DLV currently does not support full arithmetics but provides some built-in predicates,
which can be used to �emulate� range restricted integer arithmetics: the arithmetic built-
ins �A = B + C� and �A = B ∗ C� which stand for integer addition and multiplication, and the
predicate �#int(X)� which which holds for all nonnegative integers (up to a user-de�ned
limit).

Aggregates Furthermore, borrowing from database query languages, DLV has been ex-
tended by aggregate predicates [Dell'Armi et al., 2003]. Aggregate predicates allow to
express properties over a set of elements, such as sum or count . They can occur in the
bodies of rules and constraints, possibly negated using negation-as-failure. Aggregates of-
ten allow clean and concise problem encodings by minimizing the use of auxiliary predicates
and recursive programs, and and foster the depiction of problems in a more natural way.
From the point of e�ciency, encodings using aggregates often outperform those without,
reducing the size of the ground instantiation of the program.

Aggregate predicates operate over so-called symbolic sets. A symbolic set is a pair
{V : C}, where V is a list of variables and C is a conjunction of literals with V among
their arguments. The semantics of a symbolic set w.r.t. an interpretation I contains all
ground pairs {V ′ : C ′} such that I |= C ′. The aggregate function, such as #count, #sum,
#min, and #max, is then applied to the symbolic set. The returned value is compared to
the guards, speci�ed in the entire aggregate predicate. For instance, the predicate

0 ≤ #count{Y : person(X), ownsCar(X, Y )} ≤ 1

is true for all interpretations where no person owns more than one car.

Smodels and gnt

Smodels [Niemelä, 1999, Simons et al., 2002]3 allows for the computation of answer sets for
normal logic programs. However, there is an extended prototype version for the evaluation
of disjunctive logic programs as well, called gnt [Janhunen et al., 2000].4

3http://www.tcs.hut.fi/Software/smodels/
4http://www.tcs.hut.fi/Software/gnt/

http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/
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Syntactically, Smodels imposes an even stronger restriction than rule safety in DLV

by demanding that any variable in a rule of the form (2.1) is bounded to a so-called
domain predicate d ∈ B+(r) which is, intuitively, a predicate that is de�ned only positively
(cf. [Niemelä, 1999] for details). Again, this restriction does not a�ect the expressive power
of the language itself, but in some cases the weaker safety restriction of DLV allows for more
concise problem encodings.

Smodels also allows for model optimization, but the syntactic and semantic concept
here slightly di�ers from weak constraints in DLV: Smodels supports another extension
to pure answer-set programming allowing to minimize over sets of predicates (cf. [Simons
et al., 2002] for details) by adding statements of the form:

minimize{b1 = w1, . . . , bm = wm,not bm+1 = wm+1, . . . ,not bn = wn}.

where b1, . . . , bn are ground literals and w1, . . . , wn are constants. Here, similarly to weak
constraints, an answer set S of a program P is considered to be optimal if

costP (S) =
∑
{w | ((bi = w) ∈ min ∧ bi ∈ S) ∨ (not bi = w) ∈ min ∧ bi 6∈ S)}

is minimal, where min is the union of all minimize statements. If there are more than
one minimize statements Smodels considers them in �xed order, the last one being the
strongest, similar to levels of DLV weak constraints, but missing full declarativity in some
sense (since rule order has a semantic impact here).

For minimize statements with variables, Smodels o�ers the following shorter notation:

minimize[ a1( ~X1) : b(~Y1) = C1, . . . , am( ~Xm) : b(~Ym) = Cm,

not am+1( ~Xm+1) : b(~Ym+1) = Cm+1, . . . ,not an( ~Xn) : b(~Yn) = Cn].

where ~Xi, ~Yi are lists of variables or constants, and all variables in ~Xi have to occur in ~Yi.
Ci is either a variable from ~Yi or a constant, and bi is a domain predicate, for i ∈ {1, . . . , n}.

During model computation Smodels does not compute only optimal answer sets, but
�rst evaluates an arbitrary model and then incrementally only returns �better� answer
sets, such that the last answer set found by Smodels is the optimal one. As an additional
feature Smodels also provides a dual maximize statement with the obvious semantics.
Moreover, similar to DLV, Smodels allows for a restricted form of integer arithmetics and
lexicographic comparison predicates.

2.3 Computational Complexity

We will now review the most important problem classes for the computational complexity
of the problems addressed in the course of this work. Furthermore, we will review some
results on the computational complexity of answer-set programming.

2.3.1 Complexity Classes

We assume that the reader is familiar with the concept of Turing Machines and basic
notions of complexity theory, such as problem reductions and completeness; see e.g., [Pa-
padimitriou, 1994] and references therein. We recall that P, resp. NP, is the class of decision
problems (i.e., problems where the answer is �yes� or �no�) computable on a deterministic,
resp. nondeterministic, Turing Machine in polynomial time. Further, PSPACE is the class
of problems computable on deterministic Turing Machines with polynomial storage space.
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The classes ΣP
k (resp. ΠP

k ,∆P
k ), k ≥ 0 of the so called Polynomial Hierarchy PH =⋃

k≥0 ΣP
k are de�ned by ΣP

0 = ΠP
0 = ∆P

0 = P and ΣP
k = NPΣP

k−1 (resp. ΠP
k = co-ΣP

k ,

∆P
k = PΣP

k−1), for k ≥ 1. The latter model nondeterministic polynomial-time computation
with an oracle for problems in ΣP

k−1. Here, co- stands for the class of complementary

problems. In particular, ΣP
1 = NP, ΠP

1 = coNP and ∆P
2 = PNP.

Furthermore, DP = {L ∩ L′ | L ∈ NP, L′ ∈ coNP} is the logical �conjunction� of NP

and coNP.5 Finally, NEXPTIME and NEXPSPACE denote the class of problems decidable by
nondeterministic Turing machines in exponential time, resp. space.

We recall that NP ⊆ DP ⊆ PH ⊆ PSPACE = NPSPACE ⊆ NEXPTIME holds, where
NPSPACE is the nondeterministic analog of PSPACE. It is generally believed that these
inclusions are strict, and that PH is a true hierarchy of problems with increasing di�culty.
Note that NEXPTIME-complete problems are provably intractable, i.e., exponential lower
bounds can be proved, while no such proofs for problems in PH or PSPACE are known
today.

While many interesting problems are decision problems, computing answer sets are
search problems, where for each problem instance I a (possibly empty) �nite set S(I) of
solutions exists. To solve such a problem, a (possibly nondeterministic) algorithm must
compute the alternative solutions from this set in its computation branches, if S(I) is not
empty. More precisely, search problems are solved by transducers, i.e., Turing machines
equipped with an output tape. If the machine halts in an accepting state, then the content
of the output tape is the result of the computation. Observe that a nondeterministic
machine computes a (partial) multi-valued function.

As an analog to NP, the class NPMV contains those search problems where S(I) can
be computed by a nondeterministic Turing machine in polynomial time; for a precise
de�nition, see [Selman, 1994]. In analogy to ΣP

i+1, by ΣP
i+1MV = NPMVΣP

i , i ≥ 0, we
denote the generalization of NPMV where the machine has access to a ΣP

i oracle.

Analogs to the classes P and ∆P
i+1, i ≥ 0, are given by the classes FP and F∆P

i+1, i ≥ 0,
which contain the partial single-valued functions (that is, |S(I)| ≤ 1 for each problem
instance I) computable in polynomial time possibly using a ΣP

i oracle. We say, abusing
terminology, that a search problem A is in FP (or F∆P

i+1), if there is a partial (single-
valued) function f ∈ FP (or f ∈ F∆P

i+1) such that f(I) ∈ S(I) and f(I) is unde�ned
i� S(I) = ∅. For example, computing a satisfying assignment for a propositional CNF
(FSAT) and computing an optimal tour in the Traveling Salesperson Problem (TSP) are
in F∆P

2 under this view, cf. [Papadimitriou, 1994].

A partial function f is polynomial-time reducible to another partial function g, if there
are polynomial-time computable functions h1 and h2 such that f(I) = h2(I, g(h1(I))) for
all I and g(h1(I)) is de�ned whenever f(I) is de�ned. Hardness and completeness are
de�ned as usual.

2.3.2 Complexity of Logic Programming

We will now consider the following problems: Given a logic program P , decide whether P
has a model under the answer-set semantics.

We restrict ourselves to �nite propositional, i.e. ground, (function-free) EDLPs as de-
�ned above. Non-ground programs are not considered as grounding might already be
exponential and deciding answer set existence thus becomes provably intractable even for
simple positive normal programs (cf. [Immerman, 1987, Vardi, 1982, Dantsin et al., 2001]).

5Note that DP is not NP ∩ coNP (cf. [Papadimitriou, 1994]).
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Furthermore, note that when allowing function symbols most of the problems outlined in
this section become undecidable in general which is basically explained by the undecidabil-
ity of �rst-order logic.

Theorem 2.3.1 (cf. [Eiter et al., 1997, Dantsin et al., 2001]) Deciding whether a propo-
sitional EDLP has an answer set is ΣP

2 -complete. Computing such an answer set is ΣP
2 MV-

complete.

Proof. Membership: Given a program P , an answer set S can be guessed and checked in
polynomial time by an NP oracle: In particular, the reduct PS can clearly be computed in
polynomial time. Since PS is a positive program, its answer sets coincide with its minimal
models. Testing whether S is a minimal model is in coNP (cf. [Cadoli, 1992]) and therefore
decidable in polynomial time by a single call to an NP oracle.

Hardness: For the hardness proof we will review an encoding of deciding the satis�a-
bility of a Quanti�ed Boolean Formula (QBF)

F = ∃x1 . . .∃xm∀y1 . . .∀ynΦ

with one quanti�er alternation in an answer-set program, which is a well known reference
problem hard for the class ΣP

2 . Here, Φ = c1 ∨ . . . ∨ ck is a propositional formula over
x1, . . . , xm, y1, . . . , yn in disjunctive normal form, i.e. each ci = ai,1 ∧ . . .∧ ai,li and |ai,j | ∈
{x1, . . . , xm, y1, . . . , yn}. Satis�ability is here de�ned as the existence of an assignment to
the variables x1, . . . , xm which witness that F evaluates to true.

We will now present an encoding of this formula as an answer-set program PQBF such

that PQBF has an answer set if and only if F is satis�able:

x1 ∨ nx 1. . . . xm ∨ nxm.

y1 ∨ ny1. . . . yn ∨ nyn.

sat ← a1,1, . . . , a1,l1 .
...

sat ← ak,1, . . . , ak,lk .

y1 ← sat . ny1 ← sat . . . . yn ← sat . nyn ← sat .
← not sat .

This encoding is maybe not intuitive at �rst sight, but in principle can be explained as
follows: For any assignment guessed for x1, . . . , xm, sat will not be derived if there is a bad
assignment for y1, . . . , yn such that all clauses are unsatis�ed. However, since all answer
sets not containing sat are invalidated by the last constraint, only those assignments for
x1, . . . , xm �survive� which do not allow for such a bad assignment for y1, . . . , yn. This
can be argued by minimality of answer sets together with rules in the one but last line,
which �saturate� any good assignment for y1, . . . , yn to an answer set uniquely determined
by x1, . . . , xm. Note that this encoding does not only represent the satis�ability problem,
but moreover the answer sets of PQBF uniquely encode the valid assignments for variables
x1, . . . , xm, which proofs hardness for ΣP

2 and ΣP
2 MV, respectively. For the details of this

encoding we refer to [Eiter and Gottlob, 1995]. 2

This result shows that the computational power of answer-set solvers such as DLV and
gnt which support full disjunctive logic programming is indeed higher than solvers for
propositional Satis�ability (SAT) (unless the PH collapses). Hence, using answer-set pro-
gramming we can encode and solve hard problems not expressible as a simple propositional
logic formula in polynomial time.
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Note that the complexity boils down to lower complexity classes as soon as we impose
speci�c syntactical restrictions:

Proposition 2.3.2 (cf. [Ben-Eliyahu and Dechter, 1994, Fages, 1994]) For head-cycle free
(resp. normal) logic programs deciding answer set existence is NP-complete.

The essence of this result is that head-cycle free and normal logic programs can in-
tuitively be evaluated by guessing an order of rule evaluation. Moreover, it states that
Smodels without its disjunctive extension gnt, i.e., answer-set solvers which only accept
normal or head-cycle-free logic programs cover the same class of problems as SAT solvers.

Furthermore, for strati�ed (especially positive) DLPs the answer sets correspond to the
minimal models of a program, i.e., answer set existence is trivial (cf. [Przymusinski, 1988,
1991]). For non-disjunctive programs this model even is unique and by well-known results
computable in polynomial time.

Finally, as for optimal answer sets w.r.t. to weak constraints in DLV, we know from [Buc-
cafurri et al., 2000] that deciding whether a query q is true in some optimal answer set of
an EDLPw P is ∆P

3 -complete and ∆P
2 -complete for head-cycle free programs. The respec-

tive class for computing such an optimal answer set is F∆P
3 , and F∆P

2 for head-cycle free
programs. These results equally apply to minimization in Smodels with minor adaptions.

2.4 Description Logics

The line of research that eventually led to the term �Description Logics� has its roots in
the 1970s, when a crucial distinction between two directions of knowledge representation
developments emerged: Logic-based formalisms, using predicate calculus to draw implicit
conclusions from explicitly represented knowledge, and non-logic-based representations,
which built mostly on cognitive notions and were created from speci�c methods of thinking
regarding problem solving. Evidently, the former approach was more of general-purpose
than the latter, adopting variants of �rst-order predicate calculus, such that the process of
reasoning amounts to verifying logical consequence. In the non-logical formalisms, inferring
knowledge was achieved by manipulating ad-hoc data structures. This approach led to the
development of frames and semantic networks, where a network structure represents sets
of individuals and their relationships.

Soon, it became clear that a major de�ciency of such network-based systems is their
lacking of a precise semantic characterization. Nevertheless, it was shown that frames can
be given a semantics which is based on �rst-order logic, by unary predicates representing
sets of individuals and binary predicates representing relationships between them [Hayes,
1979]. From this viewpoint it appeared that frames and semantic networks require only a
fragment of �rst-order predicate logic [Brachman and Levesque, 1985], making it unneces-
sary to rely on full �rst-order theorem provers. Instead, specialized reasoning techniques
were more suitable to carry out reasoning in these formalisms, which were then subsumed
under the term terminological systems and later Description Logics.

The basic building blocks of a network representation, as shown in Figure 2.1, are
nodes and links. Nodes denote concepts, i.e., classes of individuals, while links characterize
relationships between concepts. A speci�c type of link is the �IS-A� relationship, which
de�nes a hierarchy between classes, such as the link between Student and Person in the
example �gure. Such subclass-relationships facilitate the inheritance of properties. Nat-
urally, implicit relationships between concepts exist, such as the fact that PhD Student is
also a subclass of Person. Apart from such atomic concepts, classes can be speci�ed by
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Person

Student

PhD Student

Professor

1

hasSupervisor

Course

teaches attends

1..n
1..n

Figure 2.1: An example network.

means of union and intersection of other classes. A speci�c feature of Description Logics is
the de�nition of relationships other than IS-A, such as hasSupervisor in the example, which
are commonly denoted as roles. Moreover, they allow for so called value-restrictions, i.e.,
stating conditions like �each PhD student must have exactly one supervisor�.

Research in this area has generated a variety of di�erent Description Logics formalisms,
each with speci�c expressivity and complexity, o�ering a distinct set of language constructs.
Two of them, which play a major role in the theoretical foundations of knowledge repre-
sentation on the Semantic Web, will be presented in the subsequent sections.

For an excellent introduction to Description Logics, we refer to [Baader et al., 2003].

2.4.1 SHOIN (D) and SHIF(D)

In this section, we recall the foundations of two Description Logics, which are the under-
pinning of Semantic Web ontology languages and basis of the novel type of answer-set
programs that will be presented in Chapter 3.

The naming of speci�c Description Logics languages usually corresponds to the con-
structors they provide (in addition to the basic ones like concept union, concept disjunction,
etc.). In the case of SHOIN (D) these are:

S Role transitivity.

H Role hierarchy.

O Nominals (�one-of�-constructor).

I Role inverses.

N Unquali�ed number restrictions.

D Datatypes.

The logic SHIF(D) is slightly less expressive:

S Role transitivity.
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H Role hierarchy.

I Role inverses.

F Functionality.

D Datatypes.

Here, functionality stands for the speci�c number restriction ≤ 1R, which is subsumed by
the unquali�ed number restrictions of SHOIN (D). Evidently, SHOIN (D) is a restriction
of SHOIN (D), which is closely related to the Description Logic SHOQ(D) [Horrocks and
Sattler, 2001] The reason for presenting these two Description Logics here is that they are
the formal counterparts of sublanguages of the Web Ontology Language OWL which will
be discussed at the end of this chapter.

2.4.2 Syntax

We �rst describe the syntax of the Description Logic SHOIN (D). We assume a set D
of elementary datatypes. Every d ∈ D is associated with a set of data values, called the
domain of d, denoted dom(d). We use dom(D) to denote

⋃
d∈D dom(d). A datatype is either

an element of D or a subset of dom(D) (called datatype oneOf). Let A, RA, RD, and I be
nonempty �nite and pairwise disjoint sets of atomic concepts, abstract roles, datatype roles,
and individuals, respectively. We use R−A to denote the set of all inverses R− of abstract
roles R ∈ RA.

A role is an element ofRA∪R−A∪RD. Concepts are inductively de�ned as follows. Every
atomic concept from A is a concept. If o1, o2, . . . are individuals from I, then {o1, o2, . . .}
is a concept (called oneOf). If C and D are concepts, then also (C u D), (C t D), and
¬C (called conjunction, disjunction, and negation, respectively). If C is a concept, R is
a role from RA ∪R−A, and n is a nonnegative integer, then ∃R.C, ∀R.C, ≥nR, and ≤nR
are concepts (called exists, value, atleast, and atmost restriction, respectively). If U is a
datatype role from RD, n is a nonnegative integer, and d is a datatype from D, then
∃U.d, ∀U.d, ≥nU , and ≤nU are concepts (called datatype exists, value, atleast, and atmost
restriction, respectively). We write > (resp., ⊥) to abbreviate C t ¬C (resp., C u ¬C),
and we eliminate parentheses as usual.

Axioms are expressions of the following forms:

(1) C v D, where C and D are concepts (concept inclusion);

(2) R v S, where either R,S ∈ RA or R,S ∈ RD (role inclusion);

(3) Trans(R), where R ∈ RA (transitivity);

(4) C(a), where C is a concept and a ∈ I (concept membership);

(5) R(a, b) (resp., U(a, v)), where R ∈ RA (resp., U ∈ RD) and a, b ∈ I (resp., a ∈ I and
v ∈ dom(D)) (role membership axiom); and

(6) a = b (resp., a 6= b), where a, b ∈ I (equality resp. inequality).

A knowledge base DL is a �nite set of axioms.
For decidability reasons, number restrictions in a knowledge base DL are restricted to

simple abstract roles [Horrocks et al., 1999]: A role R is called simple w.r.t. DL i� for
each role S such that Sv? R, it holds that Trans(S) 6∈DL, where v? is the transitive and
re�exive closure of v on DL, that is, Sv? R i� either (i) S v R is in DL, or (ii) S = R, or
(iii) Sv? Q and Qv? R, for some role Q.

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf
constructor and with the atleast and atmost constructors limited to 0 and 1.
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2.4.3 Semantics

The meaning of a Description Logic is usually de�ned by a model theoretic semantics,
relating the syntax of the language to the intended models of the domain. An interpretation
I = (∆, ·I) w.r.t. D consists of a nonempty (abstract) domain ∆, which is disjoint from
the datatype domain dom(D), and a mapping ·I that assigns to each atomic concept from
A a subset of ∆, to each individual o ∈ I an element of ∆, to each abstract role from RA

a subset of ∆ × ∆, and to each datatype role from RD a subset of ∆ × dom(D). The
mapping ·I is extended by induction to all concepts and roles as follows (where ]S denotes
the cardinality of a set S):

• ({o1, o2, . . .})I = {oI1 , oI2 , . . .}, (C uD)I = CI ∩DI ,

(C tD)I = CI ∪DI , and (¬C)I = ∆ \CI ,

• (∃R.C)I = {x ∈ ∆ | ∃y : (x, y) ∈ RI ∧ y ∈ CI},

• (∀R.C)I = {x ∈ ∆ | ∀y : (x, y) ∈ RI → y ∈ CI},

• (≥nR)I = {x ∈ ∆ | ]({y | (x, y) ∈ RI}) ≥ n},

• (≤nR)I = {x ∈ ∆ | ]({y | (x, y) ∈ RI}) ≤ n},

• (∃U.d)I = {x ∈ ∆ | ∃y : (x, y) ∈ UI ∧ y ∈ dom(d)},

• (∀U.d)I = {x ∈ ∆ | ∀y : (x, y) ∈ UI → y ∈ dom(d)}.

• (≥nU)I = {x ∈ ∆ | ]({y | (x, y) ∈ UI}) ≥ n},

• (≤nU)I = {x ∈ ∆ | ]({y | (x, y) ∈ UI}) ≤ n},

• (R−)I = {(a, b) | (b, a) ∈ RI}.

The satisfaction of an axiom F in an interpretation I = (∆, ·I), denoted I |= F , is
de�ned as follows:

(1) I |= C v D i� CI ⊆ DI ,

(2) I |= R v S i� RI ⊆ SI ,

(3) I |= Trans(R) i� RI is transitive,

(4) I |= C(a) i� aI ∈ CI ,

(5) I |= R(a, b) i� (aI , bI) ∈ RI ,

(6) I |= U(a, v) i� (aI , v) ∈ UI ,

(7) I |= a = b i� aI = bI , and

(8) I |= a 6= b i� aI 6= bI .

The interpretation I satis�es the axiom F , or I is a model of F , i� I |= F . I satis�es a
knowledge base DL, or I is a model of DL, denoted I |= DL, i� I |= F for all F ∈ DL. We
say DL is satis�able (resp., unsatis�able) i� DL has a (resp., no) model. An axiom F is a
logical consequence of DL, denoted DL |= F , i� every model of DL satis�es F . A negated
axiom ¬F is a logical consequence of DL, denoted DL |= ¬F , i� every model of DL does
not satisfy F .

Typical important reasoning tasks related to Description Logic knowledge bases L are
the following:
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(1) decide whether a given L is satis�able;

(2) given DL and a concept C, decide whether DL 6|=C v⊥;

(3) given DL and two concepts C and D, decide whether DL |= C v D;

(4) given DL, a ∈ I, and a concept C, decide whether DL |= C(a); and

(5) given DL, a, b ∈ I (resp., a ∈ I and v ∈ dom(D)), and R ∈ RA (resp., U ∈ RD),
decide whether DL |= R(a, b) (resp., DL |= U(a, v)).

Here, (1) is a special case of (2), since DL is satis�able i� DL 6|=>v⊥. Moreover, (2) and
(3) can be reduced to each other, since DL |= C u ¬D v ⊥ i� DL |= C v D. Finally, in
SHOIN (D), (4) and (5) are special cases of (3).

2.4.4 OWL

OWL [Bechhofer et al., 2004] is an ontology language for the Semantic Web, developed by
the World Wide Web Consortium (W3C) Web Ontology Working Group. The language
emerged from its predecessors SHOE [He�in and Hendler, 2000], a frame-based language
with XML-syntax, and DAML+OIL [Horrocks, 2002b,a], which is highly integrated with
RDF and itself was a combination of OIL [Fensel et al., 2001] and DAML [Hendler and
McGuinness, 2000]. OWL became a W3C Recommendation in February 2004 and is as
such understood by the industry and the web community as a web standard.

The role of ontologies in the Semantic Web is to provide a means for representing knowl-
edge in both human- and machine-readable format and thus fostering the automation of
information access and retrieval. More speci�cally, they are supposed to provide structured
vocabularies than can be used to describe the relationship between di�erent terms. Being
an e�ort of the W3C, OWL represents a layer in the so-called Semantic Web Cake, which
visualizes the stack of semantic technologies as a series of strata (as we have shown in the
introduction in Figure 1.1). OWL is build on top of XML and RDF resp. RDF Schema
and thus further extends the ability of stating facts and class- resp. property hierarchies.

The language OWL provides the three increasingly expressive sublanguages OWL Lite,
OWL DL, and OWL Full, where OWL DL basically corresponds to DAML+OIL. The
languages OWL Lite and OWL DL are essentially very expressive Description Logics with
an RDF/XML syntax and an abstract frame-like syntax [Horrocks et al., 2003]. One can
therefore exploit a large body of existing previous work on Description Logic research, for
example, to de�ne the formal semantics of the languages, to understand their formal prop-
erties (in particular, the decidability and the complexity of key inference problems), and for
an automated reasoning support. In fact, as shown by Horrocks and Patel-Schneider [2003],
ontology entailment in OWL Lite and OWL DL reduces to knowledge base (un)satis�ability
in the Description Logics SHIF(D) and SHOIN (D), respectively.

OWL DL allows for the speci�cation of classes, datatypes, individuals and data values
using the constructs shown in Table 2.1. There, the �rst column shows the OWL abstract
syntax for the construction, while the second column gives the standard Description Logic
syntax. OWL DL uses these description-forming constructs in axioms that provide in-
formation about classes, properties, and individuals, as shown in Table 2.2. Again, the
frame-like abstract syntax is given in the �rst column, and the standard Description Logic
syntax is given in the second column.
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Syntax

Since an OWL ontology is in principle just an RDF graph, it can also be represented
by RDF triples and hence be written in a variety of di�erent syntactic forms. The most
common, albeit not too readable, is RDF/XML.

Example 2.4.1 As an example, consider the following Description Logics axiom:

≥ 2 supplier v Discount

This expression states that all individuals x of pairs 〈x, y〉 ∈ supplier that have at least
two di�erent y are also members of the class Discount . For instance, If supplier contains
the tuples 〈shop1, parta〉, 〈shop1, partb〉, 〈shop2, partc〉, then shop1 will be in Discount .

Next, we formulate this axiom in RDF/XML syntax of OWL:6

<owl:Class rdf:ID="Discount">

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#supplier"/>

<owl:minCardinality rdf:datatype="xsd:nonNegativeInteger">2

</owl:minCardinality>

</owl:Restriction>

</owl:subClassOf>

</owl:Class>

Expressed in the OWL abstract syntax the same fragment becomes much more concise:

Class(Discount partial restriction(supplier minCardinality(2)))

Class(Part partial)

Class(Shop partial)

3

Semantics

The Semantics of OWL DL, as we already pointed out, corresponds to SHOIN (D) and
is summarized in the third column of Table 2.1. The particular datatypes used in OWL
are taken from RDF and XML Schema Datatypes. ∆I is the domain of individuals in a
model and ∆ID is the domain of data values.

OWL Lite, being closely related to SHIF(D), prohibits unions and complements,
restricts intersections to the implicit intersections in the frame-like class axioms, limits
all embedded descriptions to concept names, does not allow individuals to show up in
descriptions or class axioms, and limits cardinalities to 0 or 1. It therefore represents a
subset of OWL DL, reducing its expressivity and hence its complexity. SHOIN (D) has
a time complexity of NEXP for central reasoning problems, which is in SHIF(D) reduced
to EXP in the worst case.

6We assume the proper de�nitions of the used namespaces in the preamble of the respective XML-�le.
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Abstract Syntax DL Syntax Semantics

Descriptions (C)
A (URI reference) A AI ⊆ ∆I

owl:Thing > owl : ThingI = ∆I

owl:Nothing ⊥ owl : NothingI = {}
intersectionOf(C1 C2 . . .) C1 u C2 (C1 u C2)I = CI

1 ∩ CI
2

unionOf(C1 C2 . . .) C1 t C2 (C1 t C2)I = CI
1 ∪ CI

2

complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1 . . .) {o1, . . .} {o1, . . .}I = {oI1 , . . .}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) R : o (∀R.o)I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(n)) ≥ nR (≥ nR)I = {x | ]({y.〈x, y〉 ∈ RI}) ≥ n}
restriction(R maxCardinality(n)) ≤ nR (≤ nR)I = {x | ]({y.〈x, y〉 ∈ RI}) ≤ n}
restriction(U someValuesFrom(D)) ∃U.D (∃U.D)I = {x | ∃y.〈x, y〉 ∈ UI and y ∈ DD}
restriction(U allValuesFrom(D)) ∀U.D (∀U.D)I = {x | ∀y.〈x, y〉 ∈ UI → y ∈ DD}
restriction(U hasValue(v)) U : v (U : v)I = {x | 〈x, vI〉 ∈ UI}
restriction(U minCardinality(n)) ≥ nU (≥ nU)I = {x | ]({y.〈x, y〉 ∈ UI}) ≥ n}
restriction(U maxCardinality(n)) ≤ nU (≤ nU)I = {x | ]({y.〈x, y〉 ∈ UI}) ≤ n}
Data Ranges (D)
D (URI reference) D DD ⊆ ∆I

D

oneOf(v1 . . .) {v1, . . .} {v1, . . .}I = {vI1 , . . .}
Object Properties (R)
R (URI reference) R RI ⊆ ∆I ×∆I

R− (R−)I = (RI)−

Datatype Properties (U)
U (URI reference) U UI ⊆ ∆I ×∆I

D

Individuals (o)
o (URI reference) o oI ∈ ∆I

Data Values (v)
v (RDF literal) v vI = vD

Table 2.1: OWL DL Descriptions, Data Ranges, Properties, Individuals, and Data Values.
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Abstract Syntax DL Syntax Semantics

Class(A partial C1 . . . Cn) A v C1 u . . . u Cn AI ⊆ CI
1 ∩ . . . ∩ CI

n

Class(A complete C1 . . . Cn) A = C1 u . . . u Cn AI = CI
1 ∩ . . . ∩ CI

n

EnumeratedClass(A o1 . . . on) A = {o1, . . . , on} AI = {oI1 , . . . , oIn}
SubClassOf(C1 C2) C1 v C2 CI

1 ⊆ CI
2

EquivalentClasses(C1 . . . Cn) C1 = . . . = Cn CI
1 = . . . = CI

n

DisjointClasses(C1 . . . Cn) Ci u Cj = ⊥, i 6= j CI
i ∩ CI

j {}, i 6= j
Datatype(D) DI ⊆ ∆I

D

DatatypeProperty(U super(U1). . .super(Un) U v Ui UI ⊆ UI
i

domain(C1). . .domain(Cm) ≥ 1 U v Ci UI ⊆ CI
i ×∆I

D

range(D1). . .range(Dl) > v ∀U.Di UI ⊆ ∆I ×DI
i

[Functional]) > v≤ 1 U UI is functional
SubPropertyOf(U1 U2) U1 v U2 UI

1 ⊆ UI
2

EquivalentProperties(U1 . . . Un) U1 = . . . = Un UI
1 = . . . = UI

n

ObjectProperty(R super(R1). . .super(Rn) R v Ri RI ⊆ RI
i

domain(C1). . .domain(Cm) ≥ 1 R v Ci RI ⊆ CI
i ×∆I

range(C1). . .range(Cl) > v ∀R.Ci RI ⊆ ∆I × CI
i

[inverseOf(R0)] R = (−R0) RI = (RI
0 )−

[Symmetric)] R = (−R) RI = (RI)−

[Functional] > v≤ 1 R RI is functional
[InverseFunctional] > v≤ 1 R− (RI)− is functional
[Transitive)] Tr(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 v R2 RI
1 ⊆ RI

2

EquivalentProperties(R1 . . . Rn) R1 = . . . = Rn RI
1 = . . . = RI

n

AnnotationProperty(S)
Individual(o type(C1). . .type(Cn) O ∈ Ci oI ∈ CI

i

value(R1 o1). . .value(Rn on) 〈o, oi〉 ∈ Ri 〈oI , oIi 〉 ∈ RI
i

value(U1 v1). . .value(Un vn)) 〈o, vi〉 ∈ Ri 〈oI , vIi 〉 ∈ RI
i

SameIndividual(o1 . . . on) o1 = . . . = on oI1 = . . . = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj , i 6= j oIi 6= oIj , i 6= j

Table 2.2: OWL DL Axioms and Facts.
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Chapter 3

dl-Programs

3.1 Introduction

In this chapter we present our approach of combining terminological reasoning in form
of ontologies that are based on certain Description Logics with logic programs under the
answer-set semantics. The original motivation for this work was the current e�ort in the
Semantic Web and logic programming communities of creating a suitable formalism to
build rules on top of ontologies, hence further shaping the realization of the Semantic
Web. Several obstacles arise for �nding the right combination of rich ontology languages
such as OWL which are based on classical logic with logic programming based languages
such as answer-set programming, since these formalisms are semantically separated by a
considerable gap. In the following introduction, we will point out the relation of di�erent
�avors of logic programming based rule languages to classical �rst-order logic and show
how their disparity hamper an easy solution to the combination of rules and ontologies.

3.1.1 Logic Programming vs. Classical Logic

As it is well-known, the core of logic programming, i.e., de�nite positive programs, has
a direct correspondence with the Horn subset of classical �rst-order logic, i.e., a de�nite
(n = 1), not-free (k = m) rule of the form (2.1) can be read as a �rst-order sentence of the
form

(∀)a1 ← b1 ∧ . . . ∧ bk (3.1)

where (∀) denotes the universal closure of all free variables in the formula. This subset
of �rst-order logic allows for a sound and complete decision procedure for entailment of
ground atomic formulae, which � in case of a function-free theory (which corresponds to
Datalog) � is computable in �nite polynomial time.

However, it is important to point out some slight but decisive di�erences between the
logic programming (LP) view and the �rst-order view of de�nite programs.

Non-ground entailment. The �rst divergence becomes apparent already in case of
positive programs. LP semantics is de�ned in terms of minimal Herbrand models, i.e., sets
of ground facts. Take for example the logic program

PotableLiquid(X)←Wine(X)
Wine(X)←Whitewine(X)

Whitewine(“Welschriesling”).
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Both the logic program reading and the Horn reading of this program following (3.1) above

yield the ground entailment of facts

{Whitewine(“Welschriesling”),Wine(“Welschriesling”),
PotableLiquid(“Welschriesling”)}.

The �rst-order reading of the program would allow further non-factual inferences such
as PotableLiquid(“Welschriesling”)←Wine(“Welschriesling”) or ∀x.PotableLiquid(x)←
Whitewine(x), which are not entailed by the logic program. Logic programs and minimal
Herbrand models (and answer sets as their extension) are only concerned with facts.

Negation as failure vs. classical negation. Divergences become more severe when
considering programs with negation. Negation as failure not is evaluated with respect to a
closed world assumption (CWA) whereas negation in Description Logics and thus in OWL
(owl:complementOf) is interpreted classically. Let us again demonstrate this with a small
example:

Wine(X)←Whitewine(X)
NonWhite(X)← not Whitewine(X)

Wine(myDrink).

Not given any additional information, under the answer-set semantics this program entails
both bravely and cautiously the fact NonWhite(myDrink). However, this conclusion would
not be justi�ed in a �rst-order reading of the above program, like

(∀x.Whitewine(x) ⊃Wine(x))∧
(∀x.¬NonWhite(x) ⊃ not Whitewine(x))∧

Wine(myDrink).

or Description Logics reading, such as:

Whitewine vWine
¬Whitewine v NonWhite

myDrink ∈Wine.

The reason for this is the di�erent purposes which classical negation and negation as
failure are serving, the latter rather to be understood as modeling (defeasible) default
assumptions with non-monotonic behavior. While some people argue that such kind of
non-monotonic negation is unsuitable for an open environment such as the Web, there are
several applications from e.g., information integration where negation as failure has been
shown to be particularly useful.

Strong negation vs. classical negation. Note that also strong negation, as used in
answer-set programming, has a slightly di�erent �avor than its classical counterpart. That
is, the following two representations of a logic program and a description logic theory again
slightly diverge:

Wine(X)←Whitewine(X).
¬Wine(myDrink).

Whitewine vWine
myDrink ∈ ¬Wine.
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Whereas the DL knowledge base would entail that myDrink ∈ ¬Whitewine the correspond-
ing fact ¬Whitewine(myDrink) is not a justi�ed conclusion in an LP setting i.e., the law
of the excluded middle or contraposition do not hold upfront in ASP. Nonetheless, one can
�emulate� classical behavior of certain predicates in ASP by, for instance, adding a rule
¬Whitewine(X) ∨Whitewhine(X) in the above example.

Logic Programming and equality. Answer-set programming engines typically deploy
a unique name assumption (UNA) and do not support real equality reasoning, i.e., equality
in the head of rules. This does not necessarily comply with the view in classical logic, and
thus RDF Schema and OWL where no such assumption is made. While equality �=� and
inequality � 6=� predicates are allowed in rule bodies, these represent syntactic equality and
(default) negation thereof only. This must not be confused with the OWL directives sameAs
and differentFrom directives. Let us consider the following rule base:

knows(“Bob”, “Alice”).
knowsOtherPeople(X)← knows(X, Y ), X 6= Y.

Under standard ASP semantics where UNA is deployed, � 6=� amounts to �not =�, and thus
knowsOtherPeople(“Bob”) would be entailed.

Decidability. Finally, the probably largest obstacle for combining the Description Logics
world of OWL with the logic programming world of answer-set programming stems from
the fact that both face undecidability issues from two completely di�erent angles.

As mentioned above, decidability of answer-set programming follows from the fact
that it is based on function-free Horn logic where ground entailment can be determined
by checking the �nite subsets of the Herbrand base, i.e., decidability and termination of
evaluation strategies is guaranteed by �niteness of the domain.

Decidability of Description Logics reasoning tasks such as satis�ability, class subsump-
tion, or class membership relies on the so-called tree model property. This property basically
says that a description logic knowledge base has a model i� it has a tree-shaped model,
whose depth and branching factor are bounded by the size of the knowledge base [Baader
et al., 2003].

It becomes clear that the property of decidability stems from di�erent conditions, such
that LP and Description Logics cannot be combined immediately. As shown in [Levy and
Rousset, 1998] the naive combination of even a very simple DL with arbitrary Horn Logic
is undecidable which they proof by a reduction of Turing machines.

3.1.2 Strategies for Combining Rules and Ontologies

As one can expect by the above-mentioned problems, combining logic programming and
Description Logics is not straightforward. If decidability is not an issue, a naive combina-
tion of Description Logics and Horn rules could be a possible approach for the Semantic
Web rules layer. The Semantic Web Rule Language (SWRL) [Horrocks et al., 2004] pro-
posal, a recent W3C member submission, straightforwardly extends OWL in this spirit.
Nonetheless, in the following we want to take a closer look at approaches which still retain
decidability in a more cautious integration.

On the other extreme, the overcautious approach of allowing interoperability only on
the intersection of Description Logics and Horn-Logics seems to be too restricted. Grosof
et al. [2003] have de�ned this intersection where the LP and DL world coincide which
they call DLP. However, such an approach leaves a rule and ontology language with very
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restrictive expressivity. Layering several extensions in the direction of logic programming
and ASP on top of the DLP fragment have lead to the Web Rule Language (WRL) proposal
by Angele et al. [2005], an alternative W3C member submission.

When we want to combine full Description Logics with full answer-set programming,
however, things become more involved. In principle the di�erent proposals in the literature
can be divided into two major approaches of rules and ontologies interaction:

Strict semantic integration. Rules are introduced by adapting existing semantics for
rule languages directly in the Ontology layer. The restrictive DLP fragment on the one end
and the undecidable SWRL approach on the other mark two extremes of this approach.
Nonetheless, recently several proposals have been made to extend expressiveness while
still retaining decidability, remarkably several attempts in the ASP �eld. Common to
these approaches is the restriction of the combined language in a way that guarantees
�safe interaction� of the LP and DL parts of the language, usually by introducing a safety
condition in rules. Approaches described in [Levy and Rousset, 1998, Motik et al., 2005,
Rosati, 2005, 2006a] fall under this category.

Strict semantic separation. In this setting ASP should play a central role in the rule
layer, while OWL/RDF Schema �avors would keep their purpose of description languages,
not aimed at intensive reasoning tasks, in the underlying ontology layer. The two layers
are kept strictly distinguished and only communicate via a �safe interface�: From the rule
layer point of view, ontologies are dealt with as an external source of information whose
semantics is treated independently. Non-monotonic reasoning and rules are allowed in a
decidable setting, as well as arbitrary mixing of closed and open world reasoning. This
approach is typical of [Eiter et al., 2004a, 2005d, Heymans et al., 2005b] and [Lukasiewicz,
2005b].

A more detailed account on contributions to each of these categories will be given
in Subsection 3.10. For excellent surveys which classify the above-mentioned and other
approaches we refer the interested reader to [Antoniou et al., 2005, Pan et al., 2004].

The remainder of this chapter is dedicated to the theory and application of one approach
of the latter type, which was �rst presented in [Eiter et al., 2004a]. In particular, we will
address the following issues:

• We introduce description logic programs (dl-programs), which consist of a knowledge
base L in a description logic and a �nite set of description logic rules (dl-rules)
P . Such rules are similar to usual rules in logic programs with negation as failure,
but may also contain queries to L, possibly default-negated, in their bodies. As an
important feature, such queries also allow for specifying an input from P , and thus
for a �ow of information from P to L, besides the �ow of information from L to P ,
given by any query to L. For example, concepts and roles in L may be enhanced
by facts generated from dl-rules, possibly involving heuristic knowledge and other
concepts and roles from L.

• The queries to L are treated, fostering an encapsulation view, in a way such that
logic programming and description logic inference are technically separated; mainly
interfacing details need to be known. Compared to other similar work, this increases
�exibility and is also amenable to privacy aspects for L and P . Furthermore, the
nondeterminism inherent in answer sets is retained, supporting brave reasoning and
the answer-set programming paradigm in which solutions of problems are represented
by answer sets of a logic program.
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• We de�ne Herbrand models for dl-programs, and show that satis�able positive dl-
programs, in which default-negation does not occur and all queries to L are mono-
tonic, have a unique least model. Furthermore, we show that more general strati�ed
dl-programs can be associated, if consistent, with a unique minimal Herbrand model
that is characterized through iterative least Herbrand models.

• We de�ne strong answer sets for all dl-programs, based on a reduction to the least
model semantics of positive dl-programs. For positive and strati�ed dl-programs, the
strong answer-set semantics coincides with the (unique) minimal Herbrand model
semantics associated. We also consider weak answer sets based on a reduction to the
answer sets of ordinary logic programs. Strong answer sets are also weak answer sets,
and both properly generalize answer sets of ordinary normal logic programs.

• We present �xpoint characterizations for the least model of a positive dl-program and
the canonical minimal model of a strati�ed dl-program, and show how to compute
these models by �nite �xpoint iterations.

• We give a precise picture of the complexity of deciding strong and weak answer set
existence for a dl-program KB . From this, the complexity of brave and cautious
reasoning is easily derived. We consider the general case as well as the restrictions
where KB is (a) positive, (b) strati�ed and contains only monotonic queries, and (c)
strati�ed. We consider SHIF(D) and SHOIN (D), but most of our results can be
easily transferred to other Description Logics having the same complexity (EXP and
NEXP, respectively).

• Finally, we describe a prototype implementation of a reasoner for dl-programs under
the di�erent aforementioned semantics. We present the algorithms that are used for
the evaluation as well as general techniques to increase its e�ciency.

The rest of this chapter is organized as follows. In Section 3.2 we introduce the syntax
of dl-programs. We then de�ne Herbrand models of dl-programs, unique minimal Her-
brand models of positive and strati�ed dl-programs, and the least model semantics for
these kinds of dl-programs in Section 3.3. The strong and weak answer-set semantics for
general dl-programs are �nally presented in Section 3.4. Additionally, we introduce the
well-founded semantics for dl-programs in Section 3.5. Section 3.6 shows how the unique
minimal Herbrand models of positive and strati�ed dl-programs can be computed through
�xpoint iterations. Section 3.7 provides a precise picture of the complexity of deciding
strong and weak answer set existence for a dl-program. In Section 3.9 we present a pro-
totype implementation of a dl-program reasoner, called NLP-DL. Section 3.10 eventually
gives an overview on related work.

3.2 dl-Program Syntax

Informally, a dl-program consists of a description logic knowledge base L and a generalized
normal program P , which may contain queries to L. Roughly, such a query asks whether
a speci�c description logic axiom is entailed by L or not.

We �rst de�ne dl-queries and dl-atoms, which are used to express queries to the de-
scription logic knowledge base L. A dl-query Q(t) is either1

• a concept inclusion axiom F or its negation ¬F , or

1In Subsection 5.3.1 we will extend these queries by the possibility to state also conjunctive queries.
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• of the forms C(t) or ¬C(t), where C is a concept and t is a term, or

• of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m ≥ 0, (3.2)

where each Si is either a concept or a role, opi ∈ {], −∪ , −∩}, pi is a unary resp. binary
predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm its input predicate symbols.
Intuitively, opi = ] (resp., opi = −∪ ) increases Si (resp., ¬Si) by the extension of pi, while
opi = −∩ constrains Si to pi.

A dl-rule r has the form

a← b1, . . . , bn,not bn+1, . . . ,not bm, (3.3)

where any literal b1, . . . , bm ∈ B(r) may be a dl-atom. We de�ne H(r) = a and B(r) =
B+(r) ∪B−(r), where B+(r) = {b1, . . . , bn} and B−(r) = {bn+1, . . . , bm}. If B(r) = ∅
and H(r) 6= ∅, then r is a fact. A dl-program KB = (L,P ) consists of a description logic
knowledge base L and a �nite set of dl-rules P .

We use the following example to illustrate our main ideas.

Example 3.2.1 Suppose we want to assign reviewers to papers, based on certain infor-
mation about the papers and available persons, using a description logic knowledge base
LR containing knowledge about scienti�c publications.

We assume not to be aware of the entire structure and contents of LR, but of the
following aspects. LR classi�es papers into research areas, stored in a concept Area, de-
pending on keyword information. The roles keyword and inArea associate with each paper
its relevant keywords and the areas it is classi�ed into (obtained, e.g., by rei�cation of
the classes). Furthermore, a role expert relates persons to their areas of expertise, and a
concept Referee contains all referees. Eventually, a role topicOf associates with a cluster
of similar keywords all its members. Consider then the following dl-program PR:

(1) paper(p1); kw(p1,Semantic Web);
(2) paper(p2); kw(p2,Bioinformatics); kw(p2,Answer Set Programming);

(3) kw(P,K2)← kw(P,K1), DL[topicOf ](S, K1), DL[topicOf ](S, K2);

(4) paperArea(P,A)← DL[keywords ] kw ; inArea](P,A);

(5) cand(X, P )← paperArea(P,A), DL[Referee](X), DL[expert ](X, A);

(6) assign(X, P )← cand(X, P ),not ¬assign(X, P );
(7) ¬assign(Y, P )← cand(Y, P ), assign(X, P ), X 6= Y ;

(8) a(P )← assign(X, P );
(9) error(P )← paper(P ),not a(P ).

Intuitively, lines (1) and (2) specify the keyword information of two papers, p1 and p2,
which should be assigned to reviewers. The rule (3) augments, by choice of the designer,
the keyword information with similar ones (hoping for good). The rule (4) queries the
augmented LS to retrieve the areas each paper is classi�ed into, and the rule (5) singles out
review candidates based on this information from experts among the reviewers according
to LR. Rules (6) and (7) pick one of the candidate reviewers for a paper (multiple reviewers
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can be selected similarly). Finally, (8) and (9) check if each paper is assigned; if not, an
error is �agged. Note that, in view of rules (3)�(5), information �ows in both directions
between the description logic knowledge base LR and the knowledge represented by the
above dl-program.

To illustrate the use of −∩ , a predicate poss Referees may be de�ned in PR, and
“Referee −∩ poss Referees” may be added in the �rst dl-atom of (5), which thus constrains
the set of referees.

The dl-rule below shows in particular how dl-rules can be used to encode certain quali-
�ed number restrictions, which are not available in SHOIN (D) It de�nes an expert as an
author of at least three papers of the same area:

expert(X, A)← DL[isAuthorOf ](X, P1),
DL[isAuthorOf ](X, P2),
DL[isAuthorOf ](X, P3),
DL[inArea](P1, A),
DL[inArea](P2, A),
DL[inArea](P3, A),
P1 6= P2, P2 6= P3, P3 6= P1.

3

Example 3.2.2 A small computer store obtains its hardware from several vendors. It uses
the following description logic knowledge base LS , which contains information about the
product range that is provided by each vendor and about possible rebate conditions (we
assume here that choosing two or more parts from the same seller results in a discount).
For some parts, a shop may be already contracted as supplier.

≥ 1 supplier v Shop; > v ∀supplier .Part ; ≥ 2 supplier v Discount ;
Part(harddisk); Part(cpu); Part(case);
Shop(s1); Shop(s2); Shop(s3);
provides(s1, case); provides(s2, cpu); provides(s3, case);
provides(s1, cpu); provides(s2, harddisk); provides(s3, harddisk);
supplier(s3, case).

Here, the �rst two axioms determine Shop and Part as domain and range of the property
supplier , respectively, while the third axiom constitutes the concept Discount by putting
a cardinality constraint on supplier .

Consider now the dl-program KBS = (LS , PS), with LS as above and PS given as
follows, choosing vendors for needed parts w.r.t. possible rebates:

(1) vendor(s2); vendor(s1); vendor(s3);
(2) needed(cpu); needed(harddisk); needed(case);
(3) avoid(V )← vendor(V ),not rebate(V );
(4) rebate(V )← vendor(V ), DL[supplier ] buy cand ;Discount ](V );
(5) buy cand(V, P )← vendor(V ),not avoid(V ), DL[provides](V, P ), needed(P ),

not exclude(P )
(6) exclude(P )← buy cand(V1, P ), buy cand(V2, P ), V1 6= V2;
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(7) exclude(P )← DL[supplier ](V, P ),needed(P );
(8) supplied(V, P )← DL[supplier ] buy cand ; supplier ](V, P ),needed(P ).

Rules (3)�(5) choose a possible vendor (buy cand) for each needed part, taking into account
that the selection might a�ect the rebate condition (by feeding the possible vendor back to
LS , where the discount is determined). Rules (6) and (7) assure that each hardware part
is bought only once, considering that for some parts a supplier might already be chosen.
Rule (8) eventually summarizes all purchasing results. 3

Example 3.2.3 An existing network must be extended by new nodes. The knowledge
base LN contains information about existing nodes and their interconnections as well as a
de�nition of �overloaded� nodes (concept HighTrafficNode), which depends on the number
of connections of the respective node (here, all nodes with more than three connections
belong to HighTrafficNode):

≥ 1 wired v Node; > v ∀wired .Node; wired = (−wired);
≥ 4 wired v HighTrafficNode;
Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);
wired(n1, n2); wired(n2, n3); wired(n2, n4);
wired(n2, n5); wired(n3, n4); wired(n3, n5).

To evaluate possible combinations of connecting the new nodes, the following program PN

is speci�ed:

(1) newnode(add1 );
(2) newnode(add2 );
(3) overloaded(X)← DL[wired ] connect ;HighTrafficNode](X);
(4) connect(X, Y )← newnode(X), DL[Node](X),not overloaded(Y ),not excl(X, Y );
(5) excl(X, Y )← connect(X, Z), DL[Node](Y ), Y 6= Z;

(6) excl(X, Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X;

(7) excl(add1 , n4).

Rules (1)�(2) de�ne the new nodes to be added. Rule (3) imports knowledge about over-
loaded nodes in the existing network, taking new connections already into account. Rule
(4) connects a new node to an existing one, provided the latter is not overloaded and the
connection is not to be disallowed, which is speci�ed by Rule (5) (there must not be more
than one connection for each new node) and Rule (6) (two new nodes cannot be connected
to the same existing one). Rule (7) states a speci�c condition: Node add1 must not be
connected with n4. 3

3.3 Least Model Semantics for dl-Programs

We �rst de�ne Herbrand interpretations and the truth of dl-programs in Herbrand inter-
pretations. In the sequel, let KB = (L,P ) be a dl-program.

The Herbrand base of P , denoted HBP , is the set of all ground literals with a standard
predicate symbol that occurs in P and constant symbols in Φ. An interpretation I relative
to P is a consistent subset of HBP . We say I is a model of l ∈ HBP under L, or I
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satis�es l under L, denoted I |=L l, i� l ∈ I. It is a model of a ground dl-atom a =
DL[S1op1 p1, . . . , Smopmpm;Q](c) under L, or I satis�es a under L, denoted I |=L a, i�
L ∪

⋃m
i=1 Ai(I) |= Q(c), where

• Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = ];

• Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪ ;

• Ai(I) = {¬Si(e) | pi(e) ∈ I does not hold}, for opi = −∩ .

We say I is a model of a ground dl-rule r i� I |=L l for all l ∈ B+(r) and I 6|=L l for all
l ∈ B−(r) implies I |=L H(r). It is a model of a dl-program KB = (L,P ), or I satis�es
KB , denoted I |= KB , i� I |=L r for all r ∈ ground(P ). We say KB is satis�able (resp.,
unsatis�able) i� it has some (resp., no) model.

3.3.1 Least Model Semantics of Positive dl-Programs

We now de�ne positive dl-programs, which are �not�-free dl-programs that involve only
monotonic dl-atoms. Like ordinary positive programs, every positive dl-program that is
satis�able has a unique least model, which naturally characterizes its semantics.

A ground dl-atom a is monotonic relative to KB = (L,P ) i� I ⊆ I ′ ⊆ HBP implies
that if I |=L a then I ′ |=L a. A dl-program KB = (L,P ) is positive i� (i) P is �not�-free,
and (ii) every ground dl-atom that occurs in ground(P ) is monotonic relative to KB .

Observe that a dl-atom containing −∩ may fail to be monotonic, since an increasing set
of pi(e) in P results in a reduction of ¬Si(e) in L, whereas dl-atoms containing ] and −∪
only are always monotonic.

For ordinary positive programs P , the intersection of two models of P is also a model
of P . The following lemma shows that a similar result holds for positive dl-programs KB .

Lemma 3.3.1 Let KB = (L,P ) be a positive dl-program. If the interpretations I1, I2 ⊆
HBP are models of KB , then I1 ∩ I2 is also a model of KB .

Proof. Suppose that I1, I2 ⊆ HBP are models of KB , that is, Ii |=L r for every
r ∈ ground(P ) and i ∈ {1, 2}. We now show that I = I1 ∩ I2 is also a model of KB ,
that is, I |=L r for every r ∈ ground(P ). Consider any r ∈ ground(P ), and assume that
I |=L l for all l ∈ B+(r) = B(r). That is, I |=L l for all classical literals l ∈ B(r) and
I |=L a for all dl-atoms a ∈ B(r). Hence, Ii |=L l for all classical literals l ∈ B(r), for every
i ∈ {1, 2}. Furthermore, since every dl-atom in ground(P ) is monotonic relative to KB ,
it holds that Ii |=L a for all dl-atoms a ∈ B(r), for every i ∈ {1, 2}. Since I1 and I2 are
models of KB , it follows that Ii |=L H(r), for every i ∈ {1, 2}, and thus I |=L H(r). This
shows that I |=L r. Hence, I is a model of KB . 2

As an immediate corollary of this result, every satis�able positive dl-program KB has
a unique least model, denoted MKB , which is contained in every model of KB .

Corollary 3.3.2 Let KB = (L,P ) be a positive dl-program. If KB is satis�able, then
there exists a unique model I ⊆ HBP of KB such that I ⊆ J for all models J ⊆ HBP of
KB .

Example 3.3.1 Consider the dl-program KB comprising of the rules (1)�(6) from Exam-
ple 3.2.1. Clearly, KB is “not�-free. Moreover, as the dl-atoms do not contain −∩ , they are
all monotonic. Thus, the dl-program is positive. As well, its unique least model contains
all review candidates for the given papers p1 and p2. 3
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3.3.2 Iterative Least Model Semantics of Strati�ed dl-Programs

We next de�ne strati�ed dl-programs, which are intuitively composed of hierarchic layers
of positive dl-programs linked via default-negation and certain dl-atoms. Like for ordinary
strati�ed programs, a canonical minimal model can be singled out by a number of iterative
least models, which naturally describes the semantics, provided some model exists. We
can accommodate this with possibly non-monotonic dl-atoms by treating them similarly as
NAF-literals. This is particularly useful, if we do not know a priori whether some dl-atoms
are monotonic, and determining this might be costly; notice, however, that absence of −∩
in (3.2) is a simple syntactic criterion which implies monotonicity of a dl-atom (cf. also
Example 3.3.1).

For any dl-program KB = (L,P ), we denote by DLP the set of all ground dl-atoms
that occur in ground(P ). We assume that KB has an associated set DL+

P ⊆ DLP of ground
dl-atoms which are known to be monotonic, and we denote by DL?

P = DLP \DL+
P the set

of all others. An input literal of a ∈ DLP is a ground literal with an input predicate of a
and constant symbols in Φ.

De�nition 3.3.1 A strati�cation of KB = (L,P ) (w.r.t. DL+
P ) is a mapping λ : HBP ∪

DLP → {0, 1, . . . , k} such that

(i) λ(H(r)) ≥ λ(l′) (resp., λ(H(r)) > λ(l′)) for each r ∈ ground(P ) and l′ ∈ B+(r)
(resp. l′∈B−(r)), and

(ii) λ(a) ≥ λ(l) (resp., λ(a) > λ(l)) for each input literal l of each a ∈ DL+
P (resp.

a ∈ DL?
P ),

and k ≥ 0 is its length. For i ∈ {0, . . . , k}, let KB i = (L,Pi) = (L, {r ∈ ground(P ) |
λ(H(r)) = i}), and let HBPi (resp. HB?

Pi
) be the set of all l ∈ HBP such that λ(l) = i

(resp. λ(l) ≤ i).

A dl-program KB = (L,P ) is strati�ed i� it has a strati�cation λ of some length k ≥ 0.
We de�ne its iterative least models Mi ⊆ HBP with i ∈ {0, . . . , k} as follows:

(i) M0 is the least model of KB0;

(ii) if i > 0, then Mi is the least model of KB i such that Mi|HB?
Pi−1

= Mi−1|HB?
Pi−1

.

We say KB is consistent, if every Mi with i ∈ {0, . . . , k} exists, and KB is inconsistent
otherwise. If KB is consistent, then MKB denotes Mk. Notice that MKB is well-de�ned,
since it does not depend on a particular λ (cf. Corollary 3.4.4). The following result shows
that MKB is in fact a minimal model of KB .

Theorem 3.3.3 Let KB = (L,P ) be a strati�ed dl-program. Then, MKB is a minimal
model of KB .

Proof. Let λ : HBP ∪DLP → {0, 1, . . . , k} be a strati�cation of KB = (L,P ) relative to
DL+

P . Recall that M0 is the least model (and thus in particular a model) of KB0 = (L0, P0)
and for every i ∈ {1, . . . , k}, it holds that Mi is the least model (and thus in particular
a model) of KB i = (Li, Pi) such that Mi|HBPi−1

? = Mi−1|HBPi−1
?. It thus follows

that Mk = MKB is a model of KB . We next show that Mk is also a minimal model of
KB . Towards a contradiction, suppose that there exists a model J ⊆ HBP of KB such
that J ⊂ Mk. Hence, there exists some i ∈ {0, 1, . . . , k} such that J |HBPi

? 6= J |HBPi
?.

Let j be a minimal such i. Then, J is a model of KB j . Furthermore, if j > 0, then
J |HB?

Pj−1
= J |HBPj−1

?. But this contradicts Mj being the least model of KB j such that
Mj |HBPj−1

? = Mj−1|HBPj−1
?. This shows that Mk is a minimal model of KB . 2
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Example 3.3.2 Consider the dl-program KB = (L,P ) given by the rules and facts from
Example 3.2.1, but without the rules (6) and (7). This program has a strati�cation of
length 2, with the associated set DL+

P comprising all dl-atoms occurring in P . The least
model of P contains all review candidates of the given papers, together with error �ags for
them, because no paper is assigned so far. 3

3.4 Answer-Set Semantics for dl-Programs

Having de�ned the least model semantics for dl-programs, we are able to specify their
answer-set semantics, akin to the original de�nition by Gelfond and Lifschitz, which is also
given in such a constructive manner.

3.4.1 Strong Answer-Set Semantics of dl-Programs

We now de�ne the strong answer-set semantics of general dl-programs, which is reduced
to the least model semantics of positive dl-programs. We use a generalized transformation
that removes all NAF-literals and all dl-atoms except for those known to be monotonic. If
we ignore this knowledge and remove all dl-atoms, then we arrive at the weak answer-set
semantics of KB (see next subsection).

In the sequel, let KB = (L,P ) be a dl-program, and let DLP , DL+
P , and DL?

P be as
above.

De�nition 3.4.1 The strong dl-transform of P relative to L and an interpretation I ⊆
HBP , denoted sP I

L, is the set of all dl-rules obtained from ground(P ) by

(i) deleting every dl-rule r such that either I 6|=L a for some a ∈ B+(r)∩DL?
P , or I |=L l

for some l ∈ B−(r), and

(ii) deleting from each remaining dl-rule r all literals in B−(r) ∪ (B+(r) ∩DL?
P ).

Notice that (L, sP I
L) has only monotonic dl-atoms and no NAF-literals anymore. Thus,

(L, sP I
L) is a positive dl-program, and by Corollary 3.3.2, has a least model if it is satis�able.

De�nition 3.4.2 Let KB = (L,P ) be a dl-program. A strong answer set of KB is an
interpretation I ⊆ HBP such that I is the least model of (L, sP I

L).

Example 3.4.1 The dl-program KBS = (LS , PS) of Example 3.2.2 has the following three
strong answer sets (quoting only relevant atoms):

{supplied(s3 , case); supplied(s2 , cpu); supplied(s2 , harddisk); rebate(s2 ); . . . };
{supplied(s3 , case); supplied(s3 , harddisk); rebate(s3 ); . . . };
{supplied(s3 , case); . . . }.

Since the supplier s3 was already �xed for the part case, two possibilities for a discount
remain (rebate(s2 ) or rebate(s3 ); s1 is not o�ering the needed part harddisk , and the shop
will not give a discount only for the part cpu). 3

Example 3.4.2 The dl-program KBN = (LN , PN ) of Example 3.2.3 has the following
four strong answer sets:
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{overloaded(n2); connect(add1 , n5); connect(add2 , n4); . . . };
{overloaded(n2); connect(add1 , n1); connect(add2 , n4); . . . };
{overloaded(n2); connect(add1 , n1); connect(add2 , n5); . . . };
{overloaded(n2); connect(add1 , n5); connect(add2 , n1); . . . }.

Node n2 is already in concept HighTrafficNode in the original LN , so it is contained in each
answer set. From the remaining nodes in LN , n2 and n3 would be in HighTrafficNode with
one additional connection, so they are avoided. This leaves only nodes n1, n4, and n5 to
be connection candidates for the new nodes. The connection from add1 to n4 is explicitly
inhibited in PN , the remaining connection possibilities are represented by the four answer
sets. 3

The following result shows that the strong answer-set semantics of a dl-program KB =
(L,P ) without dl-atoms coincides with the ordinary answer-set semantics of P .

Theorem 3.4.1 Let KB = (L,P ) be a dl-program without dl-atoms. Then, I ⊆ HBP is a
strong answer set of KB i� it is an answer set of the ordinary program P .

Proof. Let I ⊆ HBP . If KB is free of dl-atoms, then sP I
L=P I . Hence, I is the least

model of (L, sP I
L) i� I is the least model of P I . Thus, I is a strong answer set of KB i� I

is an answer set of P . 2

The next result shows that, as desired, strong answer sets of a dl-program KB are also
models, and moreover minimal models if all dl-atoms are monotonic (and known as such).

Theorem 3.4.2 Let KB = (L,P ) be a dl-program, and let M be a strong answer set of
KB . Then, (a) M is a model of KB , and (b) M is a minimal model of KB if DLP =
DL+

P .

Proof. (a) Let I be a strong answer set of KB . To show that I is also a model of KB ,
we have to show that I |=L r for all r ∈ ground(P ). Consider any r ∈ ground(P ). Suppose
that I |=L l for all l ∈ B+(r) and I 6|=L l for all l ∈ B−(r). Then, the dl-rule r′ that is
obtained from r by removing all the literals in B−(r)∪ (B+(r)∩DL?

P ) is contained in sP I
L.

Since I is a least model of (L, sP I
L) and thus in particular a model of (L, sP I

L), it follows
that I is a model of r′. Since I |=L l for all l ∈ B+(r′) and I 6|=L l for all l ∈ B−(r′) = ∅,
it follows that I |=L H(r). This shows that I |=L r. Hence, I is a model of KB .

(b) By (a), every strong answer set I of KB is a model of KB . Assume that every
dl-atom in DLP is monotonic relative to KB . We now show that then I is also a minimal
model of KB . Towards a contradiction, suppose the contrary. That is, there exists a model
J of KB such that J ⊂ I. Since J is a model of KB , it follows that J is also a model of
(L, sP J

L ). Since every dl-atom in DLP is monotonic relative to KB , it then follows that
sP I

L ⊆ sP J
L . Hence, J is also a model of (L, sP I

L). But this contradicts I being the least
model of (L, sP I

L). This shows that I is a minimal model of KB . 2

The following theorem shows that positive and strati�ed dl-programs have at most one
strong answer set, which coincides with the canonical minimal model MKB .

Theorem 3.4.3 Let KB = (L,P ) be a (a) positive (resp. (b) strati�ed) dl-program. If
KB is satis�able (resp. consistent), then MKB is the only strong answer set of KB . If KB
is unsatis�able (resp. inconsistent), then KB has no strong answer set.
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Proof. (a) If KB = (L,P ) is satis�able, then MKB is de�ned. A strong answer set of
KB is an interpretation I ⊆ HBP such that I is the least model of (L, sP I

L). Since KB is
a positive dl-program, it follows that sP I

L coincides with ground(P ). Hence, I ⊆ HBP is
a strong answer set of KB i� I = MKB . If KB is unsatis�able, then KB has no model.
Thus, by Theorem 3.4.2, KB has no strong answer set.

(b) Let λ be a strati�cation of KB of length k ≥ 0. Suppose that I ⊆ HBP is a strong
answer set of KB . That is, I is the least model of (L, sP I

L). Hence,

• I|HB?
P0

is the least among all models J ⊆ HB?
P0

of (L, sP0
I
L); and

• if i > 0, then I|HB?
Pi

is the least among all models J ⊆ HB?
Pi

of (L, sPi
I
L) with

J |HB?
Pi−1

= I|HB?
Pi−1

.

It thus follows that

• I|HB?
P0

is the least among all models J ⊆ HB?
P0

of KB0; and

• if i > 0, then I|HB?
Pi
is the least among all models J ⊆ HB?

Pi
of KB i with J |HB?

Pi−1
=

I|HB?
Pi−1

.

Hence, KB is consistent, and I = MKB . Since the above line of argumentation also holds
in the converse direction, it follows that I ⊆ HBP is a strong answer set of KB i� KB is
consistent and I = MKB . 2

Since the strong answer sets of a strati�ed dl-program KB are independent of the
strati�cation λ of KB , we thus obtain that consistency of KB and MKB are independent
of λ.

Corollary 3.4.4 Let KB be a strati�ed dl-program. Then, the notion of consistency of
KB and the model MKB do not depend on the strati�cation of KB .

Example 3.4.3 Consider now the full dl-program from Example 3.2.1. This program is
not strati�ed, in view of rules (6) and (7), which take care of the selection between the
di�erent candidates for being reviewers. Each strong answer set containing no error �ags
corresponds to an acceptable review assignment scenario. 3

3.4.2 Weak Answer-Set Semantics of dl-Programs

We �nally introduce the weak answer-set semantics of dl-programs, which associates with
a dl-program a larger set of models than the strong answer-set semantics. It is based on a
generalized transformation that removes all dl-atoms and NAF-literals, and reduces to the
answer-set semantics of ordinary programs.

In the sequel, let KB = (L,P ) be a dl-program. The weak dl-transform of P relative
to L and to an interpretation I ⊆ HBP , denoted wP I

L, is the ordinary positive program
obtained from ground(P ) by

(i) deleting all dl-rules r where either I 6|=L a for some dl-atom a ∈ B+(r), or I |=L l for
some l ∈ B−(r); and

(ii) deleting from every remaining dl-rule r all the dl-atoms in B+(r) and all the literals
in B−(r).



40 3 dl-Programs

Observe that wP I
L is an ordinary ground positive program, which does not contain any

dl-atoms anymore, and which also does not contain any NAF-literals anymore. We thus
de�ne the weak answer-set semantics by reduction to the least model semantics of ordinary
ground positive programs as follows.

De�nition 3.4.3 Let KB = (L,P ) be a dl-program. A weak answer set of KB is an
interpretation I ⊆ HBP such that I is the least model of the ordinary positive program
wP I

L.

The following result shows that the weak answer-set semantics of a dl-program KB =
(L,P ) without dl-atoms coincides with the ordinary answer-set semantics of P .

Theorem 3.4.5 Let KB = (L,P ) be a dl-program without dl-atoms. Then, I ⊆ HBP is a
weak answer set of KB i� it is an answer set of the ordinary normal program P .

Proof. Let I ⊆ HBP . If KB is free of dl-atoms, then wP I
L = P I . Thus, I is the least

model of wP I
L i� I is the least model of P I . So, I is a weak answer set of KB i� I is an

answer set of P . 2

The following result shows that every weak answer set of a dl-program KB is also a
model of KB . Note that di�erently from strong answer sets, the weak answer sets of KB
are generally not minimal models of KB , even if KB has only monotonic dl-atoms.

Theorem 3.4.6 Let KB be a dl-program. Then, every weak answer set of KB is also a
model of KB .

Proof. Let I ⊆ HBP be a weak answer set of KB = (L,P ). To show that I is also a model
of KB , we have to show that I |=L r for all r ∈ ground(P ). Consider any r ∈ ground(P ).
Suppose that I |=L l for all l ∈ B+(r) and I 6|=L l for all l ∈ B−(r). Then, the dl-rule
r′ that is obtained from r by removing all the dl-atoms in B+(r) and all literals in B−(r)
is in wP I

L. Since I is the least model of wP I
L and thus in particular a model of wP I

L, it
follows that I |=L r′. Since I |=L l for all l ∈ B+(r′) and I 6|=L l for all l ∈ B−(r′) = ∅,
it follows I |=L H(r′) = H(r). This shows that I |=L r. Thus, I is a model of KB . 2

The following result shows that the weak answer-set semantics of dl-programs can be
expressed in terms of a reduction to the answer-set semantics of ordinary normal programs.

Theorem 3.4.7 Let KB = (L,P ) be a dl-program. Let I ⊆ HBP and let P I
L be obtained

from ground(P ) by (i) deleting every dl-rule r where either I 6|=L a for some dl-atom
a ∈ B+(r), or I |=L a for some dl-atom a ∈ B−(r), and (ii) deleting from every remaining
dl-rule r every dl-atom in B+(r) ∪B−(r). Then, I is a weak answer set of KB i� I is an
answer set of P I

L.

Proof. Immediate by the observation that wP I
L = (P I

L)I . 2

Finally, the next result shows that the set of all strong answer sets of a dl-program KB
is contained in the set of all weak answer sets of KB . Intuitively, the additional information
about the monotonicity of dl-atoms that we use for specifying strong answer sets allows for
focusing on a smaller set of models. Hence, the set of all weak answer sets of KB can be
seen as an approximation of the set of all strong answer sets of KB . Note that the converse
of the following theorem generally does not hold. That is, there exist dl-programs KB ,
which have a weak answer set that is not a strong answer set.
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Theorem 3.4.8 Every strong answer set of a dl-program KB is also a weak answer set of
KB .

Proof. Let I ⊆ HBP be a strong answer set of KB = (L,P ). That is, I is the least
model of (L, sP I

L). Hence, I is also a model of wP I
L. We now show that I is in fact the

least model of wP I
L. Towards a contradiction, assume the contrary. That is, there exists a

model J ⊂ I of wP I
L. Hence, J is also a model of (L, sP I

L). But this contradicts I being
the least model of (L, sP I

L). This shows that I the least model of wP I
L. That is, I is a

weak answer set of KB . 2

3.5 Well-Founded Semantics for dl-Programs

The well-founded semantics, introduced by van Gelder et al. [1991], represents another
widely used semantics for ordinary non-monotonic logic programs, choosing a more ten-
tative approach concerning derivable knowledge. It is a skeptical approximation of the
answer set semantics in the sense that every well-founded consequence of a given ordinary
normal program P is contained in every answer set of P . While the answer-set semantics
resolves con�icts by virtue of permitting multiple intended models as alternative scenar-
ios, the well-founded semantics remains agnostic in the presence of con�icting information,
assigning the truth value false to a maximal set of atoms that cannot become true during
the evaluation of a given program. Furthermore, well-founded semantics assigns a coher-
ent meaning to all programs, while some programs are not consistent under answer-set
semantics, i.e., lack an answer set.

Another important aspect of the well-founded semantics is that it is geared towards
e�cient query answering and also plays a prominent role in deductive databases (see,
e.g., [May et al., 1997] for a proposal for object-oriented deductive databases, which is
applied to the Florid system implementing F-Logic). As an important computational
property, a query to an ordinary normal program is evaluable under well-founded semantics
in polynomial time (under data complexity), while the query answering under the answer-
set semantics is intractable in general. Finally, e�cient implementations of the well-founded
semantics exist, such as the XSB system [Rao et al., 1997] and Smodels [Niemelä et al.,
2000].

3.5.1 Original De�nition of the Well-Founded Semantics

The well-founded semantics has many di�erent equivalent de�nitions, cf. [van Gelder et al.,
1991, Baral and Subrahmanian, 1993]. We recall here the one based on unfounded sets.

Let P be a program. Ground terms, atoms, literals, etc., are de�ned as usual. We
denote by HBP the Herbrand base of P , i.e., the set of all ground atoms with predicate and
constant symbols from P (if no latter exists, with an arbitrary constant symbol c from Φ),
and by ground(P ) the set of all ground instances of rules in (w.r.t. HBP ).

For literals l = a (resp., l = ¬a), we use ¬.l to denote ¬a (resp., a), and for sets of
literals S, we de�ne ¬.S = {¬.l | l ∈ S} and S+ = {a ∈ S | a is an atom}. We use
LitP = HBP ∪ ¬.HBP to denote the set of all ground literals with predicate and constant
symbols from P . A set S ⊆ LitP is consistent i� S∩¬.S = ∅. A three-valued interpretation
relative to P is any consistent I ⊆ LitP .

De�nition 3.5.1 A set U ⊆ HBP is an unfounded set of P relative to I, if for every
a ∈ U and every r ∈ ground(P ) with H(r) = a, either

(i) ¬b ∈ I ∪ ¬.U for some atom b ∈ B+(r), or
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(ii) b ∈ I for some atom b ∈ B−(r).

There exists the greatest unfounded set of P relative to I, denoted UP (I). Intuitively, if
I is compatible with P , then all atoms in UP (I) can be safely switched to false and the
resulting interpretation is still compatible with P .

The operators TP and WP on consistent I ⊆ LitP are then de�ned by:

• TP (I) = {H(r) | r ∈ ground(P ), B+(r) ∪ ¬.B−(r) ⊆ I};

• WP (I) = TP (I) ∪ ¬.UP (I).

The operator WP is monotonic, and thus has a least �xpoint, denoted lfp(WP ), which is
the well-founded semantics of P , denoted WFS (P ). An atom a ∈ HBP is well-founded
(resp., unfounded) w.r.t. P , if a (resp., ¬a) is in lfp(WP ). Intuitively, starting from scratch
(I = ∅), rules are applied to obtain new positive and negated facts (via TP (I) and ¬.UP (I),
respectively). This process is repeated until no longer possible.

Example 3.5.1 Consider the propositional program

P = {p← not q; q ← p; p← not r}.

For I = ∅, we have TP (I) = ∅ and UP (∅) = {r}: p cannot be unfounded because of the
�rst rule and condition (ii), and hence q cannot be unfounded because of the second rule
and condition (i). Thus, WP (∅) = {¬r}. Since TP ({¬r}) = {p} and UP ({¬r}) = {r}, it
follows WP ({¬r}) = {p,¬r}. Since TP ({p,¬r}) = {p, q} and UP ({p,¬r}) = {r}, it then
follows WP ({p,¬r}) = {p, q,¬r}. Thus, lfp(WP ) = {p, q,¬r}. That is, r is unfounded
relative to P , and the other atoms are well-founded. 3

3.5.2 Generalizing Unfounded Sets

In this section, we de�ne the well-founded semantics for dl-programs. We do this by
generalizing the well-founded semantics for ordinary normal programs. More speci�cally,
we generalize the de�nition based on unfounded sets given in the previous Subsection.

In the sequel, let KB = (L,P ) be a dl-program. We �rst de�ne the notion of an
unfounded set for dl-programs.

De�nition 3.5.2 Let I ⊆ LitP be consistent. A set U ⊆ HBP is an unfounded set of
KB relative to I i� the following holds: for every a ∈ U and every r ∈ ground(P ) with
H(r) = a, either

(i) ¬b ∈ I ∪ ¬.U for some ordinary atom b ∈ B+(r), or

(ii) b ∈ I for some ordinary atom b ∈ B−(r), or

(iii) for some dl-atom b ∈ B+(r), it holds that S+ 6|=Lb for every consistent S ⊆ LitP with
I ∪ ¬.U ⊆ S, or

(iv) I+|=Lb for some dl-atom b ∈ B−(r).

What is new here are the conditions (iii) and (iv). Intuitively, (iv) says that not b is for
sure false, regardless of how I is further expanded, while (iii) says that b will never become
true, if we expand I in a way such that all unfounded atoms are false. The following
examples illustrate the concept of an unfounded set for dl-programs.



3.5 Well-Founded Semantics for dl-Programs 43

Example 3.5.2 Consider KB2 = (L2, P2), where L2 = {SvC} and P2 is as follows:

p(a)← DL[S ] q;C](a); q(a)← p(a); r(a)← not q(a), not s(a).

Here, S1 = {p(a), q(a)} is an unfounded set ofKB2 relative to I = ∅, since p(a) is unfounded
due to (iii), while q(a) is unfounded due to (i). The set S2 = {s(a)} is trivially an unfounded
set of KB2 relative to I, since no rule de�ning s(a) exists.

Relative to J = {q(a)}, S1 is not an unfounded set of KB2 (for p(a), the condition
fails) but S2 is. The set S3 = {r(a)} is another unfounded set of KB2 relative to J . 3

Example 3.5.3 Consider the dl-program KB3 = (L2, P3) where P3 results by negating
the dl-literal in P2. Then S1 = {p(a), q(a)} is not an unfounded set of KB3 relative to
I = ∅ (condition (iv) fails for p(a)), but S2 = {s(a)} is. Relative to J = {q(a)}, however,
both S1 and S2 as well as S3 = {r(a)} are unfounded sets of KB3. 3

Example 3.5.4 The unfounded set of KB1 = (L1, P1) in Example 3.2.2 w.r.t. I0 = ∅
contains buy cand(s1, harddisk), buy cand(s2, case), and buy cand(s3, cpu) due to (iii),
since the dl-atom in line (5) of P1 will never evaluate to true for these pairs. It re�ects the
intuition that the concept provides narrows the choice for buying candidates. 3

The following lemma implies that KB has a greatest unfounded set relative to I.

Lemma 3.5.1 Let KB = (L,P ) be a dl-program, and let I ⊆ LitP be consistent. Then,
the set of unfounded sets of KB relative to I is closed under union.

Proof. Let U and U ′ be two unfounded sets of a dl-program KB relative to I. An atom
a ∈ U must then ful�ll at least one of the conditions of De�nition 3.5.2. Is is clear that
this is still the case if we replace U by U ∪ U ′ in (i)�(iv). 2

We now generalize the operators TP , UP , and WP to dl-programs as follows. We de�ne
the operators TKB , UKB , and WKB on all consistent I ⊆ LitP by:

• a ∈ TKB (I) i� a ∈ HBP and some r ∈ ground(P ) exists such that

(a) H(r) = a,

(b) I+ |=L b for all b ∈ B+(r),

(c) ¬b ∈ I for all ordinary atoms b ∈ B−(r), and

(d) S+ 6|=L b for each consistent S ⊆ LitP with I ⊆ S, for all dl-atoms b ∈ B−(r);

• UKB (I) is the greatest unfounded set of KB relative to I;

• WKB (I) = TKB (I) ∪ ¬.UKB (I).

The following result shows that the three operators are all monotonic.

Lemma 3.5.2 Let KB be a dl-program. Then, TKB , UKB , and WKB are monotonic.

Proof. Let I ⊆ I ′ ⊆ HBP be consistent interpretations. Consider any r ∈ ground(P ).
Then, for every a ∈ TKB (I), conditions (a)�(d) still hold for I ′. Similar to the proof of
Lemma 3.5.1, if we replace I by I ′ in (i)�(iv) of De�nition 3.5.2, the conditions still hold
for any a ∈ UKB (I). Since both TKB and UKB are monotonic, also WKB (I) must be
monotonic. 2

Thus, in particular, WKB has a least �xpoint, denoted lfp(WKB ). The well-founded
semantics of dl-programs can thus be de�ned as follows.



44 3 dl-Programs

De�nition 3.5.3 Let KB = (L,P ) be a dl-program. The well-founded semantics of KB ,
denoted WFS (KB), is de�ned as lfp(WKB ). An atom a ∈ HBP is well-founded (resp.,
unfounded) relative to KB i� a (resp., ¬a) belongs to WFS (KB).

The following examples illustrate the well-founded semantics of dl-programs.

Example 3.5.5 Consider KB2 of Example 3.5.2. For I0 = ∅, we have TKB2(I0) = ∅
and UKB2(I0) = {p(a), q(a), s(a)}. Hence, WKB2(I0) = {¬p(a),¬q(a),¬s(a)} (=I1). In
the next iteration, TKB2(I1) = {r(a)} and UKB2 = {p(a), q(a), s(a)}. Thus, WKB2(I1) =
{¬p(a),¬q(a), r(a),¬s(a)} (=I2). Since I2 is total and WKB2 is monotonic, it follows
WKB2(I2) = I2 and hence WFS (KB2) = {¬p(a),¬q(a), r(a),¬s(a)}. Accordingly, r(a) is
well-founded and all other atoms are unfounded relative to KB2. Note that KB2 has the
unique answer set I = {r(a)}. 3

Example 3.5.6 Now consider KB3 of Example 3.5.3. For I0 = ∅, we have TKB3(I0) = ∅
and UKB3(I0) = {s(a)}. Hence, WKB3(I0) = {¬s(a)} (=I1). In the next iteration, we have
TKB3(I1) = ∅ and UKB3(I1) = {s(a)}. Then, WKB3(I1) = I1 and WFS (KB3) = {¬s(a)};
Thus, the atom s(a) is unfounded relative to KB3. Note that KB3 has no answer set. 3

Example 3.5.7 Consider again UKB1(I0 = ∅) of Example 3.5.4. WKB1(I0) consists of
¬.UKB1(I0) and all facts of P1. This input to the �rst iteration along with (iii) ap-
plied to line (8) adds those supplied atoms to UKB1(I1) that correspond to the (negated)
buy cand atoms of UKB1(I0). Then, TKB1(I1) contains exclude(case) which forces addi-
tional buy cand atoms into UKB1(I2), regarding (i) and line (5). The same unfounded set
thereby includes rebate(s1), stemming from line (4). As a consequence, avoid(s1) is in
TKB1(I3). Eventually, the �nal WFS (KB1) is not able to make any positive assumption
about choosing a new vendor (buy cand), but it is clear about s1 being de�nitely not able
to contribute to a discount situation, since a supplier for case is already chosen in L1, and
s1 o�ers only a single further part. 3

3.5.3 Semantic Properties

In this section, we describe some semantic properties of the well-founded semantics for dl-
programs. An immediate result is that it conservatively extends the well-founded semantics
for ordinary normal programs.

Theorem 3.5.3 Let KB = (L,P ) be a dl-program without dl-atoms. Then, the well-foun-
ded semantics of KB coincides with the well-founded semantics of P .

Proof. Trivial, since the conditions (i) and (ii) of De�nitions 3.5.1 and 3.5.2 coincide. 2

The next result shows that the well-founded semantics of a dl-program KB = (L,P )
is a partial model of KB . Here, a consistent I ⊆ LitP is a partial model of KB i� some
consistent J ⊆ LitP exists such that (i) I ⊆ J , (ii) J+ is a model of KB , and (iii) J is total,
i.e., J+∪ (¬.J)+ = HBP . Intuitively, the three-valued I can be extended to a (two-valued)
model I ′ ⊆ HBP of KB .

Theorem 3.5.4 Let KB be a dl-program. Then, WFS (KB) is a partial model of KB .

Proof. For this proof we adopt the notion of weak falsi�cation by van Gelder et al. [1991].
An ground rule r is weakly falsi�ed in a partial or total interpretation I, if H(r) is false
in I but no literal in B(r) is false in I. We will �rst show that no rule r ∈ ground(P ) is
weakly falsi�ed in WFS (KB). Let r be any rule r ∈ ground(P ) with H(r) = p such that
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¬p ∈Wn
KB , where Wn

KB is an element of the sequence of lfp(WKB ). We need to show that
B(r) is false in Wn

KB . By de�nition, p ∈ UKB (Wm
KB ) for some m < n. By Lemma 3.5.2,

Wm
KB ⊆Wm+1

KB ⊆Wn
KB . Either Wm

KB 6|= B(r) or B(r)∩Um
KB 6= ∅, i.e., some atom q in B(r)

is unfounded, which would result in ¬q ∈Wm+1
KB , so B(r) is false in Wm+1

KB . In either case
it follows that B(r) is false in Wn

KB . Hence, r is not weakly falsi�ed in WFS (KB). Since r
was chosen arbitrarily, any Wn

KB and therefore also WFS (KB) does not weakly falsify any
ground rule r in KB . To show that WFS (KB) is a partial model, we add to it all atoms in
HBP that are neither true nor false in WFS (KB) and denote the resulting set with M . If
WFS (KB) satis�es a rule r ∈ ground(P ), then also M must satisfy it. Thus, M is a total
model and thus, WFS (KB) is a partial model. 2

Like in the case of ordinary normal programs, the well-founded semantics for positive
and strati�ed dl-programs is total and coincides with their least model semantics and
iterative least model semantics, respectively. This result can be elegantly proved using a
characterization of the well-founded semantics given in the next section.

Theorem 3.5.5 Let KB = (L,P ) be a dl-program. If KB is positive (resp. strati�ed),
then (a) every ground atom a ∈ HBP is either well-founded or unfounded relative to KB ,
and (b) WFS (KB)∩HBP is the least model (resp. the iterative least model) of KB , which
coincides with the unique strong answer set of KB .

Proof. First, we show that the well-founded model of a positive (ground) dl-program
KB is a total model. TKB directly corresponds to the immediate consequence operator of
the least model semantics of a positive program, thus WFS (KB)∩HBP is the least model
of KB . It is easy to see that all atoms in HBP which are not in the greatest unfounded
set must be captured by the �xpoint of the operator TKB . Hence, every atom in HBP is
either well-founded or unfounded.

Due to the de�nition of the operator TKB , the evaluation of rules in P follow the
strati�cation of P , i.e., rules r with λ(H(r)) = n do not a�ect the result of strata lower
than n. For strati�ed ground dl-programs KB we prove by induction on the number of
strata inKB , showing that for any atom p in stratum k, p is in the strati�ed model whenever
it is in WFS (KB) and p is not in the strati�ed model whenever ¬p is in WFS (KB). For
stratum k = 0 the claim follows immediately from the �rst part of the proof, since this
stratum must be a positive program.

Let M? = lfp(TKB ). We can then de�ne another monotonic operator T ′KB (I) =
TKB ′(M? ∩ P0 ∪ I), where P0 = {a ∈ HBP | λ(a) = 0}, KB ′ = (L,P ′), and P ′ is ob-
tained from P as follows: An atom p in stratum 1 must occur in the head of a rule r with
a nonempty body B(r). For all such rules, we carry out the following transformation:

• If an atom b ∈ B−(r) is already known to be well-founded or b ∈ B+(r) is unfounded,
we can remove this rule from the program;

• if b ∈ B+(r) is well-founded or b ∈ B−(r) is unfounded, we can remove not b from
the body of the rule.

Thus, KB ′ has one stratum less than the original program.

It must hold that lfp(TKB ) = lfp(T ′KB ), i.e., when the model of the lowest stratum is
known, it can be added to the program as facts, reducing the �xpoint iterations. We can
proceed with this reduction through all strata.

It has been proven in Theorem 3.4.3 that the least model of a positive (resp. strati�ed)
dl-program coincides with its strong answer set. 2
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Example 3.5.8 The dl-program KB2 in Example 3.5.2 is strati�ed (intuitively, recursion
through negation is acyclic) while KB3 in Example 3.5.3 is not. The result computed in
Example 3.5.5 veri�es the conditions of Theorem 3.5.5. 3

The following result shows that we can limit ourselves to dl-programs in dl-query form,
where dl-atoms equate designated predicates. Formally, a dl-program KB = (L,P ) is in
dl-query form, if each r ∈ P involving a dl-atom is of the form a← b, where b is a dl-atom.
Any dl-program KB = (L,P ) can be transformed into a dl-program KBdl = (L,P dl) in
dl-query form. Here, P dl is obtained from P by replacing every dl-atom a(t) (with a of the
form DL[· · · ]) by pa(t), and by adding the dl-rule pa(X1, . . . , Xk) ← a(X1, . . . , Xk) to P ,
where pa is a fresh predicate whose arity is the number k ≤ 2 of arguments of t = t1, . . . , tk.
Informally, pa is an abbreviation for a. The following result now shows that KBdl and KB
are equivalent under the well-founded semantics. Intuitively, the well-founded semantics
tolerates abbreviations in the sense that they do not change the semantics of a dl-program.

Theorem 3.5.6 Let KB = (L,P ) be a dl-program. Then, WFS (KB) = WFS (KBdl ) ∩
LitP .

Proof. The transformation only a�ects rules with dl-atoms in their bodies. For any
dl-atom b in the body of such a rule r, if b is true (resp. false), the head of the replacement
rule, pa(t), is well-founded (resp. unfounded). Thus, the truth value of the body of r
is unchanged. Since all replacement heads pa(t) do not occur in LitP , WFS (KB) =
WFS (KBdl ) ∩ LitP . 2

3.5.4 Relationship to Strong Answer-Set Semantics

In this section, we show that the well-founded semantics for dl-programs can be charac-
terized in terms of the least and greatest �xpoint of a monotone operator γ2

KB similar as
the well-founded semantics for ordinary normal programs [Baral and Subrahmanian, 1993].
We then use this characterization to derive further properties of the well-founded semantics
for dl-programs.
For a dl-program KB = (L,P ), de�ne the operator γKB on interpretations I ⊆ HBP by

γKB (I) = MKBI ,

i.e., the least model of the positive dl-program KB I = (L, sP I
L). The next result shows

that γKB is anti-monotonic, like its counterpart for ordinary normal programs [Baral and
Subrahmanian, 1993]. Note that this result holds only if all dl-atoms in P are monotonic.

Proposition 3.5.7 Let KB = (L,P ) be a dl-program. Then, γKB is anti-monotonic.

Hence, the operator γ2
KB (I) = γKB (γKB (I)), for all I ⊆ HBP , is monotonic and thus

has a least and a greatest �xpoint, denoted lfp(γ2
KB ) and gfp(γ2

KB ), respectively. We can
use these �xpoints to characterize the well-founded semantics of KB .

Theorem 3.5.8 Let KB = (L,P ) be a dl-program. Then, an atom a ∈ HBP is well-
founded (resp., unfounded) relative to KB i� a ∈ lfp(γ2

KB ) (resp., a 6∈ gfp(γ2
KB )).

Proof. This theorem was proved by Baral and Subrahmanian [1993] with an equivalent
de�nition of the γ operator. 2

Example 3.5.9 Consider the dl-program KB1 from Example 3.2.2. The set lfp(γ2
KB1

)
contains the atoms avoid(s1) and supplied(s3, case), while gfp(γ2

KB1
) does not contain
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rebate(s1). Consequently, WFS (KB1) contains the literals avoid(s1), supplied(s3, case),
and ¬rebate(s1), corresponding to the result of Example 3.5.7 (and, moreover, to the
intersection of all answer sets of KB1). 3

The next theorem shows that the well-founded semantics for dl-programs approximates
their strong answer-set semantics. That is, every well-founded ground atom is true in every
answer set, and every unfounded ground atom is false in every answer set.

Theorem 3.5.9 Let KB = (L,P ) be a dl-program. Then, every strong answer set of KB
includes all atoms a ∈ HBP that are well-founded relative to KB and no atom a ∈ HBP

that is unfounded relative to KB .

Proof. We will show that a strong answer set of KB = (L,P ) corresponds to a total
�xpoint of WKB . Let A be an answer set of KB . Then, M = A ∪ ¬.{HBP \ A} is a total
model of KB . We will show that A = WKB (A) must hold.

Since M is total, each rule in P must be satis�ed w.r.t. M . Moreover, each positive
atom in this model must occur in some head in P , hence it must be in TKB (A). From the
de�nition of TKB it is straightforward to see that the positive part of A ful�lls conditions
(a)-(d). The negative part of A are those atoms which are not derivable from rules, hence
they must be unfounded. Thus, A is a total �xpoint of WKB . The well-founded model
WFS (KB) is a least �xpoint of WKB , therefore WFS (KB) ⊆ WKB (A) must hold. But
then, each well-founded atom must also be in every strong answer set of KB and no answer
set contains any unfounded atom. 2

A ground atom a is a cautious (resp., brave) consequence under the strong answer-set
semantics of a dl-program KB i� a is true in every (resp., some) strong answer set of KB .
Hence, under the strong answer-set semantics, every well-founded and no unfounded ground
atom is a cautious (resp., brave) consequence of KB .

Corollary 3.5.10 Let KB = (L,P ) be a dl-program. Then, under the strong answer-set
semantics, every well-founded atom a ∈ HBP relative to KB is a cautious (resp., brave)
consequence of KB , and no unfounded atom a ∈ HBP relative to KB is a cautious (resp.,
brave) consequence of a satis�able KB .

If the well-founded semantics of a dl-program KB=(L,P ) is total, i.e., contains either a
or ¬a for every a ∈ HBP , then it speci�es the only strong answer set of KB .

The following result follows directly from Theorem 3.5.9:

Theorem 3.5.11 Let KB = (L,P ) be a dl-program. If every atom a ∈ HBP is either
well-founded or unfounded relative to KB , then the set of all well-founded atoms a ∈ HBP

relative to KB is the only strong answer set of KB .

Proof. Let us denote the set of atoms that occur positively in WFS (KB) by WFS+(KB)
and the set of atoms that occur negatively in WFS (KB) by WFS−(KB). Let A be a strong
answer set of KB . According to Theorem 3.5.9, WFS+(KB) ⊆ A and WFS−(KB)∩A = ∅.
If WFS (KB) is a total model, we have WFS+(KB)∪WFS−(KB) = HBP . Let us assume
that WFS+(KB) ⊂ A. Then, it must hold that HBP \WFS+(KB) ∩ A 6= ∅. But since
HBP \WFS+(KB) = WFS−(KB), this contradicts Theorem 3.5.9. Thus, WFS+(KB) = A
and therefore A is the only strong answer set of KB . 2
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3.6 Computation

In this section, we give �xpoint characterizations for the strong answer set of satis�able
positive and consistent strati�ed dl-programs, and we show how to compute it by �nite �x-
point iterations. Moreover, we give a constructive method for computing the well-founded
model of a dl-program. We start with a general guess-and-check algorithm for computing
weak answer sets.

3.6.1 General Algorithm for Computing Weak Answer Sets

Computing all weak answer sets of a given (general) dl-program KB = (L,P ) can be
reduced to computing all answer sets of an ordinary disjunctive program. This is done by
a guess-and-check algorithm as follows:

1. We �rst replace each dl-atom a(t) in P of form

DL[S1op1p1, . . . , Smopm pm;Q](t) (3.4)

by a globally new atom da(t).

2. We then add to the result of Step 1 all ground facts of form

da(c) ∨ ¬da(c)← , (3.5)

for each dl-atom a occurring in P and each ground term (resp., pair of ground terms)
c ∈ HBDL. Intuitively, rules of form (3.5) �guess� the truth values of the dl-atoms of
P . We denote the resulting program by Pguess .

3. We construct the answer sets of Pguess and check whether the original �guess� of
the truth values of the auxiliary atoms da(c) is correct with respect to the given
description logic knowledge base L. That is, for each answer set I of Pguess and each
dl-atom a of form (3.2), we check whether da(c) ∈ I i� I |=L a(c). If this condition
holds, then I|HBP is a weak answer set of P .

Note that head disjunction is not indispensable here, because we can express Rule 3.5 also
by an unstrati�ed guess.

Theorem 3.6.1 Let KB = (L,P ) be a dl-program, and let I ⊆ HBP . Then, I is a weak
answer set of KB i� I can be completed to an answer set I? ⊆ HBPguess of Pguess such that
da(c) ∈ I? i� I? |=L a(c), for all a(c) ∈ DLP .

Proof. Let P ? be de�ned in the same way as Pguess, except that every rule da(c) ∨
¬da(c)← is replaced by the following two rules:

da(c)← DL[S1op1p1, . . . , Smopm pm;Q](c);
¬da(c)← not da(c).

Then, I ⊆ HBP is a weak answer set of KB i� I? is a weak answer set of (L,P ?), where
I? ⊆ HBP? = HBPguess is obtained from I by adding (i) all da(c) such that a(c) ∈ DLP

and I |=L a(c), and (ii) all ¬da(c) such that a(c) ∈ DLP and I 6|=L a(c), and conversely I
is obtained from I? by restriction to HBP . By Theorem 3.4.7, the latter is equivalent to I?

being an answer set of (L,P ?I?

L ), where P ?I?

L is de�ned as in Theorem 3.4.7. This is in turn
equivalent to I? being an answer set of Pguess such that da(c) ∈ I? i� I? |=L a(c), for all
a(c) ∈ DLP . In summary, I ⊆ HBP is a weak answer set of KB i� I can be completed to an
answer set I? ⊆ HBPguess of Pguess such that da(c) ∈ I? i� I? |=L a(c), for all a(c) ∈ DLP .
2
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Although this basic algorithm is in general not very e�cient and leaves room for im-
provements, it shows that the weak answer-set semantics can be realized on top of existing
answer-set solvers for disjunctive programs like DLV [Eiter et al., 2000b] or gnt [Janhunen
et al., 2000].

3.6.2 Fixpoint Semantics

The answer set of an ordinary positive resp. strati�ed normal program P has a well-known
�xpoint characterization in terms of an immediate consequence operator TP , which grace-
fully generalizes to analog dl-programs. This can be exploited for a bottom up computation
of their strong answer set.

Positive dl-Programs

For any (not necessarily satis�able) dl-program KB = (L,P ), we de�ne the operator TKB

on the subsets of HBP as follows. For every I ⊆ HBP , let

TKB (I) =
{

HBP , if I is not consistent,
{H(r) | r ∈ ground(P ), I |=L l for all l ∈ B(r)} , otherwise.

The following lemma shows that for positive KB , the operator TKB is monotonic,
that is, I ⊆ I ′ ⊆ HBP implies TKB (I) ⊆ TKB (I ′). This result is immediate from the fact
that in ground(P ), for a positive dl-program KB = (L,P ), each dl-atom is monotonic
relative to KB .

Lemma 3.6.2 Let KB = (L,P ) be a positive dl-program. Then, TKB is monotonic.

Proof. Let I ⊆ I ′ ⊆ HBP . Consider any r ∈ ground(P ). Then, for every classical
literal l ∈ B(r), it holds that I |=L l implies I ′ |=L l. Furthermore, for every dl-atom
a ∈ B(r), it holds that I |=L a implies I ′ |=L a, since a is monotonic relative to KB . This
shows that TKB (I) ⊆ TKB (I ′). 2

The next result gives a characterization of the pre-�xpoints of TKB . If KB is satis�able,
then every pre-�xpoint of TKB is either a model of KB , or equal to HBP . If KB is
unsatis�able, then HBP is the only pre-�xpoint of TKB . Recall that I ⊆ HBP is a pre-
�xpoint of TKB i� TKB (I) ⊆ I.

Proposition 3.6.3 Let KB = (L,P ) be a positive dl-program. Then, I ⊆ HBP is a
pre-�xpoint of TKB i� I is either (a) a model of KB or (b) equal to HBP .

Proof. (⇒) Assume that TKB (I) ⊆ I ⊆ HBP . Suppose �rst that I is consistent. Then,
for every r ∈ ground(P ), I |=L l for all l ∈ B(r) implies that I |=L H(r), and thus I |=L r.
Hence, I is a model of KB . Suppose next that I is not consistent. Then, TKB (I) = HBP ,
and thus I = HBP .

(⇐) Suppose �rst that I is a model of KB . That is, I |=L r for all r ∈ ground(P ).
Equivalently, I |=L l for all l ∈ B(r) implies that I |=L H(r), for all r ∈ ground(P ). It thus
follows that TKB (I) ⊆ I. Suppose next that I = HBP . Then, TKB (I) = HBP = I. 2

Since every monotonic operator has a least �xpoint, which coincides with its least pre-
�xpoint, we immediately obtain the following corollary: The least �xpoint of TKB , denoted
lfp(TKB ), is given by the least model of KB , if KB is satis�able, and by HBP , if KB is
unsatis�able.
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Corollary 3.6.4 Let KB = (L,P ) be a positive dl-program. Then, (a) lfp(TKB ) = MKB ,
if KB is satis�able, and (b) lfp(TKB ) = HBP , if KB is unsatis�able.

The next result shows that the least �xpoint of TKB can be computed by a �nite
�xpoint iteration (which is based on the assumption that P and the number of constant
symbols in Φ are �nite). Note that for every I ⊆ HBP , we de�ne T i

KB (I) = I, if i = 0, and
T i

KB (I) = TKB (T i−1
KB (I)), if i > 0.

Theorem 3.6.5 Let KB be a positive dl-program. Then, lfp(TKB ) =
⋃n

i=1 T i
KB (∅) =

Tn
KB (∅) for some n ≥ 0.

Proof. Since TKB is monotonic and HBP is �nite, it follows that T i
KB (∅) for i ≥ 0

is an increasing sequence of sets contained in lfp(TKB ), and Tn
KB (∅) = Tn+1

KB (∅) for some
n ≥ 0. Since Tn

KB (∅) is a �xpoint of TKB that is contained in lfp(TKB ), it follows that
Tn

KB (∅) = lfp(TKB ). 2

Example 3.6.1 Suppose that P in KB = (L,P ) consists of the rules r1: b ← DL[S ]
p;C](a) and r2: p(a)←, and L is the axiom S v C. Then, KB is positive, and lfp(TKB ) =
{p(a), b}, where T 0

KB (∅) = ∅, T 1
KB (∅) = {p(a)}, and T 2

KB (∅) = {p(a), b}. 3

Strati�ed dl-Programs

Using Theorem 3.6.5, we can characterize the answer set MKB of a strati�ed dl-program
KB by a sequence of �xpoint-iterations along a strati�cation as follows. Let T̂ i

KB (I) =
T i

KB (I) ∪ I, for all i ≥ 0.

Theorem 3.6.6 Suppose KB = (L,P ) has a strati�cation λ of length k ≥ 0. De�ne the
literal sets Mi ⊆ HBP , i ∈ {−1, 0, . . . , k}, as follows: M−1 = ∅ and

Mi = T̂ni
KB i

(Mi−1), where ni ≥ 0 such that T̂ni
KB i

(Mi−1) = T̂ni+1
KB i

(Mi−1), i ≥ 1.

Then, KB is consistent i� Mk 6= HBP , and in this case, Mk = MKB .

Proof. Observe �rst that M0 = T̂n0
KB0

(∅), where n0 ≥ 0 such that T̂n0
KB0

(∅) = T̂n0+1
KB0

(∅).
Since T̂ i

KB0
(∅) = T j

KB0
(∅) for all j ≥ 0, it follows by Corollary 3.6.4 and Theorem 3.6.5

that (a) M0 is the least model of KB0 if KB0 is satis�able, and (b) M0 = HBP if KB0 is
unsatis�able. Observe then that for i ≥ 1, it holds that Mi = T̂ni

KB i
(Mi−1), where ni ≥ 0

such that T̂ni
KB i

(Mi−1) = T̂ni+1
KB i

(Mi−1). Let KB i = (Li, Pi), and let KB i
′ = (Li, P

′
i ), where

P ′i is the strong dl-transform of Pi relative to Li and Mi−1. Then, T̂
j
KB i

(Mi−1) = T j
KB i

′(∅)∪
Mi−1 for all j ≥ 0. Hence, by Corollary 3.6.4 and Theorem 3.6.5, (a) Mi = MKB i

′ ∪Mi−1

if KB i
′ is satis�able, and (b) Mi = HBP if KB i

′ is unsatis�able. Equivalently, (a) Mi

is the least model of KB i with Mi|HB?
Pi−1

= Mi−1|HB?
Pi−1

if such a model exists, and
(b) Mi = HBP if no such model exists. In summary, Mk 6= HBP i� Mi 6= HBP for
all i ∈ {0, . . . , k} i� KB is consistent. Furthermore, in this case, Mk = MKB . 2

Example 3.6.2 Assume that also rule r3: q(x) ← not ¬b,not DL[S](x) is in P of Exam-
ple 3.6.1. Then, the λ assigning 1 to q(a), 0 to DL[S](a), and 0 to all other atoms in
HBP ∪ DLP strati�es KB , and M0 = lfp(TKB0) = {p(a), b} and M1 = {p(a), b, q(a)} =
MKB . 3
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3.6.3 Computing the Well-Founded Model

As we have shown in Subsection 3.3.1, for any positive dl-program KB = (L,P ), its least
model MKB is the least �xpoint of TKB (I). Thus, γKB (I) = MKBI can be computed as
(KB I = (L, sP I

L))

lfp(TKBI ) =
⋃

i≥0 T i
KBI (∅) (=

⋃|HBP |
i=0 T i

KBI (∅)).

The least and greatest �xpoint of γ2
KB can be constructed as the limits

U∞ =
⋃

i≥0 Ui, where U0 = ∅, and Ui+1 = γ2
KB (Ui),

O∞ =
⋂

i≥0 Oi,where O0 = HBP and Oi+1 = γ2
KB (Oi),

i ≥ 0,

respectively, which are both reached within |HBP | many steps.

3.7 Complexity

In this subsection, we draw a precise picture of the complexity of deciding strong and weak
answer set existence for a dl-program, of brave and cautious reasoning from the strong and
weak answer sets of a dl-program, respectively, and of well-founded reasoning. We consider
the following canonical reasoning problems:

• Deciding whether a given dl-program KB has a strong (resp., weak) answer set.

• Deciding whether a given literal l ∈ HBP is in every strong (resp. weak) answer set
of a given dl-program KB (Cautious Reasoning).

• Deciding whether a given literal l ∈ HBP is in some strong (resp. weak) answer set
of a given dl-program KB (Brave Reasoning).

• Deciding whether a given literal l ∈ HBP is in the well-founded model a given dl-
program.

We recall that deciding whether a given (non-ground) normal logic program has an
answer set is complete for NEXP (nondeterministic exponential time) [Dantsin et al., 2001].
Furthermore, deciding satis�ability of a knowledge base L in SHIF(D) (resp. SHOIN (D))
is complete for EXP (exponential time) [Tobies, 2001, Horrocks and Patel-Schneider, 2003]
(resp., NEXP, assuming unary number encoding; see [Horrocks and Patel-Schneider, 2003]
and the NEXP-hardness proof for ACLQI in [Tobies, 2001], which implies the NEXP-
hardness of SHOIN (D)).

An easy consequence is that deciding, evaluating a given ground dl-atom a of form
(3.2) in a given dl-program KB = (L,P ) and an interpretation Ip of its input predicates
p = p1, . . . , pm (i.e., deciding whether I |=L a for each I which coincides on p with Ip) is
EXP-complete for L from SHIF(D) resp. coNEXP-complete for L from SHOIN (D).

The proofs in the following subsections are considerably involved and therefore collected
Appendix A for the sake of readability.

3.7.1 Deciding Answer Set Existence

We �rst consider the problem of deciding whether a given dl-program KB has a strong or
weak answer set. Table 3.1 compactly summarizes our complexity results for this problem
for L from SHIF(D) and SHOIN (D). The results are brie�y explained as follows.
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Observe �rst that for each dl-program KB , the number of ground dl-atoms a is poly-
nomial, and every ground dl-atom a has in general exponentially many di�erent concrete
inputs Ip (that is, interpretations Ip of its input predicates p = p1, . . . , pm), but each of
these concrete inputs Ip has a polynomial size. Furthermore, notice that during the com-
putation of the canonical model of a positive dl-program by �xpoint iteration, any ground
dl-atom a needs to be evaluated only polynomially often, as its input can increase only
that many times.

dl-program KB = (L,P ) L in SHIF(D) L in SHOIN (D)

KB positive EXP-complete NEXP-complete

KB strati�ed EXP-complete PNEXP-complete

KB general NEXP-complete PNEXP-complete

Table 3.1: Complexity of deciding strong /weak answer set existence for dl-programs.

For L in SHIF(D), the evaluation of any ground dl-atom is, as mentioned above,
feasible in EXP. Thus, the least �xpoint lfp(TKB ) for a positive KB is computable in
exponential time; notice that any ground dl-atom a needs to be evaluated only polynomially
often, as its input can increase only that many times. From lfp(TKB ) it is immediate
whether KB has an answer set resp. a weak answer set, viz. i� lfp(TKB ) 6= HBP . For other
KB , we can, one by one, explore the exponentially many possible inputs of those dl-atoms
which disappear in the reduction sP I

L resp. wP I
L. For each input, evaluating these dl-atoms

and building sP I
L resp. wP I

L is feasible in exponential time. If we are left with a positive
resp. strati�ed dl-program KB ′, we need just to compute MKB , which we can do by (a
sequence of) �xpoint iterations, and check compliance with the input of the dl-atoms. For
unstrati�ed KB , we need in addition an (exponential size) guess for the value of the default
negated classical literals, which brings us to NEXP. The EXP- resp. NEXP-hardness lower
bound for positive resp. general KB is inherited from the complexity of datalog and of
deciding the existence of an answer set for a normal logic program, respectively [Dantsin
et al., 2001].

The following theorem shows that deciding the existence of strong or weak answer sets
of dl-programs KB = (L,P ) with L in SHIF(D) is complete for EXP in the positive and
the strati�ed case, and complete for NEXP in the general case.

Theorem 3.7.1 Given Φ and a dl-program KB = (L,P ) with L in SHIF(D), deciding
whether KB has a strong or weak answer set is EXP-complete when KB is positive or
strati�ed, and NEXP-complete when KB is a general dl-program.

Proof. See Appendix A.

For L in SHOIN (D), we make use of the following observation: A positive KB has
a strong resp. weak answer set, just if there exists an interpretation I and a subset S ⊆
{a ∈ DLP | I 6|=L a}, such that the positive logic program PI,S obtained from ground(P )
by deleting each rule which contains a dl-atom a ∈ S, and all remaining dl-atoms, has an
answer set included in I. A suitable I and S, along with �proofs� L 6|=I a for all a ∈ S
(where each proof is a certi�cate of size bounded by an exponential), can be guessed and
veri�ed in exponential time. Hence, deciding the existence of a a strong resp. weak answer
set (tantamount to consistency of KB) is in NEXP. The matching NEXP-hardness follows
from coNEXP-hardness of dl-atom evaluation.
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For non-positive KB , we can guess inputs Ip for all dl-atoms, and evaluate them with
a NEXP oracle in polynomial time. For the (monotonic) ones remaining in sP I

L, we can
further guess a chain ∅ = I0

p ⊂ I1
p ⊂ · · · ⊂ Ik

p = Ip along which their inputs are increased

in a �xpoint computation for sP I
L, and evaluate the dl-atoms on it in polynomial time

with a NEXP oracle. We then ask a NEXP oracle if an interpretation I exists which is the
answer set of sP I

L resp. wP I
L compliant with the inputs and valuations of the dl-atoms and

as well as their input increase in �xpoint computation. This yields the NPNEXP = PNEXP

upper bounds. For a strong answer set of a strati�ed KB with only monotonic dl-atoms
guesses can be avoided by increasing the monotonic dl-atoms along a strati�cation, and
the problem is in PNEXP.

We can obtain matching lower bounds by a generic reduction from Turing machines,
by exploiting an NEXP-hardness proof for ACLQI by Tobies [2001]. The idea is to use a
dl-atom to decide the result of the i-th oracle call made by a polynomial-time bounded
Turing machine M with access to a NEXP oracle, where the results of the previous calls are
known and input to the dl-atom. By a proper sequence of dl-atom evaluations, the result of
M 's computation on input w can be obtained; a nondeterministic M is modeled by further
providing nondeterministically generated bits (either by unstrati�ed rules or dl-atoms).

The next theorem shows that deciding the existence of strong or weak answer sets of
dl-programs KB = (L,P ) with L in SHOIN (D) is complete for NEXP in the positive case,
and complete for PNEXP in the strati�ed and the general case.

Theorem 3.7.2 Given Φ and a dl-program KB = (L,P ) with L in SHOIN (D), deciding
whether KB has a strong or weak answer set is NEXP-complete when KB is positive, and
PNEXP-complete when KB is a strati�ed or general dl-program.

Proof. See Appendix A.

3.7.2 Brave and Cautious Reasoning

The canonical tasks of cautious and brave reasoning, whether a classical literal l belongs to
every (resp., some) strong answer set or weak answer set of KB , are as usually easily reduced
to the complement of answer set existence and answer set existence itself, respectively, by
adding two rules p ← l and ¬p ← l in P (resp., p ← not l and ¬p ← not l in P ), where p
is a fresh propositional symbol.

Tables 3.2 and 3.3, respectively, compactly summarize our complexity results for these
problems for L from SHIF(D) and SHOIN (D). Roughly, except for brave reasoning
from positive dl-programs KB = (L,P ) with L from SHOIN (D), the complexity of
cautious (resp., brave) reasoning from dl-programs coincides with the complexity of answer
set non-existence (resp., existence) for dl-programs (see Table 3.1).

KB = (L,P ) L in SHIF(D) L in SHOIN (D)

KB positive EXP-complete coNEXP-complete
KB strati�ed EXP-complete PNEXP-complete
KB general coNEXP-complete PNEXP-complete

Table 3.2: Complexity of cautious reasoning from the strong /weak answer sets of a dl-
program.

Brave reasoning from the (unique) strong answer set of a positive dl-program is complete
for Dexp = {L × L′ | L ∈ NEXP, L′ ∈ coNEXP}, which is the �conjunction� of NEXP and



54 3 dl-Programs

KB = (L,P ) L in SHIF(D) L in SHOIN (D)

KB positive EXP-complete Dexp-complete / PNEXP-complete
KB strati�ed EXP-complete PNEXP-complete
KB general NEXP-complete PNEXP-complete

Table 3.3: Complexity of brave reasoning from the strong /weak answer sets of a dl-
program.

coNEXP. Intuitively, we have to decide consistency of KB , which is in NEXP, and a literal
l might be included in the answer set on behalf of a dl-atom, which is in coNEXP.

Brave reasoning from the weak answer sets of a positive dl-program is harder, however,
and in fact NPNEXP-complete. Intuitively, an exponential number of candidate weak answer
sets containing the query literal l might exist which are larger than the (unique) answer
set of KB . This is a source of complexity which requires another guess.

Theorem 3.7.3 Given Φ, a dl-program KB = (L,P ) with L in SHIF(D), and a classical
literal l ∈ HBP , deciding whether l belongs to every (resp. some) strong or weak answer
set of KB is complete for EXP when KB is positive or strati�ed, and complete for coNEXP

(resp. NEXP) when KB is a general dl-program.

Proof. See Appendix A.

The next theorem shows that deciding whether a classical literal l ∈ HBP belongs to
every (resp., some) strong/weak answer set of a given dl-program KB = (L,P ) with L in
SHOIN (D) is complete for coNEXP (resp., Dexp/PNEXP) in the positive case, and complete
for PNEXP in the strati�ed and the general case.

Theorem 3.7.4 Given Φ, a dl-program KB = (L,P ) with L in SHOIN (D), and a
classical literal l ∈ HBP , deciding whether l belongs to every (resp. some) strong/weak
answer set of KB is complete for coNEXP (resp. Dexp/PNEXP) when KB is positive, and
complete for PNEXP when KB is a strati�ed or general dl-program.

Proof. See Appendix A.

3.7.3 Well-Founded Reasoning

We recall that for a given ordinary normal program, computing the well-founded model
needs exponential time in general (measured in the program size [Dantsin et al., 2001]),
and also reasoning from the well-founded model has exponential time complexity.

The following result implies that the complexity of the well-founded semantics for dl-
programs over SHIF(D) does not increase over the one of ordinary logic programs.

Theorem 3.7.5 Given Φ and a dl-program KB=(L,P ) with L in SHIF(D), computing
WFS (KB) is feasible in exponential time. Furthermore, deciding whether for a given literal
l it holds that l ∈WFS (KB) is EXP-complete.

Proof. We show that, given KB = (L,P ) and I ⊆ HBP , computing γKB (I) is fea-
sible in exponential time. The reduct KB I = (L, sP I

L) is constructible in exponential
time, since (i) ground(P ) is computable in exponential time and (ii) I |=L a for each dl-
atom a in ground(P ) can be decided in exponential time, by the complexity of SHIF(D).
Furthermore, computing the least model of KB I is feasible in exponential time by com-

puting lfp(TKBI ) =
⋃|HBP |

i=0 T i
KBI (∅): this requires at most exponentially many applications



3.8 Reasoning Applications 55

of TKBI (J), each of which is computable in exponential time (deciding I |=L a for any
dl-atom a ∈ DLP is feasible in exponential time).

Therefore, we can compute lfp(γ2
KB ) = U∞, by computing U0, U1, . . . until Ui =

γ2i
KB (∅) = γ2i+2

KB (∅) = Ui+1 holds for some i. Since i is bounded by |HBP | and the latter
is exponential in the size of Φ and KB , the positive part of WFS (KB), i.e., lfp(γ2

KB ),
is computable in exponential time. The negative part of WFS (KB) is easily obtained
from gfp(γ2

KB ) = O∞, which can be similarly computed in exponential time. Therefore,
computing WFS (KB) is feasible in exponential time.

Consequently, deciding l ∈WFS (KB) is in EXP. The EXP-hardness is immediate from
the EXP-hardness of deciding whether a given positive datalog program logically implies a
given ground atom [Dantsin et al., 2001] (as well as from the EXP-hardness of SHIF(D)
[Tobies, 2001]). 2

For dl-programs over SHOIN (D), the computation of WFS (KB) and reasoning from
it is expected to be more complex than for SHIF(D) knowledge bases, since already
evaluating a single dl-atom is coNEXP-hard. Computing WFS can be done, in a similar
manner as described in the proof sketch of Theorem 3.7.5, in exponential time using an
oracle for evaluating dl-atoms; to this end, an NP oracle is su�cient. As for the reasoning
problem, this means that deciding l ∈WFS (KB) is in EXPNP.

A more precise account reveals the following strict characterization of the complexity,
which is believed to be lower.

Theorem 3.7.6 Given Φ, a dl-program KB = (L,P ) with L in SHOIN (D), and a literal
l, deciding l ∈WFS (KB) is PNEXP-complete.

Proof (sketch). For establishing membership in PNEXP, an algorithm is not allowed to
use exponential work space (only polynomial one). Thus, di�erently from the situation
above, we cannot simply compute the powers γj

KB (∅), because ground(P ) is exponential.
The idea is to move this problem inside an oracle call. The PNEXP-hardness is easily derived
from Theorem 3.5.5 and the result that deciding if a strati�ed KB in which strong negation
¬ may occur has some strong answer set is PNEXP-complete (see Theorem 3.7.2). 2

The results in Theorems 3.7.5 and 3.7.6 also show that like for ordinary normal pro-
grams, inference under the well-founded semantics is computationally less complex than
under the answer-set semantics, since cautious reasoning from the strong answer sets of a
dl-programs using a SHIF(D) (resp., SHOIN (D)) description logic knowledge base is
complete for coNEXP (resp., co-NPNEXP).

We leave an account of the data complexity of dl-programs KB = (L,P ) (i.e., L and
the rules of P are �xed, while facts in P may vary) for an expanded paper. However,
we note that whenever the evaluation of dl-atoms is polynomial (i.e., in description logic
terminology, ABox reasoning is polynomial), then also the computation of the well-founded
semantics for dl-programs is polynomial. Most recent results in [Hufstadt et al., 2004]
suggest that for SHIF(D), the problem is solvable in polynomial time with an NP oracle
(and, presumably, complete for that complexity).

3.8 Reasoning Applications

We now want to survey three concrete scenarios that demonstrate the usefulness of dl-
programs. Particularly, we will take advantage of the nonmonotonic behaviour of dl-atoms
and their distinct feature of allowing to extend the Description Logics knowledge base from
within the logic program.



56 3 dl-Programs

3.8.1 Closed-World Reasoning

Reiter's well-known closed-world assumption (CWA) [Reiter, 1978]2 is acknowledged as an
important reasoning principle for inferring negative information from a logical knowledge
base KB : For a ground atom p(c), conclude ¬p(c) if KB 6|= p(c). Description Logics
knowledge bases lack this notion of inference, adhering to the open-world assumption.
Originally aimed at relational databases, the CWA is of increasing interest also for data
representations in more expressive data models like Description Logics.

The discussion whether the Semantic Web needs open- or closed-world reasoning is a
very lively one in Semantic Web research. The Description Logics community leans towards
the open world approach, whereas many people with a logic programming background try
to bring in their ideas of nonmonotonicity. Generally, we believe that this question depends
very much on the domain of reasoning. One can assume that in a Semantic Web scenario,
a single knowledge base is usually considered as part of a distributed pool of information,
rather than an isolated traditional database containing complete information. Thus, new
knowledge may easily contradict information that was inferred earlier by the CWA, leading
to inconsistency. Nevertheless, many speci�c scenarios in the Semantic Web might pro�t
from some form of closed-world reasoning [Analyti et al., 2005, He�in and Muñoz-Avila,
2002, Polleres et al., 2006].

Using dl-programs, the CWA may be easily expressed on top of an external KB which
can be queried through suitable dl-atoms. We show this here for a DL knowledge base L.
Intuitively, given a concept C, its negated (under CWA) version C is de�ned by adding to
a given dl-program the rule

C(X)← not DL[C](X).

For example, given that

L = {man v person, person(lee)}

for concepts man and person, the CWA infers man(lee).
As well known, the CWA can lead to inconsistent conclusions. If in the above example,

L contains a further axiom

person = man t woman, ⊥ = man u woman,

then the CWA infers man(lee) and woman(lee), which is inconsistent with L.
We can check inconsistency of the CWA with a further rule:

fail ← DL[woman −∪woman,man −∪man;⊥](b),

where ⊥ is the empty concept (entailment of ⊥(b), for any constant b, is tantamount to
inconsistency).

The problem with inconsistency in the CWA as presented above evidently stems from
the strategy to negate every literal that cannot be proven to be true. Several approaches
exist in literature to avoid such inconsistencies, e.g., by explicitly selecting the predi-
cates (or concepts, as we call them in the context of this subsection) that can safely
be negated [Cadoli and Lenzerini, 1994, Gelfond et al., 1986]. The extended closed-world
assumption, for instance, introduces a partitioning of the theory's concepts into three sets
P , Q, and Z. From a model-theoretic viewpoint, the ECWA constructs models which are
minimal w.r.t. P having the same �xed interpretation of Q, while Z can vary freely.

Corresponding to Gelfond et al., we include the following assumptions:

2Throughout this section, we refer to �ukaszewicz [1990] for references to closed-world reasoning and
circumscription.
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• The domain closure assumption (DCA), stating that there are no more individuals
than those explicitly named in the ABox of L, i.e., the domain is �nite and its
cardinality is known.

• The unique name assumption (UNA), stating that distinct names also refer to distinct
objects in the domain.

These assumptions are ful�lled by the semantics of dl-programs and can also be enforced
in SHOIN (D).

De�nition 3.8.1 Given a knowledge base L, and a partition 〈P,Q,Z〉 of its predicates
(concept and roles, respectively), a model of L is 〈P,Q,Z〉-minimal if the extension of
positive concept and roles in P w.r.t. individuals in the ABox is minimal (w.r.t. subset
inclusion) among those models of L that have the same extension for concept/roles in Q,
regardless of the extension of predicates in Z. We say that L |=〈P,Q,Z〉 a if either,

• a is a concept (or role) assertion belonging to all the 〈P,Q,Z〉-minimal models of L,
or

• a is a negative assertion ¬l (where l is a concept or role assertion belonging to pred-
icates of P ) and there is no 〈P,Q,Z〉-minimal model of L containing l.

Applying the ECWA in the general case of minimizing all predicates in L, means simply
to consider the partition 〈P, ∅, ∅〉. Otherwise, it might be desirable to minimize only w.r.t.
a speci�c set of predicates in L.

Intuitively, building minimal models of L corresponds to concluding as much negative
facts as possible while keeping consistency. We can create the 〈P, ∅, ∅〉-minimal models of
L with respect to all concepts and individuals in L elegantly with the following dl-program
KB ′ = (P ′, L). Given a concept C in L, we associate to it two predicates C and C+ in P ′:
C represents the negated counterpart of C in P ′, while C+ represent the positive value of
P ′.

man(X)← not man+(X);
woman(X)← not woman+(X);
person(X)← not person+(X);
man+(X)← DL[woman −∪woman,man −∪man, person −∪ person;man](X);

woman+(X)← DL[woman −∪woman,man −∪man, person −∪ person;woman](X);
person+(X)← DL[woman −∪woman,man −∪man, person −∪ person; person](X).

The �rst three rules in this program add the negations of those atoms to the answer set
that are not explicitly positive in the answer set. The next three rules add the negative
part of the model to L and queries under this condition the extensions of the positive
concepts.

Applied to our example, we obtain two strong answer sets

M1 = {person+(lee),woman+(lee),man(lee)},
M2 = {person+(lee),man+(lee),woman(lee)}.

which correspond to the 〈P, ∅, ∅〉-minimal models of L. Roles in L may be handled similarly.
Furthermore, one can easily restrict minimization to a subset of concepts and roles, and

accommodate the general setting of ECWA and circumscription, dividing the predicates
into minimized, �xed, and �oating predicates P , Q, and Z, respectively.

We give here a proof of equivalence valid for 〈P, ∅, Z〉 entailment.
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De�nition 3.8.2 Let L be a knowledge base, and 〈P, ∅, Z〉 a partition of its concepts and
roles. Let P = h1, . . . , hn. The dl-program KBecwa = (PrL,P,Z , L) is built by constructing
PrL,P,Z as follows:

1. For each concept c ∈ P , add the rules

c(X)← not c+(X); (3.6)

c+(X)← DL[h1 −∪h1, . . . , hn −∪hn; c](X); (3.7)

2. For each role r ∈ P , add the rules

r(X, Y )← not r+(X, Y ); (3.8)

r+(X, Y )← DL[h1 −∪h1, . . . , hn −∪hn; r](X, Y ); (3.9)

3. add the rule

fail ← DL[h1 −∪h1, . . . , hn −∪hn;⊥](b),not fail ; (3.10)

where b is a dummy constant symbol.

Theorem 3.8.1 Let L be a knowledge base, 〈P,Z〉 a partition of its concepts and roles,
and ¬c(a) (resp. ¬r(a, b)) a concept (resp. role) assertion. Then L |=〈P,∅,Z〉 ¬c(a) (resp.
¬r(a, b)) i� KBecwa cautiously entails c(a) (resp. r(a, b)).
Proof. We consider a speci�c concept assertion c(a). The proof for role assertions is
analogous.

(⇐) Assume by contradiction that L 6|=〈P,∅,Z〉 ¬c(a). This means that there is at
least one 〈P, ∅, Z〉-minimal model m of L containing c(a). From m we can build a strong
answer set M of PrL,P,Z such that for each concept (resp. role) assertion c(x) ∈ m (resp.
r(x, y) ∈ m) we have that

• c(x) ∈M if c(x) 6∈ m (resp. r(x, y) ∈M if r(x, y) 6∈ m);

• c+(x) ∈M (resp. c+(x) ∈M) otherwise.

Note that M contains c+(a). Because of the presence of rule 3.6 and 3.7, c(a) can not
belong to M , and thus it is not cautiously entailed by KB∗, contradicting the hypothesis.

(⇒) Assume by contradiction that KB∗ does not cautiously entail c(a). Then there
must exist a strong answer set M of PrL,P,Z which does not contain c(a). This means that
c+(a) ∈M instead, because of the presence of rule 3.6. Note that fail 6∈M because of rule
3.10. This implies that the knowledge base L∪

⋃n
i=1 Ai(M) built according to the dl-atom

occurring in 3.10 and to semantics given in Section 3.4, is consistent and entails c(a).
Note that c(a) is part of a 〈P, ∅, Z〉-minimal model m of L, and thus L 6|=〈P,∅,Z〉 ¬c(a).

Indeed, if this would not be the case, c(a) could be put in M , so that c(a) could be asserted
negated in L, still producing a consistent knowledge base. That is, a model smaller than
m (without c(a)) with respect predicates in P , would be possible. 2

3.8.2 Default Reasoning

As we already mentioned,Description Logic knowledge bases genuinely do not support
nonmonotonic inheritance. However, overriding a �default� property value of a concept may
be a natural way of de�ning a subclass. Defaults are especially suitable for implementing
nonmonotonic inheritance.
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For example, the rules

white(w)← DL[sparklingwine](w),not nonwhite(w);
nonwhite(w)← DL[whitewine ] white;¬whitewine](w).

on top of a wine ontology L, express that sparkling wines are white by default. Given

L = {sparklingWine(veuveCliquot), (sparklingWine u ¬whiteWine)(lambrusco)},

we then can conclude white(veuveCliquot) and nonwhite(lambrusco).
Here, we are aiming at deriving as much positive information without causing inconsis-

tencies, i.e., maximizing extensions instead of minimizing them as proposed in the previous
subsection. Integrating default reasoning with Description Logics is in general a nontrivial
task [Baader and Hollunder, 1995]. Our dl-programs can serve as a convenient framework
to realize di�erent notions of default reasoning as in the approaches by Reiter [1980] or
Poole [1988].

Poole's approach is to view default reasoning as theory formation instead of the de�ni-
tion of a new logic, such as the one proposed by Reiter. He categorizes a theory into a set
of closed formulas F and a set of (possibly open) formulae ∆, called possible hypotheses.
The formulas in F are treated as �facts� and considered to be consistent. These statements
have to be true in any case, whereas any ground instance of ∆ can be used if it is consistent.
Intuitively, we can compare a formula g ∈ ∆ to the Reiter default : Mg

g . If we also want
to take prerequisites into account, we can in a �rst step formulate normal defaults of the
form a : Mw

w , where both a and w are concept (resp. role) names, expressing non-ground
membership axioms. We abbreviate this form by a : w. Such a default should maximize
the extension of w, whenever a is true and consistency is preserved.

We can model this behaviour in the following way, assuming to have a set of defaults
ai : wi with 0 ≤ i ≤ n:

w+
i (X)← DL[ai](X),not wi(X); (3.11)

wi(X)← DL[ai](X),DL[λ;¬wi](X). (3.12)

where λ = w1]w+
1 , . . . , wn]w+

n , i.e., the update of the extension candidate. If this update
causes an inconsistency in the DL knowledge base, wi(X) will be true and hence the default
rule cannot be applied.

A query for a speci�c concept c can then simply be expressed as follows:

query(X)← DL[λ; c](X). (3.13)

To explicitly build an extension at the level of ground literals for each concept c (whether
or not c is a consequence of a default) instead of querying, we use this rule:

c+(X)← DL[λ; c](X). (3.14)

Example 3.8.1 In a simple circuit diagnosis defaults are used to state that compo-
nents are assumed to be working. Like in classical model-based diagnosis, we want to
maximize the set of working components. A Reiter Diagnosis of an observed system
(SD ,COMP ,OBS ) is a minimal set ∆ ⊆ COMP such that SD ∪ OBS ∪ {¬ok(c) | c ∈
∆}∪ {ok(c) | c ∈ COMP \∆} is satis�ed, where SD is the system description, COMP the
set of components, and OBS the set of observations; the extension of ok denotes working
components (cf. [Reiter, 1987]).
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Assume that a Description Logics knowledge base contains the concepts Component
and Working . The default Component : Working can be expressed by

ok(X)← DL[Component ](X),not broken(X); (3.15)

broken(X)← DL[Component ](X),DL[Working ] ok ;¬Working ](X). (3.16)

This encoding yields all extensions (i.e., all maximal consistent diagnoses) as answer sets.
3

In order to enable feedback from default conclusions to prerequisites (i.e., �chaining� of
defaults), we have to propagate them also to the positive queries, modifying rule 3.11 in
the following way:

w+
i (X)← DL[λ; ai](X),not wi(X); (3.17)

Following this approach, we can in fact capture Reiter's default logic, which de�nes
the extensions of a default theory T = 〈W,D〉 in terms of the the �xpoints of a closure
operator ΓT (S) as follows:

1. W ⊆ ΓT (S);

2. Cn(ΓT (S)) = ΓT (S);

3. if α : Mβ1,...,Mβn

γ ∈ D and α ∈ ΓT (S) and ¬β1, . . . ,¬βn 6∈ S then γ ∈ ΓT (S).

Then, E is an extension of T i� ΓT (E) = E.
We can model this procedure by the following guess-and-check method (the generally

open defaults are closed through grounding):

De�nition 3.8.3 Let L be a DL knowledge base and D a set of defaults a1 : w1, . . . , an :
wn, where each ai and wi are concept expressions.3 The rules PD of the dl-program
KBDef = (PD, L) are then constructed as follows:

1. For each wi, we add the guessing rules

in w i(X)← not out w i(X), dom(X); (3.18)

out w i(X)← not in w i(X), dom(X); (3.19)

using a domain predicate dom that needs to contain all individuals in the ABox of L.

2. Then, we check the compliance of the guess with L for each default:

false ← DL[λ′;wi](X), out w i(X),not false; (3.20)

where λ′ = w1 ] in w1, . . . , wn ] in wn.

3. The default is applied by the following rule, summarizing Rules 3.12 and 3.17, but
updating w.r.t. the current guess:

w+
i (X)← DL[λ; ai](X),not DL[λ′;¬wi](X); (3.21)

where λ is de�ned as before.

3It is easy to expand this to roles: each variable X has to be replaced by the tuple X, Y , modifying also
the safety guard to dom(X), dom(Y ).
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4. Eventually, we need to verify whether the guessed extension can be reconstructed:

false ← not DL[λ;wi](X), in w i(X),not false; (3.22)

false ← DL[λ;wi](X), out w i(X),not false; (3.23)

The predicate dom in Rules 3.18 and 3.19 of De�nition 3.8.3 ensures DL-safety, i.e.,
the grounding over known individuals from L. It can be shown that for each extension E
of 〈L,D〉, there exists an answer set S of KBDef = (PD, L) such that S = {in_w i(c) |
wi(c) ∈ E} ∪ {w+

i (c) | wi(c) ∈ E} ∪ {out_w i(c) | wi(c) 6∈ E} and vice versa.

Example 3.8.2 Let L be the following DL knowledge base about the prototypical penguin

example. Penguins are birds that cannot �y:

Penguin v Bird u ¬Flies;
Penguin(tweety); Bird(joe).

Let D contain a single default, assuming that birds normally �y: D = {Bird(X) :
Flies(X)}. The rules PD of KBDef = (PD, L) are as follows:

in Flies(X)←not out Flies(X), dom(X);
out Flies(X)←not in Flies(X), dom(X);

false ←DL[Flies ] in Flies;Flies](X), out Flies(X),not false;
flies+(X)←DL[Flies ] flies+;Bird ](X),

not DL[Flies ] in Flies;¬Flies](X);
false ←not DL[Flies ] flies+;Fliesi](X), in Flies(X),not false;
false ←DL[Flies ] flies+;Flies](X), out Flies(X),not false;

We evaluate PD w.r.t. the domain extension {dom(tweety), dom(joe)}.
The guessing rules (3.18) and (3.19) create four answer sets (modulo the facts of the

predicate dom):

{in Flies(tweety), in Flies(joe)};
{in Flies(tweety), out Flies(joe)};
{out Flies(tweety), in Flies(joe)};
{out Flies(tweety), out Flies(joe)}.

Adding Rule 3.20 checks whether we guessed a non-�ier which �ies according to L and
removes such models. Here the second model does not survive. Note that for the �rst two
guesses the DL KB is inconsistent due to the addition of tweety to Flies, hence the dl-atom
is always satis�ed.

Rule 3.21 applies the single default in D, checking whether the prerequisite is satis�ed
and the justi�cation can be consistently assumed. At this point, we still have three answer
sets:

{in Flies(tweety), in Flies(joe)};
{out Flies(tweety), in Flies(joe), flies+(joe)};
{out Flies(tweety), out Flies(joe), flies+(joe)}.
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The default can be applied to joe, except in the inconsistent case of the �rst guess.

The reconstruction of the guessed extension is veri�ed with the last two rules. Here,
we feed flies+ into the L and check whether the default's consequences are compliant with
the guess. This results in the following single answer set:

{out Flies(tweety), in Flies(joe), flies+(joe)}.

As expected, joe �ies, because he is a bird, as opposed to tweety , for whom we cannot
consistently assume to be �ying. 3

In general, we can straightforwardly cover more general defaults α : β
ω , where α = a1 ∧

. . . ∧ an, ω = w1 ∧ . . . ∧ wm and β = Mb1, . . . ,Mbl, with ai, wi, and bi being concept or
role names.

3.8.3 DL-Safe Rules

DL-safe rules [Motik et al., 2005] represent one of the �rst attempts to couple rules with
ontologies while keeping a full �rst-order semantics together with decidability (see Section
3.10 for details). In order to ensure decidability, only a limited form of rules is allowed.

Intuitively, a DL-safe program is a description logic knowledge base L coupled with
a set of Horn rules P .4 Concept and roles from L may freely appear in P (also in rule
heads). Nonetheless, any variable must appear in the body of a rule within an atom whose
predicate name does not appear in L.

De�nition 3.8.4 Assume we have a SHOIN (D) knowledge base L and a set of concept
names A and of abstract and datatype role names RA and RD. Let Lc ⊆ A be the set
of concept names appearing in L while Lr ⊆ RA ∪RD is the set of role names appearing
in L. Let P a set of Horn rules, allowing atoms with predicate names from a set N ⊆
A ∪RA ∪RD.

5 A rule r ∈ P is DL-safe if each variable in r occurs also in an atom with
a predicate name n ∈ N \ Lc ∪ Lr. A program P is DL-safe if all its rules are DL-safe.

A (�rst order) interpretation I satis�es a DL-safe program (L,P ) (I |= L∪P ) if I |= L
and I |= P . Given a ground atom α, we say that (L,P ) |= α if every interpretation I
satisfying (L,P ) also satis�es α.

We can to simulate DL-safe programs using dl-programs in the following way:

De�nition 3.8.5 Given a DL-safe program (L,P ), we build a dl-program KB = (L,P ′)
as follows: for each predicate p appearing in P , we introduce the predicates p+ and p− and
add the following rule to P ′:

p+(X̄)← not p−(X̄); (3.24)

p−(X̄)← not p+(X̄). (3.25)

For each rule r = h(X̄)← b(X̄) in P we add the following constraint to P ′:

fail ← not h(X̄), b(X̄),not fail . (3.26)

4Originally, Motik et al. denote a DL-safe program with (KB , P ); to be consistent with the notation of
dl-programs, in this subsection we replace their KB by L.

5Predicate names from A appear only in unary atoms whereas predicate names from RA ∪RD appear
only in binary atoms.
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Finally, we add:

fail ← DL[λ;⊥](b),not fail . (3.27)

where b is a dummy constant symbol and λ = p1 ] p+
1 , . . . , pn ] p+

n , p1 −∪ p−1 , . . . , pn −∪ p−n
for all predicates in P . This rule simple implements a consistency check, discarding the
respective model if the guess is not compliant with L.

Intuitively, Rules 3.24 and 3.25 guess the extension of each predicate in P . For querying a
ground atom α(x), we have two possibilities:

1. If α is a predicate from P , we add to P ′:

α̂(x)← α(x). (3.28)

2. If α is a predicate from L \ P , we add the following rule to P':

α̂(x)← DL[λ;α](x). (3.29)

Querying for α(x) then simply amounts to checking if α̂(x) is cautiously entailed in all
answer sets of KB .

The following lemma shows that grounding of P ′ over constants in L ∪ P is su�cient
ensuring soundness and correctness of this translation.

Lemma 3.8.2 Let (L,P ) be a DL-safe program. Let P ↓ be the instantiation of P over
the constant names in P ∪ L and α be any ground atom from L ∪ P . Then, for each
interpretation I such that I |= L ∪ P ↓ there is an interpretation J such that J |= L ∪ P
and I |= α i� J |= α Also, for each J such that J |= L ∪ P there exists an I such that
I |= L ∪ P ↓ and J |= α i� I |= α. Moreover, I is such that any individual a belonging to
pI where p is a concept or role in P is mapped to a constant symbol appearing in L ∪ P .

Theorem 3.8.3 Given a ground atom α(x) then (L,P ) |= α(x) i� KB = (L,P ′) cau-
tiously entails α̂(x) under strong answer-set semantics.

Proof (sketch). (⇒) If we assume that (L,P ) |= α(x) then any interpretation J
modeling L and P is both such that J |= L ∪ α(x) and J |= P ∪ α(x). According to
Lemma 3.8.2, there is a I |= L ∪ P ↓ that maps every individual belonging to a concept
or role appearing in P to a constant symbol in L ∪ P . From I it is possible to build
an answer set A of KB , such that A |= α̂(x). Moreover there is no answer set B such
that B 6|= α̂(x) because otherwise, there would be an interpretation I ′ such that either
Rule (3.28) or Rule (3.29) is unsatis�ed.

(⇐) Given a strong answer set A of KB such that A |= α̂(x), we can build an interpre-
tation I such that I |= α(x). Would there exist an interpretation I ′ such that I ′ 6|= α(x),
then either by Rule (3.28) or by Rule (3.29), there would exist an answer set A′ such that
A′ 6|= α̂(x) 2

3.9 Implementing a Solver for dl-Programs

In the following, we will describe an implementation for a reasoner for dl-programs, called
NLP-DL (Nonmonotonic Logic Programming with Description Logics), that can operate
under di�erent semantics. Our idea behind the implementation principle was to design a
reasoning framework on top of existing reasoners for answer-set programs resp. Description
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Logics instead of creating everything from scratch. The reasons for this decision were
mainly constrained human resources but also the fact that these existing engines have
been professionally developed and are supposedly highly e�cient.

In Section 3.6 we presented a method for evaluating a general dl-program. It is evident
that in practice the guessing part of this algorithm generates a great amount of preliminary
models to be validated and therefore makes it very di�cult to be implemented e�ciently.
However, when looking at the corresponding dependency graph, it often occurs in practice
that answer-set programs are structured in two distinct and hierarchic layers, where a
�rst, strati�ed layer at the bottom performs some preprocessing on the input data and
a second, strongly connected and unstrati�ed layer, usually is aimed at encoding some
nondeterministic choice. It is therefore desirable to constrain the usage of the general
algorithm only to the necessary parts of the program and evaluate the remaining part by
a more e�cient, �xpoint-based method. This implies that we have to split the program
and evaluate each part separately � a feasible method, relying on the theorem of splitting
sets, which was de�ned for the answer-set semantics by Lifschitz and Turner [1994]. For
simplicity, our approach is to split the program only in two parts, having a fast routine for
�nding the answer set(s) of the lower layer, while the remaining subprogram will be solved
by the guess-and-check method (if such a subprogram exists at all).

3.9.1 Splitting the Input Program

In answer-set mode, all stable models according to the semantics presented in Subsec-
tion 3.4.1, i.e., the strong answer sets, are generated. The method used in this prototype
partly corresponds to the evaluation techniques presented in Section 3.6, where we pre-
sented a general algorithm for computing the weak answer sets following a guess-and-check
approach, which we then supplemented by a �xpoint characterization for strati�ed nor-
mal programs. In practice it is evident, that the guessing part of the general algorithm
generates a great amount of models to be checked

We have already mentioned that answer-set programs often are structured in three
separate and hierarchic layers:

• a �rst, strati�ed layer at the bottom which performs some preprocessing on the input
data;

• a second, unstrati�ed layer, used for opening up some search space for a nondeter-
ministic choice, and eventually,

• a third �checking� layer on top, where values computed through the other layers are
�ltered with respect to some constraint criteria.

Following this common setting, we conceived an evaluation strategy where we separate the
�rst, strati�ed layer from the rest of the program and evaluate the two parts separately,
feeding the result from the �rst into the computation of the second. The bottom layer can
thus be solved by an iterative routine, while general techniques are limited to situations in
which this cannot be avoided, as in non-strati�ed layers.

Lifschitz and Turner [1994] have shown that the computation of the answer sets of a
logic program can be simpli�ed by dividing the program into two parts. Informally, we
�rst identify the unstrati�ed subprograms of KB = (L,P ), i.e., rules of P that contain
negated cycles. We then remove these rules from P as well as all rules that depend on P ,
leaving a strati�ed subprogram on the �bottom� of the dependency graph of P . The model
of this part can now be solved by a �xpoint iteration, i.e., resulting in a unique least model.



3.9 Implementing a Solver for dl-Programs 65

Subsequently, this model is added as extensional knowledge to the remaining, unstrati�ed
part of P , which is eventually solved by means of a guess-and-check procedure.

Lifschitz and Turner de�ne a splitting set as a set U of literals such that, for every rule
r ∈ P , if H(r)∩U 6= ∅ then lit(r) ⊆ U , where lit(r) denotes H(r)∪B+(r)∪B−(r). Since in
dl-programs, not only the dependency between rule body and rule head, but also between
dl-atoms and their input predicates needs to be taken into account here, we need to modify
the de�nition of splitting sets. To this end, we �rst formalize the notion of dependency,
which takes the occurrence of dl-atoms into account:

De�nition 3.9.1 Let KB = (L,P ) be a dl-program and a, b classical literals in some rule
of P . Then, a depends positively on b (a→p b), if one of the following conditions holds:

1. There is some rule r ∈ P such that a ∈ H(r) and b ∈ B+(r).
Example: r1 : p(X)← q(X), r(X).
Clearly, we have the dependencies p(X)→ q(X) and p(X)→ r(X).

2. There are some rules r1, r2 ∈ P such that a ∈ B(r1) and b ∈ H(r2) and a and b can
be uni�ed.

Example: r1 : p(X)← q(X), r(X).
r2 : q(Y )← s(Y ).

Here, we have q(X)→ q(Y ).

3. a is a dl-literal (i.e., a possibly weakly negated dl-atom), b is an ordinary (i.e., not a
dl-) literal and the predicate symbol of b occurs in the input list of a.

Example: r1 : p(X)← DL[Student ] s;Person](X).
r2 : s(X)← enrolled(X).

Here we have DL[Student ] s;Person](X)→ s(X).

We say that a depends negatively on b (a→n b), if one of the following conditions holds:

1. There is some rule r ∈ P such that a ∈ H(r) and b ∈ B−(r).
Example: r1 : flies(X)← bird(X),not penguin(X).
It follows that flies(X)→ bird(X) and flies(X)→n penguin(X).

2. There is some rule r ∈ P such that a ∈ H(r), b ∈ B(r) and b is a non-monotonic
dl-atom.

Example: r1 : part(X)← DL[P −∩ known;P ](X).
We have part(X)→n DL[P −∩ known;P ](X).

The relation →+ denotes the transitive closure of → . We call a set N of literals a weakly
connected component, if for each a ∈ N there exists a b ∈ N such that a→ b. Moreover,
N is a strongly connected component, if a→+ b holds for all a, b ∈ N .

It is important to note that if we speak about strati�ed and unstrati�ed dl-programs, we
are referring to this dependency relation, which takes not only weak negation into account
to identify possible unstrati�ed programs, but also nonmonotonic dl-atoms.

De�nition 3.9.2 A splitting set for a dl-program KB = (L,P ) is any set U of classical
literals such that, for any a ∈ U , if a→ b, then b ∈ U . The set of rules r ∈ P such
that H(r) ∈ U is called the bottom of P relative to the splitting set U and denoted by
bU (P ). Moreover, we denote with ground(U) the set of all grounded literals in U w.r.t. the
constants in U .



66 3 dl-Programs

To describe a method how to use this splitting for the computation of answer sets, we
�rst need to de�ne the notion of a solution to KB with respect to U, which corresponds
directly to the respective notion of Lifschitz and Turner. We consider two sets of literals
U , X and a dl-program KB = (L,P ). For each rule r ∈ ground(P ) such that B+(r) ∩
ground(U) ⊆ X and B−(r) ∩ ground(U) is disjoint from X, create a new rule r′, with
H(r′) = H(r), B+(r′) = B+(r) \ ground(U) and B−(r′) = B−(r) \ ground(U). The
program consisting of all rules r′ is denoted by eU (P,X).

Let U be a splitting set for a program KB = (L,P ). We call a pair 〈X, Y 〉 of sets of
literals a solution to KB w.r.t. U , if

• X is an answer set for bU (P ),

• Y is an answer set for eU (P \ bU (P ), X),

• and X ∪ Y is consistent.

Theorem 3.9.1 Let U be a splitting set for a dl-program KB = (L,P ). A set A of literals
is a consistent answer set of KB i� A = X∪Y for some solution 〈X, Y 〉 to KB with respect
to U .

Proof. We can reformulate this theorem as follows: Let U be a splitting set for a dl-
program KB = (L,P ). A set A of literals is a consistent answer set of KB i� A is an
answer set of P \ bU (P ) ∪ res(M), where M is an answer set of bU (P ) and res(M) is the
program that contains exactly those facts which are in M . The proof is given for the strong
answer-set semantics. The same line of reasoning holds for the weak answer-set semantics.

Let KB = (L,P ) be a dl-program. We assume a splitting set U (a set of non-ground
literals) is given. Given an interpretation I, let IU be the projection of atoms in I over
predicate names appearing in U .

(⇒) Assume A is a answer set for KB. First, we show that AU is an answer set for

bU (P ). Indeed, let S be the least model of sbU (P )AU

L . We prove that S = AU :

AU satis�es all the rules in sbU (P )AU

L . Furthermore, AU ⊂ S cannot hold because then

AU would be the least model of sbU (P )AU

L . Also, it cannot be that AU ⊃ S, otherwise
there would be an atom a ∈ AU whose predicate name appears in U not belonging to
S. Since A is an answer set of P , a would be in the least model of sPA

L . Note that, by

de�nition of splitting set, sbU (P )AU

L ⊆ sPA
L . Since there are no atoms in sPA

L \ sbU (P )AU

L

having predicate name in U , then a must be necessary for modeling sbU (P )AU

L and thus
belongs to S. It follows that AU = S.

Furthermore, A is an answer set of R = P \ bU (P ) ∪ res(AU ). Indeed, let M be the
least model of sRA

L . We simply observe that both M and A must contain AU , and both
are models of sRA

L . A cannot be smaller than the least model M . On the other hand if
an atom a ∈ (A \M) \AU existed, then a would be in the least model of sPA

L . Note that,
except from the additional facts belonging to AU , all the remaining rules of sRA

L belong to
sPA

L as well. If a belongs to the least model of sPA
L , then it must be also in M , otherwise

we could build a smaller model of sPA
L from M and AU .

(⇐) In this case, we assume that there are A,M , where A is an answer set for R =
P \ bU (P ) ∪ res(AU ) and M is an answer set for bU (P ).

A is then an answer set for P . Indeed, note that A ⊇M , since all literals in M appear
in R as a set of facts. Also, AU = M . If we consider sPA

L then we observe that

sPA
L = (sRA

L \M) ∪ sbU (P )A
L



3.9 Implementing a Solver for dl-Programs 67

Then A is a model of sPA
L . There is no way for building a smaller model A′ ⊂ A for

sPA
L . An atom a ∈ AU cannot be eliminated from A since AU = M is the least model of

sbU (P )A
L . Also, an atom a ∈ A \ AU cannot be eliminated since it would prevent A to be

an answer set of R: indeed, a must appear at least in one rule head in sRA
L \M otherwise

it would belong to AU . 2

Our aim is to �nd the biggest subprogram which is strati�ed and does not depend an
any unstrati�ed rules:

Theorem 3.9.2 Given KB = (L,P ), let V be the minimum set of classical literals such
that (i) all literals a, b belong to V whenever a→n b and b→+ a holds in P and (ii) if
a→ b and b ∈ V , then a ∈ V . Then, the set S = lit(P ) \ V is a splitting set for P , where
lit(P ) denotes the set of all literals in P . Moreover, it holds that bS(P ) is strati�ed.
Proof. Let V and S be as described. If we assume by contradiction that S is not a
splitting set, then there exists some element v ∈ V such that, for some a ∈ S, a→ v. This
is impossible, since V is built in a way such that if a→ v and v ∈ V then a ∈ V .

bS(P ) is clearly strati�ed since negative cycles are by de�nition put into V . 2

We call such a splitting set S a strati�cation splitting set for a dl-program KB .

Corollary 3.9.3 Each dl-program has exactly one strati�cation splitting set.

Example 3.9.1 Consider the following dl-program KB :

p(X)← q(X).
q(X)← not r(X).
r(X)← DL[C ] q](X), s(X).
s(X)← t(X).

The set {s(X), t(X)} is a strati�cation splitting set for P , since r(X) and q(X) belong to a
negated cycle (over the input of the dl-atom) and p(X) depends on this cycle. Only s(X)
and t(X) are una�ected by the unstrati�ed part of KB . 3

Example 3.9.2 Consider the reviewer selection program from Example 3.2.1. The strati-
�cation splitting set of this program comprises all literals except those with the predicates
assign, a, and error . Thus, it has the following strati�ed subprogram:

paper(p1); kw(p1,Semantic_Web);

paper(p2); kw(p2,Bioinformatics); kw(p2,Answer_Set_Programming);

kw(P,K2)← kw(P,K1), DL[topicOf ](S, K1),
DL[topicOf ](S, K2);

paperArea(P,A)← DL[keywords ] kw ; inArea](P,A);

cand(X, P )← paperArea(P,A), DL[Referee](X), DL[expert ](X, A);

It is obvious that this program can only have a single answer set. The unstrati�ed part of
the program are the remaining rules:

assign(X, P )← cand(X, P ),not ¬assign(X, P );
¬assign(Y, P )← cand(Y, P ), assign(X, P ), X 6= Y ;

a(P )← assign(X, P );
error(P )← paper(P ),not a(P ).
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3

It follows directly from the splitting set theorem that the answer sets of a dl-program
KB = (L,P ) can be obtained by adding the unique model of bU (P ) to each answer set of
the subprogram P \ bU (P ).

In the following two sections, we explain how the computation of the models of both
the strati�ed part and the unstrati�ed part is carried out in practice.

Evaluation of a Strati�ed dl-Program

Algorithm 1 shows an implementation of a simple �xpoint computation for evaluating
strati�ed dl-programs. Corresponding to Subsection 3.6.1, we use the replacement of a
dl-atom a(t) of form DL[S1op1p1, . . . , Smopmpm;Q](t) by a globally new atom da(t). A
ground fact of such a replacement atom is denoted by da(c).

Algorithm 3.1: fixpoint(KB): Fixpoint computation of a dl-program.

Input: strati�ed dl-program KB = (L,P )
Result: single answer set
Replace all dl-atoms a(t) in P by da(t)
D′ ⇐ ∅
R′ ⇐ ∅
repeat

D ⇐ D′

R⇐ R′

P ⇐ P ∪D ; // Add the atoms in D as facts to P
R′ ⇐ strat(P ) ; // strat(P ) is the stratified answer set of P
D′ ⇐ {da(c) | R′ |=L a(c)} ; // i.e., all dl-atoms modeled by R′ w.r.t. L

until D = D′

return R′

The algorithm iteratively computes the unique answer set of KB based on the previous
one until a �xpoint is reached (which is determined by a non-changing set of dl-atoms in
KB).

Theorem 3.9.4 Let KB = (L,P ) be a strati�ed dl-program. If the set S is the result of
fixpoint(KB), then S ∩HBP is the iterative least model MKB of KB .

Proof. We can view the loop in the algorithm as an operator FKB (I) on the subsets of
HBP . For every I ⊆ HBP , FKB (I) is the strati�ed answer set of KB ′ = (L,P ′), where P ′

is a transformation of ground(P ) w.r.t. I as follows:

1. Remove each rule r ∈ ground(P ) with a dl-atom a ∈ B+(r) and I 6|=L a;

2. remove each rule r ∈ ground(P ) with a dl-atom a ∈ B−(r) and I |=L a;

3. from all remaining rules, remove all dl-atoms.

It is easy to see that this transformation corresponds to the addition of ground replacement
atoms in D to the program.

First, we show that fixpoint(KB) is a monotone operator for positive KB with only
monotonic dl-atoms. To show that FKB (I) is monotonic for a positive dl-program KB1 =
(L1, P1) with only monotonic dl-atoms, i.e., I ⊆ I ′ ⊆ HBP1 implies FKB1(I) ⊆ TKB1(I

′),
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we only have to consider the �rst and third transformation rules. For every monotonic
ground dl-atom a it holds that I |=L1 a implies I ′ |=L1 a, and therefore I ′ 6|=L1 a implies
I 6|=L1 a. Hence, for I, the number of rules in P ′ must be equal or less than the number of
rules in P . Thus, FKB1(I) ⊆ FKB1(I

′). The least �xpoint of FKB1 , lfp(FKB1) must satisfy
all rules in KB1. Hence, lfp(FKB1) ∩HBP1 is the least model of KB1.

We construct this proof by induction along the strati�cation of KB . First, we consider
stratum 0. All literals p with λ(p) = 0 must either be positive ordinary literals or positive
and monotonic dl-atoms. We consider the program S0 which contains all rules r such that
λ(H(r)) = 0. Then, after a �nite number of steps k, R′ must contain the least model of S0.

For any stratum n > k, let Sn be the set of rules r ∈ ground(P ) such that λ(H(r)) = n.
Then, each classical literal a ∈ B−(r) and each nonmonotonic dl-atom in B(r) must have
been in a stratum lower than n and thus their truth value in the least model of KB is
already known. Adding the least model of Sn−1 corresponds to removing all rules r from
ground(P ) where an atom a ∈ B−(r) is in the least model of Sn−1 (resp. a nonmontonic
dl-atom a ∈ B+(r) is not in the least model of Sn−1) and removing all other negative
literals (resp. all other nonmontonic dl-atoms) from B(r). The result is again a positive
program without any nonmonotonic dl-atoms. 2

Evaluation of a General dl-Program

Evidently, as soon as we have to deal with an unstrati�ed (sub-)program, the �xpoint
computation is not viable any more. Instead we use Algorithm 3.2, which follows the
guess-and-check approach described in Subsection 3.6.1. Mind that this method for a
general dl-program KB = (L,P ) as laid out there resulted in the weak answer sets of the
program. To check whether a guess G, which is correct w.r.t. to L, is also a strong answer
set, one has to verify whether the least model of the strong dl-transform sPG

L is equal to G.

Top-Level Computation

The evaluation method of NLP-DL is now to �nd the strati�cation splitting set S of the
input dl-program KB = (L,P ) and separate the strati�ed subprogram Pstrat = bS(P ) from
the unstrati�ed part Punstrat = P \ bS(P ). In Algorithm 3.3, we use Algorithm 1, denoted
by fixpoint(KB) (returning a single model), and Algorithm 3.2, denoted by guess(KB)
(returning a set of models).

It can be expected that this method of splitting the dl-program is of higher e�ciency
than the pure guess-and-check approach, since the �preliminary� computation of any strati-
�ed subprogram will in general narrow the search space of the guessing. It is obvious that a
subsequent and more �ne grained splitting into strongly and weakly connected components
of the program will further optimize the computation. The e�orts towards such a more
sophisticated processing of the program's dependency information were eventually put into
the reasoner for hex-programs, dlvhex (see Chapter 5).

3.9.2 Well-Founded Semantics

We have shown in Subsection 3.5.2 how to generalize the original de�nition of the well-
founded semantics (resp. the unfounded sets) to dl-programs. However, an implementation
of WFS for KB by �xpoint iteration of the de�ning monotonic operator WKB (I) as in [Eiter
et al., 2004b] is not attractive, since a polynomial-time algorithm for computing the greatest
unfounded set of KB with respect to I, due to Condition (iii) of an unfounded set, is not
evident (even if deciding I |=L l is polynomial).
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Algorithm 3.2: guess(KB): Computing the strong answer sets of a general dl-
program.

Input: general dl-program KB = (L,P )
Result: set of answer sets
Let A be the set of all dl-atoms in KB
Replace all dl-atoms a(t) in P by da(t)
D′ ⇐ {da(c) | ∅ |=L a(c), a(t) ∈ A,A is monotonic}
P ⇐ P ∪D′ ; // Add the atoms in D′ as facts to P
D ⇐ A \D′

forall a ∈ D do
B′ ⇐ B(ra) \ a, where ra is the rule that has a in its body
ra,guess ⇐ da(t) ∨ ¬da(t)← B′, dom(t), where dom(t) is a predicate whose
extension comprises the entire HU KB

P ⇐ P ∪ {ra,guess}
end
M⇐ ∅
forall R ∈ AS(P ) do

Rdl ⇐ {da(c) | da(c) ∈ R} ; // Collect all dl-atoms in the result

if R \Rdl |=L Rdl then // Weak answer set?

if LM (sPR
L ) = R then // Strong answer set?

M⇐M∪R
end

end

end
returnM

Algorithm 3.3: asp(KB): NLP-DL answer-set computation for a dl-program.

Input: general dl-program KB = (L,P )
Result: set of answer sets
M⇐ ∅
Mstrat ⇐ ∅
identify strati�cation splitting set S of P
if S 6= ∅ then

Pstrat ⇐ bS(P )
Mstrat ⇐ fixpoint(KB ′), where KB ′ = (L,Pstrat)
M⇐ {Mstrat}

end
if bS(P ) 6= P then

Punstrat ⇐ P \ bS(P )
M⇐ guess(KB ′), where KB ′ = (L,Punstrat ∪Mstrat)

end
returnM
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As shown in Subsection 3.6.3, the WFS for KB , denoted WFS (KB), is alternatively
given by

WFS (KB) = lfp(γ2
KB ) ∪ {¬a | a ∈ HBP \ gfp(γ2

KB )},

where the operator γKB (I) assigns each interpretation I ⊆ HBP the least model MKBI of
the strong reduct KB I = (L, sP I

L). Since γKB is anti-monotonic, γ2
KB is monotonic and

thus has a least �xpoint lfp(γ2
KB ) and a greatest �xpoint gfp(γ2

KB ).
This way, WFS (KB) is computable through a �xpoint iteration which computes and

outputs the greatest and the least �xpoint of the γ2
KB operator, starting from ∅ resp.

HBP (which may be represented by its complement). Since KB I is a positive dl-program,
machinery developed in Algorithm 1 for computing MKBI is very helpful in this respect.
Caching of intermediate DL models (see next subsection) also proves to be very fruitful in
this evaluation.

Algorithm 3.4 computes the result of the γ2
KB -operator w.r.t. a speci�c interpretation.

Algorithm 3.4: gamma2(KB , I): Computing γ2
KB (I).

Input: dl-program KB = (L,P ), interpretation I
Result: single model
Replace all dl-atoms a(t) in P by da(t)
D ⇐ {da(c) | I |=L a(c)} ; // i.e., all dl-atoms modeled by I w.r.t. L
P ′ ⇐ P ∪D
M ′ ⇐ LM (sP

′I
L )

D ⇐ {da(c) |M ′ |=L a(c)} ; // i.e., all dl-atoms modeled by M ′ w.r.t. L
P ′ ⇐ P ∪D
M ⇐ LM (sP

′I
L )

return M

Having de�ned gamma2, a general �xpoint computation is now trivial to specify (see
Algorithm 3.5). The set of well-founded literals is fp(∅, γ2

KB ), while the set of unfounded
literals is fp(HBKB , γ2

KB ).

Algorithm 3.5: wfs(KB , I): Computing the �xpoint of γ2
KB (I).

Input: dl-program KB = (L,P ), interpretation I
Result: set of facts
I ⇐ S
repeat

I ′ ⇐ I
I ⇐ gamma2(I ′)

until I = I ′

return I

Enhancing answer-set generation with well-founded semantics Another interest-
ing result from Subsection 3.5.4 allows to speed up the computation of the answer sets of
a given KB = (P,L) by means of a pre-evaluation of WFS (KB):

Theorem 3.9.5 Every strong answer set of a dl-program KB = (L,P ) includes lfp(γ2
KB )

and no atom a ∈ HBP \ gfp(γ2
KB ).

Proof. This result follows directly from Theorems 3.5.8 and 3.5.9. 2
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To consider this in the computation, we can exploit the possibility to introduce con-
straints to a DLV program (see Subsection 2.2.3). Constraints allow to �lter out models
which do not ful�ll prescribed requirements. An intermediate ordinary program P ′ ob-
tained from P can be then enriched with the constraint ← not a for any atom a such that
a ∈ WFS (KB), and with a constraint ← a for any atom a such that ¬a ∈ WFS (KB).
Notice that such constraints may also be added only for a subset of WFS (KB) (e.g., the
one obtained after some steps in the least resp. greatest �xpoint iteration of γ2

KB ). This
technique proves to be useful for helping the answer-set programming solver to converge
to solutions faster.

3.9.3 E�cient dl-Atom Evaluation and Caching

Since the calls to the DL-reasoner are a bottleneck in the coupling of an ASP solver with
a DL-engine, special methods need to be devised in order to save on the number of calls
to the DL-engine. To this end, we use complementary techniques.

DL-Function Calls

One of the features of DL-reasoners which may be fruitfully exploited for speed up are non-
ground queries. RACER provides the possibility to retrieve in a function call all instances
of a concept C (resp., of a role R) that are provable in the DL knowledge base. Given that
the cost for accessing the DL-reasoner is high, in the case when several di�erent ground
instances a(c1), a(c2), . . . , a(ck) of the dl-atom a(t) have be evaluated, it is a reasonable
strategy to retrieve at once, using the apposite function call feature from the DL-reasoner,
all instances of the concept C (resp., a role R) in a(t) = DL[S1op1p1, . . . ;C](t). This
allows to avoid issuing k separate calls for the single ground atoms a(c1), . . . , a(ck).

If the retrieval set has presumably many more than k elements, we can �lter it with
respect to c1, . . . , ck, by pushing these instances to a DL-engine as follows. For the query
concept C, we add in L axioms to the e�ect that C ′′ = C u C ′, where C ′ and C ′′ are
fresh concept names, and axioms C ′(c1), . . . , C ′(ck); then we ask for all instances of C ′′.
For roles, a similar yet more involved approximation method is introduced, given that
SHIF(D) and SHOIN (D) do not o�er role intersection.

With the above techniques, the number of calls to the DL-reasoner can be greatly
reduced. Another very useful technique to achieve this goal is caching.

DL-Caching

Whatever semantics is considered, a number of calls will be made to the DL-engine. There-
fore, it is is very important to avoid an unnecessary �ow of data between the two engines,
and to save time when a redundant DL-query has to be made. In order to achieve these
objectives, it is important to introduce some special caching data structures tailored for
fast access to previous query calls. Such a caching system needs to deal with the case of
Boolean as well as non-Boolean DL-calls.

For any dl-atom DL[λ;Q](t), where λ is a list S1op1p1, . . . , Snopnpn, and interpretation
I, let us denote by Iλ the projection of I on p1, . . . , pn.

Boolean DL-calls. In this case, an external call must be issued in order to verify whether
a given ground dl-atom b ful�lls I |=L b, where I is the current interpretation and L is the
DL-knowledge base hosted by the DL-engine. In this setting, the caching system exploits
properties of monotonic dl-atoms a = DL[λ;Q](c).
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Given two interpretations I1 and I2 such that I1 ⊆ I2, monotonicity of a implies that (i)
if I1 |=L a then I2 |=L a, and (ii) if I2 6|=L a then I1 6|=L a. This property allows to set up
a caching machinery where only the outcome for ground dl-atoms with minimal/maximal
input is stored.

Roughly speaking, for each monotonic ground dl-atom a we store a set cache(a) of
pairs 〈Iλ, o〉, where o ∈ {true, undefined}. If 〈Iλ, true〉 ∈ cache(a), then we can conclude
that J |=L a for each J such that Iλ ⊆ Jλ. Dually, if 〈Iλ, undefined〉 ∈ cache(a), we can
conclude that J 6|=L a for each J such that Iλ ⊇ Jλ.

We sketch the maintenance strategy for cache(a) in the following. The rationale is
to cache minimal (resp., maximal) input sets Iλ for which a is evaluated to true (resp.,
undefined) in past external calls.

Suppose a ground dl-atom a = DL[λ;Q](c), an interpretation I, and a cache set
cache(a) are given. With a small abuse of notation, let I(a) be a function whose value is
true i� I |=L a and undefined otherwise. In order to check whether I |=L a, cache(a) is
consulted and updated as follows:

1. Check whether cache(a) contains some 〈J, o〉 such that J ⊆ Iλ if o = true, or J ⊇ Iλ

if o = undefined . If such J exists, conclude that I(a) = o.

2. If no such J exists, then decide I |=L a through the external DL-engine. If I |=L a,
then add 〈Iλ, true〉 to cache(a), and remove from it each pair 〈J, true〉 such that
Iλ ⊂ J . Otherwise (i.e., if I 6|=L a) add 〈Iλ, undefined〉 to cache(a) and remove from
it each pair 〈J, undefined〉 such that Iλ ⊃ J .

Some other implementational issues are worth mentioning. First of all, since the sub-
sumption test between sets of atoms is a critical task, some optimization is made in order
to improve cache look-up. For instance, an element count is stored for each atom set, in
order to prove early that I 6⊆ J whenever |I| > |J |. More intelligent strategies could be
envisaged in this respect. Furthermore, a standard least recently used (LRU) algorithm has
been introduced in order to keep a �xed cache size.

Non-Boolean DL-calls. In most cases, a single non-ground query for retrieving all
instances of a concept or role might be employed. Caching of such queries is also possible,
but cache look-up cannot take advantage of monotonicity as in the Boolean case. For each
non-ground dl-atom a = DL[λ;Q](c), a set cache(a) of pairs 〈Iλ, a↓(Iλ)〉 is maintained,
where a↓(I) is the set of all ground instances a′ of a such that I |=L a′. Whenever for some
interpretation I, a↓(I) is needed, then cache(a) is looked up for some pair 〈J, a↓(J)〉 such
that Iλ = J .

3.9.4 Prototype

The architecture of our system prototype NLP-DL is depicted in Figure 3.1. The system
comprises di�erent modules, each of which is coded in the PHP scripting language; the
overhead is insigni�cant, provided that most of the computing power is devoted to the
execution of the two external reasoners. Moreover, the choice of this language enabled us
to make the prototype easily accessible by a Web-interface, thus serving its main purposes
as a testing and demonstration tool. The Web-interface allows the user to enter a dl-
program KB in form of an OWL-ontology L and an answer-set program P . It can then
be used either to compute the model(s) or to perform reasoning, both according to the
selected semantics, which can be chosen between the strong answer-set semantics and the
well-founded semantics. The second mode requires the speci�cation of one or more query
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atoms as input from the user; here, another choice between brave and cautious reasoning
is available. Furthermore, the result can be �ltered by speci�c predicate names.

DL-Caching
System
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Module

P

P
ground(P’),
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Figure 3.1: System architecture of the dl-program evaluation prototype.

The shadowed boxes represent the external reasoning engines: DLV [Leone et al., 2006]
was used as answer-set solver and RACER [Haarslev and Möller, 2001] as description Logics
Reasoner, which is embedded in a caching module.

Our prototypical implementation is capable of evaluating a dl-program in three di�erent
modes: (1) under answer-set semantics, (2) under WFS, and (3) under answer-set semantics
with preliminary computation of the WFS.

The preprocessing module evaluates all dl-atoms without any input (MDL), applies
the splitting method (separating the unstrati�ed subprogram Pu) and computes the single
answer set of the strati�ed subprogram (Ms). The ASP module implements the guessing
part of the evaluation, using DLV for the answer-set generation ({M1 . . .Mn}). This result
is streamed to a post-processing module, which carries out the veri�cation of each incoming
answer set according to the weak- resp. strong answer-set semantics, return the �nal result
{Mk1 . . .Mkn}. The WFS module is used for computing the well-founded model Mwfs . It
uses DLV not only as a solver, but also as a grounder to be able to transform the program
according to the GL-reduct. As we have shown in the previous subsection, the well-founded
model approximates the intersection of all strong answer sets and thus can optionally be
added to the input of the ASP module.

3.10 Related Work

As we have already pointed out in the introduction of this chapter, related works on
combining rules and ontologies can essentially be grouped into the following three lines of
research:

(a) interaction of rules and ontologies with strict semantic separation (loose coupling),
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(b) interaction of rules and ontologies with strict semantic integration (tight coupling),
and

(c) reductions from description logics to answer-set programming (ASP) and/or other
formalisms.

Interaction of Rules and Ontologies with Strict Semantic Separation

Here, the (usually nonmonotonic) rules component is kept strictly separate from the ontol-
ogy layer, where OWL/RDF �avors keep their purpose of description languages, not aimed
at intensive reasoning jobs. The two layers only communicate via a �safe interface�, and
no syntactic restrictions on either the rules or the ontology part are imposed.

From the rules layer point of view, ontologies are dealt with as an external source of
information whose semantics is treated separately. Non-monotonic reasoning and rules
are allowed in a decidable setting, as well as arbitrary mixing of closed and open world
reasoning. This approach typically involves special predicates in rule bodies which allow
queries to a DL knowledge base, and exchange factual knowledge. Examples for this type of
interaction are dl-programs themselves, their extension to hex-programs (see Chapter 4), to
probabilistic dl-programs [Lukasiewicz, 2005a,b], and to fuzzy dl-programs [Lukasiewicz,
2006]. hex-programs extend the framework of dl-programs so that multiple sources of
external knowledge, with possibly di�erent semantics, can be combined in a single logic
program, while probabilistic dl-programs and fuzzy dl-programs extend dl-programs by
probabilistic uncertainty and fuzzy vagueness/imprecision, respectively.

Further work in this direction is due to Antoniou [2002], which deals with a combination
of defeasible reasoning with Description Logics. Like in other work mentioned above, the
considered description logic serves here only as an input for the default reasoning mecha-
nism running on top of it. Wang et al. [2005] extend dl-programs by a framework conceived
for alignment of ontologies. Also, early work on dealing with default information in the
context of description logic is the approach by Baader and Hollunder [1995], where Reiter's
default logic is adapted to terminological knowledge bases, di�ering signi�cantly from our
approach. Less closely related work includes also the investigations by Baumgartner et al.
[2002] and Provetti et al. [2003]. Similar in spirit is also the notion of call to external
description logic reasoners in the TRIPLE [Sintek and Decker, 2002] rules engine.

Interaction of Rules and Ontologies with Strict Semantic Integration

This category comprises formalisms that introduce rules by adapting existing semantics for
rule languages directly in the ontology layer. Recently, several proposals have been made
to extend expressiveness while still retaining decidability, remarkably several attempts in
the ASP �eld. Common to these approaches are syntactic restrictions of the combined
language in a way that guarantees �safe interaction� of the rules and the ontology parts of
the language.

Grosof et al. [2003] show how inference in a subset of the description logic SHOIQ
can be reduced to inference in a subset of Horn programs (in which no function symbols,
negations, and disjunctions are permitted), and vice versa. This work resulted in the
conception of the Web Rule Language (WRL) proposal [Angele et al., 2005].

The works by Donini et al. [1998], Levy and Rousset [1998], and Rosati [1999] are
representatives of hybrid approaches using Description logics knowledge as input. In de-
tail, Donini et al. introduce a combination of (disjunction-, negation-, and function-free)
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datalog with the description logic ALC. An integrated knowledge base consists of a struc-
tural component in ALC and a relational component in datalog, where the integration of
both components lies in using concepts from the structural component as constraints in
rule bodies of the relational component. Donini et al. also present a technique for answering
conjunctive queries (existentially quanti�ed conjunctions of atoms) with such constraints,
where SLD-resolution as an inference method for datalog is integrated with a method for
inference in ALC. The closely related work by Levy and Rousset [1998] presents a combi-
nation of Horn rules with the description logic ALCNR. In contrast to Donini et al., Levy
and Rousset also allow for roles as constraints in rule bodies, and do not require the safety
condition that variables in constraints in the body of a rule r must also appear in ordinary
atoms in the body of r. Levy and Rousset also present a technique for answering queries,
which are of the very general form of disjunctions of conjunctive queries, conditioned on
conjunctive queries. Rosati [1999] presents a combination of disjunctive datalog (with clas-
sical and default negation, but without function symbols) with the description logic ALC,
which is based on a generalized answer-set semantics. Similarly to Levy and Rousset, here
Rosati also allows for roles as constraints in rule bodies, and does not require the above-
mentioned safety condition. He presents a technique for answering queries of the form of
ground atoms, which is based on a combination of ordinary answer-set programming with
inference in ALC.

The decidability result for so-called DL-safe rules (presented in Subsection 3.8.3) is
extended to a more expressive description logic SHIQ in [Motik et al., 2005] bringing
us closer to OWL, whereas in SWRL [Horrocks et al., 2004] the safety restriction, which
retains decidability, is not enforced. Another approach in this direction by Heymans et al.
[2005a] shows decidability for query answering in ALCHO-Q(t,u) with DL-safe rules by
an embedding in extended conceptual logic programming, a decidable extension of the
answer-set semantics by open domains. The most recent work in this direction by Rosati
[2005, 2006a,b] further weakens the safety restriction, by allowing non-rule atoms also in
rule heads, and also gives a nonmonotonic semantics for non-Horn rules in the spirit of
answer-set programming.

Rosati's DL+log formalism [2006a, 2006b], which extends his previous work is the clos-
est in spirit to dl-programs. In this approach, predicates are split into ontology predicates
and into logic program (datalog) predicates. A notion of model of a combined rule and
ontology knowledge base is de�ned using a two-step reduct in which, in the �rst step, the
ontology predicates are eliminated under the open-world assumption (OWA) and, in the
second step, the negated logic programming predicates under the closed-world assumption
(CWA). As shown by Rosati, the emerging formalism (which focuses on �rst-order models
under the standard-names assumption over in�nite universes), is decidable provided that
containment of conjunctive queries and union of conjunctive queries over the underlying
ontology is decidable. The main di�erences between DL+log and dl-programs are:

• DL+log is a tight coupling of rules and ontologies, while dl-programs provide a loose
coupling of rules and ontologies.

• While extensions of dl-programs to integrate ontologies even in di�erent formats
are straightforward, there is no corresponding counterpart in DL+log . Indeed, the
approach of dl-atoms is more �exible for mixing di�erent reasoning modalities, such
as consistency checking and logical consequence. In the realm of hex-programs,
almost arbitrary combinations can be conceived.

• The coupling as realized in dl-programs aims at facilitating interoperability of existing
reasoning systems and software (such as DLV and RACER). On the other hand, the
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loose coupling requires a bridging between the two worlds of ontologies and rules,
which has to be provided by the user. In particular, this applies to the individuals
at the instance level.

Reductions from Description Logics to ASP and/or Other Formalisms

Some representatives of approaches reducing Description Logic to logic programming are
the works by van Belleghem et al. [1997], Alsaç and Baral [2001], Swift [2004], Grosof
et al. [2003], and Heymans and Vermeir [2003a,b]. In detail, van Belleghem et al. analyze
the close relationship between Description Logics and open logic programs, and present a
mapping of description logic knowledge bases in ALCN to open logic programs. They also
show how other description logics correspond to sublanguages of open logic programs, and
they explore the computational correspondences between a typical algorithm for description
logic inference and the resolution procedure for open logic programs. The works by Alsaç
and Baral and Swift reduce inference in the description logic ALCQI to query answering
from normal logic programs (with default negation, but without disjunctions and classical
negations) under the answer-set semantics.

The remarkable work of Motik et al. [Hustadt et al., 2004] considers SHIQ ontologies.
Query answering is reduced to the evaluation of a positive disjunctive datalog program.
Such a program is generated after an ordinary translation to �rst-order logic, followed
by the application of superposition techniques. The latter aims at eliminating function
symbols from the �rst-order theory. The method has been practically adopted in the
KAON2 system, whose experimental results are accounted in [Motik and Sattler, 2006].

Finally, Heymans and Vermeir [2003a,b] present an extension of disjunctive logic pro-
gramming under the answer-set semantics by inverses and an in�nite universe. In par-
ticular, they prove that this extension is still decidable under the assumption that the
rules form a tree structure, and they show how inference in the description logic SHIF
extended by transitive closures of roles can be simulated in it.
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Chapter 4

hex-Programs

The development of dl-programs as presented in Chapter 3 lead to a novel framework that
couples logic programming and description logic reasoning in a fully declarative formalism.
It enables the user to solve sophisticated reasoning tasks that go beyond the power of
ontology languages such as OWL. However, this interface is restricted to a speci�c descrip-
tion logic, covering only a fraction of real-world Semantic Web use cases. In this chapter,
we present a more general logic programming framework, which still based on answer-set
semantics, but facilitates a much more versatile interface mechanism and additionally in-
troduces higher-order reasoning. We call this novel kind of programs hex-programs, that is,
higher-order logic programs with external atoms. Both features will be introduced below.

4.1 Introduction

From a conceptual viewpoint, the characteristic feature of the interface between a logic
program and an external reasoning formalism that was introduced by dl-programs, is to
leave the semantics of each side untouched (what we called strict semantic separation).
The DL knowledge base presents itself as a �black box� to the logic program. The user
does not need to know its entire signature, it is su�cient that she is aware of a subset
of its concepts and roles, enabling her to extend and query them. This strict separation
saved us from any decidability issues that come along a tighter integration of such diverse
formalisms.

In order to extend the answer-set semantics to the framework of dl-programs, basically
only the satis�ability relation for dl-atoms had to be introduced; a dl-program without
any such atoms behaves exactly like an ordinary answer-set program. On the other hand,
the satis�ability of a (ground) dl-atom depends on the entailment of its query w.r.t. the
respective DL knowledge base. The possibility of augmenting the assertional knowledge of
the DL KB was provided by supplying an interpretation along with the ground dl-atom.
Let us recall that a dl-atom not only speci�es a dl-query, but also the speci�c input to
the ABox. Consider the following example: We want to query the concept IsBusy from
an ontology, after we add the extension of the logic-program predicate worksWith the role
collaborates, and the extension of holiday to the negation of the concept InOffice. This
task can be accomplished by the following dl-atom:

DL[collaborates ] worksWith, InOffice −∪ holiday ; IsBusy ](X)

If we only consider the information �ow between the DL-reasoner and the logic program,
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we can abstract the parts of this dl-atom the following way:

input-speci�cation: collaborates ] worksWith, InOffice −∪ holiday ; IsBusy

input: input-speci�cation + I

output: X

In fact, we can further generalize this interfacing method and speak about an arbitrary
external source of knowledge, which returns a set of ground output tuples based on such
an input-speci�cation together with an interpretation. In this respect, we do not need to
speak of dl-atoms anymore, but can call them external atoms. The truth value of a ground
external atom is determined by some external evaluation function and the atom's input as
de�ned above. This input is in principle only a string, but in practice we can categorize it
into constants or names of predicates. For instance, the rule

reached(X)← &reach[edge, a](X)

computes the predicate reached taking values from the predicate &reach, which computes
via &reach[edge, a] all the reachable nodes in the graph edge from node a, delegating this
task to an external computational source (e.g., an external deduction system, an execution
library, etc.).

Evidently, with this concept we still stick to the idea of using a loose, semantically
�safe interface�. The logic program that uses such external atoms still obeys the answer-
set semantics, provided that we properly de�ne the satis�ability of such special atoms.
On the other hand, any such external function does not need to know anything about
logic-programming semantics, since it is regarded as a black box with a clearly speci�ed
input and output. Of course, di�erent types of external atoms may be used within a single
program, providing a framework to interoperate with a variety of external software at
the same time, combining heterogeneous knowledge under the multiple-model-generating
semantics of ASP (See Figure 4.1). In Chapter 5, where we present the implementation of a
hex-reasoner, we outline the method how the prototype interfaces the external reasoners in
practice and present a number of such interfaces (called plugins) that are already available.

Apart from the concept of external atoms, hex-programs o�er another extension with
respect to traditional answer-set programs, namely the possibility to use higher order syn-
tax. For important issues such as meta-reasoning in the context of the Semantic Web,
no adequate support is available in ASP to date. Intuitively, a higher-order atom allows
to quantify values over predicate names, and to freely exchange predicate symbols with
constant symbols, like in the rule

C(X)← subClassOf (D,C), D(X).

Especially when dealing with ontological knowledge on the Semantic Web, this enables
us to intuitively de�ne speci�c semantics by means of logic programming rules, as for the
subsumption relationship in the rule above.

In this chapter, we will present the following contributions:

• We de�ne the syntax and answer-set semantics of hex programs, extending ASP
with higher-order features and powerful interfacing of external computation sources.
While answer-set semantics for higher-order logic programs has been proposed earlier
by Ross [1994], further extension of that proposal to accommodate external atoms is
technically di�cult since the approach of Ross is based on the notion of unfounded
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Figure 4.1: hex-program Concept.

set, which cannot be easily generalized to this setting. Our approach, instead, is
based on a recent notion of program reduct due to Faber et al. [2004], which admits
a natural de�nition of answer-set semantics.

• We will discuss external atoms as a useful abstraction of several extensions to ASP
including, among others, aggregates, description logic atoms, or agent programs. Ex-
ternal atoms thus facilitate investigating common properties of such extensions, and
can serve as a uniform framework for de�ning semantics of further similar exten-
sions of ASP. Moreover, hex-programs are a basis for the e�cient design of generic
evaluation algorithms for such extensions in this framework.

• By means of hex-programs, powerful meta-reasoning becomes available in a decidable
context, e.g., for Semantic Web applications, for meta-interpretation in ASP itself,
or for de�ning policy languages. For example, advanced closed world reasoning or
the de�nition of constructs for an extended ontology language (e.g., of RDF Schema)
is well-supported. Due to the higher-order features, the representation is succinct.

• Eventually, we will give a detailed account of methods how to compute the answer
sets of a hex-program under the condition of using an existing solver for traditional
ASP. To this end, we will de�ne structural properties of a hex-program that will
enable us to evaluate it by splitting it into components. Additionally, the complexity
of solving a hex-program is surveyed.

Note that other logic-based formalisms, like TRIPLE [Sintek and Decker, 2002] or F-
Logic [Kifer et al., 1995], feature also higher-order predicates for meta-reasoning in Seman-
tic Web applications. However, TRIPLE is low-level oriented and lacks precise semantics,
while F-Logic in its implementations (Flora, Florid, Ontoweb) restricts its expressiveness
to well-founded semantics for negation, in order to gain e�ciency. Our formalism, instead,
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is fully declarative and o�ers the possibility of nondeterministic predicate de�nition with
higher complexity. This proved already useful and reasonably e�cient for a range of appli-
cations with inherent nondeterminism, such as diagnosis, planning, or con�guration, and
thus provides a rich basis for integrating these areas with meta-reasoning.

In the course of Section 5.3, where we introduce already implemented external atoms,
a number of illustrative examples will demonstrate the convenience of hex-programs.

4.2 hex-Program Syntax

Let C, X , and G be mutually disjoint sets whose elements are called constant names,
variable names, and external predicate names, respectively. Unless explicitly speci�ed,
elements from X (resp., C) are denoted with �rst letter in upper case (resp., lower case),
while elements from G are pre�xed with � & �. We note that constant names serve both as
individual and predicate names.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the atom. Intuitively,
Y0 is the predicate name, and we thus also use the more familiar notation Y0(Y1, . . . , Yn).
The atom is ordinary, if Y0 is a constant.

For example, (x, rdf :type, c), node(X), and D(a, b), are atoms; the �rst two are ordinary
atoms.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (4.1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists,
respectively), and &g ∈ G is an external predicate name. We assume that &g has �xed
lengths in(&g) = n and out(&g) = m for input and output lists, respectively. Intuitively,
an external atom provides a way for deciding the truth value of an output tuple depending
on the extension of a set of input predicates.

Example 4.2.1 The external atom &reach[edge, a](X) may be devised for computing
the nodes which are reachable in the graph edge from the node a. Here, we have that
in(&reach) = 2 and out(&reach) = 1. 3

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, (4.2)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βm are either atoms or external atoms.
We de�ne H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where B+(r) = {β1, . . . ,
βn} and B−(r) = {βn+1, . . . , βm}. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint,
and if B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if it contains only ordinary
atoms. Note that in contrast to dl-programs, hex-programs allow for disjunctive heads
and constraints.

A hex-program is a �nite set P of rules. It is ordinary, if all rules are ordinary.

4.3 Semantics of hex-Programs

We de�ne the semantics of hex-programs by generalizing the answer-set semantics by
Gelfond and Lifschitz [1991]. To this end, we use the recent notion of a reduct as de�ned
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by Faber et al. [2004] (referred to as FLP-reduct henceforth) instead of to the traditional
reduct by Gelfond and Lifschitz [1991]. The FLP-reduct admits an elegant and natural
de�nition of answer sets for programs with aggregate atoms, since it ensures answer-set
minimality, while the de�nition based on the traditional reduct lacks this important feature.

In the sequel, let P be a hex-program. The Herbrand base of P , denoted HBP , is the
set of all possible ground versions of atoms and external atoms occurring in P obtained by
replacing variables with constants from C. The grounding of a rule r, grnd(r), is de�ned
accordingly, and the grounding of program P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless

speci�ed otherwise, C, X , and G are implicitly given by P .

Example 4.3.1 Given C = {edge, arc, a, b}, ground instances of E(X, b) are for instance
edge(a, b), arc(a, b), a(edge, b), and arc(arc, b); ground instances of &reach[edge, N ](X)
are &reach[edge, edge](a), &reach[edge, arc](b), and &reach[edge, edge](edge), etc. 3

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say
that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I.

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary Boolean
function f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g),
m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP is a model of a ground
external atom a = &g [y1, . . . , yn](x1, . . . , xm), denoted I |= a, if and only if f&g(I, y1 . . .,
yn, x1, . . . , xm) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence reduces
to �rst-order logic as customary (cf. [Ross, 1994]), the semantics of external atoms is in
spirit of second order logic since it involves predicate extensions.

Example 4.3.2 Let us associate with the external atom &reach a function f&reach such
that f&reach(I, E, A,B) = 1 i� B is reachable in the graph E from A. Let I = {e(b, c),
e(c, d)}. Then, I is a model of &reach[e, b](d) since f&reach(I, e, b, d) = 1. 3

Let r be a ground rule. We de�ne (i) I |= H(r) i� there is some a ∈ H(r) such that
I |= a, (ii) I |=B(r) i� I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and (iii) I |= r
i� I |=H(r) whenever I |=B(r). We say that I is a model of a hex-program P , denoted
I |= P , i� I |= r for all r ∈ grnd(P ). We call P satis�able, if it has some model.

Given a hex-program P , the FLP-reduct of P with respect to I ⊆ HBP , denoted fP I ,
is the set of all r ∈ grnd(P ) such that I |= B(r). I ⊆ HBP is an answer set of P i� I is a
minimal model of fP I .

We next give an illustrative example.

Example 4.3.3 Consider the following hex-program P :

(1) subRelation(brotherOf , relativeOf ).
(2) brotherOf (john, al).
(3) relativeOf (john, joe).
(4) brotherOf (al ,mick).
(5) invites(john, X) ∨ skip(X)← X 6= john, reach[relativeOf , john](X).
(6) R(X, Y )← subRelation(P,R), P (X, Y ).
(7) ← &degs[invites](Min,Max ),Min < 1.

(8) ← &degs[invites](Min,Max ),Max > 2.
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Informally, this program randomly selects a certain number of John's relatives for
invitation. The �rst line states that brotherOf is a subrelation of relativeOf , and the next
three lines give concrete facts. The disjunctive rule (5) chooses relatives, employing the
external predicate &reach from Example 4.3.2. Rule (6) declares a generic subrelation
inclusion exploiting higher-order atoms.

The constraints (7) and (8) ensure that the number of invitees is between 1 and 2, using
(for illustration) an external predicate &degs from a graph library, where f&degs(I, E,Min,
Max ) is 1 i� Min and Max is the minimum and maximum vertex degree of the graph
induced by the edges E, respectively. As John's relatives are determined to be Al, Joe, and
Mick, P has six answer sets, each of which contains one or two of the facts invites(john, al),
invites(john, joe), and invites(john,mick). 3

In principle, the truth value of an external atom depends on its input and output
lists and the entire model of the program. Practically however, we can identify certain
types of input terms that allow to restrict the input interpretation to speci�c relations.
The atom &reach[edge, a](X) for instance will only consider the extension of the predicate
edge and the constant value a for computing its result and simply ignore the remaining
interpretation. In Chapter 5 we will formalize these two types of input terms and restrict
the practical usage of external atoms to them, since such type information will support an
e�cient evaluation to a great extent.

We now state some basic properties of the semantics.

Theorem 4.3.1 The answer-set semantics of hex-programs extends the answer-set se-
mantics of ordinary programs as de�ned by Gelfond and Lifschitz [1991], as well as the
answer-set semantics of HiLog programs as de�ned by Ross [1994].

Proof. Let P be a hex-program without any external atoms. The semantics of P directly
correspond to the classical answer-set semantics. 2

The next property, which is easily proved, expresses that answer sets adhere to the
principle of minimality.

Theorem 4.3.2 Every answer set of a hex-program P is a minimal model of P .

Proof. First, we show that an answer set A of P is also a model of P . This follows from
the fact that each answer set A is a least model of the FLP-reduct of P . Hence, A must
satisfy each rule r in fPA. If a rule r was removed by the reduct, it is trivially satisi�ed
by A. Thus, A is a model of P .

We prove minimality by contradiction. Assume that I is an answer set of a hex-
program P , J a model of P and that J ⊂ I. Since I is an answer set of P , it must be a
minimal model of fP I . But then, J cannot be a model of fP I , hence there must be a rule
r ∈ ground(fP I) such that r is unsatis�ed w.r.t. J . Due to the nature of the FLP-reduct,
fP I ⊆ fPJ , thus r must also be in r ∈ ground(fPJ) and therefore J cannot be a model of
P . 2

A ground external atom a is called monotonic relative to P i� I ⊆ I ′ ⊆ HBP and I |= a
imply I ′ |= a. For instance, the ground versions of &reach[edge, a](X) are all monotonic.

Theorem 4.3.3 Let P be a hex-program without �not� and constraints. If all external
atoms in grnd(P ) are monotonic relative to P , then P has some answer set. Moreover, if
P is disjunction-free, it has a single answer set.
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Proof. A positive program with only montonic external atoms must have a model and
therefore also a minimal model. But then it also has an answer set, since each minimal
model is an answer set.

If P is disjunction-free, it is Horn and thus must have a unique least model. 2

Notice that this property fails if external atoms can be non-monotonic. Indeed, we can
easily model default negation not p(a) by an external atom &not [p](a); the hex-program
p(a) ← &not [p](a) amounts then to the ordinary program p(a) ← not p(a), which has no
answer set.

4.4 Modeling ASP Extensions by External Atoms

The formalism of answer-set programming has been enriched by various important exten-
sions over the past years. By means of external atoms, these features can be generalized
and expressed in terms of hex-programs, reconstructing their semantics at an abstract
level. In the following, we will pick out four such extensions and show how to model them
with external atoms.

4.4.1 Programs with Aggregates

Extending ASP with special aggregate atoms, through which the sum, maximum, etc. of
a set of numbers can be referenced, is an important issue which has been considered in
several recent works (cf., e.g., [Faber et al., 2004]). A non-trivial and challenging problem
in this context is giving a natural semantics for aggregates involving recursion. The recent
proposal of a semantics by Faber et al. is an elegant solution of this problem. We show
here how it can be easily captured by hex-programs.

Let us recall the de�nition of an aggregate, which we already introduced in Subsec-
tion 2.2.3. An aggregate atom a(Y, T ) has the form f{S} ≺ T , where f is an aggregate
function (sum, count , max , etc.), ≺∈ {=, <,≤, >,≥}, T is a term, and S is an expression
X: ~E( ~X, ~Y , ~Z), where ~X and ~Y are lists of local variables, ~Z is a list of global variables, and
~E is a list of atoms whose variables are among ~X, ~Y , ~Z.

For example, &count{X : r(X, Z), s(Z, Y )} ≥ T is an aggregate atom which is in-
tuitively true if, for given Y and T , at least T di�erent values for X are such that the
conjunction r(X, Z), s(Z, Y ) holds.

Given a(Y, T ) = f{S} ≺ T as above, an interpretation I, and values y for Y and t for
T , f is applied to the set S(I, y) of all values x for X such that I |= E(x, y, z) for some
value z for Z. We then have I |= a(y, t) (i.e., I |= f{X:E(X, y, Z)} ≺ t) i� f(S(I, y)) ≺ t.

Using the above notion of truth for a(y, t), Faber et al. [2004] de�ne answer sets of an
ordinary program plus aggregates using the reduct fP I .

We can model an aggregate atom a(Y, T ) by an external atom &a[Y ](T ) such that for
any interpretation I and ground version &a[y](t) of it, f&a(I, y, t) = 1 i� I |= a(y, t). Note
that writing code for evaluating f&a(I, y, t) is easy.

For any ordinary program P with aggregates, let &agg(P ) be the hex-program which
results from P by replacing each aggregate atom a(Y, T ) with the respective external atom
&a[Y ](T ). The following result can then be shown:

Theorem 4.4.1 For any ordinary program P with aggregates, the answer sets of P and
&agg(P ) coincide.
Proof. Let P be a program with aggregates. We need to show that I is an answer set of
P i� it is an answer set of &agg(P ).
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(⇒) If I is an answer set of P , it must be a minimal model of fP I , i.e., each r in
fP I is satis�ed by I. For each such rule r in fP I , there must be a corresponding rule in
f(&agg(P ))I , which then must also satis�ed by I, because by de�nition, for each aggregate
atom a, it holds that I |= a(y, t) i� I |= &a[y](t). Thus, I is also a model of f(&agg(P ))I .
Let J be a model of f(&agg(P ))I and J ⊂ I. Then, each rule r in f(&agg(P ))I must
be satis�ed by J and conversely also each corresponding rule in fP I . But this contradicts
our assumption of I being a minimal model of fP I . Hence, I is also a minimal model of
f(&agg(P ))I and therefore an answer set of &agg(P ).

It is easy to see that the proof for the other direction is similar. 2

4.4.2 dl-Programs

In Chapter 3, we de�ned answer sets of an ordinary non-disjunctive program P relative
to a DL knowledge base L through a reduct sP I

L, which extends the traditional reduct
of Gelfond and Lifschitz [1991]. Assuming that each ground dl-atom dl(c) is monotonic
(i.e., I |= dl(c) implies I ′ |= dl(c), for I ⊆ I ′; this is the predominant setting), sP I

L treats
negated dl-atoms like negated ordinary atoms. The resulting ground program sP I

L has a
least model, LM(sP I

L). Then, I is a strong answer set of (L,P ) i� I = LM(sP I
L) holds.

We can simulate dl-atoms by external atoms in several ways. A simple one is to
use external atoms &dl[ ](X) where f&dl(I, c) = 1 i� I |=L dl(c). Let &dlL(P ) be the
hex-program obtained from a dl-program (L,P ) by replacing each dl-atom dl(X) with
&dl[ ](X). We can then show:

Theorem 4.4.2 Let KB = (L,P ) be any dl-program for which all ground dl-atoms are
monotonic. Then, the strong answer sets of KB = (L,P ) and &dlL(P ) coincide.

Proof. We follow the line of the proof of Theorem 3 by Faber et al. [2004]. First, we show
that an interpretation I that is an answer set of &dlL(P ) must also be a strong answer set
of KB = (L,P ). For readability reasons, we will denote &dlL(P ) by Π and assume both
P and Π to be already grounded. We recall that I |=L dl(c) i� I |= &dl[ ](c)

If I is an answer set of Π, it must be a minimal model of the reduct fΠI . For each
rule ρ in fΠI , there must be a corresponding rule r in the strong reduct sP I

L, which is
obtained from ρ by removing all negative literals from ρ. Since ρ ∈ fΠI , it must hold that
all negative literals in I are true w.r.t. ρ and also w.r.t. J for all J ⊆ I. A rule r′ that
is in sP I

L but has no corresponding rule in fΠI must have some literal p in B+(r′) which
is false w.r.t. I (otherwise the rule would not have been removed by the FLP-reduct) and
also false w.r.t. J for all J ⊆ I. Thus, I is a model of sP I

L and moreover a minimal model,
because if a J ⊂ I was a model of sP I

L, it must also be a model of fΠI , and hence I would
not be a minimal model of fΠI .

Next, we show that an interpretation I that is a strong answer set of KB = (L,P ) must
also be an answer set of Π. Such an answer set is a minimal model of sP I

L. For each rule
ρ ∈ fP I , there must be a corresponding rule r ∈ sP I

L such that I |= B(r), with the negated
literals removed from the body of ρ. Since I |= H(r), we have I |= H(ρ) and therefore
I |= fP I . To show that I is also a minimal model of fP I , we assume J |= fP I with J ⊂ I.
Again, for each rule ρ ∈ fP I , the corresponding rule r ∈ sP I

L must also be satis�ed by J .
If a rule r ∈ sP I

L has no corresponding rule ρ ∈ fP I , it must hold that I 6|= B+(r), because
the negative part of the body is satis�ed by I (otherwise the rule would have been in the
strong reduct, too). But then, also J 6|= B+(r) and hence, J |= r. It follows that J |= sP I

L,
which contradicts that I is a strong answer set of KB . Thus, I is also a minimal model of
fΠI . 2
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Note that we can extend the strong answer-set semantics to disjunctive dl-programs
by simply extending the embedding &dlL(P ) to disjunctive programs. This illustrates the
use of hex-programs as a framework for de�ning semantics.

The Description Logics plugin, that will be introduced in Subsection 5.3.1, supplies
external atoms that entirely model the functionality of dl-atoms.

4.4.3 Programs with Monotone Cardinality Atoms

Marek et al. [2004] present an extension of ASP by monotone cardinality atoms (mc-
atoms) k X, where X is a �nite set of ground atoms and k≥ 0. Such an atom is true in
an interpretation I, if k ≥ |X ∩ I| holds. Note that an ordinary atom A amounts to 1{A}.
An mca-program is a set of rules

H ← B1, . . . , Bm,not Bm+1, . . . ,not Bn (4.3)

where H and the Bi's are mc-atoms. Answer sets (stable models) for an mca-program P
are interpretations I which are derivable models of an extended reduct P I (in the sense of
Gelfond and Lifschitz [1991]), which treats negated mc-atoms like negated ordinary atoms.
Informally, a model of P I is derivable, if it can be created from the empty set by iterative
rule applications in which the heads of �ring rules are nondeterministically satis�ed.

We can embed any mca-program P into a hex-program &mc(P ) as follows. Each
mc-atom k X is modeled by an external atom e(k X) = &k X[ ](), where f&k X(I) = 1 i�
k≥ |X ∩ I|. In each rule of form (4.3), we replace H with a new atom tH and all Bi with
e(Bi), and add the following rules (for H = k {A1, . . . , Am}):

Ai ∨ n_Ai ← tH , 1 ≤ i ≤ m,

← not e(H), tH ,

where, globally, n_A is a new atom for each atom A. Informally, these rules simulate the
occurrence of the mc-atom in the head. We can then show that for any �nite mca-program
P over atoms At, the answer sets of P and &mc(P ) projected to At coincide.

As shown by Marek et al. [2004], ASP extensions similar to mca-programs can be
modeled as mca-programs. Hence, these extensions can be similarly embedded into hex-
programs.

4.4.4 Agent Programs

Eiter et al. [1999b] describe logic-based agent programs, consisting of rules of the form

Op0α0 ← χ, [¬]Op1α1, . . . , [¬]Opmαm,

governing an agent's behavior. The Opi are deontic modalities, the αi are action atoms,
and χ is a code-call condition. The latter is a conjunction of (i) code-call atoms of the form
in(X, f(Y )) resp. notin(X, f(Y )), which access the data structures of the internal agent
state through API functions f(Y ) and test whether X is in the result, and (ii) constraint
atoms. For example, the rule

Do_dial(N)← in(N, phone(P )), O call(P )

intuitively says that the agent should dial phone number N if she is obliged to call P .
A semantics of agent programs in terms of �reasonable status sets�, which are certain

sets of ground formulas Opα, is de�ned by Eiter et al. [1999b]. They show that the answer
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sets of a disjunction-free logic program P correspond naturally to the reasonable status
sets of a straightforward agent program AG(P ). Conversely, code-call atoms as above can
be modeled by external atoms &inf [Y ](X) resp. &notinf [Y ](X), and deontic modalities
by di�erent propositions and suitable rules. In this way, a class of agent programs can be
embedded into hex-programs as a host for evaluation.

4.5 Application Examples

In Section 3.8, we showed how to employ the semantics of dl-programs to problems related
to the coupling of rules and ontologies. In this section, we present some ideas for the
usage of hex-programs for a more general class of di�erent purposes, in which the joint
availability of higher-order and external atoms is bene�cial.

4.5.1 Semantic Web Applications

hex-programs are well-suited as a convenient tool for a variety of tasks related to ontol-
ogy languages and for Semantic-Web applications in general, since, in contrast to other
approaches, they keep decidability but do not lack the possibility of exploiting nondeter-
minism, performing meta-reasoning, or encoding aggregates and sophisticated constructs
through external atoms.

An interesting application scenario where several features of hex-programs come into
play is ontology alignment. Merging knowledge from di�erent sources in the context of the
Semantic Web is a very important task [Calvanese et al., 2001]. To avoid inconsistencies
which arise in merging, it is important to diagnose the source of such inconsistencies and
to propose a �repaired� version of the merged ontology. In general, given an entailment
operator |= and two theories T1 and T2, we want to �nd some theory rep(T1 ∪ T2) which,
if possible, is consistent (with respect to |=). Usually, rep is de�ned according to some
customized criterion, so that to save as much knowledge as possible from T1 and T2. Also,
rep can be nondeterministic and admit more than one possible solution.

hex-programs allow to de�ne |= according to a range of possibilities; in the same way,
hex-programs are a useful tool for modeling and customizing the rep operator. In order
to perform ontology alignment, hex-programs must be able to express tasks such as the
following ones:

Importing external theories. This can be achieved, e.g., in the following way:

triple(X, Y, Z)← &rdf [uri ](X, Y, Z);

triple(X, Y, Z)← &rdf [uri2 ](X, Y, Z);

proposition(P )← triple(P, rdf :type, rdf :Statement).

We assume here to deal with RDF resp. RDF Schema theories [Brickley and Guha,
2004]. We take advantage of an external predicate &rdf intended to extract knowl-
edge from a given URI (Uniform Resource Identi�er), in form of a set of �rei�ed�
ternary assertions. Here, we clearly see the more general approach compared to our
previously de�ned dl-programs: in a hex-program, we are not bound to one speci�c
ontology, but can refer to several sources in the same logic program. Moreover, pro-
vided that the respective external atoms are available, knowledge bases speci�ed in
various di�erent formalisms, such as RDF and OWL can be merged.
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Searching in the space of assertions. This task is required in order to choose non-
deterministically which propositions have to be included in the merged theory and
which not, with statements like

pick(P ) ∨ drop(P )← proposition(P ).

Thus, we speci�cally make use of the model-generation feature of the answer-set
programming paradigm to be able to create a search space on top of terminological
knowledge.

Translating and manipulating rei�ed assertions. E.g., for choosing how to put RDF
triples (possibly including OWL assertions) in an easier manipulatable and readable
format, and for making selected propositions true, the following rules can be em-
ployed:

(X, Y, Z)← pick(P ), triple(P, rdf :subject , X),
triple(P, rdf :predicate, Y ),
triple(P, rdf :object , Z);

C(X)← (X, rdf :type, C).
owl :maxCardinality(C,R, N)← (X, rdf :type, owl :Restriction),

(X, owl :onProperty , R),
(X, owl :maxCardinality , N).

Filtering propositions. The search space created by disjunctive rules can be narrowed
by customizing criteria for selecting which propositions can be dropped and which
cannot. For instance, a proposition cannot be dropped if it is an RDF Schema
axiomatic triple:1

pick(P )← axiomatic(P ).

De�ning ontology semantics. The operator |= can be de�ned in terms of entailment
rules and constraints expressed in the language itself, like in:

D(X)← (C, rdf :subClassOf , D), C(X);
← owl :maxCardinality(C,R, N), C(X),

&countr [R,X](M),M > N,

where the external atom &countr [R,X](M) models the aggregate atom &count{Y :
R(X, Y )} = M , i.e., counting the role �llers Y for X in R. Moreover, semantics can
be de�ned by means of external reasoners, using constraints like

← &inconsistent [pick],

where the external predicate &inconsistent establishes through an external reasoner
whether the underlying theory is inconsistent w.r.t. a set of assertions.

1In a language enriched with weak constraints, we can also maximize the set of selected propositions
using a constraint of form :∼ drop(P ).
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4.5.2 Closed-World and Default Reasoning

In Sections 3.8.1 and 3.8.2, we showed how to exploit dl-programs to implement the non-
monotonic inference principles of default reasoning and the closed-world assumption. Since
suitable hex-atoms can model the semantics of dl-atoms, these methods can be applied
to hex-programs accordingly. Furthermore, with hex-programs we can take advantage of
the fact that multiple external knowledge bases can be imported into a single program and
hence apply the completion of a predicate (positively or negatively) only to speci�c parts
of the imported information. Such a strategy corresponds to the widely claimed assertion
that knowledge on the Semantic Web is not entirely open or closed, but rather contains
�islands� of complete information, �oating in a generally open world of reasoning.

4.6 Computation of HEX-programs

Our approach to designing and implementing a reasoner for hex-programs was to use exist-
ing solvers as e�ciently as possible by integrating them into a reasoning framework, instead
of creating a model generator from scratch. We realized that existing implementations of
ASP reasoners employ very sophisticated and e�ective methods, which can be reused for
this novel semantics to a great extent. In this chapter we present principles and algorithms
for solving hex-programs.

The challenge of implementing a reasoner for hex-programs lies in the interaction
between external atoms and the ordinary part of a program. Due to the bidirectional �ow
of information represented by its input list, an external atom cannot be evaluated prior to
the rest of the program. However, the existence of established and e�cient reasoners for
answer-set programs led us to the idea of splitting and rewriting the program such that
an existing answer-set solver can be employed in turn with the external atoms' evaluation
functions.

The reasoner for dl-programs, that was outlined in Chapter 3.9 already adopted a naive
version of this method, trying to separate the program in a strati�ed and an unstrati�ed
part and thus speed up the computation. Here, we want to pursue a more sophisticated
concept of processing the program. The basic idea is to identify as large as possible
subprograms that can be solved �at once�, i.e., by a single call to an external ASP reasoner.
These calls are carried out alternatingly with the evaluation routines of the external atoms,
which determine the locations where to split the program. In case of a strati�ed hex-
program, this strategy can be applied in a straightforward way, but as soon as external
atoms occur in recursive de�nitions, other methods for evaluating such a �cycle� have to
be applied.

In the following subsection, we will de�ne suitable notions of dependency that enable
us to view a hex-program as a graph in order to identify subgraphs with certain properties
that can be evaluated separately. This dependency information will be similar to the
one that was developed for dl-programs, but also more general, since we have to account
for disjunctive heads as well as higher-order syntax. Thus, we will repeat the notion of
dependency in a logic program and enhance it where needed. Moreover, we will outline
syntactic criteria for safety constraints of hex-programs, guaranteeing a �nite reasoning
domain. In [Eiter et al., 2006f] we have presented these methods �rst and re�ned them
later in [Eiter et al., 2006c].

Contrary to the treatment of external evaluations, the second feature of hex-programs,
the higher-order syntax, does not involve such sophisticated mechanisms. Our notion of
higher-order can basically be regarded as syntactic sugar and translated to a �rst-order
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logic program by moving the predicate inside the tuple of arguments. Thus, it is su�cient
to carry out the following replacement prior to any program evaluation: Each ordinary
atom of the form p(X̄), where the predicate symbol p can also be a variable, is replaced
by a �rst-order atom an(p, X̄), where n is the arity of X̄.

4.6.1 Dependency Information

Taking the dependency between heads and bodies into account is a common tool for de-
vising an operational semantics for ordinary logic programs, e.g., by means of the notions
of strati�cation or local strati�cation [Przymusinski, 1988], or through modular strati�-
cation [Ross, 1994] or splitting sets [Lifschitz and Turner, 1994]. Contrary to the tra-
ditional de�nition of dependency, like in [Apt et al., 1988], we have to consider that in
hex-programs, dependency between heads and bodies is not the only possible source of
interaction between predicates. Moreover, allowing higher order atoms to have non-ground
predicates, we use a modi�ed notion of dependency between atoms, taking the entire atom
and not only its predicate symbol into account. In particular we can have:2

Dependency between higher order atoms. For instance, p(A) and C(a) are strictly
related. Intuitively, since C can unify with the constant symbol p, rules that de�ne
C(a) may implicitly de�ne the predicate p. This is not always the case: for instance,
rules de�ning the atom p(X) do not interact with rules de�ning a(X), as well as
H(a, Y ) does not interact with H(b, Y ).

Dependency through external atoms. External atoms can take predicate extensions
as input: as such, external atoms may depend on their input predicates. This is the
only setting where predicate names play a special role.

Disjunctive dependency. Atoms appearing in the same disjunctive head have a tight
interaction, since they intuitively are a means for de�ning a common nondeterministic
search space.

In the following we recall the traditional notion of strati�cation, supplementing the
de�nition already given in Subsection 2.2.2. A program P is called strati�ed, if there is a
partition

P = P1∪̇ . . . ∪̇Pn

such that the following conditions hold for i = 1, . . . , n:

1. if a relation symbol r occurs positively (i.e., is contained in a positive literal) in a rule
in Pi, then its de�nition (i.e., the subset of P consisting of all rules where r occurs
in the head) within

⋃
j≤i Pj .

2. if a relation symbol occurs negatively (i.e., is contained in a negative literal) in a rule
in Pi, then its de�nition is contained within

⋃
j<i Pj .

According to this de�nition, P is strati�ed by P1∪̇ . . . ∪̇Pn and each Pi is called a stratum
of P .

Naturally, this de�nition is insu�cient for hex-programs, considering that not only
external atoms depend from other atoms without occurring in any head, but also external
atoms can have non-monotonic behavior and thus must be treated like weakly negated

2Of course, any such considerations must be carried out on the original program, prior to the translation
from higher-order to �rst-order syntax as described before.
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literals regarding strati�cation. In Section 4.3 we already noted that, while theoretically
an external atom depends on the entire model(s) of the program, in practice we can restrict
the input interpretation to speci�c relations.

De�nition 4.6.1 Let &g be an external predicate, f&g its evaluation function, I an in-
terpretation, and X1, . . . , Xn its input list. Then &g is associated with a type signature
(t1, . . . , tn), where each ti is the type associated with Xi and can either be c or p. If ti
is c, then we assume that Xi is a constant, otherwise we assume that Xi is a predicate
symbol. f&g depends only on those atoms in I that have a predicate symbol p equal to some
Xi ∈ X1, . . . , Xn with ti = p.

In order to be able to identify a reasonable dependency structure, In practice we do
not allow to specify variables for input terms of type p. Otherwise the calculation of the
part of the program that such an external atom depends on would quickly become very
complex.

De�nition 4.6.2 Let P be a program and a, b atoms occurring in some rule of P . Then,
a depends positively on b (a→p b), if one of the following conditions holds:

1. There is some rule r ∈ P such that a ∈ H(r) and b ∈ B+(r).
Example: r1 : p(X)← q(X), r(X).
Clearly, we have p(X)→p q(X) and p(X)→p r(X).

2. There are some rules r1, r2 ∈ P such that a ∈ B(r1) and b ∈ H(r2) and there exists
a partial substitution θ of variables in a such that either aθ = b or a = bθ. E.g.,
H(a, Y ) uni�es with p(a,X).
Example: r1 : p(X)← q(X), r(X).

r2 : q(Y )← s(Y ).
Since q(X) uni�es with q(Y ), we have q(X)→p q(Y ).

3. There is some rule r ∈ P such that a, b ∈ H(r). Note that this relation is symmetric.

Example: r1 : p(X) ∨ q(X)← r(X).
From this we get p(X)→p q(X) and q(X)→p p(X).

Furthermore, a depends externally on b (a→e b), if one of the following conditions holds:

1. a is an external predicate of form &g[X̄](Ȳ ) with a type signature (t1, . . . , tn), where
X̄ = X1, . . . , Xn, b is of form p(Z̄), and, for some i, Xi = p and ti = p.

Example: r1 : num(N)← &count [item](N).
r2 : item(X)← part(X).

Here we have &count [item](N)→e item(X), if the input term item is of type p
instead of merely denoting a constant string.

2. there is some rule r ∈ P with a, b ∈ B(r) such that a is an external predicate of form
&g[X̄](Ȳ ) where X̄ = X1, . . . , Xn, and b is of form p(Z̄), and X̄ ∩ Z̄ 6= ∅.
Example: r1 : reached(X)← &reach[N, edge](X), startnode(N).
This causes &reach[N, edge](X)→e startnode(N).

Moreover, a depends negatively on b (a→n b), if there is some rule r ∈ P such that either
a ∈ H(r) and b ∈ B−(r) or b is a non-monotonic external atom.

We say that a depends on b, if a→ b, where → = →p ∪ →e ∪ →n . The relation
→+ denotes the transitive closure of → . We say that a strictly depends on b, or a 7→ b,
if a→+ b, but not b 6→+ a.
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These dependency relations let us construct a graph GP , which we call the dependency
graph of the corresponding program P .

De�nition 4.6.3 Let P be a hex-program. A dependency graph GP of P consists of the
set VP that contains all atoms in P (i.e., the vertices of GP ) and the set EP of dependency
relations contained in P according to De�nition 4.6.2 (i.e., the edges of GP ).

Note that this de�nition is based on a non-ground hex-program P .

Example 4.6.1 Consider the following program, modeling the search for personal contacts

that stem from a FOAF-ontology,3 which is accessible by a URL.

(1) url(“http://www .kr .tuwien.ac.at/staff /roman/foaf .rdf ”)←;
(2) url(“http://www .mat .unical .it /̃ianni/foaf .rdf ”)←;

(3) ¬input(X) ∨ ¬input(Y ) ← url(X), url(Y ), X 6= Y ;
(4) input(X) ← not ¬input(X), url(X);
(5) triple(X, Y, Z) ← &rdf [A](X, Y, Z), input(A);
(6) name(X, Y ) ← triple(X, “http://xmlns.com/foaf /0 .1/name”, Y );
(7) knows(X, Y ) ← name(A,X),name(B, Y ),

triple(A, “http://xmlns.com/foaf /0 .1/knows”, B).

The �rst two facts specify the URLs of the FOAF ontologies we want to query. Rules 3
and 4 ensure that each answer set will be based on a single URL only. Rule 5 extracts
all triples from an RDF �le speci�ed by the extension of input . Rule 6 converts triples
that assign names to individuals into the predicate name. Finally, the last rule traverses
the RDF graph to construct the relation knows. Figure 4.2 shows the dependency graph
of P .4 3

We can now de�ne several structural properties of hex-programs.

De�nition 4.6.4 Let P be a hex-program and → the relation de�ned above. We say that
P is

(i) nonrecursive, if → is acyclic;

(ii) strati�ed, if there is no cycle in → containing some atom a and b such that a→n b;

(iii) e-strati�ed, if there is no cycle in → containing some atom a and b such that a→e b;
and

(iv) totally strati�ed, if it is both strati�ed and e-strati�ed.

For instance, the program in Example 4.6.1 is totally strati�ed because the only cycle
is caused by the disjunction in Rule (3) and does not include negation.

Before we show how to process this graph in order to compute the answer sets of a
hex-program, we �rst need to answer the question how to tackle the potentially in�nite
domain of a hex-program.

3�FOAF� stands for �Friend Of A Friend�, and is an RDF vocabulary to describe people and their
relationships.

4Long constant names have been abbreviated for the sake of compactness.
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Figure 4.2: FOAF program graph.

4.6.2 In�nite Domains

Given a hex-program P , its grounding grnd(P ) is in�nite in general, and cannot be reduced
straightforwardly to a �nite portion since, given an external predicate &g, the co-domain
of F&g is unknown and possibly in�nite. It is thus important to impose two restrictions:

1. We assume that for a single speci�c ground input tuple, an external atom only re-
turns a �nite set of output tuples. Otherwise, �niteness could never be guaranteed,
independently of the program's structure.

2. We restrict the usage of external predicates within a hex-program in terms of strati-
�cation in order to bound the number of symbols to be taken into account to a �nite
number, whilst external knowledge in terms of new symbols can still be brought into
a program.

In the following, we will describe the second condition in detail, beginning with the
de�nition of rule safety.
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De�nition 4.6.5 Given a rule r, the set of safe variables in r is the smallest set X of
variables such that

(i) X appears in a positive ordinary atom in the body of r, or

(ii) X appears in the output list of an external atom &g[Y1, . . . , Yn](X1, . . . , Xm) in the
body of r and Y1, . . . , Yn are safe.

A rule r is safe, if each variable appearing in a negated atom and in any input list is safe,
and variables appearing in H(r) are safe.

For instance, the rule r : C(X) ← url(U),&rdf [U ](X, “rdfs:subClassOf ”, C) is safe.
Intuitively, this notion captures those rules for which input to external atoms can be
determined by means of other atoms in the same rule. Given the extension of the predicate
url , the number of relevant ground instances of r intuitively is �nite and can be determined
by repeated calls to F&rdf .

In some cases, safety is not enough for determining �niteness of the set of relevant
symbols to be taken in account. This motivates the following stronger notion:

De�nition 4.6.6 Let r be a rule in P with external atoms &f1[Ȳ1](X̄1), . . . &fn[Ȳn](X̄n)
in B(r) and E be the set of all variables in

⋃
i≤n Ȳi. Moreover, let S be the set of atoms

b ∈ B+(r) such that each atom a ∈ H(r) strictly depends on b. Let V be the set of all
variables that occur in the ordinary atoms in S and all variables in the output list of the
external atoms in S. Let G be the set of all predicate symbols in

⋃
i≤n Ȳi. Then, r is

strongly safe, i� (i) E ⊆ V and (ii) each atom a ∈ H(r) strictly depends on all p ∈ G.

Informally, a rule is strongly safe, if its external atoms receive their input from a lower
stratum of the program. This way, even if they occur in a cycle, their output cannot grow
in�nitely, since the size of their input is �xed �before entering" the cycle.

The rule r above is not strongly safe. Indeed, if some external URL invoked by means
of &rdf contains some triple of form (X, “rdfs:subClassOf ”, url), the extension of the url
predicate is potentially in�nite. The rule

r′ : instanceOf (C,X)← url(U),&rdf [U ](X, “rdfs:subClassOf ”, C)

is strongly safe, if url(U) does not depend transitively on instanceOf (C,X).
The strong safety condition is, anyway, only needed for rules which are involved in

cycles of → . In other settings, the ordinary safety restriction is enough. This leads to
the following notion of a domain-expansion safe program. Let grndU (P ) be the ground
program generated from P using only the set U of constants.

De�nition 4.6.7 A hex-program P is domain-expansion safe i� each rule r ∈ P is safe
and each rule r ∈ P containing some external atom b ∈ B(r) is strongly safe.

The following theorem states that we can e�ectively reduce the grounding of domain-
expansion safe programs to a �nite portion.

Theorem 4.6.1 For any domain-expansion safe hex-program P , there exists a �nite set
D ⊆ C such that grndD(P ) is equivalent to grndC(P ) (i.e., has the same answer sets).

Proof (sketch).
The proof proceeds by considering that, although the Herbrand universe of P is in

principle in�nite, only a �nite set D of constants can be taken into account. From D, a
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�nite ground program, grndD(P ), can be used for computing answer sets. Provided that
P is domain-expansion safe, it can be shown that grndD(P ) has the same answer sets as
grndC(P ).

A program that incrementally builds D and grndD(P ) can be sketched as follows:
We update a set of active ordinary atoms A and a set R of ground rules (both of them
initially empty) by means of a function ins(r, A), which is repeatedly invoked over all
rules r ∈ P until A and R reach a �xed point. The function ins(r, A) is such that, given
a safe rule r and a set A of atoms, it returns the set of all ground versions of r such
that each of its body atom a is either (i) such that a ∈ A or (ii) if a is external, fa is
true. D is the �nal value of A, and R = grndA(P ). It can be shown that the above
algorithm converges and grndD(P ) ⊆ grndC(P ). The program grndC(P ) can be split into
two modules: N1 = grndD(P ) and N2 = grndC(P ) \ grndD(P ). It holds that each answer
set S of grndC(P ) is such that S = S1 ∪ S2, where S1 ∈ AS (N ′1) and S2 ∈ AS (N2). N ′1 is
a version of N1 enriched with all the ground facts in AS (N2). Also, we can show that the
only answer set of N2 is the empty set. From this the proof follows. 2

4.6.3 Splitting Algorithm

Similar to the methods described in Subsection 3.9.1, the principle of evaluation of a hex-
program relies on the theory of splitting sets. Intuitively, given a program P , a splitting
set S is a set of ground atoms that induce a sub-program grnd(P ′) ⊂ grnd(P ) whose
models M = {M1, . . . ,Mn} can be evaluated separately. Then, an adequate splitting
theorem shows how to plug the models Mi from M into a modi�ed version of P \ P ′ so
that the overall models can be computed. Here, we use a modi�ed notion of splitting set,
accommodating non-ground programs and suited to our de�nition of dependency graph.

De�nition 4.6.8 A global splitting set for a hex-program P is a set of atoms A appearing
in P , such that whenever a ∈ A and a→ b for some atom b appearing in P , then also b ∈ A.

Additionally, we de�ne another type of splitting set:

De�nition 4.6.9 A local splitting set for a hex-program P is a set of atoms A ⊆ VA,
such that for each atom a ∈ A there is no atom b /∈ A such that a→ b and b→+ a.

Thus, contrary to a global splitting set, a local splitting set does not necessarily include
the lowest layer of the program, but it never �breaks� a cycle.

De�nition 4.6.10 The bottom of P w.r.t. a set of atoms A is the set of rules bA(P ) =
{r ∈ P | H(r) ∩A 6= ∅}.

In other words, the bottom of P w.r.t. a set of atoms A includes all those rules that �de�ne�
A, i.e., whose head atoms occur in A.

Theorem 4.6.2 Let P be a hex-program and let A be a global splitting set for P . Then
M is an answer set of P i� M is an answer set of P ′, where P ′ is the program obtained
by removing bA(P ) from P and adding the literals in N as facts to P and N is an answer
set of bA(P ).
Proof. The proof is mutatis mutandis as the one of Theorem 3.9.1, replacing the strong
reduct by the FLP-reduct. 2

Apart from these de�nitions, we will next describe some preparations of the original
hex-program in order to be able to implement the idea of splitting sets by processing the
program's dependency graph.
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Preparing the Program

From the viewpoint of program evaluation, it turns out to be impractical to de�ne the
semantics of an external predicate by means of a Boolean function. Rather, we need a
functional de�nition, that delivers a set of output tuples for a speci�c input tuple. To this
end, we de�ne F&g : 2HBP ×D1 × · · · ×Dn → 2Rm

C with F&g(I, y1, . . . , yn) = 〈x1, . . . , xm〉
i� f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where Rm

C is the set of all tuples of arity m that can
be built with symbols from C and Di = C for 1 ≤ i ≤ n. With this notion, we can compute
the entire output of an external atom with a ground input list.

If the input list y1, . . . , yn is not ground in the original program, the restriction of
domain-expansion safety for hex-programs ensures that its values can be determined from
the remaining rule body. However, since the basic idea of our algorithm is to split up
the program along external atoms and evaluate the resulting parts in turn, we might lose
exactly this context of an external atom. To illustrate this, let us �rst consider the following
rule from the introduction:

reached(X)← &reach[edge, a](X).

where the �rst input term is of type p, i.e., edge is interpreted as a predicate name and
a is of type c, i.e., a constant. Here, the input is completely determined w.r.t. to an
interpretation and the external evaluation function can F&reach can be evaluated with the
input I, edge, a (assuming that I contains facts about edge and a that have been computed
before). Now things are not so straightforward if variables are used in the input list, as in
Rule (5) of Example 4.6.1:

triple(X, Y, Z)← &rdf [A](X, Y, Z), input(A).

Naturally, before we can evaluate this atom its input must be grounded. But since these
ground values depend on a predicate which occurs in the same rule body, input , we need
to add an auxiliary rule to the program:

triple(X, Y, Z)← &rdf [A](X, Y, Z), input(A).
rdfinp(A)← input(A).

Of course, the head predicates of such rules must be uniquely associated with the respective
external atom. Adding such rules will also a�ect GP accordingly.

We can generalize these auxiliary rules by the following de�nition:

De�nition 4.6.11 Let P be a hex-program and &g[Ȳ ](X̄) be some external atom with

input list Ȳ occurring in a rule r ∈ P . Then, for each such atom, a rule r&g
inp is composed

as follows:

• The head H(r&g
inp) contains an atom ginp(Ȳ ) with a fresh predicate symbol ginp.

• The body B(r&g
inp) of the auxiliary rule contains all body literals of r other than

&g[Ȳ ](X̄) that have at least one variable in its arguments (resp. in its output list
if b is another external atom) that occurs also in Ȳ .

For each external atom in P we can create such a rule. We denote the set of all such rules
with Pinp.
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The evaluation algorithm will ensure that the extension of ginp is known before an external
atom &g � i.e., the function F&g(I, y1, . . . , yn) � has to be evaluated. For atoms with an
input list that was already ground in the original program, this extension coincides with
the single such input tuple. For input lists with variables, the extension may contain zero
or more ground tuples, each of which will be input to the external evaluation function.
Note that there is no need to modify the original rule. The purpose of these auxiliary
rules is basically to introduce an additional edge in the dependency graph, giving us the
possibility to split the graph there and compute the input of the external atom before
proceeding with the original rule itself.

We know now how to prepare the information �ow from the program to the external
atom. The only part of our interfacing machinery we are still missing before we can process
the dependency graph is a way of importing the external evaluation result into the program.
To this end we need another de�nition:

De�nition 4.6.12 Let P be a hex-program We denote with Phex the ordinary logic pro-
gram having each external atom &g[Ȳ ](X̄) in P replaced by d&g(Ȳ , X̄) (we call this kind
of atoms replacement atoms), where d&g is a fresh predicate symbol.

This replacement turns a hex-program into an ordinary answer-set program that can be
evaluated by an existing answer-set solver. Using the de�nitions above, the calls to such a
solver and the external computations can be seamlessly interleaved. Next, we will lay out
how to use the technique of splitting sets in a suitable algorithm.

Program Components

We de�ne the concept of external component, which represents a part of the dependency
graph including at least one external atom. Intuitively, an external component is the min-
imal local splitting set that contains one or more external atoms. We distinguish between
di�erent types of external components, each with a speci�c procedure of evaluation, i.e.,
computing its model(s) w.r.t. to a set of ground atoms I.

Before these are described, we introduce the notion of monotonicity, which helps us
categorizing external components w.r.t. their algorithmic behaviour and selecting a proper
evaluation method:

De�nition 4.6.13 A ground external atom &g is monotonic i� I |= &g implies I ′ |= &g,
for every I ⊆ I ′ ⊆ HBP .

The categories of external components in a hex-program P we consider are:

• A single external atom &g that does not occur in any cycle in P . Its evaluation
method returns for each tuple 〈x1, . . . , xm〉 in F&g(I, y1, . . . , yn) a ground replace-
ment atom d&g(y1, . . . , yn, x1, . . . , xm) as result. The external atom in Figure 4.2,
surrounded by a rectangular box, represents such a component.

• A strongly connected component C without any weakly negated atoms and only
monotonic external atoms. A simple method for computing the (unique) model of
such a component is given by the �xpoint operation of the operator Λ : 2HBP → 2HBP ,
de�ned by Λ(I) = M(P ′hex ∪D′(I)) ∩HBP , where:

� P ′hex is an ordinary logic program as de�ned above, with P ′ = bC(P ).

� D′(I) is the set of all facts d&g(ȳ, c̄) ← such that I |= &g[ȳ](c̄) for all external
atoms &g in C; and
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� M(P ′hex∪D′(I)) is the single answer set of P ′hex∪D′(I); since P ′hex is strati�ed,
this answer set is guaranteed to exist and to be unique.

• A strongly connected component C with negative dependencies or nonmonotonic
external atoms. In this case, we cannot rely on an iterative approach, but are forced
to guess the value of each external atom beforehand and validate each guess w.r.t.
the remaining atoms:

� Construct P ′hex from P ′ = bC(P ) as before and add for each replacement atom
d&g(ȳ, x̄) all rules

d&g(ȳ, c̄) ∨ ¬d&g(ȳ, c̄)← (4.4)

such that &g[ȳ](c̄) is a ground instance of &g[ȳ](x̄). Intuitively, the rules (4.4)
�guess� the truth values of the external atoms of C. Denote the resulting pro-
gram by P ′guess .

� Compute the answer sets Ans = {M1, . . . ,Mn} of P ′guess .

� For each answer set M ∈ Ans of P ′guess , test whether the original �guess� of
the value of d&g(ȳ, c̄) is compliant with f&g. That is, for each external atom a,
check whether M |= &g[ȳ](c̄). If this condition does not hold, remove M from
Ans.

� Each remaining M ∈ Ans is an answer set of P ′ i� M is a minimal model of
fP ′Mhex.

Note that a cyclic subprogram must be domain-expansion safe in order to bound the
number of symbols to be taken into account to a �nite extent and avoid a potentially
in�nite ground program, while still allowing external atoms to bring in additional symbols
to the program.

4.6.4 Evaluation Algorithm

The evaluation algorithm in (Figure 6) uses the following subroutines:

eval(comp, I) Computes the models of an external component comp (which is of one of the
types described above) for the interpretation I; I is added as a set of facts to each
result model.

solve(P, I) Returns the answer sets of P ∪A, where P does not contain any external atom
and A is the set of facts that corresponds to I.

Intuitively, the algorithm traverses the dependency graph from bottom to top, grad-
ually pruning it while computing the respective models. Before entering the loop, the
auxiliary rules from De�nition 4.6.11 are added to the program in Step (a), followed by
the identi�cation of the dependency graph and the external components. M represents
the set of the �current� models after each iteration, starting with the single set of facts
F in the program. Step (b) singles out all external components that do not depend on
any further atom or component, i.e., that are on the �bottom� of the dependency graph.
Then, the algorithm loops through all current models M ∈M. For each such model those
components are evaluated in Step (c) and can be removed from the list of external com-
ponents that are left to be solved. In this innermost loop, the results of all components
are accumulated inM′ and then added toM′′ Moreover, Step (d) ensures that all rules of
these components are removed from the program. M holds the result of all components
over all current models. From the remaining part of the graph, Step (e) extracts the largest
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Algorithm 4.1: Dependency graph evaluation.

Input: a hex-program P
Result: a set of modelsM

(a) P ⇐ P ∪ Pinp

Determine the dependency graph GP for P
Find all external components Ci of P and build Comp = {C1, . . . , Cn}
T ⇐ Comp
M⇐ {F}, where F is the set of all facts originally contained in P
while P 6= ∅ do

(b) T ⇐ {C ∈ T | ∀a ∈ C : if a→ b ∈ VG then b ∈ C}
M′′ ⇐ ∅
forall M ∈M do
M′ ⇐ {M}
C ⇐ ∅
forall C ∈ T do

(c) C ⇐
⋃

M ′∈M′ eval(C,M ′)
M′ ⇐ C

end
M′′ ⇐M′′ ∪M′

end

Comp ⇐ Comp \ T
(d) P ⇐ P \ bc(P ) with c ∈ T

M⇐M′′
C ⇐ {u ∈ VG | u ∈ C or u→+c, c ∈ C for any C ∈ Comp}

(e) P ′ ⇐ Phex \ bC

M⇐
⋃

M∈M solve(P ′,M)
P ⇐ P \ P ′

remove all atoms from the graph that are not in C
end
returnM

possible subprogram that does not depend on any remaining external component i.e., that
is again on the �bottom� of the graph. After computing the models of this subprogram
with respect to the current result, it is removed from the program resp. the dependency
graph.

Basically, the iteration traverses the program graph by applying two di�erent evaluation
functions each turn. While eval solves minimal subprograms containing external atoms,
comp solves maximal non-external subprograms.

Example 4.6.2 Let us exemplarily step through the algorithm with Example 4.6.1 as
input program P . First, the graph G is constructed corresponding to Figure 4.2, but
additionally including the dependencies that stem from the auxiliary rule for the external
atom. Since P contains only a single external atom, the set Comp contains just one external
component C, the &rdf -atom itself. Step (b) extracts those components of Comp that form
a global splitting set, i.e., that do not depend on any atom not in the component. Clearly,
this is not the case for C and hence, T̄ is empty. This means thatM′′ and therefore also
M will be set to {F}. Step (e) constructs an auxiliary program P ′ by removing the bottom
of C̄, which contains each component that is still in Comp and every atom �above� it in
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Figure 4.3: Pruned dependency graph.

the dependency graph. The following rules remain:

¬input(X) ∨ ¬input(Y )← url(X), url(Y ), X 6= Y ;
input(X)← not ¬input(X), url(X);

&rdf inp(A)← input(A);

solve(P ′,M) yields the answer sets of P ′, where the set of the original facts from P (the two
URIs) is the single element ofM. P ′ is removed from P and C̄ from the dependency graph
(the resulting subgraph is shown in Figure 4.3). Continuing with (b), now the external
component C is contained in T̄ , and therefore in Step (c) evaluated for each set in M.
After removing C from Comp and propagating the resultM′ of the component to be the
current result M, C is empty and by Step (e) P ′ = Phex, i.e., the remaining ordinary,
strati�ed program, which is evaluated against each set in M. Note that these sets now
also contain the result of the external atom, represented as ground replacement atoms. At
this point, P is empty and the algorithm terminates, havingM as result. 3

Example 4.6.3 This example combines the usage of the RDF-atom and another external
atom that concatenates two strings. It takes advantage of the RSS-interface of the social
bookmarking system del.icio.us, extracting the links that were associated with a speci�c
keywords by the users of this service:

#namespace(rdf , “http://www.w3.org/1999/02/22-rdf-syntax-ns#”)
#namespace(rss, “http://purl.org/rss/1.0/”)

tag(“turing”).
url(X)← &concat [“http://del .icio.us/rss/tag/”,W ](X), tag(W ).

Y (X, Z)← &rdf [A](X, Y, Z), url(A).
link(X)← “rdf :type”(X, “rss:item”).
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Figure 4.4: del.icio.us program graph.

After the speci�cation of two namespaces (they simply act as macros and will be intro-
duced in Subsection 5.2.3), the tag turing is de�ned. By means of the &concat atom, the
appropriate URL is built, in order to retrieve the RSS-item of del.icio.us regarding that
tag. The triples of this RSS-item are imported by means of the &rdf atom, using higher-
order syntax. Eventually, the actual links are �ltered out from the entire RDF-graph of
the query result.

The dependency graph of this program is depicted in Figure 4.4. Here we also included
the auxiliary rules that compute the input of both external atoms atom, concat inp and
rdf inp .

In the �rst iteration of our algorithm, no external atom can be evaluated and the
program resulting from the pruned subgraph only contains the rule computing the extension
of concat inp , which amounts to {concat inp(“http://del .icio.us/rss/tag/”, “turing”)}. In
the second iteration, the &concat atom can be evaluated with this input, concatenating
both strings. The program that is created in Step (e) of the second iteration is as follows:

url(X)←&concat [“http://del .icio.us/rss/tag/”,W ](X), tag(W );
rdf inp(A)←url(A).
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The single model inM and hence the input to solve(P ′,M) already contains the result of
the &concat atom, i.e., :

&concat [“http://del .icio.us/rss/tag/”, “turing”](“http://del .icio.us/rss/tag/turing”)

Thus, at the end of the second iteration, the extension of url and hence also of rdf inp is
fully determined.

In the third iteration, the &rdf atom can now be evaluated on this URI. The remaining
program does not contain any external atoms any more and traverses the RDF graph and
singles out the links contained within.

3

We obtain the following property:

Theorem 4.6.3 Let P be a hex-program and M the output of the evaluation algorithm
from Figure 6. Then, M is an answer set of P i� M ∈M.

Proof (sketch). The given algorithm is actually a repeated application of the Splitting
Set Theorem 4.6.2 for hex-programs. Basically, the theorem says that if U is a splitting
set for a program P , then, a set A is an answer set of program P i� A is an answer set of
P ′ = (P \ bU ) ∪B where B contains the facts corresponding to some answer set of bU .

Given the current value of P , Step (b) of the algorithm �nds splitting sets corresponding
to external components of P . The splitting set theorem is applied by computing the answer
sets of the bottoms of each of these components. If one of the components is found to
be inconsistent, then the entire program must be inconsistent and no answer set exists.
Step (e) again applies the Splitting Set Theorem on the remaining program. In this case,
the splitting set which is searched for does not contain external atoms. After each iteration
of the algorithm, the set of �nal answer sets is updated, while P is reduced. Finally, all
answer sets of P are left. 2

4.7 Complexity

It appears that higher-order atoms do not add complexity compared to ordinary atoms.
Indeed, for �nite C, the grounding of an arbitrary hex-program P is, like for an ordinary
program, at most exponential in the size of P and C. Since hex-programs with higher-
order atoms subsume ordinary programs, we obtain by well-known complexity results for
ordinary programs [Dantsin et al., 2001] the following result. Recall that NEXP denotes
nondeterministic exponential time, and that for complexity classes C and D, CD denotes
complexity in C with an oracle for a problem in D.

Theorem 4.7.1 Deciding whether a given hex-program P without external atoms has
some answer set is NEXPNP-complete in general, and NEXP-complete if P is disjunction-
free.

The proof is trivial, since such a program coincides with an ordinary answer-set pro-
gram.

Classes of programs with lower complexity can be identi�ed under syntactic restrictions,
e.g., on predicate arities. Furthermore, if from the customary ASP perspective, P is �xed
except for ground facts representing ad-hoc input, the complexity exponentially drops to
NPNP resp. NP .

On the other hand, external atoms clearly may be a source of complexity, and without
further assumptions even incur undecidability. Viewing the function f&g associated with
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an external predicate &g ∈ G as an oracle with complexity in C, we have the following
result:

Theorem 4.7.2 Let P be a hex-program, and suppose that for every &g ∈ G the function
f&g has complexity in C. Then, deciding whether P has some answer set is in NEXPNPC

,
and is in NEXPC if P is disjunction-free.

Again, this result is trivially obtained by using oracles to compute external atoms in
a single step, this extending the well-known results of NEXPNP resp. NEXP for answer-set
existence by a C-oracle.

However, there is no complexity increase by external atoms under the following condi-
tion on the cardinality of C:

Theorem 4.7.3 Let P be a hex-program. Suppose that for every &g ∈ G, the function
f&g is decidable in exponential time in |C|. Then, deciding whether P has some answer set
is NEXPNP-complete, and NEXP-complete if P is disjunction-free.

Proof. The NEXP complexity of deciding answer-set existence stems from the grounding
of an answer-set program. If the program is already grounded, the function f&g is decidable
in polynomial time and hence is not needed as an oracle any more. 2

Informally, the reason is that a possibly exponential-size grounding compensates the
exponentiality of external atoms, whose evaluation then becomes polynomial in the size of
grnd(P ). The hypothesis of Theorem 4.7.3 applies to external atoms modeling aggregate
atoms and, under small adjustments, to dl-atoms, if |= is decidable in exponential time.
Some complexity results by Faber et al. [2004] on ASP with aggregates and by Eiter
et al. [2004a] on interfacing logic programs with the description logic SHIF(D) therefore
follow easily from Theorems 4.4.1, 4.4.2, and 4.7.3.

4.8 An Extension: Weak Constraints

In Section 2.2.3 we have described the concept of weak constraints implemented by the
answer-set solver DLV. Weak constraints are a powerful tool for specifying optimization
problems by means of answer-set programs. Therefore we saw it as a crucial feature of
a solver for hex-programs to support this language extension. It was already described
that the computation procedure for hex-programs relies on an existing answer set solver
as a �black box�, which is subsequently called to solve parts of the input program. As a
consequence, we cannot use the optimization features of the external solver, but had to
�nd a procedure to apply the semantics of weak constraints to the entire hex-program.
For simplicity reasons we adopted a naive method of applying after the computation of the
answer sets instead of considering them already in the stepwise model generation.

For each weak constraint W in a hex-program P

:∼ Conj [W : L]

we add an auxiliary rule to P prior to the evaluation routine:

W aux (W,L)← Conj

Evidently, for each satis�ed body Conj of such a rule, a fact W aux
i (W,L) is added to the

respective model with instantiated values for W and L. After completion of the model
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generation procedure, the costs of each model Mj of P are added up for each speci�ed level
L:

costj,L =
∑

W aux (W,L)∈Mj

W

Now we can order the models according to the semantics of weak constraint described in
Section 2.2.3.

Example 4.8.1 Recall Example 3.2.3, where we used a dl-program for computing the
possibilities of connecting new nodes to an existing network. In this example, we avoided
to connect the new nodes to those, which belong to the concept HighTrafficNode. Since
membership to this concept depends on the number of connections, we demonstrated the
e�ect of a feedback from P to L.

Instead of ruling out nodes in HighTrafficNode from future connections completely, we
can use weak constraints to minimize the number of such overloaded nodes. The following
program P hex

N is given in dl-program syntax � we anticipate here the development of a
DL-interface for our hex-framework, that is capable of parsing dl-programs and will be
described in Subsection 5.3.1.

(1) newnode(add1 );
(2) newnode(add2 );
(3) overloaded(X)← DL[wired ] connect ;HighTrafficNode](X), DL[Node](X);
(4) connect(X, Y )← newnode(X), DL[Node](Y ),not DL[HighTrafficNode](X),

not excl(X, Y );
(5) excl(X, Y )← connect(X, Z), DL[Node](Y ), Y 6= Z;

(6) excl(X, Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X;

(7) excl(add1 , n4);
(8) :∼ overloaded(X). [1 : 1].

The di�erence to Example 3.2.3 is that in Rule (4) we do not consider the predicate
overloaded anymore when building the connections. Instead, we only avoid nodes that are
originally in HighTrafficNode and create all other possible connections, though applying a
penalty to the model for each overloaded node by the weak constraint (8). This results in
the following answer sets:

{overloaded(n2); connect(add1 , n5); connect(add2 , n4); . . . } Cost: 1:1

{overloaded(n2); connect(add1 , n1); connect(add2 , n4); . . . } Cost: 1:1

{overloaded(n2); connect(add1 , n1); connect(add2 , n5); . . . } Cost: 1:1

{overloaded(n2); connect(add1 , n5); connect(add2 , n1); . . . } Cost: 1:1

{overloaded(n2); overloaded(n3);
connect(add1 , n3); connect(add2 , n4); . . . } Cost: 2:1

{overloaded(n2); overloaded(n3);
connect(add1 , n5); connect(add2 , n3); . . . } Cost: 2:1

{overloaded(n2); overloaded(n3);
connect(add1 , n1); connect(add2 , n3); . . . } Cost: 2:1
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{overloaded(n2); overloaded(n3);
connect(add1 , n3); connect(add2 , n5); . . . } Cost: 2:1

{overloaded(n2); overloaded(n3);
connect(add1 , n3); connect(add2 , n1); . . . } Cost: 2:1

The �rst four models with the lowest costs correspond to the result we obtained in Ex-
ample 3.4.2. Moreover, we also computed �worse� models with more overloaded nodes.

3

In Section 6.1 we describe another example combining external evaluations with an
optimization problem.



Chapter 5

Implementation of a hex-Reasoner

In this chapter, we present the prototype implementation of a solver for hex-programs,
called dlvhex, which is publicly available for download. dlvhex implements fully the hex-
program syntax and semantics including hard and weak constraints. It conservatively
extends DLV, such that for any ordinary answer-set program dlvhex behaves equally to DLV.

5.1 Architecture

The principal design goals of dlvhex were:

• Reusing and integrating existing reasoning applications instead of writing them from
scratch.

• Following a modular approach regarding the integration of external atom evaluation.

• Using an e�cient programming language.

• Exploiting object-oriented principles for maximum maintainability and extensibility.

The decision of using an existing answer-set solver was already the foundation of the
evaluation algorithm presented in Subsection 4.6.4. Thus, dlvhex can be seen as a reasoner
framework rather than as a stand-alone inference engine.

5.1.1 Code Layout

Figure 5.1 depicts the overall architecture of dlvhex. We split the input program P into
its intensional database (IDB), which is constituted by the rules of P , and its extensional
database (EDB), containing the facts of P . This distinction corresponds to the view of
an answer-set program as the union of a problem speci�cation (IDB) and the instance
data (EDB). Initially, the entire program is parsed and transformed into proper data-
structures, which are then passed to an object of the class DependencyGraph. This class
maintains an object of the class GraphBuilder, which builds the dependency graph ac-
cording to the de�nitions of Subsection 4.6.1. The class ComponentFinder identi�es the
components of P following the component types which were presented in Subsection 4.6.3.
The SafetyChecker class then veri�es whether the safety conditions (Subsection 4.6.2)
hold. Next, the dependency graph is passed to the GraphProcessor, which implements
the main algorithm as shown in Subsection 4.6.4. At this point, the IDB is introduced in
the evaluation. The result is fed into an object of the class ResultContainer, which takes
care of �ltering and applying weak constraints to the answer sets of P .
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DependencyGraph

Program
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GraphBuilder
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SafetyChecker

GraphProcessor
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External Functions

Result

Answer Set 1 Answer Set 2 Answer Set n...

Figure 5.1: dlvhex Architecture.

In the following, we will outline the function and implementation of some of the major
modules of dlvhex.

DependencyGraph

The class DependencyGraph is responsible for constructing the dependency graph GP from
the rules of the input program P and maintaining it. This class uses modules that are
implemented according to the Strategy Design Pattern (cf. [Gamma et al., 1995]), which
basically consists of decoupling an algorithm from its host, and encapsulating the algorithm
into a separate class. One of these algorithms is the actual construction of the dependency
relations from the rules, which is encoded in the strategy class GraphBuilder. Given the
graph, �nding the program components is another task that is handed to a strategy class,
namely ComponentFinder. Its main purpose is to �nd strongly connected components,
which � in the current version of dlvhex� is carried out by the Boost Graph Library [Siek
et al., 2002]. Having identi�ed the SCCs, the DependencyGraph eventually creates the
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corresponding objects for each program component.
The class SafetyChecker, which again is implemented as a strategy pattern, examines

the dependency graph for violation of weak safety and domain-expansion safety.

GraphProcessor

The principal algorithm for computing the answer sets of a hex-program is implemented
in the class GraphProcessor. It is initialized with the EDB of the input program P
and the dependency graph GP and traverses the graph until all nodes are visited or an
inconsistency is found. As laid out in the evaluation algorithm, the GraphProcessor works
with the previously identi�ed program components and calls their evaluation routines.
Subgraphs without any external atoms are also assigned to a component, whose evaluation
procedure simply calls the external answer-set solver. The GraphProcessor has to take
care of combining the results of various subgraphs while preserving minimality of the
intermediate models.

ResultContainer

The class ResultContainer serves as a repository for answer sets and provides methods
for �ltering out speci�c literals, such as auxiliary atoms or user-speci�ed �lters. It also
takes care or ordering the result sets if weak constraints were used. The ResultContainer
implements di�erent methods of displaying the �nal result, using the Builder Design Pat-
tern. At its current state, dlvhex can display the result in textual representation (closely
related to the output of DLV) or in RuleML syntax [Boley et al., 2001].

5.1.2 Plugin Integration

The integration of external sources of computation is the most distinguished feature of
dlvhex. We pursued an approach that guaranteed maximum �exibility and extensibility
while trying to keep the interface lean and making external atoms as easy to implement
as possible by the user. To this end, we de�ned a so-called Plugin, which is represented
by a shared library that is linked to dlvhex at runtime and which provides one or more
external atoms and their evaluation functions. Upon invocation, dlvhex looks for such
plugin-libraries in speci�c places in the local �lesystem and registers the found atoms.

The plugin author is responsible for the following speci�cations:

• the evaluation function of each external atom,

• the type of each input term of each external atom, (cf. Def. 4.6.1)

• the output arity, and

• the predicate name of each atom.

Rewriters

A powerful feature of the plugin mechanism is the possibility for plugin authors to integrate
a custom rewriter for hex-programs. The main routine of dlvhex calls each plugin's rewriter
prior to its own parsing routine and passes the entire input program to it. The rewriter
is responsible for returning a valid hex-program. This way, abbreviations for external
atoms can be introduced, that don't comply with the original hex-Syntax, but are more
convenient in the respective case. Of course it is also possible for a plugin to provide only
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a rewriter, but no external atoms. An example for such a pure rewriter is presented in
Section 6.2, where dlvhex is used as a reasoner for the RDF query language SPARQL.

Another peculiar property of the plugin architecture is the possibility to pass dlvhex
command line parameters to plugins. Any parameters that are unknown to dlvhex itself
are passed on to the registered plugins. Thus, a plugin can for instance display its own
help message.

5.2 Using dlvhex

The initial target platform for dlvhex was Unix/Linux. Since the Apple operating system
MacOS X is Unix-based, our reasoner complies and runs also on these systems �awlessly.
This Section describes how to install and use dlvhex and how to write well-formed hex-
programs.

5.2.1 Installation

For the user's convenience, we provide the dlvhex source code as well as its binary, compiled
for Linux i386 platforms as well as MacOS X. Unfortunately, porting the application to
Windows proved to be too complicated regarding our development manpower.

All downloads are available at the following location:

http://www.kr.tuwien.ac.at/research/dlvhex/

Compiled Binary

In principle, the binary is ready to use. However, if one wants to use any plugins (they are
also available as binaries at the speci�ed URL), one has to take care of either specifying the
plugins' path to dlvhex on the command-line via the -p switch (see also Subsection 5.2.2)
or put the plugins in the folder $HOME/.dlvhex/plugins/.

Source Package

dlvhex is maintained using the GNU autotool framework, which does not only ease the
development process, but also disburdens the user from dealing with the entire compile
and link procedure. If the user wishes to develop her own plugin(s), downloading and
installing the sources is absolutely necessary, since they provide necessary header and
package con�guration �les.

After unpacking the source package, it usually is su�cient to subsequently call

./configure

make

make install

The con�gure script accepts the usual switches, e.g., if the user is not root and wants to
install the package in a speci�c directory, she would specify

./configure --prefix=/path/to/dir

The con�gure script examines whether the system has all necessary conditions for
building and running dlvhex. It has two requirements that are nonstandard:

• the Boost library, available as packages for all common Linux distributions, and

• the answer-set solver DLV, which can be downloaded at
http://www.dbai.tuwien.ac.at/proj/dlv/.

http://www.kr.tuwien.ac.at/research/dlvhex/
http://www.dbai.tuwien.ac.at/proj/dlv/
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5.2.2 Calling dlvhex on the Command Line

If the installation process was successful, dlvhex should be executable from the command
line. The usual way to invoke it is as follows:

dlvhex filename [filename2 . . . ]

Here, filename is the hex-program. Optionally, more than one �les can be speci�ed, whose
contents will be merged to a single program.

dlvhex Options

The following options are supported:

`--'

Parse from stdin. This way, a program can be piped to dlvhex, such as
cat test.hex | dlvhex --.

`-s'
`--silent'

Suppresses all informational output and displays only the actual result.

`-v'
`--verbose'

Dumps various intermediate processing information and writes the program depen-
dency graph to �lename.dot.

`-p dir '
`--plugindir= dir '

Specify an additional directory where to look for plugin-libraries (additionally to the
installation plugin-dir and $HOME/.dlvhex/plugins).

`-f foo, bar , . . .'
`--filter=foo, bar , . . .'

Specify predicate names that are to be kept in the resulting answer sets. All other
atoms are removed from the output.

`--firstorder'

Do not allow higher order syntax.

`--ruleml'

Display result in RuleML format (v0.9).

`--noeval'

Just parse the program and build the dependency graph, but do not evaluate it (only
useful in combination with --verbose).

`--allmodels'

Display all models in case of using weak constraints and not only the optimal one(s).

5.2.3 Writing hex-Programs

The general syntax of hex-programs has already been presented in Section 4.2. Here, we
will go into details concerning the actual textual representation of a hex-program that
can be solved by dlvhex, which largely corresponds to the syntax of disjunctive datalog for
DLV. Thus, we will only brie�y recall the basics of DLV-programs here and point out the
di�erences to dlvhex input programs.



112 5 Implementation of a hex-Reasoner

Terms, Atoms, and Rules

The smallest entity in a hex-program is a Term. A term can be one of the following:

Constant: A constant start with a lowercase letter and may contain letters, digits and
underscores.
Examples: p, person, 42, an_Animal
A constant can also be a quoted arbitrary string.
Examples: "ABC", "http://example.org", "any(!)thing..."

Variable: A variable must begin with an uppercase letter and may again contain letters,
underscores and digits.
Examples: X, Animal, C_a1

Anonymous variable: An anonymous variable is a special variable that can be seen as
unique variable in its context (i.e., rule or constraint). Thus, the value of such a term
will simply be ignored. An anonymous variable is denoted by a single underscore: _

An Atom is written in the expected way, specifying a predicate symbol followed by a
list of terms in parentheses. Naturally, also propositional atoms are admitted:

pair(X,Y), light_on, -p(Q,_,r), X(y,Z)

dlvhex, like DLV, supports true negation, written as a - and used for the third atom above,
and negation-as-failure. The last atom in the list of examples above represents a higher-
order atom, having a variable predicate. Such a predicate is treated like any other variable
term.

Another feature not available in DLV is the possibility to state atoms in tuple syntax:

(X,a,Y), ("rdf:type",X,"rss:item")

This is simply an alternative way of writing X(a,Y), "rdf:type"(X,"rss:item"). Both
versions are semantically equal.

Negation-as-failure, or weak negation, is speci�ed by the symbol not preceding the
(possibly classically negated) atom, forming a literal:

not (X,a,Y), not -flies(tweety)

Facts are ground atoms that correspond to a rule without body, i.e., explicitly true
assertions. The set of facts in a program is often denoted as the extensional database
(EDB) of the program:

-visible(ground).

edge(1,2).

As opposed to the EDB, the rules of a program are called the intensional database,
encoding implicit knowledge. In the answer-set programming paradigm, the EDB is seen as
a concrete problem instance, while the rules of a program represent the general speci�cation
of the problem's solution(s). The semantics of a rule in answer-set programming was made
su�ciently clear in Subsection 4.3. A rule's head can contain a disjunction of atoms, its
body a conjunction of literals:

connect(X,Y) v -connect(X,Y) :- node(X), node(Y), not unreachable(X,Y).
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A rule without head, a constraint, is speci�ed accordingly:

:- visit(X), visit(Y), X != Y.

:- arc(X,Y), color(X,C), color(Y,C).

A special case of facts are disjunctive rules without body, i.e., disjunctive facts:

color(green) v color(blue) v color(red).

Weak constraints are stated with a �:∼� and the (optional) speci�cation of level and weight:

:∼ member(X,P), member(Y,P), X != Y, married(X,Y). [1:2]

The default value for both weight and level is 1; thus, the following weight constraints are
equivalent:

:∼ salesman(X), travels(X,Y,Z).

:∼ salesman(X), travels(X,Y,Z). [1:]

:∼ salesman(X), travels(X,Y,Z). [:1]

Builtin Predicates dlvhex supports all comparative predicates that are also available
in DLV, <, >, <=, >=, =, !=. They can be used in normal pre�x or in�x notation:

in_range(X,A,B) :- X >= A, <(X,B).

Currently not supported by dlvhex are the arithmetic predicates #int, #succ, +, * and
facts over a �xed integer range, such as weekday(1..7).

External Atoms An external atom can occur (possibly weakly negated) in the body of
a rule:

name(X,Y) :- mem(X), &dlDR[U,a,b,c,d,"name"](X,Y), url(U).

It is also allowed to use external atoms in constraints.

Aggregate Predicates Aggregate predicates have been introduced in Subsection 2.2.3.
They allow to express properties over a set of elements and can be used in rule bodies and
constraints:

q :- 0 <= #count{X,Y : a(X,Z,k),b(1,Z,Y)} <= 3.

q(Z) :- 2 < #sum{V : d(V,Z)}, c(Z).

An aggregate predicate consists of one or more guards and the aggregate function. dlvhex
supports all aggregate functions that are currently available in DLV: #count, #sum, #times,
#min, and #max. For more information about the speci�cation of aggregates, we refer to
the manual of DLV.1

1http://www.dbai.tuwien.ac.at/proj/dlv/man/

http://www.dbai.tuwien.ac.at/proj/dlv/man/


114 5 Implementation of a hex-Reasoner

Rule Safety Intuitively, safety ensures that the grounding of the program does not
�explode". A (possibly disjunctive) fact is safe if does not contain any variables. A rule is
safe, if each variable occurring

• in its head,

• in a negation-as-failure literal,

• in a built-in comparative predicate,

• as a guard or in the symbolic set of an aggregate

also occurs in a non-comparative positive literal in the body of the same rule. This also
applies to constraints. In the case of external atoms, an extended notion of safety applies,
which has been explained in Subsection 4.6.2.

Namespaces

Aiming at various reasoning tasks in the context of the Semantic Web, we introduced a
syntactic feature, that can be used as a string macro. A namespace speci�cation relates a
shortcut with a string, such that the shortcut can be used as an abbreviation. A namespace
de�nition starts with a # and has to occur on a separate line, not ending in a period (to
distinguish it as a preprocessor-directive from a rule):

#namespace("foaf","http://xmlns.com/foaf/0.1/")

The string foaf can now be used as a placeholder for the namespace, su�xed with a colon:

hasMail(X,Mbox) :- triple(X,"foaf:mbox",Mbox).

This rule will internally be expanded to:

hasMail(X,Mbox) :- triple(X,"http://xmlns.com/foaf/0.1/mbox",Mbox).

5.3 Available Plugins

A number of plugins have been implemented so far and are available at the website of dlvhex
(see Subsection 5.2.1). Equally to dlvhex itself, each plugin is available as precompiled
binary as well as source package. The binaries are statically linked to any used nonstandard
libraries, such that they should run on a typical system con�guration. If the user wishes to
compile a plugin herself, she might have to install such additional software. The READMEs
on the website of dlvhex contain further information.

5.3.1 The Description Logic Plugin

The Description Logic Plugin simulates the behaviour of dl-programs within the more
general framework of hex-programs. To model dl-programs in terms of hex-programs,
we developed the description-logics plugin (or DL-plugin), which includes several external
atoms, which � in accord to the semantics of dl-programs � also allow for extending a
description logic knowledge base, before submitting a query, by means of the atoms' input
parameters. Additionally, the DL-plugin provides a rewriter that processes the syntax of
dl-atoms as presented in Section 3.2, allowing to use dlvhex directly as a reasoner for dl-
programs. Moreover, caching strategies based on the considerations of Subsection 3.9.3
optimize the interaction between dlvhex and the description-logics reasoner.
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In the implementation of this plugin, we use RACER as a DL reasoning engine [Haarslev
and Möller, 2001], being able to process OWL DL ontologies, i.e., description logic knowl-
edge bases in the language SHOIN (D). However, the interface to the external reasoner
is general enough to be adapted easily to any other description-logics engine. Future work
will involve the integration of Pellet [Parsia and Sirin, 2004] as an alternative reasoning
engine.

DL-Plugin Atoms

Concept Queries A query for the extension of a concept is carried out by the &dlC
atom in the following way:

&dlC[uri,a,b,c,d,q](X)

with the following input parameters:

uri . . . constant string denoting the uri of the DL-KB, e.g., "/home/roman/dl/
wine.owl" or "http://www.example.org/food.owl"

a . . . predicate symbol denoting the positive extensions of concepts. For
instance, specifying the predicate addPerson together with an inter-
pretation that includes the facts addPerson(“Person”, “Alice”) and
addPerson(“Person”, “Bob”) will extend the DL-concept Person by the
individuals Alice and Bob.

b . . . predicate symbol denoting the negative extensions of concepts. This
works like the term above, but here not the concept itself is extended,
but its complement.

c . . . predicate symbol denoting the positive extension of properties. For ex-
ample, using a predicate foo while having an interpretation including
the fact foo(“knows”, “Bob”, “Alice”) will put the pair 〈“Bob”, “Alice”〉
into the property knows.

d . . . predicate symbol denoting the negative extension of properties. Again,
this corresponds to the previous input term, except that it adds the
negation of a role membership axiom.

q . . . constant string that denotes the concept to be queried.

The four input parameters that allow for extending the DL-KB are common to all DL-
atoms and will not be explained for them in the following.

Role Queries A query for pairs of a role (resp. property) is facilitated by the &dlR
atom in the following way:

&dlR[uri,a,b,c,d,q](X,Y)

Naturally, the result here is binary.

Datatype Role Queries A query for pairs of a datatype role requires another external

atom, represented by &dlDR as follows:

&dlDR[uri,a,b,c,d,q](X,Y)

Datatype roles are properties with literal values as �llers. In OWL, they are distinguished
from object roles and therefore also need a separate query.
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Example 5.3.1 The following example program demonstrates the usage of these three
external atoms. Its purpose is to search a database about researchers and create one
model per each research project together with those people involved that have Semantic-
Web related research interests.

url(“http://www.personal-reader.de/rdf/ResearcherOntology.owl”).
p(X) ← &dlC [U, a, b, c, d, “ResearchProject”](X), url(U).

¬proj (X) ∨ ¬proj (Y ) ← p(X), p(Y ), X 6= Y.

proj (X) ← not ¬proj (X), p(X).
mem(X) ← &dlR[U, a, b, c, d, “involvedIn”](X, Y ), url(U), proj (Y ).

name(X, Y ) ← mem(X),&dlDR[U, a, b, c, d, ”name”](X, Y ), url(U).
interest(X, Y ) ← &dlDR[U, a, b, c, d, “currentProfessionalInterest”](X, Y ),

mem(X), url(U).
swperson(X, Y ) ← name(Z,X), interest(Z, Y ),&strstr [Y, “Semantic Web”].

The fact in the �rst line determines the URL of the ontology, which is used for all queries
in this program. The second rule queries the concept ResearchProject , whose extension
is used for creating a search space via disjunction by the next two rules. Subsequently,
the members of a project are queried and � via two datatype role queries � their real
names and their research keywords extracted. Eventually, those members of a project are
identi�ed that have �Semantic Web� among their research interests.2 Since no input to the
DL-KB is used in this example, a, b, c, and d serve as dummy predicates, which do not
occur outside any external atom.

The answer sets (at the time of writing this chapter) are the following (listing only the
relevant predicates swperson and project):

{project(“elena”),
swperson(�Tina Martens�, �Semantic Web�)}

{project(“prolearn”),
swperson(�Sebastian Mayer�, �Semantic Web�)}

{project(“elan”),
swperson(�Johanna Schulz�, �Semantic Web�),
swperson(�Sebastian Mayer�, �Semantic Web�)}

{project(“knowledgeweb”),
swperson(�Peter Schulze�, �Semantic Web�),
swperson(�Susanne Meier�, �Semantic Web Architektur�)}

{project(“REWERSE”),
swperson(�Paula Lavinia Patranjan�, �Evolution of data on the Semantic Web�),
swperson(�Sebastian Scha�ert�, �Semantic Web�),
swperson(�Roman Schindlauer�, �Semantic Web�),

2This last rule of the example program makes use of the substring-�nding external atom that will be
introduced in the following subsection.
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swperson(�Grigoris Antoniou�, �Web-based systems: Semantic Web, Web services�),
swperson(�Tim Furche�, �Semantic Web�),
. . . }

3

Conjunctive Queries The atom &dlCQ is more general and �exible than the atomic
ones presented above, because it allows for any conjunction of concepts resp. roles in the
query:

&dlCQ[uri,a,b,c,d,q](X̄)

Here, X̄ represents a tuple of arbitrary arity, re�ecting the free variables in the conjunction
q. Conjunctive queries provide a very versatile way of interfacing the DL-reasoner. Mul-
tiple queries can be joined into a single one, reducing the number of interactions between
dlvhex and the DL-reasoner as well as the size of the transferred extensions between them.
However, the conjunction of two queries might not necessarily yield the same result as their
join outside the description logic KB, as the following example shows.

Example 5.3.2 Let KB = (L,P ) be a dl-program with L:

Zebra v Animal
Lion v Animal
Lion v ∃eats.Zebra
Lion(bob)

and P :

add(“Lion”, “Bob”).
carnivore(X)← &dlCQ [“L”, add, b, c, d, “eats(X, Y ),Animal(Y )”](X).

Since Bob is added to the concept Lion, he must also occur in the relation eats together with
a Zebra. In other words, even if we don't know any speci�c Zebra, Bob will certainly eat
one and thus, because each Zebra is also an Animal , be returned for X in the conjunctive
query. Now let us replace the second rule of the program by the following one:

carnivore(X)←&dlR[“L”, add, b, c, d, eats(X, Y )](X, Y ),
&dlC [“L”, add, b, c, d,Animal(Y )](Y ).

Here, we use conventional role and concept queries and join their result only in the logic
program. Given that no explicit tuple occurs in eats, the result of the �rst query is empty
and thus also the extension of carnivore. In general, the user has to be aware of such
subtleties, resulting from the semantic gap between logic programs and description logics.3

3

Consistency Check The atom &dlConsistent checks whether the DL-KB is consistent
with the speci�ed extensions:

&dlConsistent[uri,a,b,c,d]

Since this atom is purely Boolean, it does not have any output term.

3However, in the concrete implementation of this plugin, we are disburdened from this concern, since
RACER lets every variable in a conjunctive query expression range only over the domain of known indi-
viduals, i.e., adopting a notion of safety comparable to the �nite domain of logic programming semantics.
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DL-Plugin Rewriter

As noted above, the description logic plugin can model the semantics of dl-programs.
It is obvious that the generality of an external atom in the hex-syntax results in this
rather inconvenient method of specifying the extension of the DL-KB by four predicates.
In contrast, dl-atoms, having the sole purpose of interacting with an ontology, are more
intuitive by allowing for a list of mappings of arbitrary length. Here, we have a perfect
situation for deploying a rewriter, which allows to use dl-atoms in a hex-program and
ensures the correct transformation to hex-syntax before the actual evaluation of dlvhex
commences.

Example 5.3.3 To show the principle of rewriting in the case of converting dl-atoms to
external atoms, we assume the usage of an atom

DL[knows ] worksWith,Available −∪ vacation;Attendants](X)

in a dl-program DL = (L,P ) with L = �personell.owl�, querying the members of class
Attendants, while extending the role knows by the extension of the predicate worksWith
and adding the extension of predicate vacation to the complement of the class Available.
Using dl-syntax � recall that dl-programs work on a single DL-KB � the user has to
specify the URI of the ontology by a parameter on the command line. Together with this
information, the rewriter replaces the dl-atom by the following external atom (ensuring
that the four predicates in its input list did not occur in P prior to the rewriting):

&dlC [“personell.owl”, plusC ,minusC , plusR,minusR, “Attendants”](X)

and adds the following rules to the program:

plusR(“knows”, X, Y )← worksWith(X, Y ).
minusC (“Available”, X)← vacation(X).

3

Another interesting feature of this plugin's rewriter is query pushing, i.e., combining
distinct description logic queries into one conjunctive query � either within the same body
of a rule, or even, by rule unfolding, across multiple rules (see Footnote 3 on Page 117
explaining why we can follow this strategy without changing the program's semantics).

The following example shows how to use conjunctive queries in order to decrease the
necessary interactions between dlvhex and the DL-engine and hence speed up the compu-
tation.

Example 5.3.4 Imagine we want to travel through regions where wines with delicate
�avors are available:

visitRegion(L) ∨ ¬visitRegion(L) ← DL[WhiteWine](W1),
DL[RedWine](W2),
DL[locatedIn](W1, L),
DL[locatedIn](W2, L)
not DLCQ [locatedIn(L,L′)](L).

← visitRegion(X), visitRegion(Y ), X 6= Y.

haveRegion ← visitRegion(X).
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← not haveRegion.

delicate(W ) ← DL[hasFlavor ](W,wine:Delicate).
delicateInRegion(W ) ← visitRegion(L),

delicate(W ),DL[locatedIn](W,L)

The �rst rule uses disjunction to create a search space over regions to be visited. We
consider regions of red and white wines and only �top-level� regions, i.e., those which are not
contained in other regions. The following three rules ensure that each answer set contains
exactly one region to be visited. In the chosen regions, we single out delicate wines.

The result of query pushing by rewriting the program is displayed below:4

visitregion(L) ∨ ¬visitregion(L) ← DLCQ [WhiteWine(W1),
RedWine(W2),
locatedIn(W1, L),
locatedIn(W2, L)](L),

not DLCQ [locatedIn(L,L′)](L).
← visitregion(X), visitregion(Y ), X 6= Y.

haveRegion ← visitRegion(X).
← not haveRegion.

delicate(W ) ← DL[hasFlavor ](W,wine:Delicate).
delicateInRegion(W ) ← visitRegion(L),

DLCQ [hasF lavor(W,wine:Delicate),
locatedIn(W,L)](W,L).

The body of the �rst rule now contains two external atoms instead of �ve, thus drasti-
cally reducing the e�ort to interact with the description-logics reasoner, both in terms of
time and size of exchanged data (instead of receiving �ve times the extension of a concept
or role, we only need to wait for two such sets of tuples). The join operation is simply
transferred to the external engine, keeping only the �relevant" variables in the output list.
Execution time of this hex-program was reduced from 2.68 seconds to 0.59 seconds as a
result of query pushing. 3

The removal of the atom delicate(W ) and the introduction of a conjunctive query in the
body of the last rule may seem odd, since it doesn't cut down the number of external atoms
any further. However, the rewriter is aware of the possibility that the user can specify a
�lter, i.e., a list of predicates, which causes dlvhex to reduce its visible output to their
extensions (see Subsection 5.2.2 about the command-line parameters of dlvhex). If query
pushing causes a rule to be �super�uous" w.r.t. considering a �lter, i.e., its head neither
contained in the �lter predicates nor occurring in any other rule, it can be discarded. The
penultimate rule in the previous example is a candidate for such a removal. Dropping it
from the program, execution time was further reduced to 0.21 seconds.

Further information about the description logics plugin in general and its optimization
strategies regarding caching and particularly query pushing can be found in [Krennwallner,
2007].

4Strictly speaking, this is not a valid syntax, since we use the simpli�ed syntax of dl-atoms also for the
conjunctive query atoms, though they are not accepted by the rewriter.
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5.3.2 The String Plugin

The string plugin supplies a number of string manipulation functions that come in handy
when we deal with strings in an answer-set program. It currently consists of �ve atoms.

String concatenation The &concat atom is used as follows:

&concat[A,B](X)

where A and B are two constant strings and X is the concatenation result.

Example 5.3.5 The result of the program

folder(“/home/sta�/roman/examples/”).
file(“test.owl”).
path(P )← &concat [Fo,Fi ](P ), folder(Fo),file(Fi).

includes the fact path(“/home/sta�/roman/examples/test.owl”). 3

Substring inclusion Testing whether one string is contained by another can be carried

out with the &strstr atom:

&strstr[A,B]

This boolean atom evaluates to true if A is a substring of B.

Example 5.3.6 Evaluating these rules

address(“�le://home/sta�/roman/examples/wine.owl”).
address(“http://www.example.org/food.owl”).
webAddress(A)← &strstr [“http://”, A], address(A).

will yield webAddress(“http://www.example.org/food.owl”). 3

Splitting a string The atom

&split[A,D,N](X)

splits the string A along the delimiter speci�ed by D and returns the Nth (starting with zero)
element.

Example 5.3.7 The program

date(“2006”).
date(“31-12-2006”).
year(Y )← &split [D, “-”, 2](Y ), date(D).

returns year(“2006”). 3
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String comparison A lexicographical comparison of two strings can be achieved by the

atom

&cmp[A,B]

which returns true if A is lexicographically smaller than B.

Example 5.3.8 The rule

in2006 (D)← &cmp[D, “2007-01-01”],&cmp[“2005-12-31”, D], date(D).

singles out date-strings that belong to the year 2006. 3

Checksum computation SHA1 (160-bit) checksums are used for instance to publish a

hash for someone's email address without revealing the address to spammers. The atom

&sha1sum[A](X)

returns the checksum X of a given string A.

Example 5.3.9 The rule

ownerID(X)← &sha1sum[X](Y ),mailbox (X).

computes the SHA1 checksum of an email address. 3

5.3.3 The RDF Plugin

The RDF-plugin provides a single external atom

&rdf[url](S,P,O)

which queries a speci�ed set of RDF knowledge bases and returns its triples. The knowledge
base is speci�ed by means of the extension of the input predicate.

Example 5.3.10 The following program simply reads all triples from a foaf-description:

triple(S, P,O)← &rdf [in](S, P,O).
in(“http://example.org/foaf.rdf”).

Naturally, the extension of in can be determined by other subprograms, so that the number
of RDF-sources can grow dynamically at runtime. 3

Two examples of the &rdf atom were already given in Subsection 4.6.4, when the
computation of hex-programs was described.
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Number Search

1 Antonyms
2 Hypernyms
3 Hyponyms
4 Entailment
5 Similar
6 Member Holonyms
7 Substance Holonyms
8 Part Holonyms
9 Member Meronyms
10 Substance Meronyms
11 Part Meronyms
14 Cause to
15 Participle of Verb
18 Attribute of
20 Derivationally related forms
23 Synonyms
38 Instance of
39 Instances

Table 5.1: WordNet search types and their encodings.

5.3.4 The WordNet Plugin

WordNet is a lexical reference database, containing structural information about relation-
ships between words, based on psycho-lingual theories of human lexical memory. The
WordNet database exists as an online interface as well as a standalone application, pro-
viding an API for custom applications. This interface was exploited by Bock in [2006] for
developing a WordNet plugin, supplying a layer between the lexicographic database and
an answer-set program and thus setting the ground for a number of declarative approaches
for linguistic reasoning tasks.

The WordNet database is queried with respect to a speci�c (English) word and a certain
query. Queries are speci�ed by a search type that has a numerical encoding (see Table 5.1).
The plugin provides a single atom, which expects the actual word and the desired search
number as input:

&wordnet[S,W](P,WS,R,RS)

The �rst input parameter is the search number from Table 5.1, followed by the input
word. Each query yields in general a number of output tuples, where the �rst term P

denotes the �part of speech" (Noun is encoded by 1, Verb by 2, Adjective by 3, and Adverb
by 4). WS represents the input word sense number that this result tuple is based on. the
third term, R, is the actual result word and RS is its sense number.

Example 5.3.11 The following rules return the synonyms of a given word:

word(“provide”).
synonyms(W,WS ,SY )← &wordnet [23,W ](_,WS ,SY ,_),word(W ).
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Here, we ignore the sense numbers of input and result words. The answer set of this
program contains these facts:

synonyms(“provide”, 1, “furnish”, 2), synonyms(“provide”, 2, “ply”, 2),
synonyms(“provide”, 1, “render”, 2), synonyms(“provide”, 2, “supply”, 2),
synonyms(“provide”, 1, “supply”, 2), synonyms(“provide”, 2, “provide”, 2),
synonyms(“provide”, 1, “provide”, 2), synonyms(“provide”, 3, “provide”, 2),
synonyms(“provide”, 2, “cater”, 2), . . .

A concrete application using the WordNet-plugin is described in Subsection 6.3, where
the lexicographic background knowledge is used for the task of merging ontologies. 3

5.4 Writing a Plugin

In order to ease the process of developing a plugin for dlvhex as much as possible, we created
a skeleton plugin package, which is also embedded in the GNU autotools environment. This
template frees the plugin author from being occupied with the low-level, system-speci�c
build process.

The necessary interactions between dlvhex and a plugin are:

• Registering the plugin and its atoms

• Evaluating an atom

For both tasks, we provide a base class which the plugin author has to subclass. As
a running example, we will use the aforementioned &concat-atom. To begin with, the
following header �les from dlvhex need to be included:

#include "dlvhex/PluginInterface.h"

#include "dlvhex/Error.h"

If dlvhex was installed correctly, these headers should be available.

5.4.1 The External Atom

First, we have to subclass PluginAtom to create our own ConcatAtom class:

class ConcatAtom : public PluginAtom

{

The constructor of ConcatAtom will be used to de�ne some properties of the atom:

public:

ConcatAtom()

{

addInputConstant();

addInputConstant();

setOutputArity(1);

}

Here, we need to specify the number and types of input parameters. The &concat-atom
as we used it above, has two constant input strings. In this case, we need two consecutive
calls to addInputConstant(). Recall that input parameters can be of type constant of
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predicate, the latter denoting that the extension of a predicate has to be considered rather
than the parameter string itself. If we wanted to have, say, two input parameters which
will represent predicate names and a third one which will be a constant, we would put this
sequence of calls in the constructor:

addInputPredicate();

addInputPredicate();

addInputConstant();

The call setOutputArity(1) ensures that occurrences of this atom with other than one
output term will cause an error at parsing time.

The only member function of the atom class that needs to be de�ned is retrieve:

virtual void

retrieve(const Query& query,

Answer& answer) throw(PluginError)

{

retrieve() always takes a query object as input and returns the result tuples in an answer
object. The input parameters at call time are accessed by Query::getInputTuple():

Tuple parms = query.getInputTuple();

The actual input strings have to be extracted from the input tuple:

Term s1 = parms[0];

Term s2 = parms[1];

At this point we could test the input terms for correct types. The author is able to throw
an exception of type PluginError which will be caught inside dlvhex, e.g.:

if (s1.isInt() || s2.isInt())

throw PluginError("Wrong input argument type");

If the evaluation function needed to take the interpretation into account, it would have to
be retrieved by Query::getInterpretation():

Interpretation i = query.getInterpretation();

For more information about the datatypes of dlvhex, please refer to the comments of the
respective include �les provided with the development resp. source package of dlvhex.

At this point, the plugin author will implement the actual function of the external
atom, either within this class or by calling other functions.

Before returning from the retrieve-function, the answer-object needs to be prepared:

std::vector<Tuple> out;

// fill the answer object...

answer.addTuples(out);

}
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5.4.2 Registering the Atoms

So far, we described the implementation of a speci�c external atom. In order to inte-
grate one or more atoms in the interface framework, the plugin author needs to subclass
PluginInterface():

class StringPlugin : public PluginInterface

{

public:

At the current stage of dlvhex, only the function getAtoms() needs to be de�ned inside
this class:

virtual void

getAtoms(AtomFunctionMap& a)

{

a["concat"] = new ConcatAtom;

}

Here, a PluginAtom object is related to a string in a map - as soon as dlvhex encounters
an external atom (in this case: &concat) during the evaluation of the program, it �nds the
corresponding atom object (and hence its retrieve() function) in this map. Naturally, a
plugin can comprise several di�erent PluginAtoms, which are all registered here:

a["concat"] = new ConcatAtom;

a["split"] = new SplitAtom;

a["cmp"] = new CmpAtom;

5.4.3 Importing the Plugin

Eventually, we need to import the plugin to dlvhex. this is achieved by the dynamic linking
mechanism of shared libraries. The author needs to de�ne this function:

extern "C"

StringPlugin*

PLUGINIMPORTFUNCTION()

{

return new StringPlugin();

}

replacing the type StringPlugin by her own plugin class. For each found library, dlvhex
will call this function and receive a pointer to the plugin object, thus being able to call its
getAtoms() function. The identi�er of this function, PLUGINIMPORTFUNCTION, is a macro
de�ned by dlvhex.

The entire example code for two atoms from the string plugin can be found in Ap-
pendix B.

The next two sections describe the implementation of a plugin rewriter and the han-
dling of command-line options for plugins, both optional extensions that need not to be
implemented for a plugin to work.
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5.4.4 The Rewriter

A rewriter is represented by an own class, PluginRewriter. If the user desires to imple-
ment a rewriter, she has to subclass it:

class MyRewriter : public PluginRewriter

{

public:

The constructor is initialized with two streams, one for the input program and one for the
rewritten program, which both have to be passed to the base class:

MyRewriter(std::istream& i, std::ostream& o)

: PluginRewriter(i,o)

{ }

The variables for the streams in the base class are input and output, both of type
std::istream*. With these, the actual rewriting method operates:

void

rewrite()

{

// something like:

std::stringbuf sb;

input->get(sb, '\n');

std::string line = sb.str();

...

*output << line;

}

It lies in the responsibility of the rewriting function to ensure that a syntactically valid
program is written to the output-stream. For more information, we recommend to have a
look at the source code of the description logic plugin, where a rewriter is implemented. To
associate the rewriter-object with the corresponding plugin, the method createRewriter()
has to be overloaded in the plugin-class. The simplest way would be to just create the
rewriter and return it (assuming to create a rewriter for the string-plugin):

PluginRewriter*

StringPlugin::createRewriter(std::istream& i, std::ostream& o)

{

return new MyRewriter(&i, &o)

}

5.4.5 Command Line Option Handling

In order to propagate dlvhex command-line parameters to the plugin, another method of
PluginInterface has to be overloaded. The function setOptions() will be called by
dlvhex with a list of all unknown parameters. If the plugin processes a parameter, it has to
remove it from the list, since dlvhex will exit with an error if any parameters are left after
�asking" its plugins (again we continue the example with the StringPlugin from above):
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void

StringPlugin::setOptions(bool help,

std::vector<std::string>& argv,

std::ostream& out)

{

// loop though the vector argv, remove "own" options

// or

// dump help-msg to out, if requested

}

If the parameter help is true, then dlvhex was called with -h and the plugin can display
a help message by streaming it into out, explaining its own command line strings, if
necessary. However, unknown or wrong command line options have precedence and should
be recognized also when help was requested.

5.4.6 Building the Plugin

We provide a toolkit for building plugins based on the GNU autotools environment. Af-
ter downloading and extracting the toolkit skeleton, the user can customize the top-level
configure.ac to her own needs regarding dependencies on other packages. The only
source-directory in this template is src, where Makefile.am sets the name of the library and
its source-�les. A rudimentary source �le exists, plugin.cpp, which includes the manda-
tory subclasses and methods as shown above. When adding further source-subdirectories
(like include), the user has to take care of referencing them in the top-level Makefile.am.
Calling

./bootstrap.sh

in the top-level directory creates the con�gure �le. Subsequently calling

./configure

and

make install

installs the shared library. If no further arguments are given to configure, the plugin
will be installed into the system-wide plugin-directory (speci�ed by the package con�g-
uration �le lib/pkgconfig/dlvhex.pc of the devel-package). To install the plugin into
∼/.dlvhex/plugins, run

./configure --enable-userinstall

However, dlvhex itself provides a command line switch to provide a further directory at
runtime where to search for plugin libraries.
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Chapter 6

hex-Program Applications

This chapter presents some application scenarios where dlvhex is already used or considered
to be integrated. They show the bene�ts of the speci�cation of custom plugins as well as
the expressivity of the answer-set semantics by means of real-world examples.

6.1 Optimizing Trust Negotiations

Trust management is an important �eld of research in the domain of open distributed and
decentralized systems. One possible approach to trust management is based on policies,
relying on objective security mechanisms such as signed certi�cates and trusted certi�cation
authorities in order to regulate the access of users to speci�c services. Access decision is
usually based on mechanisms with well-de�ned semantics, that allow for veri�cation and
analysis support. The result of such a policy-based trust management approach usually
consists of a binary decision whether the requester is trusted or not, respectively the service
or resource is allowed or denied. These decision can be based on �non-subjective" attributes
which might be certi�ed by certi�cation authorities via digital credentials.

Systems that enforce policy-based trust can pro�t from declarative logic programming.
In a typical scenario, every party in such a negotiation can de�ne its own policies to
control external use of its resources by logic programming rules. The interaction between
two agents that formulate requests and disclosure information based on their own rule-
based policies demands spontaneous negotiation protocols whose behavior is di�cult to
predict. It is not clear whether the negotiation is going to succeed even when the policies
in principle allow it, since they might be protected as sensitive resources and therefore
not disclosed in the negotiation. Moreover, when credentials are released incrementally,
it is desirable, but probably not possible for the peers to minimize the sensitivity of the
information disclosed during negotiations.

In this application example, we restrict our focus to the special case, where the server
fully publishes its policy and credentials. This is likely the case for commercial web services,
enabling clients to protect their privacy and minimize information disclosure. In such a
scenario, it is indeed possible to �nd a minimum of sensitivity of disclosed information,
since the client has all the information it needs to make an optimal choice. This is called
the credential selection problem (cf. [Bonatti et al., 2006]).

6.1.1 The Credential Selection Problem

Roughly said, the instances of the credential selection problem contain

• a �nite, strati�ed logic program P , representing the server's and client's policies,
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• a goal G modeling the authorization requested by the client,

• a �nite set of integrity constraints IC , representing forbidden combinations of cre-
dentials,

• a �nite set of ground facts C, representing the portfolio of credentials and declarations
of the client, and

• a sensitivity aggregation function sen : 2C → Σ, where Σ is a �nite set (of sensitivity
values) partially ordered by �.

A solution for the credential selection problem is a set S ⊆ C such that

1. P ∪ S |= G,

2. P ∪ S ∪ IC is consistent, and

3. sen(S) is minimal among all S which satisfy 1. and 2.

Given that the sensitivity levels are real numbers and sen is a simple function, such
as the sum or maximum of all sensitivity values, it is possible to embed the credential
selection into an ASP program. As an example, we consider the ASP system Smodels,
which provides constructs for minimizing or maximizing a function given as a linear sum of
weights of literals. Thus, by assigning weights to individual ground atoms, an optimization
facility is provided by minimizing the total weight of a stable model.

Such an optimization statement is given as

minimize {A1 = w1, . . . , An = wn},

where w1, · · · , wn are the weights associated with the atoms A1, · · · , An, respectively. This
directive speci�es that the solution is the stable model S of the program with the smallest
value for the sum ∑

l∈L and S|=l

w(l)

with L = {A1, . . . , An} and w(ai) = wi.

Embedding the selection problem into Smodels results in the following program:

P ∪ IC ∪ {c← not c̄ | c ∈ C} ∪ {c̄← not c | c ∈ C} ∪ {← not G} ∪Asen ∪minimize Osen

Here, c̄ denotes a fresh propositional symbol for c ∈ C in order to create the search space
for all combinations of credentials by recursive use of weak negation (note that Smodels
does not provide head disjunction). Asen represents auxiliary rules that are needed for
the optimization statement Osen , both of which are di�erent for each speci�c aggregation
function sen. The most straightforward function would be sen = sum, i.e., the sum of all
sensitivity values in a stable model:

Asen = ∅ and Osen = {c1 = sen({c1}), . . . , cn = sen({cn})}

where C = {c1, . . . , cn} is the set of selected credentials.

It becomes more complicated to express the optimization function within the logic
program if we need to �nd the maximum sensitivity, i.e., sen = max. Then, let Asen be
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the following set of rules, for i = 1, . . . , n, where the predicates lev and maxlev are new
predicates:

lev(i)← c where c ∈ C and sen({c}) = i

lev(i)← lev(i + 1)
maxlev(i)← lev(i),not lev(i + 1)

and Osen = {maxlev(1) = 1, . . . ,maxlev(m) = m}, where m = max{sen({c}) | c ∈ C}.
Intuitively, for all sensitivity values i below the maximal one, lev(i) holds, and hence
maxlev(j) holds only for the maximal level j.

It is obvious that for sophisticated aggregation functions, the encoding with rules
quickly becomes very intricated or even impossible. We will show next how dlvhex to-
gether with an appropriate external atom can generalize and simplify this task to a great
extent.

6.1.2 Aggregation by External Computation

The idea is to externally compute the overall sensitivity of a stable model based on the
selected credentials and then use standard optimization constructs like weak constraints
to �nd the �best� model. Since the interfacing mechanism of dlvhex does not constrain
the user to a speci�c language, she can implement the aggregation function in any suitable
formalism. In the following, we will outline the encoding of the credential selection problem
within dlvhex.

In contrast to Smodels, dlvhex provides head disjunction, making it a bit more intuitive
than using recursion though negation to encode the search space of credentials:

c ∨ ¬c | c ∈ C

We assume that we have a predicate that associates each credential with its sensitivity,

e.g., sens(ci, sen({ci})) for each ci ∈ C and an external atom &policy , that expects such
a binary predicate as input and returns the aggregated sensitivity. We can then state the

following weak constraint:

:∼ &policy[sens](S). [S:1]

The extension of sens that is passed to the external atom corresponds to the subset of
credentials selected in each stable model. The evaluation function of the external atom
then can, based on the credentials and their sensitivity values, compute the overall sen-
sitivity for this subset. We then can use this value directly in the weight speci�cation of
the weak constraint. Considering that the answer sets of a program P with a set W of
weak constraints are those answer sets of P which minimize the number of violated weak
constraints, the resulting model(s) are those with the lowest overall sensitivity value.

In the case of sen = max and a direct encoding in C++, this function could be imple-
mented as follows:

double

PolicySensFunction::eval(const std::vector<double>& values)

{

double ret(0);
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for (std::vector<double>::const_iterator di = values.begin();

di != values.end();

++di)

{

if ((di == values.begin()) || (*di > ret))

ret = *di;

}

return ret;

}

Here we assume that the vector values contains the sensitivity values in sens and do not
consider the credentials themselves.

Appendix C contains a simpli�ed policy speci�cation together with the optimization
part as a hex-program.

6.2 Implementing a SPARQL Reasoning Engine

An interesting application of hex-programs and especially the features of dlvhex is the
approach of using a plugin's rewriter to transform the input data into a valid hex-program.
We already presented such a rewriting facility to simulate a reasoner for dl-programs by
rewriting dl-atoms into external atoms provided by the Description Logics plugin. However,
since such a rewriter is a completely generic module, the input data is not limited at all
to a set of rules. In this section, we present a method of rewriting a query on RDF data
stated in the language SPARQL [Prud'hommeaux and Seaborne, 2006]1 into a set of rules,
the answer set of which represents the query result.

6.2.1 The RDF Query Language SPARQL

SPARQL is a query language for RDF data which shares some similarities with relational
database management languages, such as SQL, but also shows considerable di�erences.
SPARQL is capable of extracting values from RDF data such as literals and URIs as well
as entire subgraphs and can construct new RDF graphs from these results. The basic
building blocks of a query are the SELECT clause, selecting the output variables, and the
WHERE clause, specifying a so-called basic graph pattern to be matched with the input
graph, i.e., the RDF data.

The relation between RDBMS query languages and Datalog has been studied thor-
oughly. In general the former are considered to be more expressive than the latter, es-
pecially since, for instance, SQL is already capable of recursion under strati�ed negation.
Compared to SQL, plain Datalog lacks features such as aggregates and built-in arithmetic
functions. SPARQL, on the other hand, is also restricted w.r.t. SQL, missing aggregates,
recursion and nested queries. However, it introduces other peculiarities which make it dif-
�cult to �nd a straightforward translation to Datalog, such as blank nodes, or the UNION
and OPTIONAL constructs, which allow for the speci�cation of pattern alternatives. An-
other particularity of SPARQL is the possibility to specify graph patterns which do not
have to be matched with the input data, but only if the respective information is available.
Hence, triples that do not match such an optional pattern are not automatically discarded.

1The semantics of SPARQL is not entirely �nalized at the time of writing.
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Extensions of Datalog such as default negation, disjunctive rules and aggregate atoms
go beyond the expressivity of SQL. In [Polleres and Schindlauer, 2006] we investigate the
relationship between SPARQL and such languages and present a strategy how to combine
them.

6.2.2 Rewriting SPARQL to Rules

A plugin for dlvhex does not necessarily have to provide any external atoms, but can
merely apply a rewriter to the input data. To this end, the SPARQL-plugin has been
implemented, which uses a parser for SPARQL to process an RDF query and transform it
into an appropriate set of rules. Thus, a formal translation from SPARQL into ASP was
given, capturing most of the available SPARQL constructs.

Importing the RDF data can be accomplished with the &rdf atom. The translation
then takes care of selecting the respective variables from the graph pattern in the query,
particularly considering UNION and OPTIONAL clauses. The latter can be elegantly
approximated by weak negation in the logic program.

The example below demonstrates the translation strategy for a simple SPARQL query.

Example 6.2.1 The following query returns the names of individuals from a FOAF-URI.
If their mailboxes or homepages are available, they are added to the respective triple:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox ?hpage

FROM <http://www.kr.tuwien.ac.at/staff/roman/foaf.rdf>

WHERE { ?x foaf:name ?name .

OPTIONAL { ?x foaf:mbox ?mbox } .

OPTIONAL { ?x foaf:homepage ?hpage }

}

The translation delivers the following rules:

#namespace(“foaf ”, “http://xmlns.com/foaf /0 .1/”)

(1) triple(S, P,O, default)← &rdf [“http://www.kr.tuwien.ac.at/sta�/
roman/foaf.rdf”](S, P,O).

(2) answer1(Xname,Xx )← triple(Xx , “foaf :name”,Xname, default).
(3) answer2(Xmbox ,Xx )← triple(Xx , “foaf :mbox”,Xmbox , default).
(4) answer3(Xhpage,Xx )← triple(Xx , “foaf :homepage”,Xhpage, default).

(5) answer opt1(Xmbox ,Xname,Xx )← answer1(Xname,Xx ),
answer2(Xmbox ,Xx ).

(6) answer opt1(null ,Xname,Xx )← answer1(Xname,Xx ),
not answer′2(Xx ).

(7) answer ′2(Xx )← answer2(Xmbox ,Xx ).

(8) answer opt2(Xhpage,Xmbox ,Xname,Xx )← answer opt1(Xmbox ,Xname,Xx ),
answer3(Xhpage,Xx ).

(9) answer opt2(null ,Xmbox ,Xname,Xx )← answer opt1(Xmbox ,Xname,Xx ),
not answer′3(Xx ).

(10) answer ′3(Xx )← answer3(Xhpage,Xx ).

(11) answer(Xhpage,Xmbox ,Xname)← answer opt2(Xhpage,Xmbox ,Xname,Xx ).
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The �rst four rules import the RDF dataset into the hex-program, creating one predicate
for each graph pattern. Rules (5) and (6) collect those tuples that have both a name and
mailbox as well as those without a mailbox, realizing the semantics of the �rst OPTIONAL
clause (using a projection created by the auxiliary Rule (7)). These results are then used in
Rules (8) and (9), gathering tuples with a homepage and tuples without, corresponding to
the second OPTIONAL. Both of these outer joins insert the constant null for non-existing
optional values. The �nal result is the extension of the predicate answer . 3

Currently, the translation comprises the following features:

• SELECT queries with simple graph patterns, UNION and OPTIONAL

• N3, RDF/XML, Turtle syntax for input

• Full N3 syntax for triple patterns, including blank nodes and arbitrary nesting of
patterns

• Simple conjunctive FILTER expressions: conjunction, isBound, isBlank, binary com-
parison operators; for the latter, we use nonstandard semantics that are based on
available DLV-builtins (for details about the proper semantics of such operators,
cf. [Prud'hommeaux and Seaborne, 2006])

At its current stage, the prototype has a number of limitations. First of all, CON-
STRUCT, ASK and DESCRIBE result forms are not supported, since the query result
is simply given as the extension of a dedicated predicate. The support of �lters is still
preliminary. Moreover, there is no awareness of language tags or typed literals.

Future work in this direction not only comprises the enhancement of this prototype in
order to cover SPARQL to a greater extent, but also to take advantage of the insights gained
from the combinations of SPARQL and answer-set programming and identify possible
extensions for the query language itself, e.g., adding features such as aggregates, recursion
and nested queries.

6.3 Ontology Merging

Merging and aligning of ontological knowledge bases is one prominent problem in the
context of the Semantic Web. Di�erent such ontologies might be developed independently,
with partly overlapping knowledge and structures. A straightforward strategy for merging
such repositories usually does not exist. The approaches regarding merging and aligning can
generally be categorized in elementary matchers, which follow a single, speci�c algorithm,
and hybrid solutions, combining several elementary matchers. Among the schema-based
approaches, several methods rely on linguistic resources, deriving structural knowledge from
common knowledge thesauri, such as WordNet. Provided that the respective ontologies
use labels from human language, these methods are based on linguistic relations, such as
synonymy or meronymy.

In his honours thesis, Jürgen Bock [2006] has pursued a novel approach for ontology
merging, using answer-set programming as the logical underpinning for the implementation
of an elementary matching algorithm, resorting to WordNet as a background knowledge
base for lexical and domain knowledge. Such a declarative programming formalism allows
for the speci�cation of a merging algorithm in an intuitive and maintainable fashion. The
universal coupling mechanism of hex-programs suggested to implement an interface to the
database of WordNet. To this end, Bock developed the WordNet-plugin, which was already
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presented in Subsection 5.3.4. The WordNet plugin provides a single external atom, which
is able to perform all query types that are supported by the API of WordNet. This section
summarizes the relevant portions of [Bock, 2006].

The condition for this method is the availability of ontologies in a basic ontology lan-
guage. Most public ontologies, such as web dictionaries, thesauri, and other types of
controlled vocabulary, are simple enough to avoid the usage of expressive ontology lan-
guages such as OWL or even RDF Schema. For such ontologies the Simple Knowledge
Organization System (SKOS ) [Miles and Brickley, 2005] provides a model for expressing
the basic structure and content of concept schemes, based on RDF.

6.3.1 Merging Algorithm

The merging algorithm uses WordNet to access two important linguistic relations:

Hyponymy A word w1 is a hyponym of w2, if w1 is more speci�c than w2. For example,
steamboat is a hyponym of ship. The inverse relation is hypernymy.

Meronymy A word w1 is a meronym of w2, if w1 and w2 are in a �part-whole" relationship,
i.e., , w1 is a part of, a substance of, or a member of w2. For instance, aeroplane has
the meronyms fuselage, wing, landing gear, etc. The inverse relation is holonymy.

The proposed strategy is meant to be semi-automatic, letting the human user actively
adjust and in�uence the merging process. First of all, this is guaranteed by providing
multiple possible solutions, based on the model-generating property of the answer-set se-
mantics. The models are regarded as suggestions for possible merging results. Moreover,
the user can de�ne speci�c parameters according to various requirements regarding the
structure of the merging result.

If c1is a concept of an ontology O1 and c2 a concept of an ontology O2, Bock de�nes
the following two relationships:

c1 ' c2 i� ∃l1 ∈ L(c1) and ∃l2 ∈ L(c2) s.t.
l1 and l2 are either identical or synonyms (6.1)

c1 ≺ c2 i� ∃l1 ∈ L(c1) and ∃l2 ∈ L(c2) s.t.
l1 is linguistically narrower than l2 (6.2)

L(c) denotes all labels of a concept c.2 A label l1 is linguistically narrower than l2, if l2 is
a hyponym or meronym of l2.

The �rst basic principle of the algorithm is concept melding (i.e., merging two concepts
into one). Two concept can be melded, if they ful�ll condition 6.1:

meld(c1, c2) ∨ ¬meld(c1, c2)← c1 ' c2

However, melding is optional, since two synonymous concepts can simultaneously satisfy
condition 6.2. If this is not the case, the melding is forced:

← c1 ' c2,not c1 ≺ c2,not c2 ≺ c1,¬meld(c1, c2)

The second principle is restructuring of hierarchies. Subsets of all potential narrowing
relations are created:

pot narr(c1, c2)← c1 v c2 (c1, c2 ∈ Oi with i ∈ {1, 2})
pot narr(c1, c2)← c1 ≺ c2 (c1 ∈ O1, c2 ∈ O2)

m narr(c1, c2) ∨ ¬m narr(c1, c2)← pot narr(c1, c2)
2In SKOS, a concept can have multiple labels (called preferred and alternative labels).
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Here, c1 v c2 denotes a subclass-relation that already exists in one of the input ontologies.
A further selection from this search space is made based on a number of criteria which

are applied as constraints. Currently, the following parameters are supported:

no singles Every concept must occur in a narrowing relation.

one root A single root concept must exist in the narrowing hierarchy.

single parent A concept may not have two incoming narrowing relations. This �thins
out� the graph as shown in Figure 6.1.

always meld Meld concepts whenever possible.
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Figure 6.1: E�ect of single parent on a structure of narrowing relations. Figure a) shows
the potential narrowing relations, while b) and c) are minimized by single parent .

Furthermore, the user is able to adjust the desired length of chained narrowing relations,
for instance to prefer a more nested hierarchy of concepts over a �at one (called brave
merging).

6.3.2 Implementation

A hex-program is used to implement the mechanism outlined above, using the &rdf atom
to import the SKOS-ontologies and the &wordnet atom to obtain the linguistic relations
between concept labels. The parameters are realized as propositional atoms. The result of
the process is again transformed into an RDF graph (expressed as ternary atoms), using
SKOS vocabulary. Below, we will exemplarily print some of the important parts of the
merging program.

The following rules extract the similarity and narrowing relations:

#namespace(skos,"http://www.w3c.rl.ac.uk/2003/11/21-skos-core#")

ont_narrower(ONT,B,N) :- triple(ONT,N,"skos:broader", B).

ont_narrower(ONT,B,N) :- triple(ONT,B,"skos:narrower",N).

ling_narrower(C1,C2) :- label(ONT1,C1,L1), label(ONT2,C2,L2),

&wordnet[S,L1](1,_,L2,_),

linguistic_narrower_search(S), ONT1 != ONT2.

synonym(C1,C2) :- label(1,C1,L1), label(2,C2,L2),

&wordnet[23,L1](1,_,L2,_).
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The e�ect of the input parameters is achieved by constraints:

chained(C,D) :- potential_narrower(C,E), potential_narrower(E,D).

chained(C,D) :- chained(C,E), potential_narrower(E,D).

:- merged_narrower(C,E), chained(C,E), potential_narrower(C,E), brave.

:- merged_narrower(C,D), merged_narrower(B,D), C != B, single_parent.

b(C) :- merged_narrower(_,C).

n(C) :- merged_narrower(C,_).

root(C) :- b(C), not n(C).

root(C) :- not b(C), not n(C), merged_concept(C,_).

:- root(C), root(D), C!=D, one_root.

:- not b(C), not n(C), merged_concept(C,_), no_singles.

Testing the algorithm on two small SKOS ontologies with four resp. �ve concepts each
resulted in 1 to 72 merging suggestions, depending on the algorithm's parameters. It shows
that brave merging has the strongest e�ect and greatly reduces the number of answer sets.
In general, a high number of solution shows that such an elementary merging approach is
best applied as part of a hybrid solution instead of a stand-alone application. However,
the algorithm delivers intuitively �suitable� results, and its encoding as a declarative and
concise ruleset under a semantics that produces multiple models proves to be a promising
approach.

For further information about the merging method as well as the WordNet plugin, we
refer to [Bock, 2006].
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Chapter 7

Conclusion

The idea of this work was to contribute to the ongoing developments in the Semantic Web
and logic programming communities regarding an integration of a rule-layer in the current
Semantic Web architecture. Speci�cally, we tried to exploit the features of non-monotonic
reasoning in the form of answer-set programming towards reasoning tasks in the Semantic
Web.

After a brief survey over the status quo and an introduction to the basic concepts
of answer-set programming and knowledge representation in the Semantic Web through
Description Logics and ontologies, we proposed two novel languages.

First, we aimed at an integration of rules and ontologies by combining logic pro-
gramming under the answer-set semantics with the Description Logics SHIF(D) and
SHOIN (D), which stand behind OWL Lite and OWL DL, respectively. We have intro-
duced dl-programs, which consist of a description logic knowledge base L and a �nite set P
of dl-rules, which may also contain queries to L, possibly default-negated, in their bodies.
Importantly, we chose an approach of strict semantic separation, in order to avoid common
pitfalls when combining such diverge formalisms as logic programming and description log-
ics, which are fragment of �rst-order logic. Speci�cally, we avoid undecidability issues due
to their entirely di�erent model theories.

We have de�ned Herbrand models for dl-programs, and shown that satis�able positive
dl-programs have a unique least Herbrand model. More generally, consistent strati�ed dl-
programs can be associated with a unique minimal Herbrand model that is characterized
through iterative least Herbrand models. We have then generalized the unique minimal
Herbrand model semantics for positive and strati�ed dl-programs to a strong answer-set
semantics for all dl-programs, which is based on a reduction to the least model semantics
of positive dl-programs. We have also de�ned a weak answer-set semantics based on a
reduction to the answer sets of ordinary logic programs. We have given �xpoint char-
acterizations for the unique minimal Herbrand model semantics of positive and strati�ed
dl-programs, and shown how to compute these models by �nite �xpoint iterations. Fur-
thermore, we have given a precise picture of the complexity of deciding strong and weak
answer set existence for a dl-program. Concrete examples have shown the applicability of
dl-program applications regarding typical notions of non-monotonic reasoning, such as the
closed-world assumption or default logic. Eventually, we presented an implementation of
a reasoner for dl-programs, outlining its algorithms and optimization techniques.

The second language can be seen as a further development of dl-programs, generalizing
the Description Logics interface to a more general class of external sources of computation.
These so-called hex-programs retain the elegant problem-solving paradigm of answer-set
programming and enrich this formalism by the interoperability with other software. At
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the same time, they support abstract problem modeling by higher-order features, which
are needed for a wide range of applications but missing in ASP systems today. The in-
terface mechanism of hex-programs, similar to the idea behind dl-programs, follows the
approach of strictly separating the semantics of the logic program and the external source
of knowledge. Akin to dl-programs, this allows us to extend the answer-set semantics
in a straightforward and intuitive fashion, ensuring decidability and �niteness of the do-
main. Since hex-programs can integrate heterogenous sources of knowledge in a single
logic program, a wide variety of knowledge merging and aligning strategies can be encoded
in a concise fashion. User-de�ned libraries can be incorporated, and thus customization to
speci�c applications is enabled. The non-monotonic constructs as well as the possibility
to generate multiple models from a single problem speci�cation are well-suited for many
reasoning tasks related to the Semantic Web.

We de�ned the semantics of general hex-programs by generalizing the traditional
answer-set semantics, de�ning the model of an external atom and using the FLP-reduct
instead of the classical GL-reduct. We have sketched typical examples of the usability of
external atoms in the domain of Semantic Web applications, such as importing and manip-
ulation external theories or de�ning speci�c ontology semantics by rules of a hex-program.
We then have outlined the general principle of computation of a hex-program, relying on
the dependency information that underlies the program. We aimed at integrating existing
reasoners instead of creating an entirely new one and so designed a framework that builds
upon available answer-set solver as well as the engines behind external atoms. From this
viewpoint, we created an algorithm that builds the models of a hex-program by decom-
posing it and subsequently calling the external reasoners. Moreover, we speci�ed syntactic
safety constraints to ensure decidability. A prototype implementation, called dlvhex, of
these strategies was created, along with a number of so-called plugins which provide sev-
eral external atoms, interfacing for instance RDF repositories, DL knowledge bases, the
WordNet database or simple, but useful string operations. We designed a software archi-
tecture that adheres to widespread software standards and allows for quick development
of custom plugins.

Eventually, we presented concrete, currently developed applications of hex-programs,
which demonstrate the versatility of both the underlying semantics as well as the compu-
tational framework.

We strongly believe that reasoning in the Semantic Web would bene�t greatly from
advanced, non-monotonic reasoning techniques enforced by declarative languages such as
dl-programs or hex-programs. Especially the latter can act as a glue, integrating heteroge-
nous sources under di�erent semantics in a single inference framework. Even if the Web
as a whole is seen as an �open world� that calls for open-world reasoning, it is very likely
that in some bounded areas non-monotonic reasoning under the closed-world assumption
is the right way to go to be able to eventually reach a conclusion. To this end, we have
shown how to use our languages to explicitly apply the closed-world assumption or default
reasoning to dedicated parts of knowledge bases.

Currently, we are developing further plugins to import and reason over XML docu-
ments, using XPath as query language. Moreover, we plan to implement a plugin for
Xcerpt, a rule-based query language for graph-structured data such as XML or RDF. Fu-
ture work will mainly address the e�ciency of dlvhex and its algorithms, as well as useful
syntactic extensions, such as typing of parameters corresponding to RDF (literals vs. re-
source identi�ers). We also aim at establishing a more general framework for this class
of logic programs that reason about imported knowledge, which could capture also other
existing approaches of combining rules and ontologies and facilitate the speci�cation of a
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standardized, web-based reasoning access to inference engines such as dlvhex.
Practical experiments with dlvhex have shown that the current computation method

lacks e�ciency in case of unstrati�ed hex-programs, where external atoms occur in negative
cycles. This stems from the inevitable guess-and-check algorithm and cannot be avoided
within the chosen framework of calling an external answer-set solver for all intermediate
and �nal model generations. A solution to this problem would be a tighter integration
between the evaluation of external atoms and the actual ASP model generator, avoiding
the current splitting set method. This could be carried out in two ways: (i) The actual
implementation of the answer-set semantics is natively integrated in dlvhex module. (ii)
The interface mechanism of external atoms is transferred to DLV itself. The �rst approach
would require great e�orts and human resources to reach a level of e�ciency compared
with pure ASP solvers, since they use highly sophisticated and optimized techniques. The
second approach would be less elaborate, but eventually depends on the strategies and
priorities of the DLV development team.

Another feature that is currently missing in existing answer-set solvers is the possibility
of typed constants. Such typing is crucial in the Semantic Web context when for instance
a URL must be distinguished from a string. Currently, this is not possible, because in DLV,
a URI has to be quoted. The usage of the RDF plugin has shown that without typing
facilities in the logic program, RDF reasoning is seriously compromised, and thus we plan
to include typing facilities in dlvhex.
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Appendix

A Proofs

The proofs of the theorems in Subsections 3.7.1 and 3.7.2 are lengthy and therefore given
here instead of being included in the main text.

Proof of Theorem 3.7.1. We prove the upper complexity bounds for strati�ed and
general dl-programs, and the lower bounds for positive and general dl-programs.

In the strati�ed case, by Theorem 3.4.3, KB has a strong answer set i� KB is consistent.
By Theorem 3.6.6, the latter is equivalent to Mk 6= HBP , where Mk is de�ned by (a
sequence of) �xpoint iterations and can be computed in exponential time. Hence, deciding
whether KB has a strong answer set is in EXP. As for deciding whether KB has a weak
answer set, we explore (one by one) the exponentially many possible inputs of the dl-atoms
in ground(P ). For each input, evaluating the dl-atoms and removing them from ground(P )
is feasible in exponential time. Since we are then left with an ordinary strati�ed program
KB ′, by Theorem 3.4.7, we try to compute MKB ′ by (a sequence of) �xpoint iterations, and
check compliance with the inputs of the dl-atoms, which can both be done in exponential
time. In summary, deciding whether KB has a weak answer set is also in EXP.

In the general case, we can guess an (exponential size) interpretation I ⊆ HBP and
compute the transform sP I

L (resp., wP I
L). Since evaluating all dl-atoms in ground(P ) and

removing (i) all default-negated literals and dl-atoms, and (ii) all not necessarily monotonic
(resp., all) other dl-atoms from ground(P ) is feasible in exponential time, computing the
transform sP I

L (resp., wP I
L) is also feasible in exponential time. Since we are then left with

a positive KB ′, we try to compute MKB ′ by a �xpoint iteration, and check compliance with
the guessed I, which can both be done in exponential time. In summary, deciding whether
KB has a strong (resp., weak) answer set can be done in nondeterministic exponential
time.

Hardness for EXP of deciding answer set existence in the positive case holds by a re-
duction from the EXP-complete problem of deciding whether a description logic knowl-
edge base L in SHIF(D) is satis�able, since the latter is equivalent to the positive dl-
program KB = (L, {¬p←, p← DL[ ;> v ⊥]()}), where p is a fresh propositional symbol,
having a strong answer set, which is by Theorems 3.4.3, 3.4.6, and 3.4.8 in turn equivalent
to KB having a weak answer set.

Hardness for NEXP of deciding answer set existence in the general case follows imme-
diately from Theorems 3.4.1 and 3.4.5, and the fact that deciding whether an ordinary
normal program has an answer set is NEXP-complete [Dantsin et al., 2001]. 2

Proof of Theorem 3.7.2. For the proof of this Theorem (and also of Theorem 3.7.4
following below), we recall the concept of a domino system, which is de�ned as follows. A
domino system D = (D,H, V ) consists of a �nite nonempty set D of tiles and two relations
H,V ⊆ D × D expressing horizontal and vertical compatibility constraints between the
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tiles. For positive integers s and t, and a word w = w0 . . . wn−1 over D of length n ≤ s, we
say that D tiles the torus U(s, t) = {0, 1, . . . , s−1}×{0, 1, . . . , t−1} with initial condition w
i� there exists a mapping τ : U(s, t)→ D such that for all (x, y) ∈ U(s, t): (i) if τ(x, y) = d
and τ((x+1) mod s, y) = d′, then (d, d′) ∈ H (horizontal constraint), (ii) if τ(x, y) = d and
τ(x, (y + 1)mod t) = d′, then (d, d′) ∈ V (vertical constraint), and (iii) τ(i, 0) = wi for all
i ∈ {0, . . . , n} (initial condition).

We prove the upper complexity bounds for positive and general dl-programs, and the
lower bounds for positive and strati�ed dl-programs.

To prove the NEXP-membership in the positive case, observe that a positive KB has
a strong (resp., weak) answer set i� there exists an interpretation I and a subset S ⊆
{a ∈ DLP | I 6|=L a} such that the ordinary positive program PI,S , which is obtained from
ground(P ) by deleting each rule that contains a dl-atom a ∈ S and all remaining dl-atoms,
has a model included in I. A suitable I and S, along with proofs I 6|=L a for all a ∈ S, can
be guessed and veri�ed in exponential time.

As for the general case, observe �rst that for each dl-program KB , the number of
ground dl-atoms a is polynomial, and every ground dl-atom a has in general exponentially
many di�erent concrete inputs Ip (that is, interpretations Ip of its input predicates p =
p1, . . . , pm), but each of these concrete inputs Ip has a polynomial size. Furthermore, notice
that during the computation of the canonical model of a positive dl-program by �xpoint
iteration, any ground dl-atom a needs to be evaluated only polynomially often, as its input
can increase only that many times.

We can thus guess inputs Ip for all dl-atoms, and evaluate them with a NEXP oracle
in polynomial time. For the (monotonic) ones remaining in sP I

L, we can further guess a
chain ∅ = I0

p ⊂ I1
p ⊂ · · · ⊂ Ik

p = Ip, along which their inputs are increased in a �xpoint

computation for sP I
L, and evaluate the dl-atoms on it in polynomial time with a NEXP

oracle. We then ask a NEXP oracle if an interpretation I exists which is the answer set of
sP I

L (resp., wP I
L) compliant with the above inputs (and thus the valuations) of the dl-atoms

and such that their inputs increase in the �xpoint computation as in the above chain. This
yields the NPNEXP = PNEXP upper bound.

Hardness for NEXP of deciding (strong or weak) answer set existence in the positive case
holds by a reduction from the NEXP-complete problem of deciding whether a description
logic knowledge base L in SHOIN (D) is satis�able, using the same line of argumentation
as in the proof of Theorem 3.7.1.

Hardness for PNEXP of deciding answer set existence in the strati�ed case is proved
by a generic reduction from Turing machines M , exploiting the NEXP-hardness proof for
ALCQIO by Tobies [Tobies, 2001]. Informally, the main idea behind the proof is to use a
dl-atom to decide the result of the j-th oracle call made by a polynomial-time bounded M
with access to a NEXP oracle, where the results of the previous calls are known and input to
the dl-atom. By a proper sequence of dl-atom evaluations, the result of M 's computation
on input v can then be obtained.

More concretely, let M be a polynomial-time bounded deterministic Turing machine
with access to a NEXP oracle, and let v be an input for M . Since every oracle call can
simulate M 's computation on v before that call, once the results of all the previous oracle
calls are known, we can assume that the input of every oracle call is given by v and the
results of all the previous oracle calls. Since M 's computation after all oracle calls can be
simulated within an additional oracle call, we can assume that the result of the last oracle
call is the result of M 's computation on v. Finally, since any input to an oracle call can
be enlarged by �dummy� bits, we can assume that the inputs to all oracle calls have all
the same length n = 2 · (k + l), where k is the size of v, and l = p(k) is the number of all



A Proofs 145

oracle calls: We assume that the input to the m+1-th oracle call (with m ∈ {0, . . . , l−1})
has the form

vk 1 vk−1 1 . . . v1 1 c0 1 c1 1 . . . cm−1 1 cm 0 . . . cl−1 0 ,

where vk, vk−1, . . . , v1 are the symbols of v in reverse order, which are all marked as valid
by a subsequent �1�, c0, c1, . . . , cm−1 are the results of the previous m oracle calls, which
are all marked as valid by a subsequent �1�, and cm, . . . , cl−1 are �dummy� bits, which are
all marked as invalid by a subsequent �0�.

Let M ′ be a nondeterministic Turing machine with time- (and so space-) bound 2n,
deciding a NEXP-complete language L(M ′) over the alphabet Σ (consisting of 0, 1, and the
blank symbol ′′ ′′). By [Börger et al., 1997], Theorem 6.1.2, there exists a domino system
D = (D,H, V ) and a linear-time reduction trans that takes any input b ∈ Σ? to a word
w ∈ D? with |b| = n = |w| such that M ′ accepts b i� D tiles the torus U(2n+1, 2n+1)
with initial condition w. Here, D is de�ned as the set of all triples of elements from
Σ∪Q×Σ∪{#, e}, where Q is the set of all states of M ′, and # and e are two fresh symbols.
Moreover, the linear-time reduction trans that transforms any string b = b0 b1 . . . bn−1 over
Σ into a string w = w0w1 . . . wn−1 over D (of the same length) is de�ned as follows (where
q0 is the start state of M ′):

w0 = (#, (q0, b0), b1),
w1 = ((q0, b0), b1, b2),
w2 = (b1, b2, b3),

...
wn−1 = (bn−2, bn−1, “ ”) .

As shown in [Tobies, 2001], Lemma 5.18 and Corollary 5.22, for domino systems D =
(D,H, V ) and initial conditions w = w0 . . . wn−1, there exist description logic knowledge
bases Ln, LD, and Lw in SHOIN (D) (which can be constructed in polynomial time in n
from D, and w) such that Ln ∪LD ∪Lw is satis�able i� D tiles U(2n+1, 2n+1) with initial
condition w. Informally, Ln encodes the torus U(2n+1, 2n+1), and LD represents the domino
system D, while Lw encodes the initial condition w. Intuitively, the elements of the torus
U(2n+1, 2n+1) are encoded by objects, and any mapping τ : U(2n+1, 2n+1)→ D satisfying
the compatibility constraints is encoded by the membership of these objects to concepts Cd

with d ∈ D, while Lw explicitly represents some of such memberships to encode the initial
condition w. More precisely, Lw has the form {Ci,0 v Cwi | i ∈ {0, 1, . . . , n − 1}}, where
every Ci,0 is a concept containing exactly the object representing (i, 0) ∈ U(2n+1, 2n+1).

Let the strati�ed dl-program KB = (L,P ) now be de�ned as follows:

L = Ln ∪ LD ∪ {Ci,0 u Si,d v Cd | i ∈ {0, 1, . . . , n− 1}, d ∈ D} ∪
{Ci,0(oi) | i ∈ {0, 1, . . . , n− 1}} ,

P = {¬bl
2l−2(0)←} ∪

⋃l
j=0 P j ,

where P j = P j
v ∪P j

q ∪P j
w←b∪P j

s←w for every j ∈ {0, . . . , l}. Informally, every set of dl-rules
P j generates the input of the j+1-th oracle call, where the input of the �dummy� l+1-th
oracle call contains the result of the l-th (i.e., the last) oracle call. More concretely, the
bitstring a−2k · · · a2l−1 is the input of the j+1-th oracle call i� bj

−2k(a−2k), . . . , b
j
2l−1(a2l−1)

are in the canonical model of KB . Every P j = P j
v ∪P j

q ∪P j
w←b ∪P j

s←w with j ∈ {0, . . . , l}
is de�ned as follows:
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1. P 0
v writes v into the input of the �rst oracle call, and every P j

v with j ∈ {1, . . . , l}
copies v into the input of the j+1-th oracle call:

P 0
v = {b0

−2i(vi)←| i ∈ {1, . . . , k}} ∪ {b0
−2i+1(1)←| i ∈ {1, . . . , k}},

P j
v = {bj

−i(x)← bj−1
−i (x) | i ∈ {1, . . . , 2k}} .

2. P 0
q initializes the rest of the input of the �rst oracle call with �dummy� bits, and

every P j
q with j ∈ {1, . . . , l} writes the result of the j-th oracle call into the input of

the j+1-th oracle call and carries over all the other result and dummy bits from the
input of the j-th oracle call:

P 0
q = {b0

i (0)←| i ∈ {0, . . . , 2l−1},
P j

q = {bj
i (x)← bj−1

i (x) | i ∈ {0, . . . , 2l−1}, i 6∈ {2j−2, 2j−1}}∪
{bj

2j−2(0)←DL[∀i, d : Si,d ] sj−1
i,d ;> v ⊥]();

bj
2j−2(1)←not bj

2j−2(0);
bj
2j−1(1)←} .

3. Every P j
w←b with j ∈ {0, . . . , l} realizes the above-mentioned linear-time reduction

trans, which transforms any input bj of the Turing machine M into an initial con-
dition wj of the same length of M 's domino system D. That is, P j

w←b is a positive
program consisting of (n− 2) · 8 + 2 · 4 ground rules.

4. Every P j
s←w with j ∈ {0, . . . , l} transforms the initial condition wj of D into an input

sj to the j+1-th dl-atom via the predicates sj
i,d:

P j
s←w = {sj

i,d(oi)←wj
i (d) | i ∈ {0, 1, . . . , n− 1}, d ∈ D} .

Observe then that M accepts v i� the last oracle call returns �yes�. The latter is equivalent
to bl

2l−2(1) (and not bl
2l−2(0)) being derived from KB , which is in turn equivalent to KB

having a strong (resp., weak) answer set. In summary, M accepts v i� KB has a strong
(resp., weak) answer set. 2

Proof of Theorem 3.7.3. We prove the upper complexity bounds for strati�ed and
general dl-programs, and the lower bounds for positive and general dl-programs.

As for the upper complexity bounds, deciding whether l belongs to every (resp., some)
strong or weak answer set of KB = (L,P ) can be reduced to the complement of answer
set existence (resp., answer set existence itself) by adding to P the two rules p ← l and
¬p ← l (resp., the two rules p ← not l and ¬p ← not l), where p is a fresh propositional
symbol. Adding these rules does not change KB 's property of being strati�ed or general.
By Theorem 3.7.1, answer set existence is in EXP in the strati�ed case and in NEXP in
the general case. Thus, deciding whether l belongs to every (resp., some) strong or weak
answer set of KB is in EXP when KB is strati�ed, and in coNEXP (resp., NEXP) when KB
is a general dl-program.

The lower complexity bounds hold by a reduction from the complement of answer set
existence (resp., answer set existence itself), since a dl-program KB = (L,P ) has no (resp.,
some) strong or weak answer set i� the classical literal p belongs to every (resp., some)
strong or weak answer set of KB ′ = (L,P ∪ {¬p←}) (resp., KB ′ = (L,P ∪ {p←}), where
p is a fresh propositional symbol. Adding the rule ¬p← (resp., p←) does not change KB 's
property of being positive or general. By Theorem 3.7.1, answer set existence is hard for
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EXP in the positive case and hard for NEXP in the general case. Thus, deciding whether l
belongs to every (resp., some) strong or weak answer set of KB is hard for EXP when KB
is positive and hard for coNEXP (resp., NEXP) when KB is a general dl-program. 2

Proof of Theorem 3.7.4. We prove the upper complexity bounds for positive and
general dl-programs, and the lower bounds for positive and strati�ed dl-programs.

We �rst prove the upper complexity bounds for all above cases except for brave rea-
soning from positive dl-programs. Using the same line of argumentation as in the proof of
Theorem 3.7.3, deciding whether l belongs to every (resp., some) strong or weak answer set
of KB = (L,P ) can be reduced to the complement of answer set existence (resp., answer
set existence itself) by adding to P the two rules p ← l and ¬p ← l (resp., the two rules
p ← not l and ¬p ← not l), where p is a fresh propositional symbol. In all cases except
for brave reasoning from positive dl-programs, adding these rules does not change KB 's
property of being positive or general. By Theorem 3.7.2, answer set existence is in NEXP

in the positive case and in PNEXP in the general case. Thus, deciding whether l belongs to
every strong or weak answer set of KB is in coNEXP when KB is positive, and in PNEXP

when KB is a general dl-program. Furthermore, deciding whether l belongs to some strong
or weak answer set of KB is in PNEXP when KB is a general dl-program.

Membership in PNEXP of brave reasoning under the weak answer set semantics in the
positive case follows from the membership in PNEXP of deciding weak answer set existence
in the strati�ed case, since (as argued above) a classical literal l ∈ HBP belongs to some
weak answer set of the positive dl-program KB = (L,P ) i� the strati�ed dl-program
KB ′ = (L,P ∪ {p ← not l, ¬p ← not l}), where p is a fresh propositional symbol, has a
weak answer set.

As for the membership in Dexp of brave reasoning under the strong answer set semantics
in the positive case, observe �rst that a classical literal l ∈ HBP belongs to some strong
answer set of the positive dl-program KB i� (i) KB has some strong answer set, and (ii)
KB has no strong answer set I with l 6∈ I. The latter is equivalent to: (i) there exists an
interpretation I and a subset S ⊆ {a ∈ DLP | I 6|=L a} such that the ordinary positive
program PI,S , which is obtained from ground(P ) by deleting each rule that contains a
dl-atom a ∈ S and all remaining dl-atoms, has a model included in I, and (ii) there
exists no interpretation I with l 6∈ I and subset S ⊆ {a ∈ DLP | I 6|=L a} such that the
ordinary positive program PI,S , which is obtained from ground(P ) by deleting each rule
that contains a dl-atom a ∈ S and all remaining dl-atoms, has a model included in I. As
argued in the proof of Theorem 3.7.2, (i) and (ii) are in NEXP and coNEXP, respectively.
This shows that brave reasoning in the positive case under the strong answer set semantics
is in Dexp.

The lower complexity bounds for all above cases except for brave reasoning from positive
dl-programs hold by a reduction from answer set non-existence (resp., existence), using the
same line of argumentation as in the proof of Theorem 3.7.3, since a dl-program KB =
(L,P ) has no (resp., some) strong or weak answer set i� the classical literal p belongs to
every (resp., some) strong or weak answer set of KB ′ = (L,P ∪ {¬p ←}) (resp., KB ′ =
(L,P ∪{p←}), where p is a fresh propositional symbol. Adding the rule ¬p← (resp., p←)
does not change KB 's property of being positive or strati�ed. By Theorem 3.7.2, answer set
existence is NEXP-hard in the positive case and PNEXP-hard in the strati�ed case. Hence,
deciding whether l belongs to every strong or weak answer set of KB is coNEXP-hard when
KB is positive and PNEXP-hard when KB is strati�ed. Moreover, deciding whether l is in
some strong or weak answer set of KB is PNEXP-hard when KB is strati�ed.

Hardness for Dexp of brave reasoning under the strong answer set semantics in the
positive case holds by a reduction from a Dexp-hard problem involving domino systems.
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More concretely, by a slight adaptation of the proof of Corollary 5.14 in [Tobies, 2001], it
can be shown that there exists a domino system D = (D,H, V ) such that the following
problem is hard for Dexp:

(?) Given two initial conditions v = v0 . . . vn−1 and w = w0 . . . wn−1 over D of length n,
decide whether (1) D tiles the torus U(2n+1, 2n+1) with initial condition v, and (2) D
does not tile the torus U(2n+1, 2n+1) with initial condition w.

We now reduce (?) to brave reasoning under the strong answer set semantics in the positive
case. As shown in [Tobies, 2001], Lemma 5.18 and Corollary 5.22, for domino systems
D = (D,H, V ) and initial conditions v = v0 . . . vn−1 and w = w0 . . . wn−1, there exist
description logic knowledge bases Ln, LD, Lv, and Lw in SHOIN (D) (which can be
constructed in polynomial time in n from D, v, and w) such that (a) Ln ∪ LD ∪ Lv is
satis�able i� D tiles the torus U(2n+1, 2n+1) with initial condition v, and (b) Ln∪LD ∪Lw

is unsatis�able i� D does not tile U(2n+1, 2n+1) with initial condition w. Informally, Ln

encodes the torus U(2n+1, 2n+1), and LD represents the domino system D, while Lv and
Lw encode the initial conditions v and w, respectively. Intuitively, the elements of the
torus U(2n+1, 2n+1) are encoded by objects, and any mapping τ : U(2n+1, 2n+1) → D
satisfying the compatibility constraints is encoded by the membership of these objects to
concepts Cd with d ∈ D, while Lv and Lw explicitly represent some of such memberships
to encode the initial conditions v and w, respectively. More concretely, Lv and Lw are
of the form {Ci,0 v Cvi | i ∈ {0, 1, . . . , n − 1}} and {Ci,0 v Cwi | i ∈ {0, 1, . . . , n − 1}},
respectively, where every Ci,0 is a concept containing exactly the object representing the
element (i, 0) ∈ U(2n+1, 2n+1). Let the dl-program KB = (L,P ) be de�ned by:

L = Ln ∪ LD ∪ {Ci,0 u Si,d v Cd | i ∈ {0, 1, . . . , n− 1}, d ∈ D} ∪
{Ci,0(oi) | i ∈ {0, 1, . . . , n− 1}} ,

P = {¬p←, p← DL[∀i, d : Si,d ] si,d ;> v ⊥]()} ∪
{si,d(oi)←| i ∈ {0, 1, . . . , n− 1}, d ∈ D, vi = d} ∪
{q ← DL[∀i, d : Si,d ] s′i,d ;> v ⊥]()} ∪
{s′i,d(oi)←| i ∈ {0, 1, . . . , n− 1}, d ∈ D,wi = d} .

Observe that the dl-program KB is positive. Furthermore, KB has a strong answer set i�
(1) Ln∪LD∪Lv is satis�able, and the strong answer set of KB contains q i� (2) Ln∪LD∪Lw

is unsatis�able. That is, q belongs to some strong answer set of KB i� (1) D tiles the torus
U(2n+1, 2n+1) with initial condition v, and (2) D does not tile the torus U(2n+1, 2n+1) with
initial condition w.

Hardness for PNEXP of brave reasoning under the weak answer set semantics in the
positive case is proved by a generic reduction from Turing machines. The proof is similar
to the proof of PNEXP-hardness of deciding strong (resp., weak) answer set existence in the
strati�ed case (in the proof of Theorem 3.7.2). The main di�erence that must be taken into
account in the construction is that rather than deciding whether a strati�ed dl-program
has a strong (resp., weak) answer set, we now decide whether a literal holds in some weak
answer set of a positive dl-program. Intuitively, we use a set of weak answer sets for
guessing the outcomes of all oracle calls, and a literal q in one of these weak answers to
identify the correct guess.

More concretely, let M be a polynomial-time bounded deterministic Turing machine
with access to a NEXP oracle, and let v be an input for M . Let the positive dl-program
KB = (L,P ) be de�ned as the strati�ed dl-program KB = (L,P ) in the proof of Theo-
rem 3.7.2, except that we now add the rule

q ← guess ok1, . . . , guess ok l, call ok1, . . . , call ok l , (7.1)
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and that every P j
q , j ∈ {1, . . . , l}, is now de�ned as P j

q,id ∪ P j
q,guess ∪ P j

q,call, where:

1. Every P j
q,id, j ∈ {1, . . . , l}, copies all the persisting result and dummy bits from the

input of the j-th oracle call into the input of the j+1-th oracle call:

P j
q,id = {bj

i (x)← bj−1
i (x) | i ∈ {0, . . . , 2l−1}, i 6∈ {2j−2, 2j−1}} .

2. Every P j
q,guess, j ∈ {1, . . . , l}, allows for guessing the outcome of the j-th oracle call,

that is, exactly one fact among bj
2j−2(0) and bj

2j−2(1). The guess is veri�ed through

the predicate guess ok j , which should evaluate to true:

P j
q,guess = {bj

2j−2(1)←DL[Bj ] bj
2j−2;B

j ](1);
bj
2j−2(0)←DL[Bj ] bj

2j−2;B
j ](0);

¬bj
2j−2(1)← bj

2j−2(0);
guess ok j ← bj

2j−2(0);
guess ok j ← bj

2j−2(1)} .

3. Every P j
q,call, j ∈ {1, . . . , l}, allows for choosing among the two possible outcomes of

the j-th oracle call exactly the one that matches the result of the actual outcome.
That is, call ok j is true i� either (a) bj

2j−2(0) holds and the actual outcome is �No�

or (b) bj
2j−2(1) holds and the actual outcome is �Yes�:

P j
q,call = {¬bj

2j−2(1)←DL[∀i, d : Si,d ] sj−1
i,d ;> v ⊥]();

call ok j← bj
2j−2(0),DL[∀i, d : Si,d ] sj−1

i,d ;> v ⊥]();
call ok j← bj

2j−2(1);
bj
2j−1(1)←} .

Hence, M accepts v i� (i) the last oracle call returns �yes� and (ii) the bj
2j−2(x)'s with

j ∈ {1, . . . , l} are a correct guess that matches the actual outcomes of the oracle calls. The
latter is equivalent to the existence of a weak answer set of KB that contains all guess ok j

and call ok j with j ∈ {1, . . . , l}, or, equivalently, that contains q. In summary, M accepts
v i� q holds in some weak answer set of KB . 2
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B String Plugin Source Code

Here, we exemplarily list the implementation of two external atoms of the string-plugin.

#include "dlvhex/PluginInterface.h"

#include <string>

#include <sstream>

class ConcatAtom : public PluginAtom

{

public:

ConcatAtom()

{

// first string or int

addInputConstant();

// second string or int

addInputConstant();

setOutputArity(1);

}

virtual void

retrieve(const Query& query, Answer& answer) throw (PluginError)

{

std::stringstream in1, in2;

Term s1 = query.getInputTuple()[0];

Term s2 = query.getInputTuple()[1];

bool smaller = false;

if (s1.isInt())

in1 << s1.getInt();

else if (s1.isString())

in1 << s1.getUnquotedString();

else

throw PluginError("Wrong input argument type");

if (s2.isInt())

in2 << s2.getInt();

else if (s2.isString())

in2 << s2.getUnquotedString();

else

throw PluginError("Wrong input argument type");

Tuple out;

out.push_back(Term(std::string(in1.str() + in2.str()), 1));
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answer.addTuple(out);

}

};

class strstrAtom : public PluginAtom

{

public:

strstrAtom()

{

// haystack

addInputConstant();

// needle

addInputConstant();

setOutputArity(0);

}

virtual void

retrieve(const Query& query, Answer& answer) throw (PluginError)

{

std::string in1;

std::stringstream inss;

Term s1 = query.getInputTuple()[0];

Term s2 = query.getInputTuple()[1];

if (!s1.isString())

throw PluginError("Wrong input argument type");

in1 = s1.getUnquotedString();

if (s2.isString())

inss << s2.getUnquotedString();

else if (s2.isInt())

inss << s2;

else

throw PluginError("Wrong input argument type");

std::string in2(inss.str());

std::transform(in1.begin(), in1.end(), in1.begin(),

(int(*)(int))std::tolower);

std::transform(in2.begin(), in2.end(), in2.begin(),

(int(*)(int))std::tolower);
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Tuple out;

std::string::size_type pos = in1.find(in2, 0);

if (pos != std::string::npos)

answer.addTuple(out);

}

};

class StringPlugin : public PluginInterface

{

public:

// register all atoms of this plugin:

virtual void

getAtoms(AtomFunctionMap& a)

{

a["sha1sum"] = new ShaAtom;

a["split"] = new SplitAtom;

a["cmp"] = new CmpAtom;

a["concat"] = new ConcatAtom;

a["strstr"] = new strstrAtom;

}

};

//

// now instantiate the plugin

//

StringPlugin theStringPlugin;

//

// and let it be loaded by dlvhex!

//

extern "C"

StringPlugin*

PLUGINIMPORTFUNCTION()

{

return &theStringPlugin;

}
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C Policy Example Source Code

Server policy:

% if resource is public, no authentication is necessary

allow(download,Resource) :- public(Resource).

% user may download if she has a subscription and is authenticated

allow(download,Resource) :- authenticated(User),

hasSubscription(User,Subscription),

availableFor(Resource,Subscription).

% user may download if she has paid and is authenticated

allow(download,Resource) :- authenticated(User),

paid(User,Resource).

% user is authenticated, if she has a valid credential

authenticated(User) :- valid(Credential),

attr(Credential,name,User).

% other authentication rules are possible, e.g., by password ...

% a selected credential is valid, if its type is trusted

valid(Credential) :- selectedCred(Credential),

attr(Credential,type,T),

attr(Credential,issuer,CA),

isa(T,id),

trustedFor(CA,T).

% types that are ids

isa(id,id).

isa(ssn,id).

isa(passport,id).

isa(driving_license,id).

Client example:

hasSubscription("John Doe",law_basic).

hasSubscription("John Doe",computer_basic).

availableFor("paper01234.pdf",computer_full).

resource("paper01234.pdf").

trustedFor("Open University",id).

trustedFor("Visa",id).

trustedFor("UK Government",ssn).

credential(cr01).

attr(cr01,type,id).

attr(cr01,name,"John Doe").

attr(cr01,issuer,"Open University").

credential(cr02).
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attr(cr02,type,ssn).

attr(cr02,name,"John Doe").

attr(cr02,issuer,"UK Government").

credential(cr03).

attr(cr03,type,id).

attr(cr03,name,"John Doe").

attr(cr03,issuer,"Visa").

credSens(cr01,"1").

credSens(cr02,"2").

credSens(cr03,"4").

Optimization rules:

% open a search space

selectedCred(X) v -selectedCred(X) :- credential(X).

sens(C,S) :- selectedCred(C), credSens(C,S).

% remove models that don't accomplish the goal

:- not allow(download,R), resource(R).

% compute model sensitivity

sensitivity(S) :- &policy[sens](S).

% select least sensitive model

:~ sensitivity(S). [S:1]
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