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Abstract

This thesis deals with advanced notions of equivalence between logic programs under
answer-set semantics. Particularly, we generalise the concepts of relativised strong
equivalence and relativised strong equivalence with projection to the non-ground case, i.e.,
to programs with variables.

In recent work, a framework for expressing equivalences between answer-set programs
was introduced and later generalised for non-ground programs. These works use said
framework to characterise a fine-grained version of strong equivalence. For two programs
to be (ordinarly) equivalent, they just have to have the same answer sets. In contrast,
two programs are strongly equivalent if it is possible to add the same arbitray rules to
both of them and their answer sets still match. In other words, if the (sub)programs P
and Q are strongly equivalent, then P can be replaced with Q in any context program.
The equivalence notion we are concerned with extends strong equivalence by enabling
the restriction of the predicates of the context programs and the filtering of auxiliary
predicates. Like already mentioned, this version of equivalence is called relativised strong
equivalence with projection and was so far only studied for propositional (or ground)
programs.

Aside from characterising relativised strong equivalence (with projection) for the
non-ground case in the mentioned framework, we also provide model-theoretic characteri-
sations for the non-ground setting. In particular, we introduce the generalization of a
structure which captures relativised strong equivalence, namely the so-called RSE-model.
Furthermore, we provide liftings of a spoiler and a counterexample, two structures used
for checking relativised strong equivalence with projection between programs.
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CHAPTER 1
Introduction

In contrast to Turing-complete programming languages, the question of program equiv-
alence is not undecidable for some logic programming languages. We are interested in
program equivalence, because it enables us to interchange equivalent program segments,
similar to the replacement theorem in classical logic. In this thesis, we focus on the
language of disjunctive logic programs (DLPs) under the answer-set semantics.

The core of answer-set programming (ASP) goes back to Gelfond and Lifschitz [1],
and is syntactically very similar to other logic programming languages like Prolog or
Datalog. In the last years, ASP has been subject to various extensions which aim at
increasing expressiveness or tailor the language to specific problem domains. As already
mentioned, in our work we focus on DLPs. Like ASP in general, DLPs are very useful in
declarative problem solving. In ASP, the produced solutions are models (“answer sets”
or “stable models”) of the encoded problem and not proofs as in traditional logic-based
formalisms. That and the high-level specification language offered by ASP can, for
example, be leveraged to compute solutions for NP-complete search problems with very
little time needed for problem encoding. Another import aspect in the case for ASP is the
existence of sophisticated and efficent solvers, like clasp [2] or DLV [3]. For a thorough
introduction to ASP, the reader is referred to the excellent primer by Eiter, Ianni, and
Krennwallner [4].

Unlike for theories in classical logic, just having the same models (or in this case
answer sets) is not enough to allow arbitrary replacements of programs in ASP. To
illustrate, consider a program P and a subprogram M ⊆ P . What we want is to replace
M with an “equivalent” program N such that P has the same answer sets as before, but
like we already mentioned, it is not enough if N has the same answer sets as M . In order
to solve this problem Lifschitz, Pearce, and Valverde [5] introduced the concept of strong
equivalence which is very closely aligned to the replacement theorem. Our subprograms
M and N would be considered strongly equivalent, if for any program R, the answer sets
M ∪R were the same as the answer sets of N ∪R. Lifschitz et al. only considered the
propositional case, but the concept was later generalised to cover programs with variables
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1. Introduction

by Eiter, Fink, Tompits, and Woltran [6].
Based on the notion of strong quivalence, Woltran [7] introduced the more fine-grained
concept of relativised strong equivalence for propositional DLPs. Basically, two programs
M and N are strongly equivalent relative to an alphabet A if for any program RA

consisting only of predicates from A, the answer sets of M ∪RA match the answer sets
of M ∪ RA. To put it in different terms: If the subprograms M and N are strongly
equivalent relative to A and the surrounding program consists of predicates from A only,
then they can be safely replaced.
In some cases, strong equivalence is too restrictive. For example, consider programs
with auxiliary predicates or variables. Two programs might be in principle replaceable
but their use of different auxiliary predicates keeps them from being strongly equivalent.
To combat this, Eiter, Tompits, and Woltran [8] added projection to relativised strong
equivalence. The projection filters out the auxiliary predicates in the comparison of
the answer sets and thus restricts the equivalence to the important output predicates.
Furthermore, they also introduced a correspondence-checking framework which can be
used to characterise every notion of equivalence for propositional DLPs and was later
lifted to the non-ground setting by Oetsch and Tompits [9].

The contribution of this work will be the generalisation of the mentioned relativised
strong equivalence with projection to the non-ground setting. In practise most answer-
set programs have variables, therefore the generalisation of the mentioned concepts is
particularly interesting.

This thesis is structured the following way. The next chapter offers an introduction
for the neccessary formal preliminaries of the work referenced above. In Chapter 3,
we lift Woltran’s [7] notion of relativised strong equivalence to the non-ground setting
including their model based characterisations. Chapter 4 deals with generalising the
correspondence-checking structures and concepts introduced by Eiter et al. [8]. Chapter 5
gives an overview about the related work. Finally, Chapter 6 offers a summary and an
outlook to further work.
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CHAPTER 2
Preliminaries

In this chapter, we introduce the neccessary preliminaries about logic programs under
the answer set semantics and give a short introduction to program correspondence.

2.1 Logic Programs

Logic programs are defined over a vocabulary V. A vocabulary V is a pair (P,D), where
P is a set of predicates and D is a set of constants (also known as domain of V). Each
predicate in P has an arity n ≥ 0. A logic program may also contain variables. Let A be
the set of all variables contained in a program.
An atom is defined as p(t1, . . . , tn), where p ∈ P and ti ∈ D ∪ A, for 1 ≤ i ≤ n. We call
an atom ground if no variable occurs in it.
The set of all ground atoms of a vocabulary V is called the Herbrand base of V, denoted
by HBV . For a set of predicates P ⊆ P and a set of constants C ⊆ D, the set of all
ground atoms constructed by replacing the variables in P with constants of C is denoted
by HBP,C .

Definition 1 ([10]). A (disjunctive) rule r has the following form:

a1 ∨ · · · ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm,

where a1, . . . , an, b1, . . . , bm are atoms, n,m, k ≥ 0 and n+m > 0. Furthermore, “not”
denotes default negation.

The head of r is the set H(r) = {a1, . . . , an} and the body of r is denoted by
B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}. In addition we define B+(r) = {b1, . . . , bk}
and B−(r) = {bk+1, . . . , bm}.

There are different classifications of rules, as described by the following definition .
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2. Preliminaries

Definition 2. A rule r is called

(1 ) a fact, if m = 0 and n = 1;

(2 ) a constraint, if n = 0;

(3 ) normal, if n ≤ 1;

(4 ) positive, if k = m;

(5 ) unary, if n = 1 and k = m ≤ 1;

(6 ) Horn, if k = m and n ≤ 1;

(7 ) safe, if each variable occuring in H(r) ∪B−(r) also occurs in B+(r); and

(8 ) ground, if all atoms in r are ground.

A program is a set of rules. We call a program normal, positive, Horn, ground and/or
safe if all of its rules are. From now own we assume that every program is safe.
The set of all constants appearing in a program P is called the Herbrand universe of
P , symbolically HUP . If no constant appears in P , then HUP contains an arbitrary
constant. Furthermore, the set of all predicates of P is denoted by AP . We define
HBP := HBAP ,HUP

and HBP,C := HBAP ,C .
Given a rule r and a set C of constants, we define grd(r, C) as the set of all rules generated
by replacing all variables of r with elements of C. For any program P , the grounding of
P with respect to C is given by grd(P,C) :=

⋃
r∈P grd(r, C). If P is a ground program,

then P = grd(P,C) for any C.

Example 1. Consider the following program:

P =


accepted(x)← applicant(x),not rejected(x),
rejected(x)← applicant(x),not accepted(x),
applicant(jane)←,
applicant(bob)←


The meaning of the program is simple. Every applicant is either accepted or rejected

but never both nor neither.
As we mentioned above, the Herbrand universe of P is the set of all constants occuring in
P , thus HUP = {jane, bob}. Now, the Herbrand base of P can be obtained by enumerating
all predicates of P and replacing each variable with each element in HUP . This leads to
the following Herbrand base

HBP =
{

applicant(jane), applicant(bob), accepted(jane),
accepted(bob), rejected(jane), rejected(bob)

}
.
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2.1. Logic Programs

Furthermore, the grounding of P over its Herbrand universe HUP can be obtained in
a similar fashion. We just have all variables of the ground P with elements of HUP ,
thereby replacing all non-ground rules with possibly multiple new grounded rules.

grd(P,HUP )=



accepted(jane)← applicant(jane),not rejected(jane),
accepted(bob)← applicant(bob),not rejected(bob),
rejected(jane)← applicant(jane),not accepted(jane),
rejected(bob)← applicant(bob),not accepted(bob),
applicant(jane)←,
applicant(bob)←


.

A set of ground atoms is called an interpretation. Following the answer-set semantics
for DLPs as given by Gelfond et al. [11], a ground rule r is satisfied by an interpretation
I, denoted by I |= r, iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. For a
ground program P , I |= P iff each r ∈ P is satisfied by I. The Gelfond-Lifschitz reduct
[1] of a ground program P with respect to the interpretation I is given by

P I := {H(r)← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

An interpretation I is an answer set of a non-ground program P iff I is a subset-minimal
set satisfying grd(P,HUP )I . An alternate definition of answer sets is given the following
way: An interpretation I is an answer set of a non-ground program P iff I |= grd(P,HUP )
and J 6|= grd(P,HUP )I for any J ⊂ I. We define AS(P ) as the set of all answer sets of
P . For safe programs, it holds that if I ∈ AS(P ) then I ⊆ HBP .

Example 2. Recall our grounded program grd(P,HUP ) from Example 1 and consider
the interpretation

I = {applicant(jane), applicant(bob), accepted(jane), rejected(bob)}.

The Gelfond-Lifschitz reduct of the program can easily be obtained by removing the two
rules which contain “not accepted(jane)” and “not rejected(bob)”, respectively:

grd(P,HUP )I =


accepted(jane)← applicant(jane),
rejected(bob)← applicant(bob),
applicant(jane)←,
applicant(bob)←


Now, since for each rule r ∈ grd(P,HUP )I , B+(r) ⊆ I implies H(r) ∩ I 6= ∅ we obtain
that I is a possible answer set of grd(P,HUP ). Since there is no subset of I that satisfies
all rules of grd(P,HUP ), we gather that I is in fact an answer set and thus also an
answer set of the non-ground P .

By PAV , we denote the set of all programs over V that contain only predicates of
A. Similarily, by FAV we denote the set of all sets of facts over V that only consist of
predicates of A. If A = P we write PV and FV .
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2. Preliminaries

2.2 Program Correspondence
Different notions of program equivalence exist for answer set programs. The most common
ones are the following three.

Definition 3 ([12, 5]). Logic Programs P and Q are

(i) (ordinarily) equivalent iff AS(P ) = AS(Q);

(ii) unformly equivalent iff AS(P ∪ F ) = AS(Q ∪ F ), for any set of facts F ;

(iii) strongly equivalent iff AS(P ∪R) = AS(Q ∪R), for any program R.

In this work, we are mainly interested in strong equivalence. Strong equivalence was
introduced by Lifschitz, Pearce, and Valverde [5] and was characterised using Heyting’s
logic of here-and-there. In particular, two program where found to be strongly equivalent
if and only if they had the same models in the logic of here-and-there.
Turner offered a different characterisation of strong equivalence [13]. He introduced the
concept of an SE-model, which was then generalised for non-ground programs by Eiter et
al. [6].

Definition 4 ([6]). Let V = (P,D) be a vocabulary, P a program over V, C ⊆ D, and let
X,Y ⊆ HBP,C be sets of ground atoms. Then an SE-interpretation is a triple (X,Y )C ,
such that X ⊆ Y . (X,Y )C is an SE-model of P iff Y |= grd(P,C) and X |= grd(P,C)Y .
By SE(P ) we denote the set of all SE-models of P .

For an interpretation Y we define Y |A := Y ∩ A and for a triple (I, J)C we define
(I, J)C |A := (I|A, J |A)C , where A is a set. Furthermore, we define S|A := {Y |A | Y ∈ S}
where A again is a set and S is a set of interpretations or pairs of interpretations.
A triple (I, J)C is called total if I = J and non-total otherwise. A set of pairs S is called
non-total if for each total (J, J)C ∈ S there exists a non-total (I, J)C ∈ S.
We use Y ≡AV X as a shorthand for Y |HBA,D = X|HBA,D , where V = (P,D) and A ⊆ P.
Furthermore, we use Y vBV X as a shorthand for Y |HBB,D ⊆ X|HBB,D .

Following Turner’s theorem for the propositional case, Eiter et al. showed that the
following holds:

Theorem 1 ([6]). Two (non-ground) logic programs P,Q are strongly equivalent iff
SE(P ) = SE(Q).

6



2.2. Program Correspondence

Example 3. Recall the program P from Example 1 and consider the following program:

Q=


accepted(x) ∨ rejected(x)← applicant(x)
applicant(jane)←,
applicant(bob)←,

 .

First, let us take a look at their answer sets.

AS(P ) = AS(Q) =


{applicant(jane), applicant(bob), accepted(jane), accepted(bob)},
{applicant(jane), applicant(bob), rejected(jane), rejected(bob)},
{applicant(jane), applicant(bob), accepted(jane), rejected(bob)},
{applicant(jane), applicant(bob), rejected(jane), accepted(bob)}

 .

From AS(P ) = AS(Q) it obviously follows that P and Q are ordinarily equivalent, but
are they strongly equivalent as well? To figure that out, we compare their SE-models
and use the following shorthands: ap(·) for applicant(·), ac(·) for accepted(·), re(·) for
rejected(·), j for jane, and b for bob. Furthermore, we have the vocabulary V = (D,P),
where D = {j, b} and P = {ap(·), ac(·), re(·)}.

Then SE(P ) consists of elements (X,Y )C according to the following table:

X Y C

{ap(j), ap(b), ac(j), ac(b)} {ap(j), ap(b), ac(j), ac(b)} {j, b}
{ap(j), ap(b), re(j), re(b)} {ap(j), ap(b), re(j), re(b)} {j, b}
{ap(j), ap(b), ac(j), re(b)} {ap(j), ap(b), ac(j), re(b)} {j, b}
{ap(j), ap(b), re(j), ac(b)} {ap(j), ap(b), re(j), ac(b)} {j, b}
{ap(j), ap(b), ac(b)} {ap(j), ap(b), ac(j), ac(b), re(j)} {j, b}

{ap(j), ap(b), ac(b), ac(j)}
{ap(j), ap(b), ac(b), re(j)}
{ap(j), ap(b), ac(j)} {ap(j), ap(b), ac(j), ac(b), re(b)} {j, b}

{ap(j), ap(b), ac(b), ac(j)}
{ap(j), ap(b), ac(b), re(b)}

{ap(j), ap(b)} {ap(j), ap(b), ac(j), ac(b), re(j), re(b)} {j, b}
{ap(j), ap(b), ac(j)}

{ap(j), ap(b), ac(j), ac(b)}
{ap(j), ap(b), ac(j), ac(b), re(j)}

{ap(j), ap(b), ac(j), ac(b), re(j), re(b)}
{ap(j), ap(b), re(b)} {ap(j), ap(b), re(j), re(b), ac(j)} {j, b}

{ap(j), ap(b), re(b), re(j)}
{ap(j), ap(b), re(b), re(j), ac(j)}

{ap(j), ap(b), re(j)} {ap(j), ap(b), re(j), re(b), ac(b)} {j, b}
{ap(j), ap(b), re(j), re(b)}

{ap(j), ap(b), re(j), re(b), ac(b)}
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2. Preliminaries

Likewise SE(Q) consists of elements (X,Y )C according to the following table:
X Y C

{ap(j), ap(b), ac(j), ac(b)} {ap(j), ap(b), ac(j), ac(b)} {j, b}
{ap(j), ap(b), re(j), re(b)} {ap(j), ap(b), re(j), re(b)} {j, b}
{ap(j), ap(b), ac(j), re(b)} {ap(j), ap(b), ac(j), re(b)} {j, b}
{ap(j), ap(b), re(j), ac(b)} {ap(j), ap(b), re(j), ac(b)} {j, b}
{ap(j), ap(b), ac(j), ac(b)} {ap(j), ap(b), ac(j), ac(b), re(j)} {j, b}
{ap(j), ap(b), re(j), ac(b)}

{ap(j), ap(b), ac(j), ac(b), re(j)}
{ap(j), ap(b), ac(j), ac(b)} {ap(j), ap(b), ac(j), ac(b), re(b)} {j, b}
{ap(j), ap(b), re(b), ac(j)}

{ap(j), ap(b), ac(j), ac(b), re(b)}
{ap(j), ap(b), ac(j), ac(b)} {ap(j), ap(b), ac(j), ac(b), re(j), re(b)} {j, b}
{ap(j), ap(b), ac(j), re(b)}
{ap(j), ap(b), re(j), ac(b)}
{ap(j), ap(b), re(j), re(b)}

{ap(j), ap(b), ac(j), ac(b), re(j)}
{ap(j), ap(b), ac(j), ac(b), re(b)}
{ap(j), ap(b), ac(j), ac(b), ac(j)}
{ap(j), ap(b), ac(j), ac(b), ac(b)}

{ap(j), ap(b), ac(j), ac(b), re(j), re(b)}
{ap(j), ap(b), re(j), re(b)} {ap(j), ap(b), re(j), re(b), ac(j)} {j, b}
{ap(j), ap(b), ac(j), re(b)}

{ap(j), ap(b), re(j), re(b), ac(j)}
{ap(j), ap(b), re(j), re(b)} {ap(j), ap(b), re(j), re(b), ac(b)} {j, b}
{ap(j), ap(b), re(j), ac(b)}

{ap(j), ap(b), re(j), re(b), ac(b)}

It can easily be seen that SE(P ) 6= SE(Q) and thus, according to Theorem 1, P and Q
are not strongly equivalent. This fact can also be visualised with the help of the program

R=
{

accepted(x)← rejected(x),
rejected(x)← accepted(x)

}
.

Appending R to our programs we get the following answer sets:

AS(P ∪R) = ∅

but
AS(Q ∪R) = {{ap(j), ap(b), ac(j), re(j), ac(b), re(b)}}.

Therefore, R is also a witness that P and Q are not strongly equivalent.

Another important definition in the context of program equivalence is the notion of a
correspondence frame. It was introduced by Eiter et al. [8] and lifted to the non-ground
setting by Oetsch et al. [9].

8



2.2. Program Correspondence

Definition 5 ([9]). By a correspondence frame, or simply a frame, F , we understand
a triple (V, C, ρ), where V is a vocabulary, C ⊆ PV , called the context class of F , and
ρ ⊆ 22HBV × 22HBV .
For every program P,Q over V, we say that P and Q are F -corresponding, symbolically
P 'F Q, iff, for all R ∈ C, (AS(P ∪R), AS(Q ∪R)) ∈ ρ.

Following Eiter et al. [8], a correspondence problem Π over a vocabulary V is a tuple
(P,Q, C, ρ), where P and Q are programs over V and (V, C, ρ) is a frame. We say that
(P,Q, C, ρ) holds iff P '(V,C,ρ) Q. Furthermore we call a correspondence problem of
the form (P,Q,PAV ,vBV ) an inclusion problem and one of the form (P,Q,PAV ,≡BV ) an
equivalence problem.
Using correspondence problems we can characterise every equivalence notion mentioned
above.

Theorem 2 ([8, 9]). Let P and Q be programs over V, then they are

(i) (ordinarily) equivalent iff (P,Q, {∅},=) holds;

(ii) uniformly equivalent iff (P,Q,FV ,=) holds;

(iii) strongly equivalent iff (P,Q,PV ,=) holds.

The more fine-grained notions of relativised strong equivalence and relativised strong
equivalence with projection were also characterised as correspondence problems in the
propositional case by Eiter et al.[8]. Later on, we will see that the generalised versions of
those notions can also be expressed as correspondence problems.

9





CHAPTER 3
Generalised Relativised Strong

Equivalence

When Woltran [7] introduced the concept of relativised strong equivalence, he dealt with
propositional DLPs only. In this chapter, we will (similarily to what Eiter et al. [6]
did with strong equivalence) generalise the notion to the non-ground setting. This is
important because variables play an essential part in practise.

3.1 Basic Definitions and Properties
Following Woltran [7], we introduce the concept of relativised strong equivalence for
non-ground logic programs.

Definition 6. Let P and Q be logic programs over V = (P,D) and let A ⊆ P be a set of
predicates. Then, P and Q are strongly equivalent relative to A iff AS(P∪R) = AS(Q∪R),
for any program R ∈ PAV .

Relativised strong equivalence as defined in Definition 6 can also be expressed as a
correspondence problem.

Theorem 3. Two programs P and Q over V = (P,D) are strongly equivalent relative to
A ⊆ P iff the equivalence problem (P,Q,PAV ,=) holds.

Obviously if A = P, then we obtain strong equivalence.
Before we can go to the model-theoretic characterisations, we have to establish some

neccessary auxiliary definitions.
The following lemma is a slight adaption of the previous work of Eiter et al. [6].

Lemma 1. Let P be a program over V = (P,D), C,C ′ ⊆ D sets of constants such that
C ⊆ C ′, and Y ⊆ HBP,C . Then, Y |= grd(P,C) iff Y |= grd(P,C ′).

11



3. Generalised Relativised Strong Equivalence

Proof. We start by showing that Y |= grd(P,C) implies Y |= grd(P,C ′).
Towards a contradiction, assume Y |= grd(P,C) but Y 6|= grd(P,C ′). Y 6|= grd(P,C ′)
implies that there is at least one rule r′ ∈ grd(P,C ′) with Y 6|= r′.
If r′ ∈ grd(P,C), then we obviously have a contradiction and are done.

So, consider r′ 6∈ grd(P,C). By the answer-set semantics, Y 6|= r′ can only hold
if B+(r′) ⊆ Y holds as well. Since r′ 6∈ grd(P,C) holds and r′ ∈ grd(P,C ′) holds by
hypothesis, we get that B+(r′) contains at least one constant c ∈ (C ′ \ C). Therefore,
there exists a predicate containing c with p(c) ∈ B+(r′). Obviously c 6∈ C holds and since
Y ⊆ HBP,C holds as well, p(c) 6∈ Y has to hold. Thus B+(r′) 6⊆ Y holds and Y 6|= r′

cannot hold.

The other direction Y |= grd(P,C ′) implies Y |= grd(P,C) follows trivially from
grd(P,C) ⊆ grd(P,C ′).

The next lemma follows directly from the previous and will be used quite often in
the rest of this work.

Lemma 2. Let P and Q be two programs. Then, Y |= grd(P ∪ Q,HUP∪Q) holds iff
Y |= grd(P,HUP ) and Y |= grd(Q,HUQ) both hold.

Proof. We start by showing that Y |= grd(P ∪ Q,HUP∪Q) implies Y |= grd(P,HUP )
and Y |= grd(Q,HUQ).
Towards a contradiction, assume Y |= grd(P ∪Q,HUP∪Q), and either

(i) Y 6|= grd(P,HUP ) or

(ii) Y 6|= grd(Q,HUQ) holds.

If (i) holds, then there is a rule r ∈ grd(P,HUP ) with Y 6|= r. By the definition of
grounding, grd(P,HUP ) ⊆ grd(P ∪Q,HUP∪Q) and thus r ∈ grd(P ∪Q,HUP∪Q). Since
Y 6|= r, Y 6|= grd(P ∪Q,HUP∪Q) holds. This is obviously a contradiction.

The proof for (ii) works the same way.

Now we show the other direction.
Towards a contradiction assume Y 6|= grd(P ∪ Q,HUP∪Q), Y |= grd(P,HUP ) and
Y |= grd(Q,HUQ). Y 6|= grd(P ∪Q,HUP∪Q) implies a rule r ∈ grd(P ∪Q,HUP∪Q) with
Y 6|= r. Since grd(P ∪Q,HUP∪Q) = (grd(P,HUP∪Q) ∪ grd(Q,HUP∪Q)) holds, we have
either

(i) r ∈ grd(P,HUP∪Q); or

(ii) r ∈ grd(Q,HUP∪Q).

If (i), then Y 6|= r implies Y 6|= grd(P,HUP∪Q) and we have a contradiction.
Similarily if (ii), then Y 6|= r implies Y 6|= grd(Q,HUP∪Q) and we again have a

contradiction.
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3.1. Basic Definitions and Properties

The main lemma of this section is lifted from the propositional case [7] and lays
the groundwork for the following model-based characterisations of relativised strong
equivalence.

Lemma 3. For programs P and Q over a vocabulary V with predicates P and domain D,
and a set of predicates A ⊆ P, the following propositions are equivalent:

(1 ) AS(P ∪R) 6⊆ AS(Q ∪R) for some program R ∈ PAV ;

(2 ) there exists a unary program U ∈ PAV such that

AS(P ∪ U) 6⊆ AS(Q ∪ U);

(3 ) there exists an interpretation Y ⊆ (HBP,CP
∩ HBQ,CQ

), and two sets of constants
HUP ⊆ CP ⊆ D and HUQ ⊆ CQ ⊆ D such that:

(a) Y |= grd(P,CP ),

(b) for each Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,CP )Y holds, and

(c) Y |= grd(Q,CQ) implies the existence of an X ⊂ Y such that X |= grd(Q,CQ)Y
and for each X ′ ⊂ Y with X ′ ≡AV X, X ′ 6|= grd(P,CP )Y holds.

Proof. We first show that (1) implies (3).
Let Y ⊆ (HBP,CP

∩ HBQ,CQ
) be an interpretation and R a program over (A,D) such

that Y ∈ AS(P ∪R) and Y 6∈ AS(Q ∪R) hold.
By definition of answer sets, Y ∈ AS(P ∪R) implies

(i) Y |= grd(P ∪R,HUP∪R), and

(ii) for each Z ⊂ Y , Z 6|= grd(P ∪R,HUP∪R)Y .

Condition (i) implies Y |= grd(P,HUP∪R) and, according to Lemma 2, it follows that
Y |= grd(P,HUP ) holds. CP ⊇ HUP holds by definition and thus according to Lemma 1,
(a) holds.
Condition (i) and Lemma 2 also imply Y |= grd(R,HUR) and therefore (by definition of
a reduct) Y |= grd(grd(R,HUR)Y holds. Since R contains predicates from A only, we get
that Y ′ |= grd(R,HUR) holds for every Y ′ with Y ′ ≡AV Y . Combing this last observation
with (ii), we obtain that for each Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,HUP )Y holds.
Hence, by Lemma 1, (b) is satisfied.
By definition, Y 6∈ AS(Q ∪R) implies either

(iii) Y 6|= grd(Q ∪R,HUQ∪R); or

(iv) there exists an interpretation X ⊂ Y , such that X |= grd(Q ∪R,HUQ∪R)Y .

13



3. Generalised Relativised Strong Equivalence

If (iii) holds, we know that Y 6|= grd(Q,HUQ) holds as well, since we already
established Y |= grd(R,HUR) above and by Lemma 2, Y 6|= grd(Q ∪R,HUQ∪R) implies
Y 6|= grd(Q,HUQ) or Y 6|= grd(R,HUR). So if (iii) holds, so does (c).

If (iv) holds, it is implied by Lemma 2 thatX |= grd(R,HUR)Y andX |= grd(Q,HUQ)Y
hold for each X ⊂ Y . Since X |= grd(Q,HUQ) implies X |= grd(Q,CQ) by Lemma 1,
the first condition of the consequens in (c) is satisfied.
X |= grd(R,HUR)Y implies X ′ |= grd(R,HUR)Y for each X ′ ≡AV X, since R only
contains predicates from A. Combining this observation with (ii) and Lemma 2, we
get that X ′ 6|= grd(P,HUP )Y holds for each X ′ ⊂ Y with X ′ ≡AV X. By Lemma 1,
X ′ 6|= grd(P,HUP )Y implies X ′ 6|= grd(P,CP )Y and thus the second condition of the
consequens is satisfied. Hence (c) holds.

We now show that (3) implies (2).
Let Y ⊆ (HBP,CP

∩ HBQ,CQ
) be an interpretation for which conditions (a)-(c) hold,

and let CP ⊆ HUP and CQ ⊆ HUQ be sets of constants. We have two cases: Either
Y 6|= grd(Q,HUQ) or Y |= grd(Q,HUQ).

First, suppose Y 6|= grd(Q,HUQ) and let U be a unary program over A with U =
(Y ∩HBA,D). We need to show that Y ∈ AS(P ∪ U) and Y 6∈ AS(Q ∪ U) hold.
Y ∈ AS(P ∪ U) holds iff:

(i) Y |= grd(P ∪ U,HUP∪U ); and

(ii) Y ′ 6|= grd(P ∪ U,HUP∪U )Y , for every Y ′ ⊂ Y .

Since U is already ground and positive, grd(P ∪ U,HUP∪U ) = (grd(P,HUP ) ∪ U) and
grd(P ∪ U,HUP∪U )Y = (grd(P,HUP )Y ∪ U).
From (a) we know that Y |= grd(P,CP ) holds and thus, by Lemma 1, we obtain
Y |= grd(P,HUP ). Y |= U is implied by Y ⊇ U . Hence, by Lemma 2, (i) holds.
From (b) and Lemma 2 we get Y ′ 6|= grd(P,CP )Y for each Y ′ ⊂ Y with Y ′ ≡AV Y . So, in
the case of Y ′ ≡AV Y , (ii) holds. If Y ′ 6≡AV Y , then there is an a ∈ HBA,D which is in Y
but not in Y ′. From a ∈ Y and U = (Y ∩ HBA,D) we get a ∈ U and since U is unary,
a ∈ UY holds. Therefore, Y ′ 6|= UY holds and hence (ii) holds.
Y 6|= grd(Q,HUQ) implies Y 6|= grd(Q,HUQ) ∪ U and thus Y 6∈ AS(Q ∪ U) holds.

Now, suppose Y |= grd(Q,HUQ). By Lemma 1 this implies Y |= grd(Q,CQ) and thus
according to (c), there exists an X ⊂ Y for which X |= grd(Q,CQ)Y holds. Furthermore,
let U ′ be a unary program with U ′ = (X ∩HBA,D) ∪ {p← q | p, q ∈ (Y \X) ∩HBA,D}.
We again need to show that Y 6∈ AS(Q ∪ U ′) and Y ∈ AS(P ∪ U ′) both hold.
Y 6∈ AS(Q ∪ U)′ holds by definition iff:

(iii) Y |= grd(Q ∪ U ′,HUQ∪U ′); and

(iv) X |= grd(Q ∪ U ′,HUQ∪U ′)Y hold.

Again, since U ′ is already grounded and positive, grd(Q∪U ′,HUQ∪U ′) = (grd(Q,HUQ)∪
U ′) and grd(Q ∪ U ′,HUQ∪U ′)Y = (grd(Q,HUQ)Y ∪ U ′).
By Lemma 2, (iii) holds iff Y |= grd(Q,HUQ) and Y |= U ′ hold. From the above we
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already know that Y |= grd(Q,HUQ) holds.
Y |= U ′ holds iff:

(v) Y |= X ∩HBA,D; and

(vi) Y |= {p← q | p, q ∈ (Y \X) ∩HBA,D} hold.

X ⊂ Y implies Y ⊇ (X ∩ HBA,D) and thus (v) holds. Since ((Y \ X) ∩ HBA,D) ⊆ Y ,
p, q ∈ ((Y \X)∩HBA,D) implies p, q ∈ Y . So for each rule p← q in U ′, both p and q are
in Y . Hence (vi) holds and therefore Y |= U ′ holds as well as (iii).
Now, (iv) holds iff X |= grd(Q,HUQ)Y and X |= U ′ hold. We know from above that
X |= grd(Q,CQ)Y holds, which according to Lemma 1 implies X |= grd(Q,HUQ)Y .
X |= U ′ holds iff:

(vii) X |= X ∩HBA,D; and

(viii) X |= {p← q | p, q ∈ (Y \X) ∩HBA,D} hold.

Obviously (vii) holds, since X ⊇ (X ∩HBA,D).
We know that ((Y \X) ∩HBA,D) ∩X = ∅, therefore, for each p, q ∈ ((Y \X) ∩HBA,D),
p, q 6∈ X holds. Thus, for every rule p← q, neither p nor q are in X, which means X is a
model for every rule. Hence, (viii) holds and therefore X |= U ′ holds as well as (iv).
Since (iii) and (iv) both hold, Y 6∈ AS(Q ∪ U ′) has to hold.

It remains to show that Y ∈ AS(P ∪ U ′) holds. Towards a contradiction, let us
assume this is not the case. From the above, we already know that Y |= grd(P,HUP ) as
well as Y |= U ′ holds. By Lemma 2, Y |= grd(P,HUP ) and Y |= U ′ imply Y |= grd(P ∪
U ′,HUP∪U ′). In order for Y 6∈ AS((P ∪ U ′) to hold, the following has to be true: There
exists a Z ⊂ Y such that Z |= grd(P ∪ U ′,HUP∪U ′)Y holds.
Z |= grd(P ∪ U ′,HUP∪U ′)Y is (similar as above) equivalent to Z |= grd(P,HUP )Y ∪ U ′.
Z |= grd(P,HUP )Y ∪ U ′ implies Z |= U ′, which in turn implies Z ⊇ (X ∩ HBA,D) by
definition of U ′. (X ∩ HBA,D) ⊆ Z implies (X ∩ HBA,D) ⊆ (Z ∩ HBA,D) and Z ⊂ Y
implies (Z ∩HBA,D) ⊆ (Y ∩HBA,D).
If (Z∩HBA,D) = (Y ∩HBA,D), condition (b) is violated since Z ⊂ Y and Z |= grd(P,CP )Y
are implied by Z |= grd(P ∪ U ′,HUP∪U ′)Y and Lemma 1.
If (X ∩HBA,D) = (Y ∩HBA,D), condition (c) is violated since Y |= grd(Q,CQ), X ⊂ Y ,
X |= grd(Q,CQ)Y , Z ⊂ Y and Z |= grd(P,CP )Y all hold. This leaves the case with
(X ∩HBA,D) ⊂ (Z ∩HBA,D) ⊂ (Y ∩HBA,D).
(X ∩ HBA,D) ⊂ (Z ∩ HBA,D) implies a q with q ∈ (Z ∩ HBA,D) and q 6∈ (X ∩ HBA,D),
and since (Z ∩HBA,D) ⊂ (Y ∩HBA,D), q ∈ (Y ∩HBA,D) holds.
q ∈ (Z ∩HBA,D) implies q ∈ Z, q ∈ (Y ∩HBA,D) implies q ∈ Y and q 6∈ (X ∩HBA,D) in
addition with q ∈ (Y ∩HBA,D) implies q ∈ ((Y ∩HBA,D) \ (Y ∩HBA,D)).
(Z ∩HBA,D) ⊂ (Y ∩HBA,D) implies a p with p ∈ (Y ∩HBA,D) and p 6∈ (Z ∩HBA,D), and
since (X∩HBA,D) ⊂ (Y ∩HBA,D), p 6∈ (X∩HBA,D). Also p 6∈ (Z∩HBA,D) implies p 6∈ Z,
p ∈ (Y ∩HBA,D) implies p ∈ Y and p 6∈ (X ∩HBA,D) in addition with p ∈ (Y ∩HBA,D)
implies p ∈ ((Y ∩HBA,D) \ (Y ∩HBA,D)).
To summarise, we have p 6∈ Z, q ∈ Z, and since ((Y ∩HBA,D)\ (Y ∩HBA,D)) = ((Y \X)∩
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3. Generalised Relativised Strong Equivalence

HBA,D), p, q ∈ ((Y \X) ∩HBA,D). So there has to be a rule p← q in U and since p 6∈ Z
and q ∈ Z, Z is not a model of that rule and therefore Z 6|= U ′ has to hold by definition.
This is obviously a contradiction with the above and therefore Y ∈ AS(P ∪ U ′) holds.

(2) implies (1) holds trivially.

3.2 Model-Theoretic Characterisations

Following Woltran’s [7] model-theoretic approach for relativised strong equivalence of
propositional DLPs, we now introduce a similar characterisation in the non-ground
setting.

Definition 7. Let V be a vocabulary with predicates P and domain D, C ⊆ D a set of
constants , P a logic program over V, and X,Y ⊆ HBP,C interpretations. Furthermore,
let A ⊆ P be a set of predicates.
Then:

(1 ) (X,Y )C is an RSE-interpretation1 of P relative to A if either X = Y or X ⊂
Y |HBA,C

.

(2 ) An RSE-interpretation (X,Y )C of P relative to A is an RSE-model of P relative to
A if

(i) Y |= grd(P,C),
(ii) for all Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,C)Y , and
(iii) X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′ ≡AV X such that X ′ |=

grd(P,C)Y .

The set of all RSE-Models of P relative to A is denoted by RSEA(P ) or SEA(P ).

From here on we might drop the explicit mentioning of the set A an RSE-model is
relative to, if it is clear from context.

The next Lemma is an adaption of the one given by Eiter et al. [6] and follows directly
from Lemma 1.

Lemma 4. Let P be a program, C,C ′ ⊆ D sets of constants such that C ⊆ C ′, and
X ⊆ Y ⊆ HBP,C . Then, (X,Y )C ∈ SEA(P ) iff (X,Y )C′ ∈ SEA(P ).

Proof. Assume (X,Y )C ∈ SEA(P ). From Definition 7 we know,

1. Y |= grd(P,C),

2. for all Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,C)Y , and
1Woltran called his structures A-SE-interpretations and A-SE-models, respectively.
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3. X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′ ≡AV X such that X ′ |=
grd(P,C)Y .

By Lemma 1, Y |= grd(P,C) iff Y |= grd(P,C ′) since C ⊆ C ′. Also, by Lemma 1 and
C ⊆ C ′, Y ′ 6|= grd(P,C)Y holds iff Y ′ 6|= grd(P,C ′)Y holds for any Y ′ ⊂ Y with Y ′ ≡AV Y .
Now, we have two cases, either X = Y or X ⊂ Y .

If X = Y , then we are done since (i), (ii), and (iii) hold for (X,Y )C′ and P .
If X ⊂ Y , then there exists an X ′ ⊆ Y with X ′ ≡AV X such that X ′ |= grd(P,C)Y .

By C ⊆ C ′ and Lemma 1, we obtain X ′ |= grd(P,C)Y iff X ′ |= grd(P,C ′)Y . Thus, (iii)
of Definition 7 holds for (X,Y )C′ and P . Hence, (i), (ii), and (iii) holds in this case as
well and thus (X,Y )′C ∈ SEA(P ) holds.

The proof of the other direction is similar.

Now that we have laid the neccessary groundwork, we can introduce the main theorem
of this chapter.

Theorem 4. Two logic programs P and Q are strongly equivalent relative to A iff their
RSE-models relative to A are the same.

Proof. Suppose P and Q are not strongly equivalent relative to A. Without loss of
generality, according to Lemma 3, there has to be an Y ⊆ (HBP,CP

∩HBQ,CQ
) and sets

of constants CP ⊇ HUP and CQ ⊇ HUQ such that

(a) Y |= grd(P,CP ),

(b) for each Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,CP )Y holds, and

(c) Y |= grd(Q,CQ) implies the existence of an X ⊂ Y such that X |= grd(Q,CQ)Y and
for each X ′ ⊂ Y with X ′ ≡AV X, X ′ 6|= grd(P,CP )Y holds.

What we now want to show is that there exists at least one RSE-model which is in
SEA(P ) but not in SEA(Q) or vice versa.
Set CP∪Q = CP ∪ CQ. By Definition 7, (Y, Y )CP ∪Q

is an RSE-model of P relative to A
iff:

(i) Y |= grd(P,CP∪Q); and

(ii) Y ′ 6|= grd(P,CP∪Q)Y for each Y ′ ⊂ Y with Y ′ ≡AV Y .

We know from (a) that Y |= grd(P,CP ) holds and since CP ⊆ CP∪Q, (i) holds by
Lemma 1. From (b) we know that Y ′ 6|= grd(P,CP )Y holds for each Y ′ ⊂ Y with
Y ′ ≡AV Y . Again by Lemma 1, we obtain Y ′ 6|= grd(P,CP∪Q)Y and therefore (ii) holds.
Hence (Y, Y )CP ∪Q

is an RSE-model of P .
Furthermore, condition (c) gives us three cases we need to explore. Either

(1) Y 6|= grd(Q,CQ);
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(2) Y |= grd(Q,CQ) and X ≡AV Y ; or

(3) Y |= grd(Q,CQ) and (X ∩HBA,D) ⊂ (Y ∩HBA,D).

If (1), then (Y, Y )CP ∪Q
cannot be an RSE-model of Q, since by Lemma 1 and

CQ ⊆ CP∪Q, Y 6|= grd(Q,CQ) implies Y 6|= grd(Q,CP∪Q).
If (2), then according to (c) X ⊂ Y and X |= grd(Q,CQ)Y , which by Lemma 1 implies

X |= grd(Q,CP∪Q)Y . Thus, condition (ii) of Definition 7 is violated (just set X = Y ′).
Hence,(Y, Y )P∪Q is not an RSE-model of Q.

If (3), then (X ∩HBA,D, Y )CP ∪Q
satisfies conditions (i), (ii), and (iii) of Definition 7

and is therefore an RSE-Model of Q. But by condition (c) for every Z with (Z ∩
HBA,D) = (X ∩HBA,D), Z 6|= grd(P,CP )Y holds and by Lemma 1, Z 6|= grd(P,CP∪Q)Y
holds. This means that condition (iii) of Definition 7 cannot be fulfilled and thus
((X ∩HBA,D), Y )CP ∪Q

is not an RSE-Model of P .

Now we proceed with the other direction of the theorem.
Suppose (Z, Y )C is an A-SE-Model of P but not of Q. By Definition 7, C ⊆ D and thus
according to Lemma 4, (Z, Y )D ∈ SEA(P ) and (Z, Y )D 6∈ SEA(Q). Since HUP∪Q ⊆ D
obviously holds, we obtain (Z, Y )HUP ∪Q

∈ SEA(P ) and (Z, Y )HUP ∪Q
6∈ SEA(Q) by

applying Lemma 4. Now consider CP∪Q ⊇ HUP∪Q. Again by Lemma 4, (Z, Y )CP ∪Q
∈

SEA(P ) and (Z, Y )CP ∪Q
6∈ SEA(Q) hold.

If Z = Y , then from Definition 7, it follows that Y |= grd(P,CP∪Q) and for each
Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,CP∪Q). Thus, (a) and (b) from Lemma 3 hold. Since
(Y, Y ) is not an RSE-Model of Q we get by Definition 7 that either Y 6|= grd(Q,CP∪Q)
or there is an Y ′ ⊂ Y with Y ′ ≡AV Y such that Y ′ |= grd(Q,CP∪Q). In the case of
Y 6|= grd(Q,CP∪Q), condition (c) of Lemma 3 is obviously satisfied. Otherwise, if
Y |= grd(Q,CP∪Q), condition (c) is satisfied by setting X = Y ′. Hence, P and Q are not
strongly equivalent relative to A.

If Z 6= Y , then whenever (Z, Y )CP ∪Q
is an RSE-model of P , (Y, Y )CP ∪Q

is an RSE-
model as well. The case with (Y, Y )CP ∪Q

not being an RSE-model of Q was shown
above, so we only have to prove the case with (Y, Y )CP ∪Q

being an RSE-model of Q.
Supposing this, we get that Y |= grd(Q,CP∪Q) and for each Y ′ ⊂ Y with Y ′ ≡AV Y ,
Y ′ 6|= grd(Q,CP∪Q)Y . Obviously, condition (a) and (b) are satisfied for Y and Q. Since
(Z, Y )CP ∪Q

is not an RSE-model of Q we get the following from (ii) of Definition 7: for
each (X ′ ∩ HBA,D) = Z, X ′ 6|= grd(Q,CP∪Q)Y . Also, because (Z, Y )CP ∪Q

is an RSE-
model of P , there is an X ′′ ⊂ Y with (X ′′ ∩HBA,D) = Z such that X ′′ |= grd(Q,CP∪Q)Y
(condition (iii) of Definition 7). Those two observations imply that conditions (c) of
Lemma 3 is satisfied for Y and Q and therefore P and Q are not strongly equivalent
relative to A.
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Example 4. Let us consider a modified version of the program given in Example 1:

M=



accepted(x)← applicant(x),not rejected(x),
rejected(x)← applicant(x),not accepted(x),
applicant(x)← person(x),not hired(x),
person(jane)←,
person(bob)←


.

Furthermore, consider the following subprograms of M :

P =
{

accepted(x)← applicant(x),not rejected(x),
rejected(x)← applicant(x),not accepted(x),

}

and

R=


applicant(x)← person(x),not hired(x),
person(jane)←,
person(bob)←

 .

Obviously, M = P ∪R.
Now, assume we want to replace the subprogram P with

Q = {accepted(x) ∨ rejected(x)← applicant(x)}.

Let us take a look at their RSE-models relative to A = {applicant(·), person(·), hired(·)}.
We again use the following shorthands: ap(·) for applicant(·), ac(·) for accepted(·),

re(·) for rejected(·), j for jane, and b for bob. Furthermore, we have the vocabulary V =
(D,P), where D = {jane, bobo} and P = {applicant(·), accepted(·), rejected(·), person(·), hired(·)}.
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Then SEA(P ) as well as SEA(Q) consists of elements (X,Y )C according to the
following table:

X Y C

∅ ∅ {j, b}
∅ {ap(b), ac(b)} {j, b}

{ap(b), ac(b)}
∅ {ap(b), re(b)} {j, b}

{ap(b), re(b)}
∅ {ap(j), ac(j)} {j, b}

{ap(j), ac(j)}
∅ {ap(j), re(j)} {j, b}

{ap(j), re(j)}
∅ {ap(j), ap(b), ac(j), ac(b)} {j, b}

{ap(j)}
{ap(b)}

{ap(j), ap(b), ac(j), ac(b)}
∅ {ap(j), ap(b), re(j), re(b)} {j, b}

{ap(j)}
{ap(b)}

{ap(j), ap(b), re(j), re(b)}
∅ {ap(j), ap(b), ac(j), re(b)} {j, b}

{ap(j)}
{ap(b)}

{ap(j), ap(b), ac(j), re(b)}
∅ {ap(j), ap(b), ac(b), re(j)} {j, b}

{ap(j)}
{ap(b)}

{ap(j), ap(b), ac(b), re(j)}
∅ ∅ {j}
∅ {ap(j), ac(j)} {j}

{ap(j), ac(j)}
∅ {ap(j), re(j)} {j}

{ap(j), re(j)}
∅ ∅ {b}
∅ {ap(b), ac(b)} {b}

{ap(b), ac(b)}
∅ {ap(b), re(b)} {b}

{ap(b), re(b)}

The RSE-models of P and Q are the same and thus we should be able to replace P
with Q in M .
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Replacing P with Q in M yields

M ′=


accepted(x) ∨ rejected(x)← applicant(x),
applicant(x)← person(x),not hired(x),
person(jane)←,
person(bob)←

 .

Now, according to Theorem 4 and Definition 7, AS(M) = AS(M ′) has to hold and it can
easily be verified that it does.
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CHAPTER 4
Generalised Correspondence

Checking

In this chapter we generalize some characteristic structures which were introduced by
Eiter et al. [8]. Those structures are then linked to correspondence checking in the
non-ground case.

4.1 Basic Definitions and Properties
We start with some basic definitions and properties. The first one adds projection to
generalised relativised strong equivalence.

Definition 8. Let P and Q be logic programs over V = (P,D) and let A,B ⊆ P be a set
of predicates. Then, P and Q are strongly equivalent relative to A under projection B iff
AS(P ∪R) ≡BV AS(Q ∪R), for any program R ∈ PAV .

Just like without projection, relativised strong equivalence with projection as defined
in Definition 8 can also be expressed as a correspondence problem.

Theorem 5. Two programs P and Q over V = (P,D) are strongly equivalent relative to
A ⊆ P under projection B ⊆ P iff the equivalence problem (P,Q,PAV ,≡BV ) holds.

Obviously if B = P, then we obtain relative strong equivalence without projection.
Eiter et al. [8] defined a useful property for sets of SE-models. The following definition

is a generalisation of that property.

Definition 9. A set S of (R)SE-interpretations is complete, if for each (X,Y )C ∈ S,
also (Y, Y )C ∈ S as well as (X,Z)C ∈ S, for any Z ⊇ Y with (Z,Z)C ∈ S.

It can be shown that the set SE(P ) of a program P is always complete. [8]
Furthermore, we introduce the following definition.
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Definition 10. A set S of (R)SE-interpretations is called over C if for each (X,Y )C′ ∈
S, C ′ = C.

That definition enables us to restrict a set of SE-models to a particular set of grounding
constants. Think of a complete set of SE-models S over C. Then, the grounding of a
program P with respect to C is semantically given by S.
In order to show the relationship between our structures and correspondence problems we
need some auxiliary results. Those results are all lifted from the previously established
propositional case [8].

Definition 11. For a set S of (R)SE-interpretations, a vocabulary V, and an interpre-
tation Y , we define σAY,V(S) = {(X,Z)C ∈ S | Z ≡AV Y }.

Proposition 1. Let P be a program over V = (P,D), Y ⊆ HBP,C an interpretation, C ⊆
D, and A,B ⊆ P. Then, Y |HBB,D 6∈ AS(P )|HBB,D iff, for each (Z,Z)C ∈ σBY,V(SEA(P )),
there exists a non-total (X,Z)C ∈ σBY,V(SEA(P )).

Proof. We start by proving the only-if-direction. Assume a (Z,Z)C ∈ σBY,V(SEA(P )) for
which there is no non-total (X,Z)C ∈ σBY,V(SEA(P )). We show Y |HBB,D ∈ AS(P )|HBB,D .
From Definition 11, we get that (Z,Z)C ∈ σBY,V(SEA(P )) implies (Z,Z)C ∈ SEA(P )
and Z ≡BV Y . Furthermore, by Definition 7, we know that (Z,Z)C ∈ SEA(P ) implies
Z |= grd(P,C) and for all Z ′ ⊂ Z with Z ′ ≡AV Z, Z ′ 6|= grd(P,C).
We now show that Z ∈ AS(P ) holds. Towards a contradiction, assume Z 6∈ AS(P ).
Then, either

(i) Z 6|= grd(P,HUP ); or

(ii) there is an X ⊂ Z with X |= grd(P,HUP )Z .

If (i), then we have a contradiction because according to Lemma 1, Z |= grd(P,C) and
C ⊆ D imply Z |= grd(P,D), which in turn implies Z |= grd(P,HUP ).

So, assume (ii) holds. Then, by Definition 7, (X,Z)C ∈ SEA(P ) has to hold because
(i), (ii), and (iii) of the definition hold (for (iii) just set X ′ = X). But since we have
assumed above that there is no such (X,Z)C ∈ SEA(P ), we have a contradiction. Hence
Z ∈ AS(P ).
Now, Z ∈ AS(P ) implies Z|HBB,D 6∈ AS(P )|HBB,D by definition and since Z ≡BV Y , we
obtain Y |HBB,D 6∈ AS(P )|HBB,D .

We proceed with the if-direction. What we need to show is that Y |HBB,D ∈ AS(P )|HBB,D

implies the existence of a total (Z,Z)C ∈ σBY,V(SEA(P )) for which there is no non-
total (X,Z)C ∈ σBY,V(SEA(P )). Towards a contradiction, assume that Y |HBB,D ∈
AS(P )|HBB,D and there is no total (Z,Z)C ∈ σBY,V(SEA(P )) for which there is no
(X,Z)C ∈ σBY,V(SEA(P )).
By definition, Y |HBB,D ∈ AS(P )|HBB,D implies that there is a Z ∈ AS(P ) such that Z ≡BV
Y . From the definition of answer sets, we get that Z ∈ AS(P ) implies Z |= grd(P,HUP ),
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X 6|= grd(P,HUP )Z for each X ⊂ Z, and Z ⊆ HBP .
By Lemma 1, we obtain

(i) Z |= grd(P,C), and

(ii) X 6|= grd(P,C)Z for each X ⊂ Z.

(Z,Z)C ∈ σBY,V(SEA(P )) obviously follows from (i), (ii), and Z ≡BV Y .
According to our assumption, (Z,Z)C implies aX ⊂ Z such that (X,Z)C ∈ σBY,V(SEA(P )).
But, by Definition 7, (X,Z)C ∈ σBY,V(SEA(P )) implies the existence of an X ′ ⊂ Z with
X ′ ≡AV X such that X ′ |= grd(P,C)Z holds. This is a contradiction to (ii), and hence we
have proven the if-direction.

Proposition 2. For any program P over the predicates A and constants D,

(i) (X,Y )C ∈ SE(P )|HBA,D implies (X ′, Y ′)C ∈ SE(P ), for any X ′ ⊆ Y ′ with X ′|HBA,D =
X and Y ′|HBA,D = Y ; and

(ii) (X,Y )C ∈ SE(P ) implies (X|HBA,D , Y |HBA,D)C ∈ SE(P )|HBA,D.

Proof. Towards a contradiction, assume that (i) does not hold. Then, there is some
(X,Y )C ∈ SE(P )|HBA,D such that (X ′, Y ′)C 6∈ SE(P ) with X ′ ⊆ Y ′, X ′|HBA,D = X, and
Y ′|HBA,D = Y .
By definition, (X ′, Y ′)C 6∈ SE(P ) implies either

(a) Y ′ 6|= grd(P,C); or

(b) X ′ 6|= grd(P,C)Y ′ .

If (a), then there has to be a rule r ∈ grd(P,C) such that Y ′ 6|= r. Furthermore, from
(X,Y )C ∈ SE(P )|HBA,D , it follows that there is some Y ′′ |= grd(P,C) with Y ′′|HBA,D = Y .
Y ′′|HBA,D = Y obviously implies Y ′′ ≡AV Y ′, since Y ′|HBA,D = Y .
Now, Y 6|= r implies B+(r) ⊆ Y ′, B−(r) ∩ Y ′ = ∅, and H(r) ∩ Y ′ = ∅. Since r only
contains predicates from A, we obtain B+(r) ⊆ Y ′|HBA,D , B−(r) ∩ Y ′|HBA,D = ∅, and
H(r) ∩ Y ′|HBA,D = ∅. From Y ′′ ≡AV Y ′, we get that Y ′|HBA,D ⊆ Y ′′ and thus Y ′′ 6|= r has
to hold. Hence there can be no Y ′′ such that Y ′′ |= grd(P,C) and Y ′′|HBA,D = Y hold
and therefore (X,Y )C 6∈ SE(P )|HBA,D holds. The latter is obviously a contradiction.

If (b), then there has to be a rule r ∈ grd(P,C)Y ′ such that X ′ 6|= r. We know from
(X,Y )C ∈ SE(P )|HBA,D that there has to be an X ′′ |= grd(P,C)Y ′ with X ′′|HBA,D = X.
X ′′|HBA,D = X obviously implies X ′′ ≡AV X ′, since X ′|HBA,D = X.
X ′ 6|= r implies B+(r) ⊆ X ′ and H(r)∩X ′ = ∅. Since r only contains predicates from A,
this is equivalent to B+(r) ⊆ X ′|HBA,D and H(r) ∩X ′|HBA,D = ∅. Now, from X ′′ ≡AV X ′,
we get X ′|HBA,D ⊆ X ′′ and therefore X ′′ 6|= r. But this would mean that there can be no
X ′′ |= grd(P,C)Y ′ with X ′′ ≡AV X and thus (X,Y )C 6∈ SE(P )|HBA,D , which would be a
contradiction.

Condition (ii) of the proposition follows trivially from the definition of S|A.
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Lemma 5. Let P be a program over V = (P,D) and let Q be a program over (A,D) with
A ⊆ P. Then, SEA(P ) ∩ SE(Q) = SEA(P ∪Q).

Proof. First we are going to show that (X,Y )C 6∈ SEA(P ∪Q) implies (X,Y )C 6∈ SEA(P )
or (X,Y )C 6∈ SE(Q).
So, suppose (X,Y )C 6∈ SEA(P ∪Q). Then, by Definition 7 either

(i) Y 6|= grd(P ∪Q,C); or

(ii) there exists a Y ′ ⊂ Y with Y ′ ≡AV Y such that Y ′ |= grd(P ∪Q,C)Y ; or

(iii) X ⊂ Y and for all X ′ ⊆ Y with X ′ ≡AV X, X ′ 6|= grd(P ∪Q,C)Y holds.

If (i) holds then either Y 6|= grd(P,C) or Y 6|= grd(Q,C). So either by Definition 7,
(X,Y )C 6∈ SEA(P ) holds, or (X,Y )C 6∈ SE(Q) holds by definition of an SE-model.

If (ii) holds then Y ′ |= grd(P,C)Y holds as well, and since we have Y ′ ⊂ Y and
Y ′ ≡AV Y , (X,Y )C 6∈ SEA(P ) has to hold by (ii) of Definition 7.

If (iii) applies then either X ′ 6|= grd(P,D)Y or X ′ 6|= grd(Q,D)Y holds for every
X ′ ⊆ Y with X ′ ≡AV X.
In the first case, (X,Y )C 6∈ SEA(P ) has to hold since (iii) of Definition 7 cannot be
satisfied for any (X,Y )C .
In the second case, we know from X ′ 6|= grd(Q,C)Y that (X ′, Y )C 6∈ SE(Q) holds. From
Proposition 2, we know that (X ′, Y ′)C 6∈ SE(Q) implies (X,Y )C 6∈ SE(Q)|HBA,D , for any
X ′ ⊆ Y ′ with X ′|HBA,D = X and Y ′|HBA,D = Y ; and (X|HBA,D , Y |HBA,D)C 6∈ SE(Q)|HBA,D

implies (X,Y )C 6∈ SE(Q). Now, from (iii), we know thatX ′ ⊆ Y andX ′|HBA,D = X|HBA,D .
Therefore, (X ′, Y )C 6∈ SE(Q) implies (X|HBA,D , Y |HBA,D)C 6∈ SE(Q)|HBA,D since obviously
Y |HBA,D = Y |HBA,D . By Proposition 2, (X|HBA,D , Y |HBA,D)C 6∈ SE(Q)|HBA,D implies
(X,Y )C 6∈ SE(Q).

Now, what remains to be proven is that (X,Y )C ∈ SEA(P ∪Q) implies (X,Y )C ∈
SEA(P ) and (X,Y )C ∈ SE(Q).
Suppose (X,Y )C ∈ SEA(P ∪Q). Then, by Definition 7 the following propositions hold:

(i) Y |= grd(P ∪Q,C),

(ii) for all Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P ∪Q,C)Y holds, and

(iii) X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′ ≡AV X such that X ′ |= grd(P ∪
Q,C)Y .

Condition (i) implies Y |= grd(Q,C), which in turn implies Y |= grd(Q,C)Y . Therefore,
(Y, Y )C ∈ SE(Q) holds.
If X ⊂ Y , (iii) implies X ′ |= grd(Q,C)Y and therefore (X ′, Y )C ∈ SE(Q). By Propo-
sition 2, (X ′, Y )C ∈ SE(Q) implies (X ′|HBA,D , Y |HBA,D)C ∈ SE(Q)|HBA,D and since
X|HBA,D = X ′|HBA,D holds we get (X|HBA,D , Y |HBA,D)C ∈ SE(Q)|HBA,D . Now, also by
Proposition 2, (X|HBA,D , Y |HBA,D)C ∈ SE(Q)|HBA,D implies (X,Y )C ∈ SE(Q).
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From Proposition 2 we know that (Y, Y )C ∈ SE(Q) (which we have established above) im-
plies (Y |HBA,D , Y |HBA,D)C ∈ SE(Q)|HBA,D and that (Y |HBA,D , Y |HBA,D)C ∈ SE(Q)|HBA,D

implies (Y ′, Y ′)C ∈ SE(Q) for any Y ′ with Y |HBA,D = Y ′|HBA,D . Therefore, Y ′ |=
grd(Q,C)Y holds for every Y ′ ≡AV Y . Together with (ii), the above means that for every
Y ′ ⊂ Y with Y ′ ≡AV Y , Y ′ 6|= grd(P,C)Y .
(iii) implies that if X ⊂ Y , there exists an X ′ ⊆ Y with X ′ ≡AV X such that X ′ |=
grd(P,C)Y .
Combining those last two observations with (i), we easily obtain (X,Y )C ∈ SEA(P ).

The next proposition is not really a lifting to the non-ground setting. That is,
because reconstructing a non-ground program from a set of SE-models is not trivial. Our
generalised approach takes a complete set of SE-models over a certain set of constants
and computes a ground program which is semantically equal to the original non-ground
program for the given constants. Nonetheless, the construction of the program is very
similar to the one given by Eiter et al. [8].

Proposition 3. Let V = (P,D) be a vocabulary, A ⊆ P a set of predicates, C ⊆ D a set
of constants, and S a complete set of SE-models over C. Then, there exists a program
PS,A,C ∈ PAV such that SE(PS,A,C) ≡AV S.

Proof. Consider the program PS,A,C = M ∪N , where

M = {← Y,not(HBA,D \ Y ) | Y ⊆ HBA,D, (Y, Y )C 6∈ S|HBA,D}

and

N = {
∨

x∈(Y \X)
x← X,not(HBA,D \ Y ) | X ⊂ Y, (Y, Y )C ∈ S|HBA,D , (X,Y )C 6∈ S|HBA,D}.

We want to show that S ≡AV SE(PS,A,C).
We start by showing that S vAV SE(PS,A,C) holds. Consider a (X,Y )C 6∈ SE(PS,A,C).
We have two cases: Either

(1) (Y, Y )C 6∈ SE(PS,A,C)|HBA,D , or

(2) (Y, Y )C ∈ SE(PS,A,C)|HBA,D .

Assume (1) holds. If Y 6⊆ HBA,D, then (X,Y )C 6∈ S|HBA,D is trivially true. So
Y ⊆ HBA,D, which imples (Y, Y )C 6∈ SE(PS,A,C). The latter implies Y 6|= PS,A,C or
Y 6|= P YS,A,C .
If Y 6|= PS,A,C or Y 6|= P YS,A,C , then there has to be a rule r ∈ PS,A,C such that Y ⊆ B+(r),
Y ∩B−(r) = ∅, and Y ∩H(r) = ∅.
If r ∈M , then B+(r) ⊆ HBA,D and Y ∩ (HBA,D \B+(r)) = ∅. Together with Y ⊆ HBA,D
this implies Y = B+(r) and thus (Y, Y )C 6∈ S|HBA,D . Since S is complete we obtain
(X,Y )C 6∈ S|HBA,D .
Now, assume r ∈ N . Let us write H(r) = (Y ′ \ X ′), B+(r) = X ′, and B−(r) =

27



4. Generalised Correspondence Checking

(HBA,D \ Y ′) for some sets X ′ and Y ′. The following statements obviously hold: Y ⊇ X ′,
Y ∩ (HBA,D \ Y ′) = ∅, and Y ∩ (Y ′ \ X ′). Y ∩ (HBA,D \ Y ′) = ∅ implies Y ⊆ Y ′ and
Y ⊇ X ′ in addition with Y ∩ (Y ′ \ X ′) implies Y = X ′. Therefore, there is a Z ⊃ Y
such that (Z,Z)C ∈ S|HBA,D and (Y, Z)C ∈ S|HBA,D . By completeness of S, we get
(Y, Y )C ∈ S|HBA,D and (X,Y )C ∈ S|HBA,D .

If (2) holds, then X 6|= P YS,A,C has to hold as well because Y |= PS,A,C follows from
(Y, Y )C ∈ SE(PS,A,C)|HBA,D and otherwise (X,Y )C 6∈ SE(PS,A,C)|HBA,D would not hold.
X 6|= P YS,A,C implies a rule rY ∈ P YS,A,C such that X ⊇ B+(rY ), Y ∩ B−(rY ) = ∅, and
X ∩ H(rY ) = ∅. X ⊆ Y and X ⊇ B+(rY ) imply Y ⊆ B+(rY ) and since B−(rY ) =
(HBA,D \B+(rY ) as well as B+(rY ) ⊆ HBA,D hold, we obtain Y = B+(rY ). Y = B+(rY )
obviously implies (Y, Y )C 6∈ S|HBA,D by the construction of PS,A,C , but this would
also imply Y 6|= PS,A,C and thus (Y, Y )C 6∈ SE(PS,A,C)|HBA,D . Since we have assumed
(Y, Y )C ∈ SE(PS,A,C)|HBA,D , rY ∈ N has to hold.
Condition rY ∈ N implies (X ∩ (Y ′ \X ′)) = ∅, Y ∩ (HBA,D \Y ′) = ∅, and X ⊇ X ′, where
X ′ and Y ′ are the X and Y occuring in N . X ⊆ Y implies X∩(HBA,D\Y ′) = ∅ and since
X ⊆ HBA,D it follows that X ⊆ Y ′. X ∩ (Y ′ \X ′) = ∅ in addition with X ⊆ Y ′ implies
X ⊆ X ′ and thus X = X ′. Now, by construction of N , there has to be a Z ⊃ X such
that (Z,Z)C ∈ S|HBA,D and (X,Z)C 6∈ S|HBA,D . Hence, we obtain (X,Y )C 6∈ S|HBA,D by
completeness of S.
Now we show SE(PS,A,C) vAV S.
Consider a (X,Y )C with (X,Y )C 6∈ S|HBA,D . Again, we have two cases: Either

(1) (Y, Y )C 6∈ S|HBA,D , or

(2) (Y, Y )C ∈ S|HBA,D .

If (1) holds and Y 6⊆ HBA,D, (X,Y )C 6∈ SE(PS,A,C)|HBA,D is trivially true. So, let us
assume Y ⊆ HBA,D. By construction there has to be a rule

r = (← Y,not(HBA,D \ Y ))

in PS,A,C . Obviously, Y |= B(r) holds and thus Y 6|= PS,A,C . Hence (Y, Y )C 6∈ SE(PS,A,C)
and also (Y, Y )C 6∈ SE(PS,A,C)|HBA,D . By completeness of S, we again obtain (X,Y )C 6∈
SE(PS,A,C)|HBA,D .

If (2), then by construction the rule

r = (
∨

x∈(Y \X)
x← X,not(HBA,D \ Y ))

has to be in PS,A,C . The reduct of the rule is given by

rY = (
∨

x∈(Y \X)
x← X),

so X ⊇ B(rY ) obviously holds. But since (Y \X)∩X = ∅ and X ∩H(rY ) = ∅, it follows
that X 6|= rY . This in turn implies X 6|= P YS,A,C and therefore (X,Y )C 6∈ SE(PS,A,C).
(X,Y )C 6∈ SE(PS,A,C) of course implies (X,Y )C 6∈ SE(PS,A,C)|HBA,D .
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The last proposition of this section follows quite naturally from the definition of ≡BV ,
which is why we omit the proof in this case.

Proposition 4. Let Π = (P,Q,PAV ,≡BV ) be an equivalence problem. Then, Π holds iff
(P,Q,PAV ,vBV ) and (Q,P,PAV ,vBV ) jointly hold.

4.2 Spoilers
Now we come to the generalisation of a spoiler. The structure was introduced by Eiter et
al. [8] in the propositional case and its existence for a certain inclusion problem disproves
the correspondence.

Definition 12. Let P and Q be programs over V = (P,D), Y ⊆ HBP,C an interpretation,
C ⊆ D a set of constants, and S ⊆ σA∪BY,V (SEA(Q)). Then, the pair (Y, S)C is a spoiler
for the correspondence problem Π = (P,Q,PAV ,vBV ) iff

(i) (Y, Y )C ∈ SEA(P ),

(ii) for each (Z,Z)C ∈ S, some non-total (X,Z)C ∈ S exists,

(iii) (Z,Z)C ∈ S iff (Z,Z)C ∈ σA∪BY,V (SEA(Q)), and

(iv) (X,Z)C ∈ S implies (X,Y )C /∈ SEA(P ).

Intuitively, the interpretation Y in a spoiler (Y, S)C is an answer set of P ∪ R but
not of Q ∪R, where R is semantically given by S.
The following theorem forms the link between correspondence problems and spoilers.
The proof is analogous to the one for the propositional case.

Theorem 6. Let P and Q be programs over V = (P,D), and A,B ⊆ P sets of predicates.
Then, the inclusion problem (P,Q,PAV ,vBV ) holds iff there is no spoiler for it.

Proof. We start with the if-direction. Suppose some R ∈ PAV such that Y |HBB,D ∈
AS(P ∪ R)|HBB,D and Y |HBB,D 6∈ AS(Q ∪ R)|HBB,D . Without loss of generality, assume
Y ∈ AS(P ∪ R). By definition, Y ∈ AS(P ∪ R) implies Y |= grd(P ∪ R,HUP∪R) and
Y ′ 6|= grd(P ∪R,HUP∪R)Y for each Y ′ ⊂ Y . Since HUP∪R ⊆ D obviously holds, we get
by Lemma 1 that Y |= grd(P ∪R,C) and Y ′ 6|= grd(P ∪R,C)Y hold for any C ⊆ D. Thus,
(i), (ii), and (iii) of Definition 7 hold for (Y, Y )C and therefore (Y, Y )C ∈ SEA(P ∪R).
Furthermore, since Y ′ 6|= grd(P ∪R,C)Y holds for each Y ′ ⊂ Y , by (iii) of Definition 7,
(X,Y )C ∈ SEA(P ∪R) implies X = Y . By Proposition 1, Y |HBB,D 6∈ AS(Q ∪R)|HBB,D

implies that σBY,V(SEA(Q ∪ R)) is non-total. (J, J)C ∈ σA∪BY,V (SEA(Q ∪ R)) implies
(J, J)C ∈ σBY,V(SEA(Q ∪ R)), since J ≡A∪BV Y implies J ≡BV Y by definition. From
the non-totality of σBY,V(SEA(Q ∪R)), we get that (J, J)C ∈ σBY,V(SEA(Q ∪R)) implies
the existence of some (I, J)C ∈ σBY,V(SEA(Q ∪R)). Since (J, J)C ∈ σA∪BY,V (SEA(Q ∪R))
implies J ≡A∪BV Y , (I, J)C ∈ σA∪BY,V (SEA(Q∪R)) holds and σA∪BY,V (SEA(Q∪R)) is thereby
non-total as well. To summarise, the following observations hold:

29



4. Generalised Correspondence Checking

(a) (Y, Y )C ∈ SEA(P ∪R),

(b) (X,Y )C ∈ SEA(P ∪R) implies X = Y , and

(c) σA∪BY,V (SEA(Q ∪R)) is non-total.

From Lemma 5, it follows that σA∪BY,V (SEA(Q ∪R)) = σA∪BY,V (SEA(Q) ∩ SE(R)) and by
Definition 11, σA∪BY,V (SEA(Q) ∩ SE(R)) = σA∪BY,V (SEA(Q)) ∩ σA∪BY,V (SE(R)). Consider a
(Z,Z) ∈ σA∪BY,V (SEA(Q ∪R)). By Definition 11, Z ≡A∪BV Y and thus Z ≡AV Y . From (a)
and Lemma 5 we know that (Y, Y )C ∈ (SEA(P )∩SE(R)) and therefore (Y, Y )C ∈ SE(R)
and (Y, Y )C ∈ SEA(P ) hold. By Proposition 2, (Y |HBA,D , Y |HBA,D)C ∈ SE(R)|HBA,D ,
which in turn implies (Z,Z)C ∈ SE(R) since Z|HBA,D = Y |HBA,D and obviously Z ⊆
Z. So, for each (Z,Z)C ∈ σA∪BY,V (SEA(Q ∪ R)), (Z,Z)C ∈ SE(R) holds. So suppose
(Z,Z)C ∈ σA∪BY,V (SEA(Q)) and (Z,Z)C 6∈ σA∪BY,V (SEA(Q∪R)). Since σA∪BY,V (SEA(Q∪R)) =
σA∪BY,V (SEA(Q)) ∩ σA∪BY,V (SE(R)), the above would imply (Z,Z)C 6∈ σA∪BY,V (SE(R)). We
know that Z ≡A∪BV Y , so (Z,Z)C 6∈ SE(R) holds. The latter is obviously a contradiction
and thus (Z,Z)C ∈ σA∪BY,V (SEA(Q ∪ R)) implies (Z,Z)C ∈ σA∪BY,V (SEA(Q)) for any Z.
Since every (Z,Z)C ∈ σA∪BY,V (SEA(Q ∪ R)) is non-total, σA∪BY,V (SEA(Q)) is non-total as
well.
Now let SQ be SQ = σA∪BY,V (SEA(Q)). It remains to show that there is at least one
non-total S ⊆ SQ (to satisfy (ii)), for which (iii) and (iv) hold. Towards a contradiction,
assume this is not the case. Such an S cannot exist iff there is a (Z,Z)C ∈ SQ for
which (iv) cannot hold. In other words, there is a (Z,Z)C ∈ SQ such that (X,Z)C ∈ SQ
implies (X,Y )C ∈ SEA(P ) for any X ⊂ Z. We now show that (X,Z)C ∈ SEA(Q ∪R)
implies (X,Z)C ∈ SEA(P ∪R) for any X ⊂ Y . (Z,Z)C ∈ SQ implies Z ≡A∪BV Y , which
implies Z ≡AV Y . By Lemma 5, SEA(Q ∪ R) = SEA(Q) ∩ SE(R), thus (X,Z)C ∈
SEA(Q ∪ R) implies (X,Z)C ∈ SEA(Q) and (X,Z)C ∈ SE(R). Furthermore since
Z ≡AV Y , (X,Z) ∈ SQ holds. From the above we know that (X,Z)C ∈ SQ implies
(X,Y )C ∈ SEA(P ). By Definition 7, (X,Z)C ∈ SEA(Q ∪ R) implies either X = Z
or X ⊂ Z|HBA,D and since X ⊂ Z, X ⊂ Z|HBA,D holds. Additionally, Z ≡AV Y implies
X ⊂ Y |HBA,D and thus X ⊂ Y holds. By Proposition 2, we get that (X,Z)C ∈ SE(R)
implies (X|HBA,D , Z|HBA,D)C ∈ SE(R)|HBA,D , which in turn implies (X,Y )C ∈ SE(R),
sinceX ⊂ Y and Z ≡AV Y both hold. Now we have established that (X,Z)C ∈ SEA(Q∪R)
implies (X,Y )C ∈ SEA(P ) and (X,Y )C ∈ SE(R). By Lemma 5, we obtain (X,Y )C ∈
SEA(P ∪R). From (b), we know that (X,Y )C ∈ SEA(P ∪R) implies X = Y , but since
X ⊂ Y , (X,Y )C 6∈ SEA(P ∪R) holds. The latter implies (X,Z)C 6∈ SEA(Q∪R), which
is a contradiction to (c). Therefore, there has to be a non-total S ⊆ SQ such that (iii)
and (iv) hold.

Now we continue with proving the only-if-direction.
Let (Y, S)C be a spoiler for (P,Q,PAV ,vBV ).

If S = ∅, set R = Y |HBA,D ∪ {← y | y ∈ (HBA,D \ Y )}. Z |= R holds iff:

(1) Z ⊇ Y |HBA,D , and
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(2) Z ∩ (HBA,D \ Y ) = ∅.

(1) and (2) obviously hold for Y . Therefore, Y |= R, and since R = RY holds by
construction, Y |= RY holds. For any Y ′ ⊂ Y , (2) cannot hold and thus Y ′ 6|= RY

holds. From Definition 12, we know that (Y, Y )C ∈ SEA(P ). By Definition 7, the
latter implies Y |= grd(P,HUP ). Since Y |= grd(P,HUP ) and Y |= R both hold,
Y |= grd(P ∪R,HUP∪R) holds as well. We know that Y ′ 6|= RY holds for any Y ′ ⊂ Y ,
therefore Y ′ 6|= grd(P∪R)Y has to hold and thus Y ∈ AS(P∪R) holds by definition. S = ∅
implies (Y, Y )C 6∈ SEA(Q), by Definition 12. This implies that either Y 6|= grd(Q,C)
or there is a Y ′ ⊂ Y with Y ′ ≡AV Y and Y ′ |= grd(Q,C)Y . Either way, the above
implies Y 6∈ AS(Q ∪ R) and thus Y |HBB,D 6∈ AS(Q ∪ R)|HBB,D holds by Proposition 2.
To summarise, we have

(a) Y ∈ AS(P ∪R) and

(b) Y |HBB,D 6∈ AS(Q ∪R)|HBB,D ,

which is what we wanted to show.
So consider S 6= ∅. We again need to show that (a) and (b) hold. Set R =

PS,A,C , where PS,A,C is the defined the same as in Proposition 3. We start with (a).
(Y, Y )C ∈ SEA(P ) follows from Definition 12. Consider a (Z,Z)C ∈ S. (Z,Z)C ∈ S
implies (Z,Z)C ∈ σA∪BY,V (SEA(Q)) and thus Z ≡A∪BV Y . By Proposition 3, S|HBA,D =
SE(R)|HBA,D and since (Z,Z)C ∈ S implies (Z|HBA,D , Z|HBA,D)C ∈ S|HBA,D by Propo-
sition 2, (Z|HBA,D , Z|HBA,D)C ∈ SE(R)|HBA,D holds. Also by Proposition 2, the lat-
ter implies (Y, Y )C ∈ SE(R), since Z ≡AV Y and obviously Y ⊆ Y . By Lemma 5,
(Y, Y )C ∈ SEA(P ) and (Y, Y )C ∈ SE(R) imply (Y, Y )C ∈ SEA(P ∪ R). It remains to
show that (X,Y )C ∈ SEA(P ∪R) implies X = Y , because then Y ∈ AS(P ∪R) follows
from (iii) of Definition 7 and Lemma 1. So, towards a contradiction, consider aX ⊂ Y with
(X,Y )C ∈ SEA(P∪R). From Lemma 5, we get (X,Y )C ∈ SEA(P ) and (X,Y )C ∈ SE(R)
and by Proposition 2, (X,Y )C ∈ SE(R) implies (X|HBA,D , Y |HBA,D)C ∈ SE(R)|HBA,D .
Since S|HBA,D = SE(R)|HBA,D by Proposition 3, (X|HBA,D , Y |HBA,D)C ∈ S|HBA,D holds
and by Proposition 2, the latter implies (X,Z)C ∈ S for any Z ≡AV Y . Since S is
not empty, there exists a Z with Z ≡A∪BV Y and thus there has to be a (X,Z)C ∈ S.
But by (iv) of Definition 7, this would imply (X,Y )C 6∈ SEA(P ), which is obviously a
contradiction.
To show (b), suppose a Z with Z ≡BV Y . We have to consider two cases: Either

(1) Z 6≡AV Y ; or

(2) Z ≡AV Y .

If (1), then (Z,Z)C 6∈ S since Z 6≡A∪BV Y . By Proposition 2, (Z,Z)C 6∈ S implies
(Z|HBA,D , Z|HBA,D)C 6∈ S|HBA,D and because S|HBA,D = SE(R)|HBA,D by Proposition 3,
(Z|HBA,D , Z|HBA,D) 6∈ SE(R)|HBA,D holds. Also by Proposition 2, (Z|HBA,D , Z|HBA,D)C 6∈
SE(R)|HBA,D implies (Z,Z)C 6∈ SE(R) and thus Z 6∈ AS(Q ∪R). Since Z ≡BV Y holds,
Y |HBB,D 6∈ AS(Q ∪R)|HBB,D obviously holds too.
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It remains to show (2). Towards a contradiction, suppose there is a Z such that
Z ∈ AS(Q ∪R) holds. Z ∈ AS(Q ∪R) implies by definition that Z |= grd(Q,HUQ) and
Z ′ 6|= grd(Q,HUQ)Y hold for any Z ′ ⊂ Z. Hence, (Z,Z) ∈ SEA(Q) holds by Definition 7
and Lemma 1. Furthermore, by Definition 7, every (X,Z)C ∈ SEA(Q) with X ⊂ Z
implies an X ′ ≡AV X with X ′ ⊂ Z such that X ′ |= grd(Q,C)Y . Thus (X,Z)C ∈ SEA(Q)
implies (X,Z)C 6∈ SE(R), because otherwise Z ∈ AS(Q ∪ R) would not hold. Since
S|HBA,D = SE(R)|HBA,D , (X,Z)C 6∈ SE(R) implies (X,Z)C 6∈ S by Proposition 2. The
latter contradicts the non-totality of S (violating (ii) of Definition 12), and therefore
Z 6∈ AS(Q ∪R) has to hold. Hence Y |HBB,D 6∈ AS(Q ∪R)|HBB,D holds.

Example 5. Recall program P from Example 1 and program Q from Example 3:

P =


accepted(x)← applicant(x),not rejected(x),
rejected(x)← applicant(x),not accepted(x),
applicant(jane)←,
applicant(bob)←

 ,

Q=


accepted(x) ∨ rejected(x)← applicant(x),
applicant(jane)←,
applicant(bob)←

 .

Furthermore, consider the sets

A = B = {accepted(·), rejected(·)}.

The correspondence problem Π = (Q,P,PAV ,vBV ) does not hold because there exists a
spoiler (Y, S)C , where:

Y =
{

ac(j), re(j), ap(j), ac(b), re(b), ap(b)
}
,

S=



(∅, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(j)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({re(j)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({re(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(j), re(j)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(b), re(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ap(j), ap(b), re(j), ac(j), re(b), ac(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)})


,

C = {j, b}.
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An intermediate conseqence of the theorem above and Proposition 4 is the next result.

Corollary 1. Let Π = (P,Q,PAV ,≡BV ) be an equivalence problem. Then, Π holds iff
neither (P,Q,PAV ,vBV ) nor (Q,P,PAV ,vBV ) has a spoiler.

4.3 Counterexamples

Another structure disproving correspondence is that of a counterexample, which follows
more or less naturally from the definition of relative strong equivalence.

Definition 13. Let P and Q be programs over V = (P,D), R ∈ PAV a program, and
M ∈ AS(P ∪ R) an answer set. Then, the pair (R,M) is a counterexample for the
correspondence problem Π = (P,Q,PAV ,vBV ) iff

(i) M ∈ AS(P ∪R),

(ii) M |HBB,D 6∈ AS(Q ∪R)|HBB,D, and

(iii) AS(P ∪R) 6vBV AS(Q ∪R).

The following theorem shows the connection between spoilers and counterexamples
and follows directly from Theorem 6, Proposition 3, and Definition 12.

Theorem 7. Suppose (Y, S)C is a spoiler with S 6= ∅. Then, (PS,A,C , Y ) is a counterex-
ample for Π = (P,Q, PAV ,vBV ), where PS,A,C is defined as in Proposition 3.

Proof. Towards a contradiction, assume (Y, S)C is a spoiler for Π = (P,Q,PAV ,vBV ) but
(PS,A,C , Y ) is not a counterexample for Π.
If (PS,A,C , Y ) is not a counterexample of Π, then either

(i) Y 6∈ AS(P ∪ PS,A,C),

(ii) Y |HBB,D ∈ AS(Q ∪ PS,A,C)|HBB,D , or

(iii) AS(P ∪ PS,A,C) vBV AS(Q ∪ PS,A,C).

In the second direction of the proof of Theorem 6, we have already shown that (i) and
(ii) cannot hold. That leaves (iii).
Since (i) does not hold, Y ∈ AS(P ∪ PS,A,C) has to hold which obviously implies
Y |HBB,D ∈ AS(P ∪ PS,A,C)|HBB,D . Now, since Y |HBB,D ∈ AS(P ∪ PS,A,C)|HBB,D but
Y |HBB,D 6∈ AS(Q ∪ PS,A,C)|HBB,D , (iii) cannot hold by definition of vBV .
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Example 6. Recall the spoiler (Y, S)C and the correspondence problem
Π = (Q,P,PAV ,vBV ) from Example 5. By Proposition 3 we get

PS,A,C =



← ac(j),not re(j),not ac(b),not re(b),
← ac(b),not ac(j),not re(j),not re(b),
← re(j),not ac(j),not ac(b),not re(b),
← re(b),not ac(j),not ac(b),not re(j),
← ac(j), re(j),not ac(b),not re(b),
← re(j), ac(b),not ac(j),not re(b),
← ac(b), re(b),not ac(j),not re(j),
← re(j), re(b),not ac(j),not ac(b),
← ac(j), ac(b),not re(j),not re(b),
← ac(j), re(b),not re(j),not ac(b),
← ac(j), re(j), ac(b),not re(b),
← ac(j), re(j), re(b),not ac(b),
← re(j), re(b), ac(b),not ac(j),
← ac(j), ac(b), re(b),not re(j),
ac(j) ∨ re(b)← ac(b), re(j),
ac(j) ∨ ac(b)← re(j), re(b),
re(j) ∨ re(b)← ac(j), ac(b),
re(j) ∨ ac(b)← ac(j), re(b),
ac(b)← ac(j), re(j), re(b),
re(b)← ac(j), re(j), ac(b),
ac(j)← ac(b), re(j), re(b),
re(j)← ac(j), ac(b), re(b)



.

Appending PS,A,C to the programs P and Q, we obtain the following answer sets:

AS(P ∪ PS,A,C) = ∅

and
AS(Q ∪ PS,A,C) = {{ap(j), ap(b), ac(j), re(j), ac(b), re(b)}}.

Obviously, Y ∈ AS(Q ∪ PS,A,C) and Y |HBB,D 6∈ AS(P ∪ PS,A,C)|HBB,D both hold.
Therefore, (PS,A,C , Y ) is a counterexample for Π.
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CHAPTER 5
Related Work

There are multiple related notions of program equivalence, among them visible equiva-
lence [14], hyperequivalence [15], and strong persistence [16].
The first one, visible equivalence, was introduced by Janhunen and Oikarinen in 2007
and is an extension of ordinary equivalence with a form of projection. They restrict the
equivalence to so-called visible atoms, but in difference to the projection used in this
work, their concept requires the existence of a bijection between the visible atoms of the
answer sets of the compared programs.
Hyperequivalence was introduced by Woltran and also goes back to 2007. The concept of
hyperequivalence is very powerful. In fact, several other equivalences — including relative
strong or uniform equivalence — can be viewed as special cases of hyperequivalence. In
simple terms, hyperequivalence enables the restriction of equivalence to specific atoms
in the head and the bodies of the programs being compared. So, compared to relative
strong or uniform equivalence, the context class is not just restricted to a specific set of
atoms, but every rule head is restricted to a set of atoms and every rule body is restricted
to a possibly different set of atoms.
The last one mentioned above is also the newest one. Strong persistence was contrived
by Knorr and Alferes in 2014 and is used in the context of forgetting atoms in logic
programs. Strong persistence is basically the same as relative strong equivalence with
projection, the only technical difference is that they only compare the original program
with a version of itself where certain atoms have been “forgotten”.
It should be noted that every one of the above equivalence notions were so far only
defined for the propositional case.

Aside from notions of program equivalence, there is also other related work which
should be mentioned. Most notably, relativised strong equivalence has been introduced
for equilibrium logic by Pearce, Tompits, and Woltran [17]. Equilibrium logic goes back
to Pearce [18] and is closely related to the the logic of here-and-there and Turner’s
SE-models. Models in equilibrium logic are special cases of models in the logic of here-
and-there and correspond with answer sets. Hence, equilibrium logic generalises the
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ASP paradigm to arbitrary propositional theories. In the second chapter of this thesis,
we briefly mentioned that the concept of strong equivalence was contrived by Lifschitz,
Pearce, and Valverde. In fact, they used equilibrium logic to do so. For a more thorough
introduction to equilibrium logic, the reader is referred to the comprehensive overview
paper by Pearce [19]. Another important topic related to this thesis are complexity
results. Eiter et al. [8] have shown that checking relativised strong equivalence with
projection in the propositional case is ΠP

4 -complete. Furthermore, it has been shown that
relativised strong equilance is undecideable in the general non-ground case [9].
Lastly, there is another work related to this thesis. Pührer and Tompits used the
propositional version of relative strong equivalence with projection to elimate disjunction
and negation from programs [20]. Their approach is called casting and is based on model-
theoretic conditions that hold precisely when a “simpler” program exists. Furthermore,
they provide a way to obtain the reduced program.
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CHAPTER 6
Conclusion and Future Work

In this thesis, we generalised the concepts of relativised strong equivalence and relativised
strong equivalence with projection to the non-ground setting. We did this by lifting
and slightly modifying existing model-theoretic characterisations. In particular, we
generalised the concept of relativised SE-models. Furthermore, we have extended the
correspondence framework introduced by Eiter et al. [8] to cover the generalised version
of relative equivalence with and without projection, although most of the groundwork
was already laid down by Oetsch et al. [9]. Nonetheless, we lifted the notion of a spoiler
— which refutes a correspondence between programs — to non-ground programs, and
thereby paving the way for correspondence checking in the non-ground case.

There are numerous open topics left for future work. For example, in their work about
relativised uniform eqivalence with projection, Oetsch et al. [9] provided translations of
their model-based characterisations into second-order logic. Such translations would also
be quite valuable for relativised strong equivalence with projection, since the existence of
solvers for problems in second-order logic would open up an automated way for checking
program correspondences.
Lastly, work could be done in the context of equilibrium logic and hyperequivalence. We
already mentioned that Pearce et al. [17] have introduced the concept of relativised strong
equivalence to equilibrium logic, but they did not cover projection. Also, equilibirium
logic was recently generalised for a subset of first-order logic by Pearce and Valverde [21].
An interesting task would be the introduction of relativised strong equivalence with
projection to the so-called quantified equilibrium logic.
As for hyperequivalence, so far it only exists in the realm of ground programs. A lifting of
its concepts to the non-ground setting — analogous to this work — would be a worthwhile
endeavour.
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