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Abstract

We present cq-programs, which enhance nonmonotonic description logics (dl-) programs by
conjunctive queries (CQ) and union of conjunctive queries (UCQ) over Description Logics
(DL) knowledge bases, as well as disjunctive rules. dl-programs had been proposed as a
powerful formalism for integrating nonmonotonic logic programming and DL reasoning
on a clear semantic basis. The new cq-programs have at least two advantages. First,
they offer increased expressivity by allowing general (U)CQs in the body. And second,
this combination of rules and ontologies gives rise to strategies for optimizing calls to the
DL-reasoner by exploiting (U)CQ facilities of the DL-reasoner. To this end, we discuss
some equivalences which can be exploited for program rewriting and present respective
algorithms. Experimental results for the cq-program prototype show that this can lead
to significant performance improvements. Moreover, the developed optimization methods
may be of general interest in the context of hybrid knowledge bases. hex-programs, which
extend answer-set programming (ASP) with higher-order features and provide powerful
interfacing to external computation sources, have been demonstrated to be a versatile
formalism for extending the ASP paradigm. The cq-program prototype dl-plugin, which will
be introduced in this work, has been developed as a plugin for dlvhex, an implementation
for hex-programs. The dl-plugin integrates ASP with description logics knowledge bases by
means of external atoms. For this purpose, a partial equivalence between hex-programs
and cq-programs shows that hex-programs can serve as a host language for our new
formalism, provided that only monotonic dl-atoms appear in the cq-program.
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Kurzfassung

Wir präsentieren cq-Programme, die nichtmonotone description logics (dl-) Programme
um conjunctive queries (CQ) und union of conjunctive queries (UCQ) auf Description
Logics (DL) Wissensbasen erweitern, sowie um disjunktive Regeln. dl-Programme wurden
als ein mächtiger Formalismus zur Integration von nichtmonotonen logischen Program-
men und DL reasonings auf einer klaren semantischen Basis vorgeschlagen. Die neuen
cq-Programme haben zumindest zwei Vorzüge. Erstens bieten sie eine gesteigerte Aus-
druckskraft aufgrund allgemeiner (U)CQs im Regelrumpf. Und zweitens führt dieser
Zusammenschluss von Regeln und Ontologien zu Strategien für die Optimierung von
Anfragen an den DL-reasoner durch Ausnützung von (U)CQs des DL-reasoner. Zu diesem
Zwecke werden wir Äquivalenzen erörtern, die für Programmumformulierungen ausgenutzt
werden und stellen die dazugehörigen Algorithmen vor. Experimentelle Resultate eines
cq-program Prototyps zeigen, dass dies zu einer signifikanten Performanzsteigerung führen
kann. Darüber hinaus könnten die Optimierungsmethoden von allgemeinem Interesse
im Kontext von wiederholten Anfragen auf DL Wissensbasen sein. hex-Programme, die
die Antwortmengenprogrammierung (ASP) um höher-stufige Eigenschaften erweitern und
leistungsstarke Schnittstellen für externe Berechnungsquellen bereitstellen, haben sich als
ein vielseitig verwendbarer Formalismus zur Erweiterung des ASP Paradigmas bewährt.
Der cq-Programm Prototyp dl-plugin, der in dieser Arbeit vorgestellt werden wird, wurde
als Plugin für dlvhex, einer Implementation für hex-Programme, entwickelt. Er integriert
ASP mit Beschreibungslogik-Wissensbasen anhand von externen Atomen. Eine partielle
Äquivalenz zwischen hex-Programmen und cq-Programmen zeigt, dass hex-Programme
als Host-Sprache für unseren neuen Formalismus fungieren kann, solange nur monotone
dl-Atome im cq-Programm vorkommen.
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1
Introduction

In this thesis we cover a novel formalism for combining rules and ontologies for the Semantic
Web, called cq-programs. We will present implementation details and its optimization
features with experimental data. This work belongs to the wide field of knowledge
representation and reasoning (KRR), which adheres closely to Artificial Intelligence (AI).
cq-programs build on the treatise of other combinations of rules and ontologies, the so-called
dl-programs [Eiter et al., 2004b,c, 2007b], and on hex-programs [Eiter et al., 2005b, 2006b].
A more detailed elaboration on both languages is subject to [Schindlauer, 2006].

The central theme of this thesis is to investigate a state-of-the-art combination of a rule
formalism with ontologies for the Semantic Web. The Semantic Web—being introduced
by Tim Berners-Lee, the inventor of the World Wide Web, in the early 1990s—delivers
the means for describing semantic relationships and the data for building an enormous
quantity of worldwide easily accessible knowledge bases. The remaining gap for intrinsic
limitations of ontology languages is filled by rule formalisms (see more in Section 1.3
and [Rosati, 2006b, Motik et al., 2006, Eiter et al., 2006a]). The rule formalism in our
setting is answer-set programming with special kinds of query atoms in the bodies of rules.
Together, both KRR artifacts will provide the key to the evolvement of the vision behind
the Semantic Web. This goes in line with the constitutive architecture of the Semantic
Web, shown in the Semantic Web architecture (Figure 1.3).

The main contributions, briefly summarized, are as follows:

1. We present the cq-program formalism.

2. We show a partial equivalence between cq-programs and hex-programs.

3. We report on the implementation of cq-programs as a plugin for dlvhex, a hex-program
solver.

4. Rewriting rules for cq-programs establish valuable optimization means.

5. Experimental results show the virtue of optimizing cq-programs with respect to
evaluation time.

The upcoming sections will give more hints on the underlying machinery used in this work.
Furthermore, we set the ideas for the underpinning of cq-programs and its implementation,
the dl-plugin. This concludes the big picture behind this thesis.

1



2 Introduction

The results on cq-programs and its optimization feature had been published in the
Proceedings of the 20th International Workshop on Description Logics DL’07 [Eiter et al.,
2007a] and the dl-plugin implementation was presented in the demonstration session of this
workshop.

1.1 Answer-Set Programming

Logical programming is used in knowledge representation since the early 1970s [Kowalski,
1974]. Prolog (Programming in Logic) was the first programming language which used
mathematical logic for knowledge-based problem solving (for a historical account on Prolog,
see the article [Colmerauer and Roussel, 1993]). In [Kowalski, 1979], the formula “Algorithm
= Logic + Control” was proposed to promote the idea that an algorithm is composed of a
logical component, which specifies the knowledge respecting a certain problem domain, and
that of a control unit, which decides the execution of the knowledge in the logic component.
With this idea in mind, the strict separation of both pieces should support programming
in general, purely and simply because the evaluation of programs in the control unit can
deal with efficiency criteria without touching the logic component. This opportunity will
also be exploited in our framework. A historic overview of logic programming is presented
in [Apt, 1990].

For an inaugural example, take the statements “every human is mortal” and “Sokrates is
human.” The two of them are represented in a logic programming language such as Prolog
by the fact

human(sokrates)

and the rule
mortal(X)← human(X).

From this formalized knowledge, we deduce the fact mortal(sokrates), that is, Sokrates is
a mortal being. In such programs, we have atoms of the form human(X), and human is a
predicate name. Note that we only specify the knowledge of our problem-solving domain,
the process of deduction is encoded in the particular Prolog inference engine.

The Logic Programming paradigm has since then been applied in many domains, from
Production Systems to Deductive Databases. One representative is Answer-Set Program-
ming (ASP) introduced in [Gelfond and Lifschitz, 1991]. The ASP approach to logic
programming differs from traditional logic programming in the following ways. First, it
has pure declarative semantics, i.e., in contrast to Prolog programs, the order of rules
in a program does not matter. Secondly, solutions to problems encoded in answer-set
programs are determined by the models of such programs. And thirdly, it uses both strong
and weak negation, where the latter is also known as Negation As Failure (NAF). Due
to NAF, the semantics for answer-set programs are nonmonotonic, i.e., the set of logical
consequences might decrease with increasing information in the program. On that account,
ASP is a convenient approach for expressing incomplete and inconsistent information in
logic programs.

To give an illustrative example for an answer-set program, we show a program encoding
for the graph three-colorability problem (3COL). The 3COL problem is the following:
given a graph G = (V,E), is it possible that we can assign a color c ∈ {red , green, blue}
to every vertex v ∈ V , such that for every edge (v1, v2) ∈ E the vertices v1 and v2 have
a different assigned color? This problem is a well-known NP-complete problem (cf. for
instance [Garey and Johnson, 1979]).
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Figure 1.1: A three-colorable graph

For a problem instance we use the graph G shown in Figure 1.1; it is easy to see that G
is three-colorable, one particular solution is the graph Gc. The next step is to encode the
problem instance G as answer-set program P , such that G is three-colorable iff P has an
answer set.

col(X, red) ∨ col(X, green) ∨ col(X, blue)← node(X).
}

guess solution

← col(X,C), col(Y,C), edge(X,Y ).
}

check solution

node(X)← edge(X,Y ). node(X)← edge(Y,X).
edge(a, b). edge(b, c). edge(c, d). edge(d, a). edge(e, c). edge(e, b).

}
graph encoding

Without going into detail on the formal semantics of an answer-set program we intuitively
describe what P does. Basically, P is divided into three parts: a guessing part, which
guesses a coloring of the nodes, a checking part, which checks if the guessed solution is
a valid three-coloring, and a graph encoding, which defines the edges and nodes of the
problem instance. We encode the binary relation E as atoms with the predicate edge, the
set V of nodes as unary atoms with the predicate node, and each colored node is represented
as a binary atom col(N,C), where N is a node and C is one of the colors red , green, and
blue. The graph encoding part is the easiest part to grasp, we just provide the edge relation
E as facts, while V is deduced from the edges by the rules node(X) ← edge(X,Y ) and
node(X) ← edge(Y,X), which intuitively says that for every (v1, v2) ∈ E, v1 and v2 are
nodes in V . In the guessing part, we “guess” a solution from each node node(X) to colored
nodes col(X, red), col(X, green), and col(X, blue). The checking part “kills” solutions,
which have equally colored connected nodes.

Note that this simple program not only solves our decision problem, whether G is
three-colorable, it provides the solution encoded in its answer sets as well. In fact, G
is three-colorable and there are 18 different three-colorings for this graph, hence P has
18 answer sets, one for each solution. The solution Gc holds the corresponding digested
answer set {col(a, green), col(b, red), col(c, green), col(d, blue), col(e, blue), . . . } of P .

Furthermore, the ASP formalism has been proven to be a suitable approach for acting as
a host language for encoding advanced reasoning tasks. In the DLV system, frontends for
Planning [Eiter et al., 2001] (in particular the action language DLVK) and Diagnosis [Eiter
et al., 1999] tasks have been implemented. The dlvhex system adds support for higher-order
logic programs (which accommodate meta-reasoning through higher-order atoms) and
external atoms for software interoperability. One can think of external atoms as a foreign
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function interface for accessing services provided by other programming languages or
reasoning facilities; this also gives hints on the implementation of cq-programs. Since dlvhex
is such a versatile system, we make use of it in our dl-plugin.

1.2 The Semantic Web

In this section, we introduce the most important aspects of the Semantic Web by some
historical facts and describe the inventions made during the portrayed period of time.

The World Wide Web (or WWW for short), as we know it today, is an offspring of
CERN. This famous European Particle Physics Laboratory located in Geneva/Switzerland
hosts the laboratory equipment for thousands of researchers from all over the world. As a
consequence, this stimulated a need for structured archiving and accessing of research data,
experimental results, project proposals, telephone numbers, and similar information. Tim
Berners-Lee, back in the 1980s a fellow at CERN, was the prime inventor of the protocols
and tailored the programs for his vision of a Web of Documents and Data. Eventually,
the first web server was brought up at CERN on August 6th 1991. What follows, is the
dramatical success of the WWW.

The basic idea behind the Web is hypertext, i.e., text combined with references to
other information. Such information can be on the very same document or stored in
other documents on the Web, like another hypertext, or an image, and so on. Since
every document on the Web may link to other Web resources, a standardized framework
has to come up to enable compatible and interchangeable programs to share its data.
Therefore, in 1994, the World Wide Web Consortium (W3C)1 started its standardization
work. Fundamental standards for the Web emerged, such as Hypertext Transfer Protocol
(HTTP) for transferring arbitrary data over networks, Uniform Resource Identifier (URI)
to link Web resources, and Hypertext Markup Language (HTML) for representing hypertext
with URIs. With these standards, the successful story of the WWW was grounded and is
nowadays a central resource for information gathering.

Later in 1998, another groundbreaking standard came into light. Due to the substantial
amount of information available on the Web, mostly in unstructured form, the first standard
for a general markup language, the Extensible Markup Language (XML),2 was issued from
the W3C. The semi-structured data-model [Abiteboul, 1997] is the basis for XML and
allows for specifying well-formed documents on the Web. Since XML was designed to be a
general markup language, everyone is now able to create custom XML-based languages.
The XML framework provides the means for describing schematic information about XML
documents and thus offers the ability to automatically check the validity of XML documents.
An example for an XML document is the following:
<?xml version="1.0" encoding="UTF-8"?>
<books>
<book> <author>A</author> <name>B1</name> </book>
<book> <author>C</author> <name>B2</name> </book>

</books>

books
author name

A B1
C B2

This XML document encodes information for the books B1 and B2 from authors A and C,
resp. The table on the right shows the relational presentation of the XML document.

Moreover, by means of XML Namespaces, we can prefix specific elements in an XML
document with an identifier to facilitate interoperability with other XML-based languages;
the RDF example below makes heavy use of this concept.

1http://www.w3.org/
2http://www.w3.org/XML/

http://www.w3.org/
http://www.w3.org/XML/
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http://www.example.org/

ex:JohnSmith

ex:webpage

ex:person

sip:smith@example.org

John Smith

rdf:type

ex:author

ex:tel

ex:name

rdf:type

Figure 1.2: An RDF Graph

Given that documents on the Web are henceforth free to be represented in a structured
manner, XML-based languages are another big stepping stone on the way to publishing data
on the Web. In the article [Halevy et al., 2006], the authors argue that the development of
XML has been a great success in order to provide a common framework for sharing data
among data sources; one can view XML as a driving force for the realm of Data Integration
(see for instance [Halevy, 2001]).

A year later, the Resource Description Framework (RDF)3 specification was proposed at
W3C. As stated in [Manola and Miller, 2004], this language is an appropriate formalism for
representing resources on the Web and was mainly developed for automatic data processing
of meta-information. Using the RDF language, statements such as

http://www.example.org/ has an author named John Smith

are easily expressible. With such information at hand, one can deduce facts about things
described in RDF. The prior statement also shows the basic idea behind RDF, namely that
the data has assigned properties, which results in expressing such meta-data in a graph-like
manner. Speaking in RDF terms, our statement has a subject http://www.example.org/,
a predicate author, and an object John Smith. With the help of XML, we describe the above
statement (with some additional information) as a RDF/XML representation:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex="http://www.example.org/ns/"
xml:base="http://www.example.org/ns">
<ex:webpage rdf:about="http://www.example.org/">
<ex:author rdf:resource="#JohnSmith" />

</ex:webpage>
<ex:person rdf:ID="JohnSmith">
<ex:name>John Smith</ex:name>
<ex:tel rdf:resource="sip:smith@example.org" />

3http://www.w3.org/RDF/

http://www.example.org/
http://www.example.org/
http://www.w3.org/RDF/
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</ex:person>
</rdf:RDF>

The corresponding RDF graph of the foregoing RDF document is shown in Figure 1.2.
In the year 2000, the book [Berners-Lee and Fischetti, 2000] and the article [Berners-Lee

et al., 2001] gave the intuition behind the Semantic Web. In 2001, the W3C Semantic Web
Activity4 came into existence, and is since then a starting point for all things related to
the Semantic Web. The Web with all its content was mature and well-established among
Internet users, but what was missing according to Tim Berners-Lee, was a Web of Data,
i.e., the means for machine-readable information and automatic data processing, ultimately
leading to more powerful usage of data. For this to succeed, computers should not only
support the user when searching information on the Web, but should even “understand”
what the data and a given query “means.” The data published on the Web must contain
semantical information in form of terminological knowledge such as ontologies, which will
be addressed later on. This will enable much more power- and meaningful information
processing on the Web, including data discovery and integration, and it will improve
automation of tasks. To put it simply, one intention behind the Semantic Web is to
delegate time-consuming and tedious work such as repetitive Web searching usually done
by the user herself to machines.

To accomplish these objectives, the Semantic Web Architecture is split into hierarchical
parts, with each level assigned a particular task. According to Berners-Lee [1998], and
following Hendler [2002], the Semantic Web is divided into the following layers: URI +
Unicode, XML, RDF + RDF Schema, OWL, Logic, Proof, Trust, and Digital Signature.

• The bottom layers consists of foundational frameworks for identifying Web resources
(URI ) and for representing text in a uniform way over different computer platforms and
natural languages (Unicode);

• on the next level, the XML framework is used for annotating information to assist data
sharing;

• the third layer deals with expressing meta-data about Web resources with the help of
RDF and its extension RDF Schema;

• the fourth layer embraces ontology vocabularies like OWL (see the upcoming discussion)
to express terminological knowledge and assign semantics to concepts;

• the final layers deal with Logic, Proof, and Trust issues. Similar to the Trust layer, the
Digital Signature component is supposed to manage cryptographic technologies for assuring
identification issues of Web resources.

Recent updates on the Semantic Web architecture (see slides from [Herman, 2007])
incorporate changes to a more refined version with respect to proposed and upcoming Web
standards and current state-of-the-art research on these topics (see Figure 1.3). In this
version of the Semantic Web architecture, we see how Rules—specified in the upcoming
W3C standard Rule Interchange Format (RIF)5—fit into the big picture. Since many
different rule formalisms exit today with different proposed syntax and semantics, this
attempt tries to single out the common features of rule languages to build a uniform
markup language with a proper model-theoretic semantics for exchanging rules in—and
not exclusively limited to—the Semantic Web context. The Query part consists of the
SPARQL query language for RDF,6 which will soon be proposed as a W3C standard.

4http://www.w3.org/2001/sw/
5http://www.w3.org/TR/rif-core/
6http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/2001/sw/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rdf-sparql-query/
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OWL
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Trust
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User Interface & Applications

Proof

Data interchange: RDF

Figure 1.3: The Semantic Web Architecture

Unifying Logic is a current hot topic in the research community; this part should provide
combined formalisms for ontologies and rules by embedding the two of them to different
logical formalisms (cf. Section 1.3). Moreover, an additional piece called User Interface
& Applications shows how Semantic Web applications will interface with other parts of
the architecture. See [Horrocks et al., 2005] and [Patel-Schneider, 2005] for an account on
various proposed architectures in the past and pictures thereof.

In 2004, the next milestone towards the Semantic Web had been reached. The ontology
vocabulary called Web Ontology Language (OWL) [Patel-Schneider et al., 2004, McGuinness
and van Harmelen, 2004],7 which builds syntactically upon RDF and RDF Schema, was
proposed as a standard to define ontological knowledge in Semantic Web applications.
With this, one may express complex relationships between classes and properties, and
assert membership information of individuals in such ontologies. To clarify these points,
take as example a family hierarchy, i.e., the relationships that can occur in family-related
terminological knowledge, such as “a Mother is a Woman with at least one Child,” “a Son
is a Man with a Parent,” or “John is the Son of Mary.” To express such knowledge we
have to define classes for Woman and Man, and the usual disjoint relationship among
such classes. Then, some women are mothers, which is expressed by defining that the
property of hasChild has positive cardinality over the domain Woman. Similarly, a Man
which hasParent property has positive cardinality is a Son. A visual representation of this
family hierarchy is shown in Figure 1.4. The possibility for expressing such information is
crucial in the Semantic Web, since we are now fit to reason over the knowledge expressed in
our family ontology and ask questions—for instance “is Mary a Mother?”—, whose answers
will be derivable in an automatic fashion. OWL is divided in three increasingly expressive
languages called OWL Lite, OWL DL, and OWL Full, where OWL DL and OWL Lite is

7http://www.w3.org/2004/OWL/

http://www.w3.org/2004/OWL/
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Person

Woman Man
{ disjoint }

Mother Son
1..*

hasChild

1..*

hasParent

Figure 1.4: A family hierarchy

influenced by Description Logics (DL), a family of logics for formalising such terminological
information and with well-studied reasoning services. In particular, OWL DL and OWL
Light are based upon the DLs SHOIN (D) and SHIF(D), resp. Our family hierarchy
may be equivalently and compactly represented by the following DL axioms:

Woman v Person Woman v ¬Man Man v Person
Mother vWoman Son v Man

∃hasChild .Person v Mother ∃hasParent .Person v Son

Without any details, the v operator can be imagined as an is-a relationship, for instance
Woman v ¬Man states that “a Woman is not a Man.” One can easily think of how such
logical statements are represented in an XML-based ontology language such as OWL. See
[Horrocks et al., 2003] for more details on the connection between OWL and description
logics.

Given the constituents of the Semantic Web architecture shown in Figure 1.3, what has
not been agreed on are the final parts not yet mentioned in our historic overview. Therefore,
in 2004, the RDF Data Access Working Group8 was formed for creating standardization
work for the SPARQL query language for RDF, which has been released as a Candidate
Recommendation recently. In 2005, the Rule Interchange Format Working Group9 was
formed to devise standards for interchanging rules on the Semantic Web.

Recently, a new revision of the OWL DL Ontology Language, which is provisionally
called OWL 1.1,10 has been proposed [Cuenca Grau et al., 2006] and was accepted as a
W3C Submission. This extended OWL formalism is based on the DL SROIQ.

This concludes our overview of the Semantic Web. The upcoming section deals with
issues that arise when combining rules with ontologies. What started with the basic
building blocks has now been refined with more details. Since the Rules component will
play a crucial role in the higher layers such as Proof, Trust, and Unifying Logic, we must
accept that without a properly defined and expressive rule part the vision of the Semantic
Web cannot come true. As a consequence, rule languages must interface with ontologies.
Berners-Lee et al. [2001] write in their Scientific American essay:

8http://www.w3.org/2001/sw/DataAccess/
9http://www.w3.org/2005/rules/wg

10http://webont.org/owl/1.1/

http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/2005/rules/wg
http://webont.org/owl/1.1/
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“The challenge of the Semantic Web, therefore, is to provide a language that
expresses both data and rules for reasoning about the data and that allows rules
from any existing knowledge-representation system to be exported onto the Web.
Adding logic to the Web—the means to use rules to make inferences, choose
courses of actions and answer questions—is the task before the Semantic Web
community at the moment.”

1.3 Integration of Rules and Ontologies

In this section, we present certain limitations of ontology formalism, shed light on issues
that may arise when integrating rules and ontologies, and survey existing formalisms in
this context.

1.3.1 Motivation

During research on Semantic Web technologies the demand for combined formalisms, which
integrate ontology and rule languages, emerged as a consequence to supply advanced
reasoning capabilities in this setup. Ontology languages on their own cannot fulfill all
enjoined requirements; rule languages like logic programs should close at least some of the
known obstacles.

In this thesis, we focus on the answer-set programming way to logic programming.
As will be shown subsequently, this approach is common in related work on combined
rule/ontology languages for Semantic Web reasoning.

As for now, several approaches for the combination of rules and ontologies exist. One
exponent in this direction is the Rule Markup Language (RuleML) [Boley et al., 2001],
which is an XML-based language for expressing rules. Another example for ontology
languages with integrated rule part is the Semantic Web Rule Language (SWRL) [Horrocks
et al., 2004]. Alternative contributions in this field exist, mostly based on integrating DLs
with logic programs. We will give more examples of such combinations in this section.

Description logics are the fundamental underpinning for many ontology languages [Baader
et al., 2005b], thus we focus hereby on DLs. Following the list of motivations in [Motik
et al., 2006], we give some known expressive limitations of DL formalisms that show the
need for combining logic programming and DLs. Another relevant work in the context of
incomplete information—the assertional knowledge in a DL knowledge bases is conceivable
as incomplete database—, which provides more in-depth discourse, can be found in [van der
Meyden, 1998].

Higher Relational Expressivity The DLs underlying the ontology languages OWL DL and
OWL Light can only model domains with objects connected in a tree-like shape (see [Vardi,
1997] for a characterisation of the tree-model property). This restriction is annoying due to
the fact that many real-world applications have a need to express relational structures in a
triangle form, for instance the expression that “an uncle is the brother of a person, with
both having the same father” is not expressible in such DLs. But the preceding statement
is very easy to express in a rule language, as the following rule shows:

uncle(X)← brother(X,Y ), fatherOf (Z,X), fatherOf (Z, Y ).

The discussion in [Motik et al., 2004] provides a more detailed view on this issue. Observe
that the upcoming OWL 1.1 standard supports representing such triangular structures by
virtue of complex role inclusion axioms of form R ◦ S v T .
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Polyadic Predicates The building blocks of DLs are concept and role expressions, which
can be seen as unary and binary predicates in a first-order theory. Hence, relationships
with higher arities cannot be expressed immediately, one needs to apply the reification
technique to simulate n-ary relations in DLs (cf. [Baader et al., 2003]). Logic programs, on
the other hand, are naturally equipped with n-ary predicates. An example for a predicate
of arity 5 would be a train schedule entry like

train(ice562 , vie, szg , “6:14”, “8:53”),

which specifies that the train ICE 562 leaves at 6:14 from Vienna Western Station and
arrives at 8:53 in Salzburg Central Station; such a predicate is not expressible in OWL.
There are DLs with n-ary roles, take DLRreg in [Calvanese et al., 2007b], but they are
not under consideration in ontology languages used in the Semantic Web setting. Using
reification, we would have to introduce five fresh roles R1, . . . , R5 and associate a new
concept Train with each of these roles by the concept inclusion axiom11

Train v ∃R1.TrainID u ∃R2.Station u ∃R3.Station u ∃R4.Time u ∃R5.Time u
≤ 1R1 u · · · u ≤ 1R5,

provided that the first argument of predicate train is of type TrainID , the second and
third arguments are Station members, and the last two arguments are Time members
(alternatively, we could use a datatype, for instance xsd:time). We will now encode our
predicate train with the next ABox axioms, where the fresh individual t1 identifies our
train tuple:

Train(t1); R1(t1, ice562 ); R2(t1, vie); R3(t1, szg); R4(t1, “6:14”); R5(t1, “8:53”).

Compared to the simple 5-ary predicate train, the reified DL-version of such a train schedule
is very cumbersome.

Integrity Constraints Integrity constraints, while extensively used in relational data-
base applications, are not expressible in DLs. In fact, [Reiter, 1988] shows that integrity
constraints are not expressible using first-order sentences. Integrity of an ontology should
be enforced by modal nonmonotonic logic or a rule language. See [Motik et al., 2007a,b]
for an account on this issue and for a proposed solution, which uses so-called extended
DL knowledge bases. Such extended DL-KBs consist of an additional set of constraints in
the ontology, which are, together with the ABox assertions, interpreted under a minimal
model semantics. However, many rule languages support expressing constraints by design,
thus reusing them would be compelling. Moreover, extended DL-KBs cannot access the
rules layer, hence such constraints would be limited to ontologies. An example for such a
constraint is the rule

← col(X,C), col(Y,C), edge(X,Y )

in our 3COL example in Section 1.1, which forces the answer sets of this program to valid
three-colorings of a graph.

Modeling Exceptions Support for exceptions is not available in DLs. Take, for instance,
the well-known Tweety example [Reiter, 1978b]. As taught in primary school, everyone
knows that penguins are birds. Usually, birds fly, but exceptionally, penguins cannot fly.
11Proper use of reification would introduce key constraints. We ignore this here, hence multiple members

of Train might identify a certain train tuple.
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Suppose now that Tweety is a bird, therefore we infer that she can fly. But if we know that
Tweety is a penguin, we infer that Tweety is able to fly and unable to fly at the same time,
which is clearly inconsistent. Such problems show the need for modeling exceptions. In fact,
one of the driving forces for nonmonotonic formalisms such as answer-set programming
is the possibility to model such exceptions; the NAF operator provokes this exceptional
behaviour in ASP and is thus used as a handy tool to express exceptions.

1.3.2 Issues

We address now the problems and some crucial design issues that may arise in such
combination efforts. The discussions in [Rosati, 2005b, 2006b] raise some matter of
importance in this respect. Additionally, [Bry and Marchiori, 2005] give theses on kinds of
logics needed for the Semantic Web, and [de Bruijn et al., 2006] provide principles on the
representational issues in such combinations.

OWA vs. CWA The Open World Assumption (OWA) is adopted in first-order logic and
their fragments such as description logics. OWA maintains an agnostic view of the world,
i.e., conclusions which cannot be derived from a first-order theory are not known to hold
and would not be taken into account as “result,” so it is possible that some facts may hold
in some problem domain which cannot be deduced, but it is open for which facts.

In contrast, the Closed World Assumption (CWA) maintains, hence the name, a closed
view of the world [Reiter, 1978a]. Everything which is not derivable from a CWA knowledge
base is assumed to be false. Take, for instance, a consumer database recording the customers
of a shop. Such a database is assumed to be complete in a sense, that for every individual
not listed in this database one deduces she has not been buying products at that shop.
This is indeed a reasonable assumption, since otherwise we would have to catalogue all
persons not buying anything at that shop. CWA is closely related to negation as failure in
logic programming, since for every fact we fail to derive a proof in a CWA theory, we can
assume that the negation of it holds.

However, in the context of the Semantic Web, the CWA is not adopted in ontologies.
This is due to the fact that (i) ontologies are based on description logics and (ii) the
“state of knowledge” on the Web is to a certain extent in constant flux; it would be highly
devastating if one conclusion found at a point in time must be invalidated at a future
time. This is closely related to the Proof layer of the Semantic Web architecture. See
also [Patel-Schneider and Horrocks, 2006] for a more detailed account.

But nonmonotonic reasoning, which uses CWA, is needed in many applications. Take our
consumer database as one example for the relevance of such sort of reasoning. Integrating
a nonmonotonic formalism with ontologies is therefore a key requirement. Since logic
programming knowledge bases are kept under the CWA, the interaction between either
semantic viewpoint in combined rule and DL systems is inherent, the “proper” way of
doing this is still unknown; as shown later on, many different proposed formalisms exist
today.

UNA vs. non-UNA The Unique Name Assumption (UNA) requires that two individuals
mentioned in the problem domain are denoted by two different individual names. This
is the standard semantics for rule languages, but UNA is not adopted for some DLs, and
in particular not in the DLs used in OWL DL and OWL Light. OWL has the construct
owl:sameAs, which is suitable to specify that two individual names denote the same
individual. Again, the integration of rules and ontologies may lead to troubles in this
respect.
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Ontology Rules

p ! q.

q "¬q ! not p.

Figure 1.5: Tight Coupling

Decidability Preservation In one of the first integration efforts for rules and ontologies
dubbed CARIN [Levy and Rousset, 1998], it was shown that this coalition quickly leads to
an undecidable reasoning mechanism, even if reasoning in the logic program and the DL
on their own is decidable. See also the discussion in [Motik et al., 2004] for the reasons
causing undecidability of the reasoning procedure in combined knowledge bases.

Modularity of Reasoning Reasoning in DLs and logic programs had been heavily studied
in the past and many implementations are available. Thus, it would be alluring when
combining rules and ontologies to use currently available and mature software components.
As we will see, other integrated formalisms have been proposed in the literature, and
some come with an implementation. From the conceptual point of view they all require
a new implementation from scratch due to their tight semantic integration, whereas our
approach differs in this respect; we are free to reuse existing components without touching
the internals too much.

Continuing the discussion about modularity of reasoning, [Eiter et al., 2006a] proposes
two strategies for creating combined knowledge-based systems. In principal, the integration
efforts are roughly categorized in a

1. tight semantic integration or tight coupling (see Figure 1.5), and in a

2. strict semantic separation or loose coupling between the DL and the rule system (see
Figure 1.6).

In view of the interaction between combined knowledge bases with a classical and a
nonmonotonic part in [Eiter et al., 2006a]—the mentioned systems in the upcoming rest of
this section are basically such combined KBs—, tight coupling is generalized as Principle
3.1 (Interaction based on single models), while the loose coupling is stated as Principle
3.2 (Interaction based on entailment) in this work. We will now review systems which are
based on these interaction principles.

Tight semantic integration In this approach, the rule semantics are adjusted to fit into
the ontology layer. As pointed out previously in this section, such a combination can
quickly lead to an undecidable reasoning mechanism in case of CARIN [Levy and Rousset,
1998] and SWRL [Horrocks et al., 2004]. On the other end of the scale, the decidable
approach called DLP [Grosof et al., 2003] is very restrictive, i.e., it only allows a fusion of
logic programming and DLs in the semantic intersection of both concepts, which is limited
in the expressivity.
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Figure 1.6: Loose Coupling

Several other approaches have been studied, which try to close the gap between un-
decidable formalisms and the restrictive DLP proposal, mainly in the area of ASP. All
these approaches straiten the integration of rules and ontologies by adding a safety re-
striction to the rules in such combinations, for instance, variables in rules can only occur
in certain places. Approaches such as DL-log [Rosati, 1999], DL-safe Rules [Motik et al.,
2005], safe hybrid KBs [Rosati, 2005b], r-hybrid KBs [Rosati, 2005a], and the expressive
DL+log [Rosati, 2006a,b] fall under this category. Recently, [Lukasiewicz, 2007] presented a
tightly integrated approach called disjunctive dl-programs under the answer-set semantics.

Additionally, an approach based on reducing DL-KBs to disjunctive logic programs
(cf. [Hufstadt et al., 2004]) is used in the DL-reasoner KAON2.12 Here, every SHIQ
knowledge base is transformed into an equivalent disjunctive logic program, and reasoning
in the DL is performed using standard reasoning algorithms for such programs. A positive
side-effect of this approach is that one can easily add a rule layer to a DL-KB; in fact,
this amounts to appending the rules of the logic program to the translated DL-KB—the
above-mentioned DL-safe rules are implemented this way.

Moving on, another class of proposed formalisms exists. They can be considered as
embeddings of logic programming and first-order theories into unifying formalisms. The first
one to mention is the Hybrid MKNF KB formalism [Motik et al., 2006, Motik and Rosati,
2007], which uses the logic Minimal Knowledge and Negation as Failure for integrating
DLs with logic programming. Another approach uses Autoepistemic Logic [de Bruijn et al.,
2007a], while [de Bruijn et al., 2007b] uses Quantified Equilibrium Logic.

Strict semantic separation This strategy aims at keeping the rules and the ontology
strictly apart from each other. The only way an information exchange can happen between
both layers is through a “safe interface.” The rule layer views the ontology as an external
unit which can be queried and augmented by knowledge from the rule part; the semantics
of the ontology and the rule layer is kept independent from each other. This approach is
typical for the formalisms proposed in [Eiter et al., 2004b, 2005b, Heymans et al., 2005] and
[Lukasiewicz, 2005]. Our approach to combining knowledge bases is such a strict separation
(see Chapter 3 for the definition of cq-programs).

For excellent surveys which classify the above-mentioned and other approaches we refer
the interested reader to [Antoniou et al., 2005] and [Pan et al., 2004].

The motivation for building integrated rule and ontology knowledge bases clearly follows
from the aforementioned issues and the requirements for the Semantic Web architecture.

12http://kaon2.semanticweb.org/

http://kaon2.semanticweb.org/
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Efforts in this direction are currently a hot topic in the Logic Programming, Description
Logics, and Semantic Web research communities. Hence, this thesis may be a valuable
contribution to further the results in these fields, especially in the light of more efficient
reasoning capabilities for the Semantic Web.

1.4 Thesis Organization

We now outline this thesis. Related work include the combined logic programming and DL
knowledge base formalisms described beforehand and in the preliminaries of the upcoming
chapter. The rest of this thesis can be roughly divided into two parts. The first part
proposes a recently developed formalism called cq-programs for integrating rules with
ontologies for the Semantic Web, which is an extension to dl-programs by more expressive
rules, and is equipped with more expressive queries to the ontology layer. Moreover, it
deals with our implementation of cq-programs, dubbed dl-plugin, as a software component
for dlvhex, a reasoner for hex-programs.

In dl-programs, the number of queries to the DL-reasoner is crucial for the efficiency of
program execution. Since cq-programs allow for more expressive queries to ontologies, in
particular conjunctive and union of conjunctive queries, before we start the evaluation of a
program, we may bring together specific queries to form a fresh single query by rewriting
the original program to a new, more efficient one. This has the effect that we have less
queries to the ontology layer and thus process programs more efficiently. So, the second
part of the thesis is concerned with optimization issues for cq-programs and provides
experimental results.

This work is organized as follows:

• Chapter 2 provides the preliminaries for logic and answer-set programming, the family
of description logics and its relationship to the OWL Web Ontology Language, the
notion of dl-programs as an generalization of logic programming, hex-programs as
an extension of answer-set programming with higher order logic and external atoms,
program unfolding as a means for optimizing logic programs, and conjunctive queries
over description logics.

• In Chapter 3 we introduce the syntax and the semantics of a hybrid knowledge base
formalism called cq-programs, which is composed of a logic program and a description
logics part.

• The next chapter, 4, describes implementation details for our cq-program implemen-
tation dl-plugin for dlvhex, its connection to hex-programs, and the usage patterns.

• Chapter 5 then provides the following contributions: equivalences for optimizing
cq-programs, a generalization of partial evaluation of disjunctive programs presented
in Section 2.7.2, the algorithms implementing the optimizing rewriting rules, and
experimental results on program optimization in cq-programs.

• We give sample applications for cq-programs in Chapter 6.

• The conclusions in Chapter 7 summarizes this thesis and provides suggestions for
further studies and future work.

• Proofs for the Theorems of Section 4 and Section 5 are given in Appendix A.
Experimental data and the test setup of Section 5 is summarized in Appendix B.



Amanda: And you, Sarek, would you also say thank you to
your son?

Sarek: I don’t understand.
Amanda: For saving your life.
Sarek: Spock acted in the only logical manner open to him.

One does not thank logic, Amanda.
Amanda: Logic. Logic. I’m sick to death of logic.

You know how I feel about your logic?
Sarek: Emotional, isn’t she? She’s always been so.
Spock: Indeed? Why did you marry her?
Sarek: At the time, it seemed the logical thing to do.

—Star Trek, Journey to Babel, stardate 3842.4

2

Preliminaries

In this chapter, we will outline the basics and principles of answer-set programming and its
existing implementations. Moreover, we will introduce description logics as a formal basis
for ontology languages in the area of the Semantic Web, in particular the Web Ontology
Language OWL. We then review dl-programs as the foundation of our new cq-program
formalism. hex-programs will serve as the formal basis for our implementation, hence
they will be presented later on. In view of our optimization investigations on cq-programs,
we provide the basis for unfolding logic programs and survey conjunctive queries over
description logics. In the remainder of this thesis, we assume familiarity with first-order
logic (cf. for instance [Boolos et al., 2003] or [van Dalen, 2004]).

2.1 Declarative Logic Programming

In computer science, programming languages can be classified into two big programming
language concepts, one is the imperative and the other the declarative programming
paradigm. Informally speaking, programming languages, which fall into the first paradigm,
focus on how an algorithm solves a given problem. Such programming languages deal with
states and sequences of operations, which can access and modify their state. Examples for
imperative programming languages are C, C++, Java, and so forth.

On the other hand, a declarative programming language’s centre of attention is the
problem, hence such languages do not encode the sequence of operations. Instead, knowledge
representing the problem is given as program and evaluated in an automated way. Usually,
the programmer cannot determine how a solver for such a programming language process
the program. Programming languages such as Prolog, Haskell, and Lisp, are considered
declarative.

We focus hereby on the declarative style, concrete on Declarative Logic Programming.
Here, the programmer identifies the relationships in a problem domain and states this in
form of a logic program. In the following prototypical example, we clarify the difference

15
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between declarative and imperative programming style.

Example 2.1. The following procedure represents knowledge about birds:

function bird(x): boolean;
if x = ’tweety’ then return true;
else if x = ’sam’ then return true;
else if penguin(x) then return true;
else return false;

The corresponding logic program would be

P = {bird(tweety), bird(sam), bird(X )← penguin(X )}

The bird(x) function is a typical imperative procedure. The associated knowledge is
rather static—imagine we want to extend the knowledge by other types of birds or known
bird individuals. This would amount to augment the if-then-else construct by various other
conditions. On the other hand, the logic program can be easily extended just by adding
the corresponding facts or rules.

But the true power of declarative logic programming is revealed when we want to reason
about the encoded knowledge, for instance, when we want to know all bird instances. In
the imperative procedure this is not possible, since the knowledge is hardcoded and cannot
be retrieved, while we can easily add a query like “bird(X)?” to the logic program and
retrieve all known birds.

As stated in the introduction, the widespread Prolog programs are not purely declarative.
Program evaluation in Prolog depends on the order of the rules and the atoms in a rule
body, which renders Prolog programs not always very comprehensible, especially when the
programmer wants to modify the program. A different paradigm of logic programming
that will be presented in the following is answer-set programming [Gelfond and Lifschitz,
1991], which allows to state purely declarative logic programs. Moreover, in answer-set
programs, it is guaranteed that program evaluation always terminates, whereas Prolog
programs do not have this characteristic.

2.2 Logic Programs under the Answer-Set Semantics

Answer-set programming stems from the stable model semantics of normal logic pro-
grams [Gelfond and Lifschitz, 1988] line of research (also known as general logic programs),
which typically deals with negation as failure. This kind of negation is closely related to
Reiter’s Default Logic [Reiter, 1980], hence it is also known as default negation or weak
negation. Since negation as failure is different from classical negation (or strong negation)
in classical logic, Gelfond and Lifschitz proposed a logic programming approach that allows
for both negations [Gelfond and Lifschitz, 1990]. Subsequently, Gelfond and Lifschitz [1991]
extended their semantics to disjunction in rule heads. Similar definitions for general logic
programs and other classes of programs can be found in the literature (cf., e.g., [Lifschitz
and Woo, 1992]). For an overview on other semantics for extended logic programs, see
also [Dix, 1995].

Two prominent systems for computing answer sets are DLV [Eiter et al., 1998, 2000,
Leone et al., 2006] and Smodels [Niemelä, 1999, Simons et al., 2002], which allow for
efficient declarative problem solving. The DLV system,1 which is indirectly used in this

1http://www.dlvsystem.com/

http://www.dlvsystem.com/
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thesis through the dlvhex framework,2 has been developed for over a decade as joint work
of the University of Calabria and Vienna University of Technology and is still actively
maintained. For an in-detail discourse on DLV we refer to [Leone et al., 2006].

2.2.1 Syntax of answer-set programs

Let P, C and X be disjoint sets of predicate, constant, and variable symbols from a
first-order vocabulary Φ, respectively, where X is infinite and P and C are countable. In
accordance with common ASP solvers such as DLV, we assume that elements from C and P
are string constants that begin with a lowercase letter or are double-quoted, where elements
from C can also be integer numbers. Elements from X begin with an uppercase letter. A
term is either a constant or a variable. Given p ∈ P an atom is defined as p(t1, . . . , tk),
where k is called the arity of p and each t1, . . . , tk are terms. Atoms of arity k = 0 are
called propositional atoms.

A classical literal (or simply literal) l is an atom p or a negated atom ¬p, where “¬” is the
symbol for true (classical) negation. Its complementary literal is ¬p (resp., p). A negation
as failure literal (or NAF-literal) is a literal l or a default-negated literal not l. Negation
as failure is an extension to classical negation, denoting a fact as false if all attempts to
prove it fail. Thus, not l evaluates to true if it cannot be foundedly demonstrated that l is
true, i.e., if either l is false or we do not know whether l is true or false.

A rule r is an expression of the form

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not bm+1, . . . ,not bn , k ≥ 0 ,m ≥ n ≥ 0 , (2.1)

where a1, . . . , ak, b1, . . . , bn are classical literals. We say that a1, . . . , ak is the head of r,
while the conjunction b1, . . . , bm, not bm+1, . . . ,not bn is the body of r, where b1, . . . , bm
(resp., not bm+1, . . . ,not bn) is the positive (resp., negative) body of r. We use H(r) to
denote its head literals, and B(r) to denote the set of all its body literals B+(r) ∪B−(r),
where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. A rule r without head literals
(i.e., k = 0) is an integrity constraint. A rule r with exactly one head literal (i.e., k = 1) is
a normal rule. If the body of r is empty (that is, m = n = 0), then r is a fact, and we
often omit “←”.3 An extended disjunctive logic program (EDLP, or simply program) P is a
finite set of rules r of the form (2.1).

Programs without disjunction in the heads of rules are called extended logic programs
(ELPs). A program P without negation as failure, i.e., for all r ∈ P , B−(r) = ∅ is called
positive logic program. If, additionally, no strong negation occurs in P , i.e., the only form
of negation is default negation in rule bodies, then P is called a normal logic program
(NLP). The generalization of an NLP by allowing default negation in the heads of rules is
called generalized logic program (GLP). Additional program classes of logic programming
with the corresponding restrictions on the rules in a program are summarized in Table 2.1.
Program classes based on dependency information such as stratified programs [Apt et al.,
1988] are not considered here.

2.2.2 Semantics of answer-set programs

The semantics of extended disjunctive logic programs is defined for variable-free programs.
Thus, we first define the ground instantiation of a program that eliminates its variables.

The Herbrand universe of a program P , denoted HUP , is the set of all constant symbols
C ⊂ C appearing in P . If there is no such constant symbol, then HUP = {c}, where c is

2http://www.kr.tuwien.ac.at/research/dlvhex/
3In this thesis, we will use both forms “a←” and “a.” to denote that a is a fact in a logic program.

http://www.kr.tuwien.ac.at/research/dlvhex/
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Name restriction
definite horn k = 1, n = m
horn k ≤ 1, n = m
normal k ≤ 1
definite k ≥ 1, n = m
positive n = m
disjunctive no restriction

Table 2.1: Program classes

an arbitrary constant symbol from Φ. As usual, terms, atoms, literals, rules, programs,
etc. are ground iff they do not contain any variables. The Herbrand base of a program P ,
denoted HBP , is the set of all ground (classical) literals that can be constructed from the
predicate symbols appearing in P and the constant symbols in HUP . A ground instance of
a rule r ∈ P is obtained from r by replacing every variable that occurs in r by a constant
symbol from HUP . We use ground(P ) to denote the set of all ground instances of rules
in P .

The semantics for EDLPs is defined first for positive ground programs. A set of literals
X ⊆ HBP is consistent iff {p,¬p} 6⊆X for every atom p ∈ HBP . An interpretation I
relative to a program P is a consistent subset of HBP . We say that a set of literals S
satisfies a rule r if H(r) ∩ S 6= ∅ whenever B+(r) ⊆ S and B−(r) ∩ S = ∅. A model of
a positive program P is an interpretation I ⊆ HBP such that I satisfies all rules in P .
An answer set of a positive program P is the least model of P w.r.t. set inclusion.

To extend this definition to programs with negation as failure, we define the Gelfond-
Lifschitz transform (also often called the Gelfond-Lifschitz reduct) of a program P relative
to an interpretation I ⊆ HBP , denoted P I , as the ground positive program that is obtained
from ground(P ) by

(i) deleting every rule r such that B−(r) ∩ I 6= ∅, and
(ii) deleting the negative body from every remaining rule.
An answer set of a program P is an interpretation I ⊆ HBP such that I is an answer

set of P I .

Example 2.2. Consider the following program P :

p← not q.
q ← not p.

Let I1 = {p}; then, P I1 = {p←} with the unique model {p} and thus I1 is an answer set
of P . Likewise, P has an answer set {q}. However, the empty set ∅ is not an answer set of
P , since the respective reduct would be {p←; q ←} with the model {p, q}.

A constraint is used to eliminate “unwanted” models from the result, since its head is
implicitly assumed to be false. A model that satisfies the body of a constraint is hence
discarded from the set of answer sets.

Example 2.3. Let P be the program

p(X) ∨ ¬p(X)← q(X),not r(X).
q(c1). r(c2).



2.2 Logic Programs under the Answer-Set Semantics 19

The grounding of P is

p(c1) ∨ ¬p(c1)← q(c1),not r(c1).
p(c2) ∨ ¬p(c2)← q(c2),not r(c2).

q(c1). r(c2).

This program has several models. For instance, I1 = {q(c1), r(c1), r(c2), p(c1)} is a model
of P , since P I1 is just

q(c1). r(c2).

However, I1 is not a minimal model of P I1 . Now take I2 = {q(c1), r(c2), p(c1)}. We obtain
P I2 as

p(c1) ∨ ¬p(c1)← q(c1).
q(c1). r(c2).

Indeed, I2 is a minimal model of P I2 , hence it is an answer set of P .

Example 2.4. Consider the 3COL example from Section 1.1. The grounding of P is the
program ground(P ):

col(a, red) ∨ col(a, green) ∨ col(a, blue)← node(a).
col(b, red) ∨ col(b, green) ∨ col(b, blue)← node(b).
col(c, red) ∨ col(c, green) ∨ col(c, blue)← node(c).

col(d, red) ∨ col(d, green) ∨ col(d, blue)← node(d).
col(e, red) ∨ col(e, green) ∨ col(e, blue)← node(e).

col(blue, red) ∨ col(blue, green) ∨ col(blue, blue)← node(blue).
col(green, red) ∨ col(green, green) ∨ col(green, blue)← node(green).

col(red , red) ∨ col(red , green) ∨ col(red , blue)← node(red).
← col(a, a), col(a, a), edge(a, a).
← col(a, a), col(b, a), edge(a, b).
...
← col(red , a), col(b, a), edge(a, b).
...

node(a)← edge(a, a).
node(a)← edge(a, b).

...
node(b)← edge(a, b).

...
edge(a, b). edge(b, c). edge(c, d). edge(d, a). edge(e, c). edge(e, b).

Since P is positive, for each Herbrand interpretation I, P I = ground(P ). Hence, the
minimal models of ground(P ) and the answer sets of P coincide.

The main reasoning tasks that are associated with EDLPs under the answer-set semantics
are the following:
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• decide whether a given program P has an answer set;

• given a program P and a ground formula φ, decide whether φ holds in every (resp.,
some) answer set of P (cautious (resp., brave) reasoning);

• given a program P and an interpretation I ⊆ HBP , decide whether I is an answer
set of P (answer-set checking); and

• compute the set of all answer sets of a given program P .

2.3 Description Logics

Description logics arise from scientific research on two prominent knowledge representation
languages. In the 1970s, Semantic Networks were a widely used formalism for representing
relationships between concepts, especially in natural language processing. Frame-based
systems appeared in the beginning of the 1980s, which is a similar formalism. Both
languages lack a formal semantics, hence they are non-logical formalisms with limited
reasoning ability. In fact, reasoning in such languages was done by manipulating ad hoc
data structures.

Later on, a semantic characterisation based on first-order logic was given to frame
systems, which subsequently led to terminological systems and concept languages. The
term Description Logics was coined to emphasize the logical underpinning of this line
of research. There are multiple variants of this kind of formalism, so called families of
description logics; the plural form “logics” stems from this observation.

Nowadays, description logics are heavily used in ontology and Semantic Web research
(see also Section 1.2). For excellent introductions to description logics, we refer to [Baader
et al., 2003, Baader and Lutz, 2006, Baader et al., 2007], which, too, deal with the close
relationship of description logics and modal logics.

Applications for DLs are manifold. Beside the obvious connection to ontologies for
the Semantic Web, DLs are useful for reasoning with ER data models [Chen, 1976], the
standard approach for conceptual modelling in database design. By carefully translating
an ER schema into a DL-KB [Baader et al., 2003], one can check the consistency of an
ER schema by reasoning methods employed by DL-reasoners. Another application is
reasoning with UML [Berardi et al., 2005], the standard language for modelling software.
Additionally, description logics are big players in the area of bioinformatics, where lots
of ontologies have been developed. Three prominent ontologies for describing biomedical
terminologies are SNOMED,4 GALEN,5 and NCI.6

In this section, we reminisce back on the foundations of the two description logics
SHIF(D) and SHOIN (D), which are the underpinning of Semantic Web ontology
languages and provide the basis for our novel types of answer-set programs that will be
presented in Section 2.5 and Chapter 3.

The naming scheme for particular description logics are in match with the logical
primitives they provide. Basic boolean operators like concept union t and concept
intersection u, modality operators like ∃R.C and ∀R.C, and negation ¬ are considered
present (the corresponding DL is called ALC). SHOIN (D) now provides additional
operators for role transitivity (S), role hierarchy (H), nominals or “one-of”-constructor
(O), role inverses (I), unqualified number restrictions (N ), and datatypes (D).

4http://www.snomed.org/
5http://www.opengalen.org/
6http://www.cancer.gov/

http://www.snomed.org/
http://www.opengalen.org/
http://www.cancer.gov/
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The SHIF(D) DL is less expressive, F stands for functionality, which is a restricted
form of number restriction ≤1R. F is subsumed by N of SHOIN (D). Consequently,
SHIF(D) is a restriction to the SHOIN (D) language, which have a close connection to
the description logics SHOQ(D) [Horrocks and Sattler, 2001] and SHOIQ(D) [Horrocks
and Sattler, 2005].

Syntax and semantics definitions for description logics can be given in various ways, for
instance by a translation into first-order logic. Concrete, the DL ALC can be mapped into
the first-order logic fragment L2, i.e., into first-order logic over unary and binary predicates
with at most two variables. For further material and details, we refer to [Baader et al.,
2003]. An in-depth introduction to SHIF(D) and SHOIN (D) and their relationship to
the OWL language is given in [Horrocks and Patel-Schneider, 2003, Horrocks et al., 2003].
For our purposes, we use the definition of [Eiter et al., 2007b].

2.3.1 Syntax of SHIF(D) and SHOIN (D)

We now recall the syntax of SHIF(D) and SHOIN (D). We first describe the syntax of
the latter, which has the following datatypes and elementary ingredients. We assume a
set of elementary datatypes and a set of data values. A datatype is either an elementary
datatype or a set of data values (called datatype oneOf ). A datatype theory D = (∆D, ·D)
consists of a datatype (or concrete) domain ∆D and a mapping ·D that assigns to every
elementary datatype a subset of ∆D and to every data value an element of ∆D. The
mapping ·D is extended to all datatypes by {v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, and I
be pairwise disjoint finite nonempty sets of atomic concepts, abstract roles, datatype (or
concrete) roles, and individuals, respectively. We denote by R−A the set of inverses R− of
all R ∈ RA.

Roles and concepts are defined as follows. A role is an element of RA∪R−A∪RD. Concepts
are inductively defined as follows. Every atomic concept C ∈ A is a concept. If o1, o2, . . .
are individuals from I, then {o1, o2, . . .} is a concept (called oneOf). If C and D are
concepts, then also (C uD), (C tD), and ¬C are concepts (called conjunction, disjunction,
and negation, respectively). If C is a concept, R is an abstract role from RA∪R−A, and n is
a nonnegative integer, then ∃R.C, ∀R.C, ≥nR, and ≤nR are concepts (called exists, value,
atleast, and atmost restriction, respectively). If D is a datatype, U is a datatype role
from RD, and n is a nonnegative integer, then ∃U.D, ∀U.D, ≥nU , and ≤nU are concepts
(called datatype exists, value, atleast, and atmost restriction, respectively). We use >
and ⊥ to abbreviate the concepts C t¬C and C u¬C, respectively, and we eliminate
parentheses as usual.

We next define axioms and knowledge bases as follows. An axiom is an expression
of one of the following forms: (1) C v D (called concept inclusion axiom), where C
and D are concepts; (2) R v S (called role inclusion axiom), where either R,S ∈ RA

or R,S ∈ RD; (3) Trans(R) (called transitivity axiom), where R ∈ RA; (4) C(a) (called
concept membership axiom), where C is a concept and a ∈ I; (5) R(a, b) (resp., U(a, v))
(called role membership axiom), where R ∈ RA (resp., U ∈ RD) and a, b ∈ I (resp., a ∈ I
and v is a data value); and (6) a = b (resp., a 6= b) (called equality (resp., inequality)
axiom), where a, b ∈ I. A (description logic) knowledge base L is a finite set of axioms.

For an abstract role R ∈ RA, we define Inv(R) = R− and Inv(R−) = R. Let the
transitive and reflexive closure of v on abstract roles relative to L, denoted v?, be defined
as follows. For two abstract roles R and S in L, let Sv?R relative to L iff either (a) S = R,
(b) S v R ∈ L, (c) Inv(S) v Inv(R) ∈ L, or (d) some abstract role Q exists such
that Sv?Q and Qv?R relative to L. An abstract role R is simple relative to L iff for
each abstract role S such that Sv?R relative to L, it holds that (i) Trans(S) 6∈L and
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(ii) Trans(Inv(S)) 6∈L. For decidability, number restrictions in L are restricted to simple
abstract roles [Horrocks et al., 1999].

Observe that in SHOIN (D), concept and role membership axioms can equally be
expressed through concept inclusion axioms. The knowledge that the individual a is an
instance of the concept C can be expressed by the concept inclusion axiom {a} v C, while
the knowledge that the pair (a, b) (resp., (a, v)) is an instance of the role R (resp., U) can
be expressed by {a} v ∃R.{b} (resp., {a} v ∃U.{v}).

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf
constructor and with the atleast and atmost constructors limited to 0 and 1.

Note that other definitions of description logic knowledge bases exist. A widely used
definition is the notion of DL-KB K = 〈T ,R,A〉, where T is called TBox and consists of
a set of concept inclusion axioms (the terminological knowledge), R is called RBox and
consists of a set of axiom of form (2) or (3) (the role hierarchy), and A is called ABox
and consists of a set of concept or role membership axioms (the assertional knowledge, or
extensional part). T and R builds the intensional part of a DL-KB. We do not use this
clear separation in our framework, but sometimes refer to the extensional part of L as
ABox and the intentional part of L as TBox.

2.3.2 Semantics of SHIF(D) and SHOIN (D)

We now define the semantics of SHIF(D) and SHOIN (D) in terms of general first-order
interpretations, as usual, and we recall some important reasoning problems in description
logics.

An interpretation I = (∆I , ·I) with respect to a datatype theory D = (∆D, ·D) consists
of a nonempty (abstract) domain ∆I disjoint from ∆D, and a mapping ·I that assigns
to each atomic concept C∈A a subset of ∆I , to each individual o ∈ I an element of ∆I ,
to each abstract role R ∈ RA a subset of ∆I ×∆I , and to each datatype role U ∈ RD a
subset of ∆I ×∆D. The mapping ·I is extended to all concepts and roles as usual (where
#S denotes the cardinality of a set S):

• (R−)I = {(a, b) | (b, a) ∈ RI};

• {o1, . . . , on}I = {oI1 , . . . , oIn};

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , and (¬C)I = ∆I \CI ;

• (∃R.C)I = {x ∈ ∆I | ∃y : (x, y) ∈ RI ∧ y ∈ CI};

• (∀R.C)I = {x ∈ ∆I | ∀y : (x, y) ∈ RI → y ∈ CI};

• (≥nR)I = {x ∈ ∆I | #({y | (x, y) ∈ RI}) ≥ n};

• (≤nR)I = {x ∈ ∆I | #({y | (x, y) ∈ RI}) ≤ n};

• (∃U.D)I = {x ∈ ∆I | ∃y : (x, y) ∈ UI ∧ y ∈ DD};

• (∀U.D)I = {x ∈ ∆I | ∀y : (x, y) ∈ UI → y ∈ DD};

• (≥nU)I = {x ∈ ∆I | #({y | (x, y) ∈ UI}) ≥ n};

• (≤nU)I = {x ∈ ∆I | #({y | (x, y) ∈ UI}) ≤ n}.

The satisfaction of a description logic axiom F in the interpretation I = (∆I , ·I) with
respect to D = (∆D, ·D), denoted I |= F , is defined as follows:
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• I |= C v D iff CI ⊆ DI ;

• I |= R v S iff RI ⊆ SI ;

• I |= Trans(R) iff RI is transitive;

• I |= C(a) iff aI ∈ CI ;

• I |= R(a, b) iff (aI , bI) ∈ RI (resp., I |= U(a, v) iff (aI , vD) ∈ UI); and

• I |= a = b iff aI = bI (resp., I |= a 6= b iff aI 6= bI).

The interpretation I satisfies the axiom F , or I is a model of F , iff I |= F . The
interpretation I satisfies a knowledge base L, or I is a model of L, denoted I |= L,
iff I |= F for all F ∈ L. We say that L is satisfiable (resp., unsatisfiable) iff L has a (resp.,
no) model. An axiom F is a logical consequence of L, denoted L |= F , iff every model of L
satisfies F . A negated axiom ¬F is a logical consequence of L, denoted L |= ¬F , iff every
model of L does not satisfy F .

Some important reasoning problems related to description logic knowledge bases L are
the following:

(1) decide whether a given L is satisfiable;

(2) given L and a concept C, decide whether L 6|= C v ⊥;

(3) given L and two concepts C and D, decide whether L |= C v D;

(4) given L, an individual a ∈ I, and a concept C, decide whether L |= C(a); and

(5) given L, two individuals a, b ∈ I (resp., an individual a ∈ I and a data value v), and
an abstract role R ∈ RA (resp., a datatype role U ∈ RD), decide whether L |= R(a, b)
(resp., L |= U(a, v)).

Here, (1) is a special case of (2), since L is satisfiable iff L 6|= >v⊥. Furthermore, (2)
and (3) can be reduced to each other, since L |= C u ¬D v ⊥ iff L |= C v D. Finally,
in SHOIN (D), (4) and (5) are special cases of (3). In Section 2.8, we present another
important reasoning problem, viz., conjunctive queries over description logics. This problem
will be used for our cq-program formalism (see Section 3).

Example 2.5. Consider the following description logic knowledge base L with knowledge
about space tourists:

≥ 1motherOf v Female (1)
≥ 1fatherOf v Male (2)

Male v ¬Female t SpaceTourist (3)
SpaceTourist v Female tMale (4)

Female u SpaceTourist(Anousheh) (5)
Male u SpaceTourist(Mark) (6)

fatherOf (Rick ,Mark) (7)
motherOf (Fakhri ,Anousheh) (8)

The general concept inclusions (1)–(4) form the TBox of L; the assertions (5)–(8) are
the ABox of L.
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Concepts:

Roles: Individuals:

Male

Female

SpaceTourist

motherOf

fatherOf Anousheh Mark

Female ! SpaceTourist

7

}fatherOf.(Male!SpaceTourist)

RickFakhri

Figure 2.1: Space tourists knowledge base

Axiom (1) and (2) set the domain of motherOf and fatherOf to the concept Female
and Male, respectively. Hence, when we assert that someone is a mother of a person, we
implicitly assure that this mother is known to be a female person. In (3), we define that
male persons are not female or they are spacetourists. The intuition behind (4) is that
spacetourists could be female or male. Assertions (5) declares individual Anousheh as
female spacetourist, while (6) states that Mark is a male spacetourist. In (7) and (8), we
define parenthood relationships; Rick is the father of Mark and Fakhri is the mother of
Anousheh by (7) and (8), resp.

Now we can reason about this knowledge of space tourists. For instance, we can
infer that Fakhri is female, i.e., L |= Female(Fakhri) by (1) and (8). Similarly, L |=
∃fatherOf .(Male u SpaceTourist)(Rick).

A graphical representation for a particular model of L is shown in Figure 2.1. As can be
seen, there is much more information present than represented in the DL-KB. For instance,
a female individual, lets call it f , has a known mother and a known father. Note that
L 6|= Female(f), because in another model of L, f might not be present in ∆I , hence not
every model I satisfies Female(f).

2.4 Web Ontology Language

Ontologies play a significant role in the Semantic Web. They define the concepts and
relationships in a domain of interest to build vocabularies ready for comprehensive deploy-
ment. In [Gruber, 1993], formal ontologies were identified as entities for specifying sharable
and reusable knowledge. Due to the far reaching design goals of the Semantic Web, such
reusable ontologies act as a key technology for the feasibility of the Semantic Web vision.
Additionally, ontologies are more and more understood as convenient tools for specifying
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knowledge in interdisciplinary sciences. The applications presented in [Horrocks, 2005] and
in Section 6, too, record this movement, hence the Semantic Web with its technological
advancements support these emerging tasks.

The Web Ontology Language (OWL) [Bechhofer et al., 2004] has been developed by
the W3C Web Ontology Working Group.7 The OWL specification appeared as W3C
Recommendation in February 2004. Several ancestors of OWL can be identified: Simple
HTML Ontology Extensions (SHOE) [Heflin and Hendler, 2000], DARPA Agent Modelling
Language (DAML) [Hendler and McGuiness, 2000], Ontology Inference Layer (OIL) [Fensel
et al., 2001], and DAML+OIL [Horrocks, 2002b,a]. SHOE was an extension of HTML with
semantic markup to represent ontologies in hypertext documents. Later, the DAML and
OIL languages were combined to form DAML+OIL, an RDF-S based ontology language.
These efforts eventually resulted in the OWL family of ontology languages, now the standard
language for specifying ontologies on the Semantic Web. One design goal for OWL was to
maintain as much compatibility to its preceding formalisms as possible. See also [Horrocks
et al., 2003] for more information on the relationship between OWL and other ontology
formalisms.

OWL consists of three sublanguages with increasing expressivity: OWL Lite, OWL
DL, and OWL Full. OWL Lite and OWL DL semantics are based on description logics,
namely, SHIF(D) and SHOIN (D), respectively. OWL Full on the other hand loosens
specific syntactic restrictions of OWL Lite and OWL DL, hence reasoning in OWL Full is
undecidable. An overview on the differences between the various sublanguages is given in
http://www.w3.org/TR/owl-ref/#Sublanguage-def. Syntax and semantics of OWL is
presented in [Patel-Schneider et al., 2004] and summarized in the tables below, which are
from [Horrocks et al., 2003].

Syntax and semantics of OWL

The abstract syntax for class descriptions and axioms in OWL DL ontologies is given in
the first column of Table 2.2 and Table 2.3, respectively. The syntax for OWL Lite is
basically the same, with the following restrictions:

• oneOf, unionOf, and complementOf are prohibited;

• maxCardinality, minCardinality, and cardinality restrictions may only have 0
and 1 as parameter n;

• hasValue restrictions are prohibited; and

• EnumeratedClass and DisjointClasses axioms are not allowed.

The concrete constraints on the syntax of OWL Lite ontologies are summarized in http:
//www.w3.org/TR/owl-ref/#OWLLite.

Note that we left out AnnotationProperty and OntologyProperty axioms, since they
do not have an immediate DL equivalent expression. In fact, those property axioms
are merely used for annotating extralogical information in the ontology like authorship
information and textual descriptions for class and property axioms. As an aside, the
owl:imports built-in ontology property can be used to include other ontologies (see also
the discussion in [Horrocks et al., 2003]).

The second column of Table 2.2 and 2.3 maps OWL abstract syntax to the corresponding
DL syntax, hence OWL ontologies can be imagined as syntactic variants of description logics.

7http://www.w3.org/2001/sw/WebOnt/

http://www.w3.org/TR/owl-ref/#Sublanguage-def
http://www.w3.org/TR/owl-ref/#OWLLite
http://www.w3.org/TR/owl-ref/#OWLLite
http://www.w3.org/2001/sw/WebOnt/
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Abstract Syntax DL Syntax Semantics
Descriptions (C)
A (URI reference) A AI ⊆ ∆I

owl:Thing > owl : ThingI = ∆I

owl:Nothing ⊥ owl : NothingI = ∅
intersectionOf(C1 C2 . . .) C1 u C2 (C1 u C2)I = CI1 ∩ CI2
unionOf(C1 C2 . . .) C1 t C2 (C1 t C2)I = CI1 ∪ CI2
complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1 . . .) {o1, . . .} {o1, . . .}I = {oI1 , . . .}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) R : o (∀R.o)I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(n)) ≥ nR (≥ nR)I = {x | ]({y | 〈x, y〉 ∈ RI}) ≥ n}
restriction(R maxCardinality(n)) ≤ nR (≤ nR)I = {x | ]({y | 〈x, y〉 ∈ RI}) ≤ n}
restriction(R cardinality(n)) = nR (= nR)I = {x | ]({y | 〈x, y〉 ∈ RI}) = n}
restriction(U someValuesFrom(D)) ∃U.D (∃U.D)I = {x | ∃y.〈x, y〉 ∈ UI ∧ y ∈ DD}
restriction(U allValuesFrom(D)) ∀U.D (∀U.D)I = {x | ∀y.〈x, y〉 ∈ UI → y ∈ DD}
restriction(U hasValue(v)) U : v (U : v)I = {x | 〈x, vI〉 ∈ UI}
restriction(U minCardinality(n)) ≥ nU (≥ nU)I = {x | ]({y | 〈x, y〉 ∈ UI}) ≥ n}
restriction(U maxCardinality(n)) ≤ nU (≤ nU)I = {x | ]({y | 〈x, y〉 ∈ UI}) ≤ n}
restriction(U cardinality(n)) = nU (= nU)I = {x | ]({y | 〈x, y〉 ∈ UI}) = n}

Data Ranges (D)
D (URI reference) D DD ⊆ ∆D

oneOf(v1 . . .) {v1, . . .} {v1, . . .}I = {vI1 , . . .}

Object Properties (R)
R (URI reference) R RI ⊆ ∆I ×∆I

R− (R−)I = (RI)−

Datatype Properties (U)
U (URI reference) U UI ⊆ ∆I ×∆D

Individuals (o)
o (URI reference) o oI ∈ ∆I

Data Values (v)
v (RDF literal) v vI = vD

Table 2.2: OWL DL Syntax vs. DL Syntax and Semantics
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Abstract Syntax DL Syntax Semantics
Class(A partial C1 . . . Cn) A v C1 u · · · u Cn AI ⊆ CI1 ∩ · · · ∩ CIn
Class(A complete C1 . . . Cn) A = C1 u · · · u Cn AI = CI1 ∩ · · · ∩ CIn
EnumeratedClass(A o1 . . . on) A = {o1, . . . , on} AI = {oI1 , . . . , oIn}
SubClassOf(C1 C2) C1 v C2 CI1 ⊆ CI2
EquivalentClasses(C1 . . . Cn) C1 = · · · = Cn CI1 = · · · = CIn
DisjointClasses(C1 . . . Cn) Ci u Cj = ⊥, i 6= j CIi ∩ CIj = ∅, i 6= j

Datatype(D) DI ⊆ ∆D

DatatypeProperty( U

super(U1). . .super(Un) U v Ui UI ⊆ UIi
domain(C1). . .domain(Cm) ≥ 1U v Ci UI ⊆ CIi ×∆D

range(D1). . .range(Dl) > v ∀U.Di UI ⊆ ∆I ×DIi
[Functional]) > v≤ 1U UI is functional

SubPropertyOf(U1 U2) U1 v U2 UI1 ⊆ UI2
EquivalentProperties(U1 . . . Un) U1 = · · · = Un UI1 = · · · = UIn
ObjectProperty( R

super(R1). . .super(Rn) R v Ri RI ⊆ RIi
domain(C1). . .domain(Cm) ≥ 1R v Ci RI ⊆ CIi ×∆I

range(C1). . .range(Cl) > v ∀R.Ci RI ⊆ ∆I × CIi
[inverseOf(R0)] R = R−0 RI = (RI0 )−

[Symmetric] R = R− RI = (RI)−

[Functional] > v≤ 1R RI is functional
[InverseFunctional] > v≤ 1R− (RI)− is functional
[Transitive]) Tr(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 v R2 RI1 ⊆ RI2
EquivalentProperties(R1 . . . Rn) R1 = . . . = Rn RI1 = . . . = RIn
Individual(o type(C1). . .type(Cn) o ∈ Ci oI ∈ CIi

value(R1 o1). . .value(Rn on) 〈o, oi〉 ∈ Ri 〈oI , oIi 〉 ∈ RIi
value(U1 v1). . .value(Un vn)) 〈o, vi〉 ∈ Ri 〈oI , vIi 〉 ∈ RIi

SameIndividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj , i 6= j oIi 6= oIj , i 6= j

Table 2.3: OWL DL Axioms and Facts
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Moreover, OWL ontologies are in general just RDF graphs, consequently they may come
in form of RDF/XML,8 the usual way to denote OWL ontologies. The next example will
show that this particular manner for denoting OWL ontologies is not designed for human-
readability, instead, RDF/XML is built for an easy machine-to-machine communication.

Example 2.6. To give an example for an OWL ontology, we translate the DL knowledge
base L in Example 2.5 into OWL abstract syntax. The OWL language constructors in use
fit nicely into the OWL DL language.

SubClassOf(restriction(motherOf minCardinality(1)) Female)
SubClassOf(restriction(fatherOf minCardinality(1)) Male)
SubClassOf(Male unionOf(complementOf(Female) SpaceTourist))
SubClassOf(SpaceTourist unionOf(Female Male))
Individual(Anousheh type(intersectionOf(Female SpaceTourist)))
Individual(Mark type(intersectionOf(Male SpaceTourist)))
Individual(Rick value(fatherOf Mark))
Individual(Fakhri value(motherOf Anousheh))

The concrete syntax of OWL is much more verbose, for instance, axiom (3) in Example 2.5
has the following RDF/XML serialization:

<owl:Class rdf:about="#Male">
<rdfs:subClassOf>
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class>

<owl:complementOf rdf:resource="#Female"/>
</owl:Class>
<owl:Class rdf:about="#SpaceTourist"/>

</owl:unionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

The semantics for OWL DL and OWL Lite is presented in the third column of Table 2.2
and Table 2.3. As remarked in the beginning of this section, OWL Lite and OWL DL
ontologies correspond to SHIF(D) and SHOIN (D) DL-KBs, respectively. OWL uses the
RDF datatyping scheme to refer to datatypes.9 Hence, OWL uses XML Schema datatypes
like xsd:string or xsd:float. In a model I, ∆I is the domain of individuals and ∆D is
the domain of data values (cf. Section 2.3).

2.5 dl-Programs

This section provides the preliminaries for dl-programs, which have been first introduced
in [Eiter et al., 2004b]. Such programs build the theoretical framework for a novel type
of combined description logic and logic programming knowledge bases. Hence, they form
another contribution to the attempt in finding an appropriate formalisms for combined
rules and ontologies for the Semantic Web. In this thesis, we will use dl-programs as a

8http://www.w3.org/TR/rdf-syntax-grammar/
9http://www.w3.org/TR/rdf-concepts/

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-concepts/
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starting point for our combined knowledge base formalism. Several impediments occur
when building such combined knowledge bases, see Section 1.3 for an overview.

Description Logic programs (dl-programs) consists of a normal logic program P and
a DL-KB L. The logic program P might contain special devices called dl-atoms. Those
dl-atoms may occur in the body of a rule and involve queries to a DL-KB. Moreover,
dl-atoms can specify an input to L before querying the external DL-KB, thus dl-programs
allow for an bidirectional data flow between the description logic component and the logic
program.

The way dl-programs interface DL-KBs allow them to act as loosely coupled formalism.
This feature brings the advantage of reusing existing logic programming and DL system in
order to build an implementation of dl-programs.

In the following, we provide the syntax of dl-programs and an overview of the semantics.
An in-detail treatise is given in [Eiter et al., 2007b].

Syntax and semantics of dl-programs

Informally, a dl-program consists of a description logic knowledge base L and a generalized
normal program P , which may contain queries to L. Roughly, such a query asks whether a
specific description logic axiom is entailed by L or not.

We first define dl-queries and dl-atoms, which are used to express queries to the description
logic knowledge base L. A dl-query10 Q(t) is either

• a concept inclusion axiom F or its negation ¬F , or

• of the forms C(t) or ¬C(t), where C is a concept and t is a term, or

• of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m ≥ 0, (2.2)

where each Si is either a concept or a role, opi ∈ {], −∪, −∩}, pi is a unary resp. binary
predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm its input predicate symbols.
Intuitively, opi = ] (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi, while
opi = −∩ constrains Si to pi.

A dl-rule r has the form

a← b1, . . . , bn, not bn+1, . . . ,not bm, (2.3)

where any literal b1, . . . , bm ∈ B(r) may be a dl-atom. We define H(r) = a and B(r) =
B+(r) ∪B−(r), where B+(r) = {b1, . . . , bn} and B−(r) = {bn+1, . . . , bm}. If B(r) = ∅
and H(r) 6= ∅, then r is a fact. A dl-program KB = (L,P ) consists of a description logic
knowledge base L and a finite set of dl-rules P .

The next example will illustrate our main ideas.

Example 2.7 ([Schindlauer, 2006]). An existing network must be extended by new
nodes. The knowledge base LN contains information about existing nodes and their
interconnections as well as a definition of “overloaded” nodes (concept HighTrafficNode),
which depends on the number of connections of the respective node (here, all nodes with
more than three connections belong to HighTrafficNode):

10Additionally, in Chapter 3, we will extend these queries by the possibility to state conjunctive queries.
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≥ 1 wired v Node; > v ∀wired .Node; wired = wired−;
≥ 4 wired v HighTrafficNode;
Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);
wired(n1, n2); wired(n2, n3); wired(n2, n4);
wired(n2, n5); wired(n3, n4); wired(n3, n5).

To evaluate possible combinations of connecting the new nodes, the following program PN
is specified:

newnode(add1 ). (1)
newnode(add2 ). (2)
overloaded(X)← DL[wired ] connect ; HighTrafficNode](X). (3)
connect(X,Y )← newnode(X),DL[Node](X),not overloaded(Y ), not excl(X,Y ). (4)
excl(X,Y )← connect(X,Z),DL[Node](Y ), Y 6= Z. (5)
excl(X,Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X. (6)
excl(add1 , n4). (7)

Rules (1)–(2) define the new nodes to be added. Rule (3) imports knowledge about
overloaded nodes in the existing network, taking new connections already into account.
Rule (4) connects a new node to an existing one, provided the latter is not overloaded
and the connection is not to be disallowed, which is specified by Rule (5) (there must not
be more than one connection for each new node) and Rule (6) (two new nodes cannot be
connected to the same existing one). Rule (7) states a specific condition: Node add1 must
not be connected with n4.

Two different semantics have been defined for dl-programs, the (strong) answer-set
semantics [Eiter et al., 2004b] and the well-founded semantics [Eiter et al., 2004c]. The
latter extends the well-founded semantics of [Van Gelder et al., 1991] to dl-programs.
Well-founded semantics is based on the notion of greatest unfounded set and assigns a
single three-valued model to every logic program. In addition, recent results define the
well-founded semantics to a subclass of Hybrid MKNF KBs [Knorr et al., 2007]. In this
work, we will extend the strong answer set semantics for dl-programs to our cq-programs
in Section 3.

2.6 HEX-Programs

hex-programs can be considered as successor to the dl-program formalism presented in
Section 2.5. This new formalism generalizes dl-programs in two levels. First, the dl-atoms
for querying external DL-KBs has been abstracted to accommodate a universal interface for
arbitrary sources of external computation. This new transition point is formalised through
the notion of external atoms and is comparable to various foreign function interfaces in
Prolog interpreters like the SICStus Prolog C interface,11 or the Foreign Language Interface
of SWI-Prolog.12 Contrary to the foreign function interfaces, the external atoms have
been developed as a fully declarative framework with a model-theoretic semantics. Second,
hex-programs bring in support for higher-order reasoning, i.e., hex-programs allow for
specifying meta-reasoning tasks through higher order atoms. Both features have been
11http://www.sics.se/sicstus/
12http://www.swi-prolog.org/

http://www.sics.se/sicstus/
http://www.swi-prolog.org/
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developed to fit nicely into the answer-set programming paradigm, hence hex-programs
are a natural generalization of many proposed extensions in the ASP area.

2.6.1 Syntax of HEX-programs

Let C, X , and G be mutually disjoint sets whose elements are called constant names,
variable names, and external predicate names, respectively. Unless explicitly specified,
elements from X (resp., C) are denoted with first letter in upper case (resp., lower case),
while elements from G are prefixed with “ & .” We note that constant names serve both as
individual and predicate names.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the atom. Intuitively, Y0

is the predicate name, and we thus also use the more familiar notation Y0(Y1, . . . , Yn). The
atom is ordinary, if Y0 is a constant.

For example, (x, rdf :type, c), node(X), and D(a, b), are atoms; the first two are ordinary
atoms.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (2.4)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists,
respectively), and &g ∈ G is an external predicate name. We assume that &g has fixed
lengths in(&g) = n and out(&g) = m for input and output lists, respectively. Intuitively,
an external atom provides a way for deciding the truth value of an output tuple depending
on the extension of a set of input predicates.

Example 2.8 ([Eiter et al., 2005b]). The external atom &reach[edge, a](X) may be devised
for computing the nodes which are reachable in the graph edge from the node a. Here, we
have that in(&reach) = 2 and out(&reach) = 1.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . ,not βm, (2.5)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βm are either atoms or external atoms.
We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where B+(r) = {β1, . . . , βn}
and B−(r) = {βn+1, . . . , βm}. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint, and
if B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if it contains only ordinary
atoms. Note that in contrast to dl-programs, hex-programs allow for disjunctive heads
and constraints.

A hex-program is a finite set P of rules. It is ordinary, if all rules are ordinary.

2.6.2 Semantics of HEX-programs

We define the semantics of hex-programs by generalizing the answer-set semantics by
Gelfond and Lifschitz [1991]. To this end, we use the recent notion of a reduct as defined
by Faber et al. [2004] (referred to as FLP-reduct henceforth) instead of to the traditional
reduct by Gelfond and Lifschitz [1991]. The FLP-reduct admits an elegant and natural
definition of answer sets for programs with aggregate atoms, since it ensures answer-set
minimality, while the definition based on the traditional reduct lacks this important feature.

In the sequel, let P be a hex-program. The Herbrand base of P , denoted HBP , is the
set of all possible ground versions of atoms and external atoms occurring in P obtained by
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replacing variables with constants from C. The grounding of a rule r, grnd(r), is defined
accordingly, and the grounding of program P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless

specified otherwise, C, X , and G are implicitly given by P .

Example 2.9 ([Eiter et al., 2005b]). Given C = {edge, arc, a, b}, ground instances of
E(X, b) are for instance edge(a, b), arc(a, b), a(edge, b), and arc(arc, b); ground instances
of &reach[edge, N ](X) are all possible combinations where N and X ∈ C, for instance
&reach[edge, edge](a), &reach[edge, arc](b), &reach[edge, edge](edge), etc.

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say
that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I.

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary Boolean
function f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g),
m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP is a model of a ground
external atom a = &g [y1, . . . , yn](x1, . . . , xm), denoted I |= a, if and only if f&g(I, y1 . . .,
yn, x1, . . . , xm) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence reduces
to first-order logic as customary (cf. [Ross, 1994]), the semantics of external atoms is in
spirit of second order logic since it involves predicate extensions.

Example 2.10 ([Eiter et al., 2005b]). Let us associate with the external atom &reach a
function f&reach such that f&reach(I, E,A,B) = 1 iff B is reachable in the graph E from A.
Let I = {e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d) since f&reach(I, e, b, d) = 1.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such that
I |= a, (ii) I |=B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and (iii) I |= r
iff I |=H(r) whenever I |=B(r). We say that I is a model of a hex-program P , denoted
I |= P , iff I |= r for all r ∈ grnd(P ). We call P satisfiable, if it has some model.

Given a hex-program P , the FLP-reduct of P with respect to I ⊆ HBP , denoted fP I , is
the set of all r ∈ grnd(P ) such that I |= B(r). I ⊆ HBP is an answer set of P iff I is a
minimal model of fP I .

We next give an illustrative example.

Example 2.11 ([Eiter et al., 2005b]). Consider the following hex-program P :

subRelation(brotherOf , relativeOf ). (1)
brotherOf (john, al). (2)
relativeOf (john, joe). (3)
brotherOf (al ,mick). (4)
invites(john, X) ∨ skip(X)← X 6= john,&reach[relativeOf , john](X). (5)
R(X,Y )← subRelation(P,R), P (X,Y ). (6)
← &degs[invites](Min,Max ),Min < 1. (7)
← &degs[invites](Min,Max ),Max > 2. (8)

Informally, this program randomly selects a certain number of John’s relatives for
invitation. The first line states that brotherOf is a subrelation of relativeOf , and the next
three lines give concrete facts. The disjunctive rule (5) chooses relatives, employing the
external predicate &reach from Example 2.10. Rule (6) declares a generic subrelation
inclusion exploiting higher-order atoms.

The constraints (7) and (8) ensure that the number of invitees is between 1 and 2, using
(for illustration) an external predicate &degs from a graph library, where f&degs(I, E,Min,
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Max ) is 1 iff Min and Max is the minimum and maximum vertex degree of the graph
induced by the edges E, respectively. As John’s relatives are determined to be Al, Joe, and
Mick, P has six answer sets, each of which contains one or two of the facts invites(john, al),
invites(john, joe), and invites(john,mick).

In principle, the truth value of an external atom depends on its input and output lists
and the entire model of the program. Practically however, we can identify certain types of
input terms that allow to restrict the input interpretation to specific relations. The atom
&reach[edge, a](X) for instance will only consider the extension of the predicate edge and
the constant value a for computing its result and simply ignore the remaining interpretation.
In Chapter we will formalize these two types of input terms and restrict the practical usage
of external atoms to them, since such type information will support an efficient evaluation
to a great extent.

We now state some basic properties of the semantics. The proofs for the next theorems
can be found in [Schindlauer, 2006].

Theorem 2.12 ([Eiter et al., 2005b]). The answer-set semantics of hex-programs extends
the answer-set semantics of ordinary programs as defined by Gelfond and Lifschitz [1991],
as well as the answer-set semantics of HiLog programs as defined by Ross [1994].

The next property, which is easily proved, expresses that answer sets adhere to the
principle of minimality.

Theorem 2.13 ([Eiter et al., 2005b]). Every answer set of a hex-program P is a minimal
model of P .

A ground external atom a is called monotonic relative to P iff I ⊆ I ′ ⊆ HBP and I |= a
imply I ′ |= a. For instance, the ground versions of &reach[edge, a](X) are all monotonic.

Theorem 2.14 ([Eiter et al., 2005b]). Let P be a hex-program without “not” and
constraints. If all external atoms in grnd(P ) are monotonic relative to P , then P has some
answer set. Moreover, if P is disjunction-free, it has a single answer set.

Notice that this property fails if external atoms can be non-monotonic. Indeed, we can
easily model default negation not p(a) by an external atom &not[p](a); the hex-program
p(a)← &not[p](a) amounts then to the ordinary program p(a)← not p(a), which has no
answer set.

2.7 Program Unfolding

This section introduces Program Unfolding as an optimization technique for logic programs.
For this reason, we may apply the results of these procedure in the rewriting rules for
optimization of cq-programs in Section 5.

We will begin with giving results and algorithms for term unification. This will then be
used in partial deduction of disjunctive logic programs, which is the basis for our unfolding
procedure of cq-programs in Algorithm 3.

2.7.1 Unification

In this section, we assume a first-order signature consisting of a set of function symbols F
and a set of variables V . Terms are build from F and V in the usual way and are denoted
as s, t, . . . , whereas variables are presented as X,Y, Z and so forth.
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Definition 2.1 ([Baader and Snyder, 2001]). A substitution, denoted as σ, θ, η, and ρ, is
a mapping from variables to terms which is almost everywhere equal to the identity. A
substitution is represented as a function by a set of bindings of variables:

{X1/s1, . . . , Xn/sn}.

We say that a substitution is a ground substitution, if all si’s are ground terms.
The application of a substitution σ to a term t, denoted tσ, is defined by induction on

the structure of terms:

tσ :=

{
Xσ if t = X

f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

In case of n = 0, i.e., f is a constant symbol, fσ = f . Substitutions, too, may be applied
to sets of terms, atoms, set of atoms, and rules in a logic program in the obvious fashion.

For a substitution σ, the domain is the set of variables

dom(σ) := {X | Xσ 6= X}.

Composition of two substitutions is written σθ, and is defined by

tσθ = (tσ)θ.

Example 2.15. Let s = X and t = c be terms, and let substitutions σ = {X/Y } and
θ = {X/Z, Y/c}. Applying σ to s yields sσ = Y , whereas tσ = c. Moreover, sσθ = tσθ = c,
but sθ 6= tθ.

Definition 2.2 ([Baader and Snyder, 2001]). Two substitutions are equal, denoted σ = θ,
if Xσ = Xθ for every variable X ∈ V . We say that σ is more general than θ, if there exists
an η such that θ = ση.

Example 2.16. Continuing our previous example, the substitutions σ 6= θ because Xσ 6=
Xθ. Moreover, let p(X,X, Y ) and p(X ′, Y ′, Z) be atoms, and η = {X/Y ′, X ′/Y ′, Y/Z}
and ρ = {X/W,X ′/W, Y ′/W, Y/Z}. Then

p(X,X, Y )η = p(X ′, Y ′, Z)η = p(Y ′, Y ′, Z)

and
p(X,X, Y )ρ = p(X ′, Y ′, Z)ρ = p(W,W,Z).

Additionally, η is more general than ρ, since ρ = η{Y ′/W}.
Definition 2.3 ([Baader and Snyder, 2001]). A substitution σ is a unifier of two terms s
and t if sσ = tσ; it is a most general unifier (or mgu for short), if for every unifier θ of s
and t, σ is more general than θ.

Example 2.17. Let s = g(X) and t = g(g(Y )) be first-order terms, then θ = {X/g(Y )}
is an mgu for s and t.

In our answer-set programming setting, we do not have function symbols, hence there is
no way to build arbitrarily nested terms. Algorithm 1 thus can be used as a procedure for
computing the mgu for two terms s and t comprising only constant and variable symbols,
which is a simpler version of the unification algorithm presented in [Baader and Snyder,
2001].

Definition 2.4. Let p( ~X) and p(~Y ) be two unifiable atoms with ~X = s1, . . . , sn and
~Y = t1, . . . , tn. Then σ is an mgu of p( ~X) and p(~Y ), i.e., p( ~Xσ) = p(~Y σ), where σ = σn+1

is the unifier obtained from σ1 = ∅, and σi+1 = unify(si, ti, σi), 1 ≤ i ≤ n.

Example 2.18. The unifier η of Example 2.16 is an mgu for the atoms p(X,X,Z) and
p(X ′, Y ′, Z).
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Algorithm 1: unify(s, t, σ): Unification without function symbols
Input: Function-free terms s and t, unifier σ
Result: mgu of s and t or failure
if s is a variable then s← sσ
if t is a variable then t← tσ
if s is a variable and s = t then return σ
else if s = c1 and t = c2 then

if c1 = c2 then return σ
else Exit with failure

else if s is not a variable then return σ{t/s}
return σ{s/t}

2.7.2 Partial deduction of disjunctive logic programs

Partial deduction of disjunctive logic programs (or unfolding of disjunctive rules), as shown
in [Sakama and Seki, 1994, 1997], is known as a optimization technique for logic programs;
in fact, it is a useful procedure for optimizing abductive logic programs and compiling
propositional disjunctive programs. Moreover, in [Eiter et al., 2004a] it is shown that
partial evaluation, which is another name for partial deduction, is useful for simplifying
logic programs.

By performing partial deduction on a part of a given logic program, we might save
some fixpoint iterations while evaluating a program. As will be shown in Section 5, we
are particularly interested in the resolvent r′ of πr;a(~Y )(P ), which ultimately brings (by
repetitive application of the partial deduction technique) special types of atoms into the
body of a single rule. This will become very useful for dl-atoms, which were defined
previously and will be extended later on. When such dl-atoms occur in a body, we apply
further optimization methods to this newly created rule, which were impossible in the
original program without partial deduction applied.

Definition 2.5 ([Sakama and Seki, 1997]). Let P be a disjunctive logic program and let r
be a rule in P of the form

r : H ← a(~Y ), B.

Suppose that r1, . . . , rl are all of the rules in P such that

ri : a(~Yi) ∨Hi ← Bi (1 ≤ i ≤ l),

where a(~Yiθi) = a(~Y θi) holds with an mgu θi for each i.
Then a disjunctive partial deduction of P (with respect to r on a′) is defined as a residual

program πr;a(~Y )(P ) such that

πr;a(~Y )(P ) =


P ∪ {r′1, . . . , r′l} if there is a rule ri ∈ P such that Hi

contains an atom unifiable with a(~Y )
(P \ {r}) ∪ {r′1, . . . , r′l} otherwise,

where
r′i : (H ∨Hi ← B,Bi) θi.

Example 2.19 ([Sakama and Seki, 1997]). Let P be the program

r1 : p(a) ∨ p(b) ∨ q(c).
r2 : p(X)← q(X).
r3 : r(Y )← p(Y ).
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The disjunctive partial deduction πr3;p(Y )(P ) is the program P ∪ {r′1, r′2}, where

r′1 : r(a) ∨ p(b) ∨ q(c). (by r3 and r1 with the mgu {Y/a})
r′2 : r(X)← q(X). (by r3 and r2 with the mgu {Y/X})

On the other hand, πr2;q(X)(P ) = {r1, r3, r
′′
1}, where

r′′1 : p(a) ∨ p(b) ∨ p(c). (by r2 and r1 with the mgu {X/c})

The next results justify that partial deduction preserves the semantics of a given
disjunctive program P . First, we setup a Lemma which shows that answer sets are
“minimal” with respect to disjunctive heads.

Lemma 2.20 ([Sakama and Seki, 1997]). Let P be a positive disjunctive program and I
its minimal model. Then a ground atom a is in I iff there is a ground rule a ∨H ← B
from P such that I \ {a} |= B and I \ {a} 6|= H.

Next, we give the main result of partial deduction. In the following, let MM (P ) (resp.
SM (P )) denote the minimal (resp. stable) models of P , and π(P ) be any residual program
of P .

Theorem 2.21 ([Sakama and Seki, 1997]). Let P be a positive (resp. normal) disjunctive
program. Then MM (P ) = MM (π(P )) (resp. SM (P ) = SM (π(P ))).

Partial deduction of disjunctive programs and its results will be generalized to dl- and
cq-programs in Chapter 5. By the results of Chapter 4, we apply our unfolding mechanism
to hex-programs with so called DL external atoms.

2.8 Conjunctive Queries

Conjunctive queries (CQs) and union of conjunctive queries (UCQs) over relational data-
bases were introduced in [Chandra and Merlin, 1977]. They are equivalent to select-project-
join database queries and are the formal basis of SQL. For a thorough introduction on query
languages cf. [Abiteboul et al., 1995]. In the following, we assume some understanding of
CQs over relational databases.

Informally, such queries allow for expressing a conjunction of atoms over the database,
such that each tuple in the set of answers of the CQ is a satisfying assignment for the
conjunction. Take, for instance, the following CQ13 q

q(X,Y )← P (X), R(Y,Z), S(X,Y, Z),

where the relations in the body of q are defined over a particular database schema and the
predicate name q does not appear as relation in this schema. Given a database instance
over that schema, we are in a position to answer q and get all pairs 〈X,Y 〉 satisfying the
body atoms, while the outcome of Z is not exported. We call X and Y the distinguished
variables of q, i.e., they will “carry” the answers to q. Z is called a non-distinguished
variable with the intuitive meaning that Z is existentially quantified in q, i.e., in a particular
answer tuple to q, Z must contain the same constant in the atoms R(Y,Z) and S(X,Y, Z),
but we do not care which value this might be. This sort of problem in CQs is called query
answering, the problem to compute all answers to a given CQ and a given database.
13This query is in datalog syntax. Note that one can define the syntax of CQs in many equivalent ways.
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Chandra and Merlin, too, studied the query containment problem of CQs. Query
containment of two CQs q1 and q2, formally q1 ⊆ q2, decides whether the answers to q1 are
a subset of the answers to q2 over a database instance. If q1 ⊆ q2 and q2 ⊆ q1, then q1 is
equivalent to q2 (denoted q1 ≡ q2). Equivalence of CQs is crucial for query optimization in
the database area. In addition, query containment is tightly coupled to query answering
problem.

Note that CQs in the database field are evaluated in an active domain, i.e., under closed
world assumption. The database is considered complete (see also Section 1.3). Take, for
instance, the following first-order query

q = {X | ∀Y R(X,Y )}

over a database instance R = {〈1, 1〉} and the domain D = {1, 2}. Using this domain,
q = ∅, since R(1, 2) does not hold. We call such queries unsafe, since the evaluation
depends on the supplied domain. However, if we restrict the domain to the individuals
from the database instance, query answering does not depend on the domain anymore, thus
quantified variables range over named individuals from the domain. In this case, D = {1}
and q = {1}. In this setting, queries are considered safe. Nevertheless, in description logics,
this assumption is not present, in fact, CQ answering is tightly linked to CQ answering
over incomplete databases, cf. the excellent survey [van der Meyden, 1998].

2.8.1 Conjunctive queries over description logics

In our setting, we use CQs and UCQs over description logics knowledge bases. The
reasoning problems that arise in (U)CQs are a natural continuation of the traditional
reasoning tasks presented in Section 2.3.

The next definition gives the syntax of (U)CQs over DL-KBs. Note that we use another
syntax for (U)CQs in our cq-programs in Section 3 to accommodate the syntax of queries
in dl-atoms.

Definition 2.6. A conjunctive query q( ~X) is an expression of form

∃~Y Q1( ~X1) ∧ · · · ∧Qn( ~Xn),

where for 1 ≤ i ≤ n each Qi is a concept or role expression over a DL-KB, ~Xi is a
singleton or pair of variables or individuals if Qi is a concept or role expression, resp.,
~X ⊆

⋃n
i=1 vars(Xi) are called distinguished (or output) variables, ~Y ⊆

⋃n
i=1 vars(Xi) are

called non-distinguished (or existential) variables, and ~X and ~Y do not share variables.
A union of conjunctive queries q( ~X) is an expression of form

q1( ~X) ∨ · · · ∨ qm( ~X),

where for 1 ≤ i ≤ m each qi( ~X) is a conjunctive query, and ~X are the distinguished
variables of q( ~X).

A (union of) conjunctive queries q( ~X) is a Boolean (Union of) Conjunctive Queries, if
there are no distinguished variables. We denote boolean (U)CQs by q.

In the following, we define central reasoning problems for (U)CQs over description logics.

Definition 2.7. Given a (U)CQ q without distinguished variables (or boolean (U)CQ) over
L , we say that L entails q, denoted L |= q, iff I |= L implies I |= q for every interpretation
I. Deciding L |= q is the problem called query entailment.
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Given a (U)CQ q( ~X) over L with n distinguished variables ~X and let ~c = 〈c1, . . . , cn〉
be an n-tuple of individuals. The boolean (U)CQ q(~c) is obtained from q( ~X) by replacing
each occurrence of a distinguished variable Xi by ci (1 ≤ i ≤ n). We say that ~c is an
answer for q( ~X) if L |= q(~c). The answers of q( ~X) over L are all such possible n-tuples ~c
which satisfy L |= q(~c).

Example 2.22. Consider the DL knowledge base L in Example 2.5 by an extended version
L′, which consists of following additional axioms:

fatherOf v parentOf (9)
motherOf v parentOf (10)

Female tMale v ∃parentOf −.(Female tMale) (11)
∀parentOf .SpaceTourist v SteadyNerves (12)

Axiom (9) and (10) states that each father and each mother is a parent, resp. In axiom (11)
we declare that all men and women have a parent which is a man or a woman. Additionally,
(12) states that all parents of spacetourists have steady nerves.

Now consider the conjunctive query

q1(X) = ∃Y,Z parentOf (X,Y ) ∧ SteadyNerves(X) ∧ parentOf (Z,X)

over L′. The answers to this query are Fakhri and Rick , since the two of them are members
of SteadyNerves as they are parents of the spacetourists Anousheh and Mark , resp., and
by (11), they have some unnamed parents.

The conjunctive query

q2(X) = ∃Y motherOf (Y,X) ∧ SpaceTourist(X)

asks for all spacetourists with a mother. L′ |= q2(Anousheh) holds, but L′ 6|= q2(Mark), as
L′ only states that every person has a parent (which could be a mother or a father).

Definition 2.8. Given (U)CQs q1 and q2, the query containment problem is to decide
whether L |= q2 if L |= q1 for every DL-KB L.

As shown in [Abiteboul and Duschka, 1998, Calvanese et al., 2007b], query containment
can be used to answer queries and vice versa.

A first study on these problems has been introduced in [Levy and Rousset, 1998]
and [Calvanese et al., 1998], which shows that query containment (and hence CQ answering)
is decidable in one of the most expressive DLs calledDLRreg . This results are very important
for this work, since they show that (i) answering (U)CQs over very expressive DLs is in fact
decidable, thus rendering our cq-programs decidable, and (ii) they give hints on the worst
case complexity of answering (U)CQs, which can serve as a basis for studying complexity
issues in our new formalism too.

Recent results show that CQ containment and answering is decidable for very expressive
DLs like SHIQ [Ortiz de la Fuente et al., 2006a, Glimm et al., 2007a] and SHOQ [Glimm
et al., 2007b]. These results are fundamental, since they provide decidability results for the
closely related DLs SHIF and parts of SHOIN , hence rendering CQ answering in OWL
Lite and parts of OWL DL (without concrete domain D and inverse roles) decidable. Recent
efforts in the DL community include finding algorithms for CQ answering in SHOIQ—at
the time of writing, no results have been published. This would close the case for CQ
answering in SHOIN , since SHOIN is a restricted form of SHOIQ. Moreover, the even
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more expressive two-way regular path queries, a generalization of UCQs, have been shown
decidable for the DL ALCQIbreg in [Calvanese et al., 2007a]. On the other end of the scale,
simple DLs like the DL-Lite [Calvanese et al., 2005] or the EL [Rosati, 2007a, Krötzsch
and Rudolph, 2007, Krisnadhi and Lutz, 2007] family of DLs have been shown tractable
(i.e., L-hard for DL-Lite and P-complete for EL) with respect to data complexity. An
important result for the upcoming OWL 1.1 standard is in [Krötzsch et al., 2007], which
shows that conjunctive query answering in unrestricted EL++—a tractable fragment of
the DL SROIQ—is undecidable, whereas under certain restrictions, CQ answering in
EL++ is in fact decidable. The concrete complexity results for deciding the CQ answering
problem for Horn-SHIQ [Hustadt et al., 2005], which is a tractable fragment of SHIQ
and thus SROIQ, are still open. See also [Grau et al., 2006] for a complete list of tractable
fragments of SROIQ.

In [Rosati, 2007b] some fundamental limits of CQ answering have been presented. While
plain CQs and UCQs without (in)equalities and negation are in fact decidable for a broad
range of DLs, extending CQs and UCQs by allowing inequality atoms will in fact render
CQ answering undecidable for AL, ALC, and ALCHIQ, whereas UCQ answering with
inequality is undecidable starting from DL-LiteR on. Similarly, conjunctive query answering
becomes undecidable for certain more expressive DLs when we allow negation in the query
atoms. This valuable results are of greatest importance for our rewriting rules in Section 5,
since we cannot apply all of them in every description logic without losing decidability of
(U)CQ answering.
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For this is the game of coupling.

—Sally in Coupling, Bed Time
3

cq-Programs: Extending dl-Atoms by Conjunctive Queries

This chapter deals with the first of our main contributions, the extension of dl-programs by
allowing (union of) conjunctive queries in dl-atoms and disjunctive rules in logic programs
(cf. Section 2.5). We define formal semantics for cq-programs by providing suitable
extensions to the strong answer-set semantics for dl-programs. Moreover, we comment on
the richer expressiveness of cq-programs compared to other formalisms used for combining
logic programming and DLs, and assert that our extension retains decidability, whenever
(U)CQ answering of the underlying DL is decidable.

3.1 Introduction

Rule formalisms that combine logic programming with other sources of knowledge, especially
terminological knowledge expressed in Description Logics (DLs), have gained increasing
interest in the past years. This process was mainly fostered by current efforts in the Semantic
Web development of designing a suitable rules layer on top of the existing ontology layer.
Such couplings between DLs (in the form of ontologies) and logic programming appear
in different flavors, which roughly can be categorized in (i) systems with strict semantic
integration and (ii) systems with strict semantic separation, which amounts to coupling
heterogeneous systems [Rosati, 2006b, Eiter et al., 2006a, Antoniou et al., 2005, Pan et al.,
2004].

In this work, we will concentrate on the latter, considering ontologies as an external
source of information with semantics treated independently from the logic program. One
representative of this category was presented in [Eiter et al., 2004b, 2006a], extending the
answer set semantics towards so-called dl-programs. They consist of a DL part L and a
rule part P , and where queries from P to L are allowed. These queries are facilitated by a
special type of atoms which also permit to hypothetically enlarge the assertional part of
L with facts imported from the logic program P , thus allowing for a bidirectional flow of
information.

The types of queries expressible by dl-atoms in [Eiter et al., 2004b, 2006a] are concept
and role membership queries, as well as subsumption queries. Since the semantics of logic
programs is usually defined over a domain of explicit individuals, this approach may fail to
derive certain consequences, which are implicitly contained in the DL-KB L.

41
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Example 3.1. Consider this simplified version of an example from [Motik et al., 2005]:

L =


father v parent ,∃father .∃father−.{Remus}(Romulus),

hates(Cain,Abel), hates(Romulus,Remus),
father(Cain,Adam), father(Abel ,Adam)


P = {BadChild(X)← DL[parent ](X,Z),DL[parent ](Y,Z),DL[hates](X,Y ).}

Apart from the explicit facts, L states that each father is also a parent and that Romulus
and Remus have a common father. The single rule in P specifies that an individual hating
a sibling is a BadChild . From this dl-program, BadChild(Cain) can be concluded, but
not BadChild(Romulus), though it is implicitly stated that he and Remus have the same
father.

The reason is that, in a dl-program, variables must be instantiated over its Herbrand
base (containing the individuals in L and P ), and thus unnamed individuals like the father
of Romulus and Remus, are not considered. In essence, this means that dl-atoms only allow
for building conjunctive queries that are DL-safe in the spirit of [Motik et al., 2005], which
ensures that all variables in the query can be instantiated to named individuals. While
this was mainly motivated for retaining decidability of the formalisms, unsafe conjunctive
queries are admissible under specific conditions [Rosati, 2006b]. In this vein, we extend
dl-programs by permitting conjunctive queries or unions thereof to L as first-class citizens
in the language.

Example 3.2. In our Example 3.1, we may use

P ′ = {BadChild(X)← DL[parent(X,Z), parent(Y,Z), hates(X,Y )](X,Y ).}

where the body of the rule is a CQ {parent(X,Z), parent(Y,Z), hates(X,Y )} over L
with distinguished variables X and Y . Then we shall obtain the desired result, that
BadChild(Romulus) is concluded.

The extension of dl-programs to cq-programs, introduced in [Eiter et al., 2007a], has
some attractive features.

• First and foremost, the expressiveness of the formalism is increased significantly, since
existentially quantified and therefore unnamed individuals can be respected in query
answering through the devices of cq-atom and ucq-atom.

• In addition, cq-programs have the nice feature that the integration of rules and the
ontology is decidable whenever answering CQs resp. UCQs over the ontology (possibly
extended with assertions) is decidable. In particular, recent results on the decidability
of answering CQs and UCQs for expressive DLs can be exploited in this direction [Ortiz
de la Fuente et al., 2006b,a, Glimm et al., 2007a]. Furthermore, it allows to express, via
conjunction of cq-atoms and negated cq-atoms in rule bodies, certain decidable conjunctive
queries which negations; note that negation leads quickly to undecidability [Rosati, 2007b].

• The availability of conjunctive queries opens the possibility to express joins in different,
equivalent ways.

Example 3.3. Both

r : BadParent(Y )← DL[parent ](X,Y ),DL[hates](Y,X)

and
r′ : BadParent(Y )← DL[parent(X,Y ), hates(Y,X)](X,Y )
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equivalently single out (not necessarely all) bad parents. Here, in r the join between parent
and hates is performed in the logic program, while in r′ it is performed on the DL-side.
Note that the queries in r and r′ are DL-safe and involve only distinguished variables in the
CQ, resp., hence no unnamed individuals are taken into account during query evaluation.

Since DL-reasoners including RacerPro, KAON2, and Pellet increasingly support an-
swering CQs, this can be exploited to push joins from the rule part to the DL-reasoner,
but also vice versa. Since calls to the DL-reasoner are an inherent bottleneck in evaluating
cq-programs, in this way the performance can be significantly improved.

The last characteristic allows for optimizing cq-programs by means of the rewriting rules
presented in Chapter 5. The experimental prototype for cq-programs is ready for use and
explained in more detail in the Implementation chapter. To our knowledge, it is currently
the most expressive implementation of integrating nonmonotonic rules and ontologies.

3.2 Syntax of cq-Programs

We assume familiarity with description logics (DLs) (cf. [Baader et al., 2003]), in particular
SHIF(D) and SHOIN (D).1 A DL-KB L is a finite set of axioms in the respective DL.
We denote logical consequence of an axiom α from L by L |= α.

As in [Eiter et al., 2004b, 2006a], we assume a function-free first-order vocabulary Φ of
nonempty finite sets C and P of constant resp. predicate symbols, and a set X of variables.
As usual, a classical literal (or literal), l, is an atom a or a negated atom ¬a.

Informally, a cq-program consists of a DL-KB L and a generalized disjunctive program
P , which may involve queries to L. Roughly, such a query may ask whether a specific
description logic axiom, a conjunction or a union of conjunctions of DL axioms is entailed
by L or not.

We first define dl-queries, which is one form to express queries to the description logic
knowledge base L. A dl-query Q(~t) is either

– a concept inclusion axiom F or its negation ¬F , or
– of the forms C(t) or ¬C(t), where C is a concept and t is a term, or
– of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.
A conjunctive query (CQ) q( ~X) is an expression

{ ~X | Q1( ~X1), Q2( ~X2), . . . , Qn( ~Xn)}, (3.1)

where n ≥ 0, each Qi is a concept or role expression and each ~Xi is a singleton or pair of
variables and individuals matching the arity of Qi, and where ~X ⊆

⋃n
i=1 vars( ~Xi) are its

distinguished (or output) variables.
A union of conjunctive queries (UCQ) q( ~X) is an expression of form

{ ~X | q1( ~X) ∨ · · · ∨ qm( ~X)} (3.2)

of CQs qi( ~X) for m ≥ 0.
Intuitively, a CQ q( ~X) is a conjunction Q1( ~X1) ∧ · · · ∧ Qn( ~Xn) of concept and role

expressions with possibly existential quantified variables, which is true if all conjuncts are
satisfied. A UCQ q( ~X) is satisfied, whenever some qi( ~X) is satisfied. We will omit the
output variables ~X from CQs and UCQs if it is clear from the context, especially when
(U)CQs are used in dl-atoms. Here, the output of the dl-atom and of the (U)CQ are equal.

1We focus on these DLs because they underlie OWL-Lite and OWL-DL. Conceptually, cq-programs can
be defined for other DLs as well.
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Example 3.4. In our Example 3.2, cq1(X,Y ) = {X,Y | parent(X,Z), parent(Y,Z),
hates(X,Y )} and cq2(X,Y ) = {X,Y | father(X,Y ), father(Y,Z)} are CQs with output
X,Y , and ucq(X,Y ) = cq1(X,Y ) ∨ cq2(X,Y ) is a UCQ.

A dl-atom is of form
DL[λ; q]( ~X), (3.3)

where λ = S1 op1 p1, . . . , Sm opm pm (m ≥ 0) is a list of expressions Si opi pi called input
list, each Si is either a concept or a role, opi ∈ {], −∪, −∩}, pi is a predicate symbol matching
the arity of Si, and q is a (U)CQ with output variables ~X (in this case, (3.3) is called
a (u)cq-atom), or q( ~X) is a dl-query. Each pi is an input predicate symbol ; intuitively,
opi = ] increases Si by the extension of pi, while opi = −∪ increases ¬Si; opi = −∩ constrains
Si to pi.

Example 3.5. The cq-atom DL[parent ] p; parent(X,Y ), parent(Y, Z)](X,Z) with output
X,Z extends L by adding the extension of p to parent , and then joins parent with itself.

A cq-rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn, (3.4)

where every ai is a literal and every bj is either a literal or a dl-atom. We define H(r) =
{a1, . . . , ak} and B(r) = B+(r) ∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1,
. . . , bn}. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. If H(r) = ∅ and B(r) 6= ∅, then r
is a constraint. We denote by B+

dl(r) (resp., B−dl(r)) the set of all dl-atoms occurring in
B+(r) (resp., B−(r)). A cq-program KB = (L,P ) consists of a DL-KB L and a finite set
of cq-rules P .

Example 3.6. In the introduction, the pairs (L,P ) and (L,P ′) are different versions of a
cq-program for determining bad children over a knowledge base.

The following program is more involved, and uses nonmonotonic negation.

Example 3.7. Let KB = (L,P ), where L is the well-known wine ontology2 and P is as
follows:

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W ),DL[RedWine](R), (1)
DL[locatedIn](W,L),DL[locatedIn](R,L),
not DL

[
locatedIn(L,L′)

]
(L).

← visit(X), visit(Y ), X 6= Y. (2)
some visit ← visit(X). (3)

← not some visit . (4)
delicate region(W )← visit(L), delicate(W ),DL[locatedIn](W,L). (5)

delicate(W )← DL[hasF lavor](W,wine:Delicate). (6)

Informally, rule (1) selects a maximal region in which both red and white wine grow, and
the next three rules (2)–(4) make sure that exactly one such region is picked, by enforcing
that no more than two regions are chosen (rule (2)) and that at least one is chosen (rule (3)
and (4)). The last two rules (5) and (6) single out all the sub-regions of the selected region
producing some delicate wine, i.e., if a wine has a delicate flavor which is specified by
individual wine:Delicate. Figure 3.1 displays the relevant concepts and roles in an out-take
of the wine ontology class hierarchy.

2http://www.w3.org/TR/owl-guide/wine.rdf

http://www.w3.org/TR/owl-guide/wine.rdf
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Figure 3.1: Wine ontology hierarchy

Note that P uses only—with one exception in (1)—instance retrieval queries. The weakly
negated dl-atom in rule (1) is a conjunctive query with only one query atom, since we have
to remove the non-distinguished variable L′ from the output to keep the rule safe. The
program will be used throughout the paper for demonstrating our rewriting methods.

3.3 Semantics of cq-Programs

We first recall the semantics of CQs and UCQs on a DL knowledge base L.
For any conjunctive query q( ~X) = { ~X | Q1( ~X1), Q2( ~X2), . . . , Qn( ~Xn)}, let

φq( ~X) = ∃~Y
n∧
i=1

Qi( ~Xi),

where ~Y are the variables not in ~X, and for any union of conjunctive queries q( ~X) = { ~X |
q1( ~X)∨ · · · ∨ qm( ~X) }, let

φq( ~X) =
m∨
i=1

φqi( ~X).

Then, for any (U)CQ q( ~X), the set of answers of q( ~X) on L is the set of tuples

ans(q( ~X), L) = {~c ∈ C| ~X| | L |= φq(~c)}.

Example 3.8. The CQ cq1(X,Y ) from Example 3.4 has on L from Example 3.1 the set
of answers ans(cq1(X,Y ), L) = {〈Cain,Abel〉}.

Let KB = (L,P ) be a cq-program. The Herbrand base of P , denoted HBP , is the set of
all ground literals with a standard predicate symbol that occurs in P and constant symbols
in C. An interpretation I relative to P is a consistent subset of HBP . We say I is a model
of l ∈ HBP under L, or I satisfies l under L, denoted I |=L l, iff l ∈ I.

A ground dl-atom a = DL[λ;Q](~c) is satisfied w.r.t. I, denoted I |=L a, if L∪λ(I) |= Q(~c),
where λ(I) =

⋃m
i=1Ai(I) and

• Ai(I) = {Si(~e) | pi(~e) ∈ I}, for opi = ];

• Ai(I) = {¬Si(~e) | pi(~e) ∈ I}, for opi = −∪;

• Ai(I) = {¬Si(~e) | pi(~e) ∈ I does not hold}, for opi = −∩.

Now, given a ground instance a(~c) of a (u)cq-atom a( ~X) = DL[λ; q]( ~X), i.e., all output
variables in q( ~X) are replaced by constants, we say that I satisfies a(~c), denoted I |=L a(~c),
if ~c ∈ ans(q( ~X), L ∪ λ(I)).
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Let r be a ground cq-rule. We define (i) I |=L H(r) iff there is some a ∈ H(r) such that
I |=L a, (ii) I |=L B(r) iff I |=L a for all a ∈ B+(r) and I 6|=L a for all a ∈ B−(r), and
(iii) I |=L r iff I |=L H(r) whenever I |=L B(r). We say that I is a model of a cq-program
KB = (L,P ), or I satisfies KB , denoted I |= KB , iff I |=L r for all r ∈ ground(P ). We
say KB is satisfiable (resp., unsatisfiable) iff it has some (resp., no) model. The (strong)
answer sets of KB , which amount to particular models of KB , will be addressed below.
The strong answer-set semantics for cq-programs is a quite straightforward extension to the
strong answer-set semantics for dl-programs. This is done by moving from the least model
semantics of positive dl-programs [Eiter et al., 2004b] to the minimal model semantics of
positive cq-programs. Disjunctive rules were already considered in [Eiter et al., 2006a],
but only for ordinary monotonic dl-atoms, i.e., dl-atoms with ] and −∪ operators; we
provide semantics for cq- and ucq-atoms with the full range of operators. Moreover, the
minimal models of the extended version of the strong dl-reduct will then be identified as
the strong answer sets of KB . Extending weak answer-set semantics [Eiter et al., 2004b] for
dl-programs to cq-programs or well-founded semantics [Eiter et al., 2004c] can be imagined,
but this is not considered here.

3.3.1 Minimal-model semantics for positive cq-programs

We first consider positive cq-programs, i.e., cq-programs (L,P ) without −∩ in the input
lists of every dl-atom occurring in P and with B−(r) = ∅ for all r ∈ P . Like for ordinary
positive programs, every nondisjunctive positive cq-program which is satisfiable has a single
minimal model, which naturally characterizes its semantics.

Lemma 3.9. Let KB = (L,P ) be a normal positive cq-program. If the interpretations
I1, I2 ⊆ HBP are models of KB , then I1 ∩ I2 is also a model of KB .

Proof. The proof follows the line of the proof for Lemma 4.2 in [Eiter et al., 2007b].

As an immediate corollary of this result, every satisfiable positive normal cq-program
KB has a unique minimal model, denoted MKB , which is contained in every model of KB .

Corollary 3.10. Let KB = (L,P ) be a normal positive cq-program. If KB is satisfiable,
then there is a unique model I ⊆ HBP of KB s.t. I ⊆ J for all models J ⊆ HBP of KB .

Example 3.11. The cq-program (L,P ) in Example 3.1 is a nondisjunctive positive cq-
program with the single minimal model {BadChild(Cain)}, whereas the nondisjunctive
positive program (L,P ′) from Example 3.2 has the minimal model {BadChild(Cain),
BadChild(Romulus)}.

On the other hand, if a cq-program contains disjunction, then multiple minimal models
of KB may exist.

Example 3.12. Consider the region program in Example 3.7. If we remove “not” from P
by replacing rule (1) with

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W ),DL[RedWine](R),
DL[locatedIn](W,L),DL[locatedIn](R,L),

we get a positive cq-program which has nine minimal models. The following min-
imal models are abbreviated versions of these models: 1. {visit(EdnaValleyRegion),
. . . }, 2. {visit(SonomaRegion), . . . }, 3. {visit(NapaRegion), . . . }, 4. {visit(NewZealand-
Region), . . . }, 5. {visit(SouthAustraliaRegion), . . . }, 6. {visit(AustralianRegion), . . . },
7. {visit(SantaBarbaraRegion), . . . }, 8. {visit(CaliforniaRegion), . . . }, and 9. {visit(US-
Region), . . . }.



3.3 Semantics of cq-Programs 47

3.3.2 Strong answer-set semantics for cq-programs

We now define the strong answer-set semantics of general cq-programs. It reduces to the
minimal model semantics for positive cq-programs, using a generalized transformation that
removes all NAF-literals and every nonmonotonic dl-atom.

We can accommodate this with possibly nonmonotonic dl-atoms by treating them
similarly as NAF-literals. This is particularly useful, if we do not know a priori whether
some dl-atoms are monotonic, and determining this might be costly; notice, however,
that absence of −∩ in an input list of a dl-atom is a simple syntactic criterion that implies
monotonicity of a dl-atom.

For any cq-program KB = (L,P ), we denote by DLP the set of all ground dl-atoms that
occur in ground(P ). We assume that KB has an associated set DL+

P ⊆ DLP of ground
dl-atoms which are known to be monotonic, and we denote by DL?

P = DLP \DL+
P the set

of all other ground dl-atoms. An input literal of a ∈ DLP is a ground literal with an input
predicate of a and constant symbols in Φ.

Definition 3.1. The strong dl-reduct of P relative to L and an interpretation I ⊆ HBP ,
denoted sP IL, is the set of all cq-rules obtained from ground(P ) by

(i) deleting every cq-rule r such that either I |=L a for some a ∈ B+(r)∩DL?
P , or I |=L l

for some l ∈ B−(r); and

(ii) deleting from each remaining cq-rule r all literals in B−(r) ∪ (B+(r) ∩DL?
P ).

Notice that (L, sP IL) has only monotonic dl-atoms and no NAF-literals anymore. Thus,
(L, sP IL) is a positive cq-program, and by Corollary 3.10, has a minimal model, if it
is satisfiable and normal. We thus define the strong answer-set semantics of general
cq-programs by reduction to the minimal model semantics of positive cq-programs as
follows.

Definition 3.2. Let KB = (L,P ) be a cq-program. A strong answer set of KB is an
interpretation I ⊆ HBP such that I is a minimal model of (L, sP IL).

Example 3.13. The minimal models shown in Example 3.11 are strong answer sets of
the resp. cq-programs.

The region program KB from Example 3.7 has the following three answer sets (only the
positive facts of predicates delicate region and visit are listed, which are abbreviated by dr
resp. v): 1. {dr(LaneTannerPinotNoir), dr(WhitehallLanePrimavera), v(USRegion), . . . },
2. {dr(MountadamRiesling), v(AustralianRegion), . . . }, and 3. {dr(StonleighSauvignon-
Blanc), v(NewZealandRegion), . . . }.

The following result shows that the strong answer-set semantics of a cq-program KB =
(L,P ) without dl-atoms coincides with the ordinary answer set semantics of P.

Theorem 3.14. Let KB = (L,P ) be a cq-program without dl-atoms. Then, I ⊆ HBP is
a strong answer set of KB iff it is an answer set of the ordinary program P .

Proof. Let I ⊆ HBP . Then, P has no dl-atoms implies sP IL = P I . Hence, I is minimal
model of (L, sP IL) iff I is a minimal model of P I . Therefore, I is a strong answer set of
(L,P ) iff I is an answer set of P .

The next result shows that, as desired, strong answer sets of a cq-program KB are
models of KB , too, and moreover minimal models of KB if all dl-atoms are monotonic
(and known as such, i.e., DL?

P = ∅).
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Theorem 3.15. Let KB = (L,P ) be a cq-program, and let M be a strong answer set of
KB . Then, (a) M is a model of KB , and (b) M is a minimal model of KB if DLP = DL+

P .

Proof. (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we
have to show that I |=L r for all r ∈ ground(P ). Consider any r ∈ ground(P ). Suppose
that I |=L l for all l ∈ B+(r) and I 6|=L l for all l ∈ B−(r). Then, the cq-rule r′ that is
obtained from r by removing all the literals in B−(r)∪ (B+(r)∩DL?

P ) is contained in sP IL.
Since I is a minimal model of (L, sP IL) and thus in particular a model of (L, sP IL), it follows
that I is a model of r′. Since I |=L l for all l ∈ B+(r′) and I 6|=L l for all l ∈ B−(r′) = ∅, it
follows that I |=L H(r) = H(r′). This shows that I |=L r. Hence, I is a model of KB .

(b) By part (a), every strong answer set I of KB is a model of KB . Assume that every
dl-atom of KB is monotonic, that is, DLP = DL+

P . We show now that I is a minimal
model of KB . Towards a contradiction, suppose the contrary, that is, there is a J ⊂ I
such that J is a model of KB . Since J is a model of KB , we obtain that J is a model
of (L, sP JL ). Since every dl-atom a ∈ DLP is monotonic relative to KB , it follows that
sP IL ⊆ sP JL . Hence, J is also a model of (L, sP IL). But this contradicts that I is a minimal
model of (L, sP IL). Therefore, I is a minimal model of KB .

The semantics for cq-programs without −∩ can be equivalently defined in terms of hex-
programs (see [Eiter et al., 2005b] for an overview). This partial equivalence will be dealt
with in full detail in Chapter 4 and is the basis for our prototype implementation of
cq-programs, the dl-plugin for dlvhex. As the above results show, many of the properties of
dl-programs are naturally inherited to cq-programs, like the existence of unique answer set
in absence of −∩ and “not,” or if “not” is used in a stratified way.

Example 3.1 and 3.2 show that cq-programs are more expressive than dl-programs in
[Eiter et al., 2004b, 2006a]. Furthermore, answer-set existence for KB and reasoning
from the answer sets of KB is decidable if (U)CQ-answering on L is decidable, which is
feasible for quite expressive DLs including SHIQ, SHOQ, and fragments of SHOIN , cf.
[Ortiz de la Fuente et al., 2006b,a, Glimm et al., 2007a,b]. Rosati’s well-known DL+log
formalism [Rosati, 2006a,b], and the more expressive hybrid MKNF knowledge bases [Motik
et al., 2006, Motik and Rosati, 2007] are closest in spirit to dl- and cq-programs, since
they support nonmonotonic negation and use constructions from non-monotonic logics.
However, their expressiveness seems to be different from dl- and cq-programs. It is reported
in [Motik et al., 2006] that dl-programs (and hence cq-programs) can not be captured using
MKNF rules. In turn, the semantics of DL+log-programs inherently involves deciding
containment of CQs in UCQs, which seems to be inexpressible in cq-programs.

In the remainder of this thesis, however, we focus on implementation details in Chapter 4
and equivalence preserving rewritings of (u)cq-atoms, which can be exploited for program
optimization as shown in Chapter 5.



Yes, I programmed it in for you. Four million lines of BASIC!

—Kif in Futurama, Kif Gets Knocked Up A Notch
4

Implementation

Within this chapter, we present the dl-plugin, a library written in C++ (cf. [Stroustrup,
1997]) for the hex-program solver dlvhex. dlvhex has a builtin plugin mechanism, such
that writing code for external atoms with program optimization highlights can be quickly
accomplished. For this purpose, we introduce a partial equivalence between hex-programs
and cq-programs, see Section 2.6 and 3, respectively. This will be our second result.

As shown in Section 1.2, the Semantic Web architecture is composed of several layers.
dlvhex’ plugins currently provide an implementation for querying the RDF Layer by virtue
of the RDF- and the SPARQL-plugin. To complete its support for the Semantic Web,
dlvhex needs support for ontologies. In our approach, the rule layer of dlvhex sits on top
of ontologies, and due to the input mechanism of external atoms the ontology layer sits
on top of the rule component, thus arranging dlvhex to a very versatile and comfortable
Semantic Web programming environment; as a matter of fact, the dl-plugin contributes to
the underpinning of this full-fledged Semantic Web reasoning architecture.

The dl-plugin supports various external atoms for querying DL concepts and roles, issuing
conjunctive and unions of conjunctive queries to DL-KBs, and provides the means for
optimizing dl- and cq-programs as well as transforming dl- and cq-programs into hex
syntax.

In the following text, a principal architectural overview of the dl-plugin is shown. Moreover,
the interface from the dl-plugin to the RacerPro reasoner and from dl-programs to hex-
programs will be given in full detail. The last section provides usage information of the
dl-plugin in hex-program.

4.1 Architectural Overview

The dlvhex plugin architecture is roughly divided in three portions, which may depend on
each other: (i) an Initialization, (ii) a Program Rewriting, and (iii) an External Atoms part.
In part (i), dlvhex initializes the plugin and gathers information relevant to the plugin’s
external atoms, optimization features, etc. Just before dlvhex will try to parse the input
program, it calls the converter of each plugin, in order to transform the special syntax
or syntactic sugar of a program specifically designed for a particular plugin into proper
hex-syntax. These conversion and the optimization procedures of programs belong to
part (ii) of dlvhex’ plugin architecture. Finally, during program evaluation, dlvhex may
ask queries to external atoms defined in the plugin. All the external atoms a plugin has

49
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Figure 4.1: Overview dl-plugin

implemented belong to part (iii)—an alternative viewpoint is to see this part as a query
evaluation unit. For a full description of the plugin mechanism and architecture, we refer
to the doctoral thesis [Schindlauer, 2006]; annotated code and the corresponding class
commentary is part of the online documentation of the dlvhex project.1

The principle building blocks of the dl-plugin are depicted in Figure 4.1. Leaving out the
initialization phase, we can see that the program rewriting part is made up of the HEX
Converter and the Program Optimizer ; the latter optimizes a hex-program by syntactic
transformations. The External Atoms part comprises the DL Queries unit—like the
external atoms dlC, dlR, and dlDR—, while the Conjunctive and Union of Conjunctive
Queries are dealt with in the external atoms dlCQ, dlUCQ. On top of that, the Query
Cache accelerates query processing; it stores answers from previously processed queries. In
the following sections, we will shed light on each component and explain the implementation
details. The interaction between dlvhex and dl-plugin is shown in the next sequential steps
of Figure 4.1:

(1) Input: dl-, cq-, or hex-program;

(2) convert dl- and cq-programs to hex-syntax, and optimize by program rewriting;

(3) repetitive querying: (3a) query dl-plugin (check cache), (3b) transform query to
RacerPro query, and (3c) retrieve answer;

(4) output: answer sets of input program.

As it is evident from this listing, dl-plugin is the bridge linking dlvhex and RacerPro.
Multiple external atom queries may occur during the evaluation of a given logic program,

1http://www.kr.tuwien.ac.at/research/dlvhex/

http://www.kr.tuwien.ac.at/research/dlvhex/
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Figure 4.2: Use Case Diagram dl-plugin

hence optimization is mandatory to minimize the effects of querying external components.

4.1.1 Plugin use cases

The use cases for the dl-plugin are shown in the use case diagram in Figure 4.2. This
provides a first overview of dl-plugin’s usage scenarios. The primary actor in our setting
is dlvhex, which actuates the reasoning machinery. The DL-reasoner—RacerPro in our
implementation—plays the role of a supporting actor; it waits for requests from the dl-plugin
and answers queries. dlvhex on the other hand is always proactive. The dl-plugin offers
four main services for dlvhex: (i) “Set Options,” (ii) “Convert Program,” (iii) “Optimize
Program,” and (iv) “Query External Atom.” In use case (i), dlvhex may set miscellaneous
options in the dl-plugin. Usually, options are provided as a list of command line arguments
of the dlvhex program. Use case (ii) takes an input program and converts it according to
the translation given in Section 4.4. In use case (iii), dl-plugin may optimize a program
by means of the procedures described in Section 4.5. Finally, use case (iv) shows the
requirements for the external atoms provided by the dl-plugin.

4.1.2 Plugin components

In this section, we will review the pieces of the dl-plugin and its dependencies. To this end,
we use component diagrams by the Unified Modeling Language (UML) [Rumbaugh et al.,
2004, 2005].

First of all, the overall component overview of the dl-plugin is displayed in Figure 4.3; the
three main constituents are dlvhex, dl-plugin, and the RacerPro DL-reasoner. dlvhex uses
the interfaces PluginInterface, PluginAtom, Options, PluginConverter, and Plugin-
Optimizer, while dl-plugin implements some of the interfaces defined in the plugin API of
dlvhex in the components ExtAtom, DLConverter, and DLOptimizer. Further components
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Figure 4.3: Component Diagram dl-plugin

of the dl-plugin are the Registry, which provides information for the Options interface
and all the other parts implemented in the plugin, the OntologyManagement, which holds
information concerning locations and structures of OWL ontologies, and the DLCache
module for caching simple dl-queries.

Moreover, dl-plugin uses external libraries for rapid prototyping and RDF support. To
aid our rapid prototyping needs, Boost2 provides easy accessible and high quality C++

libraries used throughout the dl-plugin. The Raptor3 RDF parsing library—which is part
of the more general Redland RDF framework—appropriates parsers for the many RDF
syntax variants, hence accessing OWL ontologies on a strict syntactic level comes for free.
Future work may include support for the whole Redland4 framework, since support for
triple-stores (cf. [Beckett and Grant, 2003]) may provide convenient and fast access to
relational databases for storing RDF data in highly tuned RDBMS. This is in line with the
property of polynomial-time reasoning in lightweight DLs such as the DL-Lite [Calvanese
et al., 2005] and EL [Baader et al., 2005a] family of DLs, since they are tailored for an
easy translation into relational structures and provide fast reasoning algorithms. On the
other hand, the SPARQL query language, as implemented in the Rasqal library,5 supplies
the appliances for accessing other DL-reasoners such as KAON2 and Pellet with built-in
support for SPARQL over DLs (cf. [Sirin and Parsia, 2007]).

The dl-plugin supports the program optimization procedures described in the upcoming
Chapter 5. In particular, all Algorithms 3–5 are implemented in the DLOptimizer unit.

A more detailed view of the internal components from the ExtAtom subsystem is shown
in Figure 4.4. Here, we can see the cutting line between the simple concept and role
querying atoms &dlC , &dlR, and &dlDR, and the more complex CQ and UCQ external
atoms. The former atoms may use DLCache, while the latter do not have any support

2http://www.boost.org/
3http://www.librdf.org/raptor/
4http://www.librdf.org/
5http://www.librdf.org/rasqal/

http://www.boost.org/
http://www.librdf.org/raptor/
http://www.librdf.org/
http://www.librdf.org/rasqal/
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Figure 4.4: Component Diagram External Atom Subsystem

for caching queries right now (see the discussion in Section 4.5.2). Both pieces use the
Directors component, which delegates query creation and answer parsing by means of
QueryBuilder and AnswerParser, which are in direct contact with the nRQL interface of
RacerPro, a query language for DL-KBs in RacerPro. This also provides hints on how to
adapt the dl-plugin for accessing different description logics reasoners. In principal, only
QueryBuilder and AnswerParser must be customized for future accommodations.

4.2 Querying DL-KBs in HEX-Programs

As shown in [Eiter et al., 2005b], the hex-program formalism is ideal for modelling ASP
extensions by means of external atoms. cq-programs are such an extension, although they
do not come in hex-syntax. In Section 4.4, we introduce a partial equivalence from dl-
and cq-programs to hex-programs. Hence, we only need to implement external atoms in
order to implement dl- and cq-programs. Moreover, the DL external atoms provided in
our implementation have the ability to specify the DL-KB name as input parameter, thus
we are, in principle, able to integrate multiple ontologies with hex-programs.

The dl-plugin implements several external atoms for querying description logics knowledge
bases. In the following section, we will define the syntax and the semantics of these DL
external atoms.

Definition 4.1. Let u be a constant string representing the URI of a description logic
knowledge base, a, b, c, d ∈ P be predicate names, and q be a constant string, such that
q(X1, . . . , Xm) is a dl-, cq- or ucq-query for an output length m of the respective external
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atom. A description logic knowledge base querying external atom, or short DL external
atom, is of form

&dlC [u, a, b, c, d, q](X1) for dl-query q(X1),
&dlR[u, a, b, c, d, q](X1, X2) for dl-query q(X1, X2),

&dlDR[u, a, b, c, d, q](X1, X2) for datatype dl-query q(X1, X2),
&dlCQm [u, a, b, c, d, q](X1, . . . , Xm) for cq-query q(X1, . . . , Xm), and

&dlUCQm [u, a, b, c, d, q](X1, . . . , Xm) for ucq-query q(X1, . . . , Xm)

such that each DL external atom has type signature (c, p, p, p, p, c). For an interpretation
I, the associated oracle functions for the above-stated external atoms are then

f&dlC (I, u, a, b, c, d, q,X1),
f&dlR(I, u, a, b, c, d, q,X1, X2),
f&dlDR(I, u, a, b, c, d, q,X1, X2),

f&dlCQm (I, u, a, b, c, d, q,X1, . . . , Xm), and
f&dlUCQm (I, u, a, b, c, d, q,X1, . . . , Xm),

respectively.

Note that &dlCQm and &dlUCQm have a specific output arity m, so it is not possible to
capture all possible arities m ≥ 0 of (U)CQs in the plugin. Hence, we set the maximal
output arity of these external atoms to a predefined constant k and define &dlCQm and
&dlUCQm with m ranging over 0 ≤ m ≤ k. This stems from the observation that dlvhex
expects all known external atoms to be present at initialization time, i.e., before the
dl-plugin knows about the given program. The dl-plugin describes output list members by a
bit field, hence k is set to sizeof(int) (32 on our computers). Note that this limitation
could be overcome by creating &dlCQi and &dlUCQi external atoms on demand at the
transformation step in dlvhex. In the sequel, we omit m and write &dlCQ and &dlUCQ
when its clear from the context. Indeed, the dl-plugin supports this syntax and rewrites
every occurrence of &dlCQ and &dlUCQ to the respective external atom.

Definition 4.2. Let P and N be lists of predicate symbols called positive and negative
filter predicate list, respectively. For an interpretation I, let P (I) be the positive projection
of I on predicates from P , then build fresh positive literals by removing the predicate names
and using the first arguments as new predicate names; N(I) is the negative projection,
which removes the predicate names and builds new negative literals with first arguments
as predicate symbol.

The next example shows the outcome of P (I) and N(I) for a given interpretation I.

Example 4.1. Let I = {p(a, b), q(c, d, e)} be an interpretation. Then, for P = p and
N = q, P (I) = {a(b)} and N(I) = {¬c(d, e)}.

We are now ready to define the oracle functions semantics for f&dlC , f&dlR, f&dlDR,
f&dlCQm , and f&dlUCQm . When it is clear from the context, we omit the URL constant
string u for a DL-KB L and simply write L.

Definition 4.3. Let c1, . . . , cm be constant symbols from C, P = a, c and N = b, d be
positive and negative filter predicate lists, u and L be a URI and a description logics
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knowledge base for u, respectively, and let ans(q( ~X), L) be the set of answers of q( ~X) on
L. We define

f&dlC (I, u, a, b, c, d, q, c1) = 1 iff L ∪ P (I) ∪N(I) |= q(c1),
f&dlR(I, u, a, b, c, d, q, c1, c2) = 1 iff L ∪ P (I) ∪N(I) |= q(c1, c2),
f&dlDR(I, u, a, b, c, d, q, c1, c2) = 1 iff L ∪ P (I) ∪N(I) |= q(c1, c2),
f&dlCQm (I, u, a, b, c, d, q, c1, . . . , cm) = 1 iff 〈c1, . . . , cm〉 ∈

ans(q(X1, . . . , Xm), L ∪ P (I) ∪N(I)),
and f&dlUCQm (I, u, a, b, c, d, q, c1, . . . , cm) = 1 iff 〈c1, . . . , cm〉 ∈

ans(q(X1, . . . , Xm), L ∪ P (I) ∪N(I)).

Now we are capable of implementing each oracle function in a DL-reasoner. The dl-plugin
uses RacerPro as host reasoner, but other DL-reasoners could be used as well. For this, we
will outline the RacerPro query syntax of each DL query type with the associated external
atom in the next section.

Figure 4.5 illustrates the general workflow for processing a query in a DL external atom
of the dl-plugin. The diagram shows that specific optimization methods take place during
the evaluation of a query. More details on the optimization methods will be in Section 4.5
and Chapter 5.

4.3 Interfacing RacerPro with the dl-Plugin

RacerPro is a description logics reasoner with support for expressive ABox queries like
concept and role, conjunctive, and union of conjunctive queries over ABoxes. Moreover, it
provides DL knowledge base management commands to simultaneously access multiple
ontologies.

The RacerPro system comes in form of a server binary, which awaits commands from
client programs through a TCP/IP connection. The system manuals [Rac, 2005a,b] give
more detail on this TCP API, the command line options, query and answer syntax, as well
as configuration commands.

4.3.1 New Racer Query Language (nRQL)

The RacerPro system had only limited support for ABox queries before version 1.8. In
particular, only concept, role, and role-fillers instance retrieval were supported. To overcome
this limitation, nRQL had been introduced in RacerPro 1.8 and was since then RacerPro’s
standard query language for issuing more expressive queries to a DL-KB. In our setting,
we use RacerPro 1.9.

nRQL is capable of querying ABoxes (and TBoxes) in a very expressive manner, i.e.,
any monotonic combination of conjunctive and disjunctive query expressions over DL-KBs
is supported—a limited form of nonmonotonic queries is expressible in nRQL too.

In the following, we give a brief introduction into nRQL and how this query language is
used in dl-plugin. The definitions of the syntax and semantics for nRQL is given in full detail
in [Wessel and Möller, 2006] and in the RacerPro system manuals [Rac, 2005a,b]. We just
remark that RacerPro supports only limited, i.e., safe CQs and UCQs, where existential
variables are grounded with respect to the universe (cf. the discussion in Section 2.8). For
our purposes, we do not need the full range of nRQL’s possibilities, e.g., we do not use
the tuple-at-a-time feature or use named query processing, although in future work, such



56 Implementation

dl-plugin External Atom

Process External 
Atom Input

Create KB 
Name

Create ABox 
Axioms

Create DL 
Query

DL QueryKB Name ABox
Axioms

Check Cache

Setup
DL-reasoner

[Cache Miss]

Retrieve 
cached Answer

[Cache
Hit]

Open DL-KB

KB
Name

Send Open
KB Name

[DL-KB
not open]

[DL-KB
open]

Increase 
ABox

ABox
Axioms

Send ABox
Axioms

Query
DL-KB

DL
Query

Send
DL Query

Receive
Answer

Cache 
Answer

«datastore»
DL Cache

Return
Answer

«selection»
Answer to 

External Atom 
Input

Answer

External Atom Input

Figure 4.5: Activity Diagram External Atom Query Processing

enhanced query management facilities might be useful for implementation shortcuts. We
now list the used features of nRQL in regard to a querying session. See Figure 4.5 for the
states that may arise during DL external atom query processing.

4.3.2 Augmenting the DL knowledge base

In the “Send ABox Axioms” and “Create ABox Axioms” states, we have to create ABox
Concept and Role assertions with the operator instance and related. The syntax for
the operation of adding an individual to a concept is

(instance IN C)

where IN is an individual and C is a concept expression. Adding a pair of individuals to a
role is performed by

(related IN1 IN2 R)

where IN1 and IN2 are individuals and R is a role expression.
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RacerPro supports DL-KB ABox enhancement by means of the state command. The
state command expects a list of instance and related commands and increases the
current DL-KB by these ABox assertions.

(state (instance A B) ... (related C D E))

The next query will then be to the extended ABox.
Similarly, nRQL queries provide support for augmenting the current ABox, but direct in

the query statement:

(retrieve-under-premise ((instance A B) · · · (related C D E)) · · · ).

After this retrieve-under-premise query, the ABox will be in the same state as before
the query.

Using the former operations, we can implement L∪P (I)∪N(I) in a straightforward way
by creating a list of instance and related statements. With these lists at hand, we are
in a position to decide whether to invoke state or retrieve-under-premise, depending
on the query type.

Note that the negative role assertion ¬R(b, c)—we need this when roles are involved in
the −∪ operator in cq-programs or the fifth parameter in the input list of a DL external
atom is a known predicate—is not directly expressible in SHIF(D) and SHOIN (D),
instead, an equisatisfiable expression is needed to resolve this issue. One solution is to use
the next theorem from [Lukasiewicz, 2007]:

Theorem 4.2 ([Lukasiewicz, 2007]). Let L be a description logic knowledge base, and
let R(b, c) be a role membership axiom. Then, L ∪ {¬R(b, c)} is satisfiable iff L ∪
{B(b), C(c), ∃R.C v ¬B} is satisfiable, where B and C are two fresh atomic concepts.

Other solutions exist, like L∪{¬R(b, c)} is satisfiable iff L∪{¬(∃R.{b})(c)} is satisfiable
(see [Eiter et al., 2004c]), but using this assertion involves nominals, for which current
DL-reasoners have no full support yet. In fact, RacerPro supports only approximated
nominals (cf. [Rac, 2005b]). On the other hand, Theorem 4.2 includes a TBox axiom,
which implies that we have to augment the TBox and the ABox of the DL-KB.

As an aside, the upcoming OWL 1.1 standard will support negative property membership
assertions.6

4.3.3 DL-KB management

Before we issue a query to RacerPro, we have to make sure that we select the correct DL-KB.
To create a pristine knowledge base, we use (owl-read-document URI) or (owl-read-file
FILE), which receives the URI or reads the file pointed to by URI and FILE, resp. More
commands exist for receiving the list of opened DL-KBs, or removing DL-KBs; see [Rac,
2005a,b] for a detailed account.

4.3.4 Concept queries

Using the &dlC external atom, we are free to ask two different forms of concept queries to
a DL knowledge base: instance retrieval and instance checking queries.

Instance retrieval queries are queries of form

(concept-instances C),

6http://www.w3.org/Submission/2006/SUBM-owl11-overview-20061219/#2.1

http://www.w3.org/Submission/2006/SUBM-owl11-overview-20061219/#2.1
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where C is a concept expression. This operation returns all individuals belonging to the
specified concept expression C, so it is well suited for non-ground &dlC external atoms.

Ground &dlC external atoms are implemented using the instance checking query

(individual-instance? IN C).

This query decides whether the individual IN is a member of concept C.

4.3.5 Role queries

Role query answering is the domain of the &dlR and &dlDR external atoms. In case of
&dlR, we can differentiate between pure non-ground role retrieval queries (i.e., ask for all
pairs of a given role expression), individual fillers for a given role and an individual, and
ground pair checking. The datatype role querying external atom &dlDR supports similar
queries, but on a more restricted basis. We begin with the &dlR external atom.

In the pure non-ground situation, that is, both output terms of a &dlR external atom
are variables, we use the expression

(related-individuals R)

to query a role R and retrieve all related pairs.
A ground &dlR atom uses the query

(individuals-related? i1 i2 R)

to check whether the pair (i1,i2) belongs to R.
For non-ground &dlR external atoms with exactly one constant output term, we use the

query

(individual-fillers i R)

for an external atom &dlR[L, a, b, c, d, “R”](i,X), and we translate the external atom
&dlR[L, a, b, c, d, “R”](X, i) to the query

(individual-fillers i (inv R)).

Note that (inv R) is the inverse role R−.
Datatype role queries needs special care. RacerPro supports OWL datatype properties,

but querying such roles is only supported in nRQL queries (more on such queries in the next
section). In addition to this characteristic, before we query datatype roles, we have to enable
RacerPro’s datatype role capabilities by the command (ENABLE-DATA-SUBSTRATE-MIR-
RORING). After that, datatype role querying is enabled.

The non-ground external atom &dlDR[L, a, b, c, d, “R”](X,Y ) uses the nRQL expression

(retrieve ($?X $?Y) ($?X $?Y (:owl-datatype-role R)))

to retrieve all pairs of the datatype property R. A similar expression is used for datatype
role filler queries in &dlDR[L, a, b, c, d, “R”](i,X):

(retrieve ($?X) (and ($?X $?Y (:owl-datatype-role R)) (same-as $?X i))).

Note that the same-as equality atom compares its parameters on a pure syntactic basis,
i.e., this equality does not have first-order semantics. A final remark on the other query
types: we cannot ask pure ground datatype role queries or use the “inverse” datatype role
querying pattern in &dlDR external atoms, for instance &dlDR[L, a, b, c, d, “R”](X, “2.5”),
as both query forms are not supported in RacerPro.
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4.3.6 Conjunctive and union of conjunctive queries

Conjunctive and union of conjunctive queries are expressed using the nRQL query con-
structors retrieve and retrieve-under-premise. The first one just queries the given
ABox, while the second one increases the ABox by a list of ABox assertions right before
the querying takes place. Thus, retrieve-under-premise comes quite handy when we
have to augment the ABox before the querying part, i.e., it is a neat way to implement
P (I) ∪N(I) 6= ∅.

nRQL is equipped with the and and union query constructors. The two of them are
used to build complex (U)CQs from simple concept query atoms of form

($?X C)

and from role query atoms of form

($?X $?Y R),

where $?X and $?Y are variables—instead of variables, we use named individuals for ground
or filler queries—, and C and R is a concept and role expression, respectively. A conjunctive
query expression is

(and Q1 ... Qn),

where each Qi is a simple concept or role query atom. A union of conjunctive queries
expression is of form

(union CQ1 ... CQm),

where each CQi is a conjunctive query expression.
We are now fit to express our external atoms as nRQL queries by translating &dlCQ ’s

conjunctive query to the nRQL expression

(retrieve ($?X1 ... $?Xn) (and Q1 ... Qn)),

whereas &dlUCQ ’s union of conjunctive queries are transformed into

(retrieve ($?X1 ... $?Xn) (union CQ1 ... CQk)),

where (and Q1 Q2 ... Qn) and (union CQ1 ... CQk) are nRQL conjunctive query
and union of conjunctive queries expressions, resp.

Example 4.3. In order to show some example &dlCQ and &dlUCQ external atoms, we
now illustrate the corresponding nRQL queries.

The atom &dlCQ [L, a, b, c, d, “C(X), R(X,Y )”](X) issues the nRQL expression

(retrieve ($?X) (and ($?X C) ($?X $?Y R)))

while &dlUCQ [L, a, b, c, d, “C(X), R(Y,Z) ∨D(X), R(X,Z)”](X,Z) will be evaluated in
the query

(retrieve ($?X $?Z) (union

(and ($?X C) ($?Y $?Z R))

(and ($?X D) ($?X $?Z R))

)

)
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4.4 Interfacing dl-/cq-Programs with HEX-Programs

In order to transform dl- and cq-programs into hex-programs, we have to point out that
this correspondence is only partial. This is due to the assumption that all external atoms
in hex-programs behave in a monotonic fashion, but the −∩ operator in dl- and cq-programs
is nonmonotonic, thus leading to a transformation which only supports ] and −∪ in its
input list. Moreover, in dl-atoms, we allow certain cyclic dependencies between the input
list and the rules of the program, such constructs might not be allowed by hex-programs
due to the domain-expansion safe condition.

Definition 4.4. Let (L,P ) be a cq-program. For a dl-atom a = DL[λ, q]( ~X) in P , let πL(a)
be a set of auxiliary hex-rules which transforms the input list λ = S1op1p1, . . . , Smopmpm
of a w.r.t. a DL-KB L as follows:

• πL(a) =
⋃m
i=1 πL(#λ, Siopipi), where #λ maps every λ to a unique number, and

• πL(n, S op p) =


pcn(“S”, X)← p(X) op = ] and S concept in L,

prn(“S”, X, Y )← p(X,Y ) op = ] and S role in L,

mcn(“S”, X)← p(X) op = −∪ and S concept in L,

mrn(“S”, X, Y )← p(X,Y ) op = −∪ and S role in L.

Moreover, let πL(r) be a set of hex-rules, which transforms each dl-atom in a cq-rule r
w.r.t. L as follows:

πL(r) =
⋃

b∈Bdl(r)

πL(b).

Note that all pcn, prn,mcn,mrn are fresh predicate names not occurring in P , and that
every πL(a) is a definite horn hex-program with a single answer set.

Now we are ready to define τL as transformation of atoms, rules, and programs in
dl- and cq-syntax into a hex-program, i.e., a translation of a cq-program (L,P ) into a
hex-program τL(P ).

Definition 4.5. Let (L,P ) be a cq-program. Then, τL(P ) is a hex-program with DL
external atoms and inductively defined as

• τL(P ) =
⋃
r∈P τL(r);

• for a cq-rule r = a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn,

τL(r) = {a1 ∨ · · · ∨ ak ← τL(b1), . . . , τL(bm),not τL(bm+1), . . . ,not τL(bn)} ∪ πL(r);

• for a dl-atom a = DL[λ; q]( ~X) and n = #λ,

τL(a) = &dlT [L, pcn,mcn, prn,mrn, q]( ~X),

where &dlT is &dlC , &dlR, &dlDR, &dlCQ , and &dlUCQ if q( ~X) is a concept dl-query,
role dl-query, datatype role dl-query, CQ, and UCQ, respectively; and

• for an ordinary atom a,
τL(a) = a.

The next example shows a simple translation from a cq-program into a corresponding
hex-program using τL from the earlier definition.
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Example 4.4. Let (L,P ) be a cq-program, where L is the DL knowledge base in Exam-
ple 2.5 and P is the following set of cq-rules:

isMother(X,Y ) ← mother(X), parent(X,Y ).
isFather(X,Y ) ← father(X), parent(X,Y ).

mother(X) ← DL[motherOf ] isMother ; motherOf ](X,Y ).
father(X) ← DL[fatherOf ] isFather ; fatherOf ](X,Y ).

parent(a, b).
mother(a).

The hex-program τL(P ) consists of following rules:

isMother(X,Y ) ← mother(X), parent(X,Y ).
isFather(X,Y ) ← father(X), parent(X,Y ).

mother(X) ← &dlR[L, pc0,mc0, pr1,mr0,motherOf ] (X,Y ).
pr1(motherOf , X, Y ) ← isMother(X,Y ).

father(X) ← &dlR[L, pc0,mc0, pr2,mr0, fatherOf ] (X,Y ).
pr2(fatherOf , X, Y ) ← isFather(X,Y ).

parent(a, b).
mother(a).

The following example is more involved, as it contains (U)CQs and dl-atoms with long
input lists.

Example 4.5. Let (L,P ) be a cq-program with P as

a(X) ← DL[R ] r;¬D](X).
a(X) ← DL[C ] c,D ] d,R −∪ r;R(X,Y ) ∨ C(X)](X),DL[R ] r;¬C](X).

r(X,Y ) ← c(X), d(Y ).
c(c1).
c(c2).
d(d2).

and let L be the DL-KB

∀R.D v C
R(c1, d1)

Then, τL(P ) is the hex-program

a(X) ← &dlC [L, pc0,mc0, pr1,mr0, “¬D”](X).
pr1(“R”, X, Y ) ← r(X,Y ).

a(X) ← &dlUCQ [L, pc2,mc0, pr0,mr2, “R(X,Y ) ∨ C(X)”](X),
&dlC [L, pc0,mc0, pr1,mr0, “¬C”](X).

pc2(“C”, X) ← c(X).
pc2(“D”, X) ← d(X).

mr2(“R”, X, Y ) ← r(X,Y ).
r(X,Y ) ← c(X), d(Y ).
c(c1).
c(c2).
d(d2).
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Note that the τL transformation still cannot capture all dl- and cq-programs. The next
example explains why.

Example 4.6. Consider dl-program (LN , PN ) from Example 2.7. The translated hex-
program τLN (PN ) comprises following rules:

newnode(add1 ).
newnode(add2 ).

overloaded(X)← &dlC [LN , pc0,mc0, pr1,mr0, “HighTrafficNode”](X).
pr1(“wired”, X, Y )← connect(X,Y ).

connect(X,Y )← newnode(X),&dlC [LN , pc0,mc0, pr0,mr0, “Node”](X),
not overloaded(Y ),not excl(X,Y ).

excl(X,Y )← connect(X,Z),&dlC [LN , pc0,mc0, pr0,mr0, “Node”](Y ),
Y 6= Z.

excl(X,Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X.

excl(add1 , n4).

This program is not domain-expansion safe, since

overloaded(X)← &dlC [LN , pc0,mc0, pr1,mr0, “HighTrafficNode”](X)

is not strongly safe, because overloaded does not strictly depend on pr1 from

&dlC [LN , pc0,mc0, pr1,mr0, “HighTrafficNode”](X).

This is demonstrable by the following selection of the dependencies in τLN (PN ).

overloaded(X) →p &dlC [LN , pc0,mc0, pr1,mr0, “HighTrafficNode”](X) (1)
&dlC [LN , pc0,mc0, pr1,mr0, “HighTrafficNode”](X) →e pr1(“wired”, X, Y ) (2)

pr1(“wired”, X, Y ) →p connect(X,Y ) (3)
connect(X,Y ) →n overloaded(Y ) (4)
overloaded(Y ) →p overloaded(X) (5)

Let → = {(1), (2), (3), (4), (5), . . . } be the dependency relation →p ∪ →e ∪ →n . The
transitive closure of → , →+ , then contains the dependency

overloaded(X)→+ pr1(“wired”, X, Y ) (by (1) and (2))

and the dependency

pr1(“wired”, X, Y )→+ overloaded(X) (by (3), (4), and (5)),

hence the strong safeness conditions is violated. Therefore, dlvhex rejects τLN (PN ).

We show now that the hex-program τL(P ) has the same answer sets (possibly extended
with auxiliary facts not present in (L,P )) as the dl- or cq-program (L,P ). To confirm this,
we need the following Lemma.

Lemma 4.7. Let I be a Herbrand interpretation, let a = DL[λ; q](~c) be a ground dl-atom,
let Iπ be the answer set of I∪πL(a), let λ = S1op1p1, . . . , Smopmpm be the input list of a and
let n = #λ, where opi ∈ {], −∪}. Then, I |=L a iff f&dlT (Iπ, L, pcn,mcn, prn,mrn, q,~c) = 1,
where &dlT is the respective DL external atom for q(~c).
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Proof. In the following, let P = pcn, prn and N = mcn,mrn be a positive and a negative
filter predicate list, respectively, and we denote by L |= q(c1, . . . , cm) that 〈c1, . . . , cm〉 ∈
ans(q(X1, . . . , Xm), L).

(⇒) Suppose I |=L a, i.e., L ∪ λ(I) |= q(~c). For opi = ], from pi(~e) ∈ I we conclude
that for Si being a concept, pcn(“Si”, ~e) ∈ Iπ, otherwise Si is a role and prn(“Si”, ~e) ∈
Iπ. The case for opi = −∪ is similar, but now we conclude that mcn(“Si”, ~e) ∈ Iπ and
mrn(“Si”, ~e) ∈ Iπ for Si being a concept and role, respectively. Thus, P (Iπ)∪N(Iπ) = λ(I)
and f&dlT (Iπ, L, pcn,mcn, prn,mrn, q,~c) = 1.

(⇐) Now suppose f&dlT (Iπ, L, pcn,mcn, prn,mrn, q,~c) = 1, hence L ∪ P (Iπ) ∪N(Iπ) |=
q(~c). By minimality of Iπ and pcn, prn,mcn,mrn are fresh predicate symbols from πL(a),
i.e., there is no ground literal l ∈ I such that one of pcn, prn,mcn,mrn is a predicate for l, we
derive that for each of such atoms pcn(“Si”, ~e), prn(“Si”, ~e), mcn(“Si”, ~e), mrn(“Si”, ~e) ∈
Iπ, we have a corresponding pi(~e) ∈ I. Therefore, L ∪ λ(I) |= q(~c), which is tantamount to
I |=L a.

In the following, for a cq-program (L,P ), let π(P ) denote the set of hex-rules {πL(r) |
r ∈ P}, and Iπ the answer set obtained from the definite hex-program I ∪ π(P ). The
proofs for the next theorems are located in Appendix A.1.

Theorem 4.8. Let KB = (L,P ) be a positive cq-program. Then, I is a minimal model of
KB iff Iπ is a minimal model of the positive hex-program τL(P ).

Theorem 4.9. Let KB = (L,P ) be a cq-program. Then, I is a strong answer set of KB
iff Iπ is an answer set of τL(P ).

Finally, we want to point out that the DL external atoms gives hex-programs the ability
to access more than one DL-KB L. The first input in the external atom input list specifies
the desired DL-KB, hence “pure” hex-programs with DL external atoms can be seen as a
combined knowledge base (〈L1, . . . , Ln〉, P ), where each Li is a DL-KB occurring in some
of the DL external atoms of P , and P is a set of hex-rules. This setup is mandatory for
Ontology Alignment and Matching7 or Ontology Merging tasks (cf. [Wang et al., 2005]
and [Eiter et al., 2006c]).

4.5 Optimization Methods for HEX-Programs

Since calls to the DL-reasoner are an immanent bottleneck in our integration of hex-
programs with DLs, special methods need to be devised in order to optimize the given
program for faster and more effective query answering of a DL-KB.

Whatever method may be in use to optimize the interaction between the logic program
and the DL-reasoner, the basic optimization aims are to

1. decrease the number of queries to the DL-KB,

2. reduce the amount of transferred data, and

3. possibly decrease the time spent evaluating each query.

To deal with the first goal, we differentiate between program rewriting and query caching
techniques, i.e., between syntactic program manipulation and semantic caching, respectively.
The former method detects certain patterns in a given program and reduces the number of
dl-atoms in it—thus, the total count of queries to a DL-KB decreases before the evaluation

7http://ontologymatching.org/



64 Implementation

of the program starts—, while the latter does not take a hand in the program, it merely
tries to catch queries which are equivalent to some queries previously asked and returns
the previous answer to such queries. Here, the number of dl-queries stays the same, but we
do not need to ask the DL-reasoner redundantly.

The second optimization target can be attained by applying the preceding techniques:
rewriting a program may bring queries which lower the quantity of transferred data—think
of a join in a rule which shares a common variable—, and caching query results prevents
the transmission of data from the DL-reasoner to the logic programming system over a
possibly slow link (the DL-reasoner might not reside on the same host as the logic program
solver).

The last goal of our optimization framework effectively aims at reducing the time spent
asking the DL-reasoner. Again, all the previous mentioned techniques can be invoked to
step things up. But we can add another method, namely knowledge base reusing, which
will be covered as last method in this section. In this approach, the dl-plugin tries to
detect DL-KBs still in use by the DL-reasoner and operates on them, instead of reloading
the ontology. Though less effective than the other methods, it may nevertheless improve
the overall performance of a program, since we save the time spent for reclassifying the
ontology, especially in the situation where multiple dlvhex instances performs reasoning
tasks with RacerPro.

4.5.1 cq-Program optimization

The transformation rules and algorithms for cq-program optimization are subject to
Chapter 5 and are covered there in full detail. Here, we just want to mention that due to
the presented optimization principles, we gracefully satisfy the need to decrease the number
of queries in a program, as well as decrease the time spent evaluating the transformed
queries, as is visible from our experimental results.

Moreover, the program rewritings of Chapter 5 naturally apply to their external atoms
counterparts, hence we fully support all forms of dl-, cq-, and hex-programs with DL
external atoms. This is backed up by Lemma 4.7. Since DL external atoms basically differ
from dl-atoms by allowing to specify the DL-KB as input parameter to the external atom,
the optimizations apply only to compatible DL external atoms, i.e., external atoms which
share a common DL-KB.

4.5.2 DL caching

As shown in [Eiter et al., 2005a], caching results from the DL-engine is a suitable approach
for dealing with redundant queries to the DL-KB, since during the evaluation of cq-
programs, dl-atoms may ask queries to the DL-engine. In the worst case, every dl-atom is
set up for a call to the DL-reasoner and expects an answer to the issued query. Hence, it
is very important to avoid (i) an unnecessary flow of data between the two engines, and
(ii) to save time when redundant dl-queries have to be made. Caching methods shown
here also applies to the DL external atoms counterparts, hence we stick to the cq-program
notion.

We identify two cases for caching answers, the first one deals with pure ground queries,
while non-ground queries need other methods for caching results from an external DL-KB.
Note that the results of these methods can be equivalently applied to the DL external atoms
&dlC , &dlR, and &dlDR, where we explicitly take interpretations I in the oracle functions
of the corresponding DL external atoms into account. Thus, we only keep attention to
ordinary dl-atoms.
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At the present time, the dl-plugin only supports caching of ordinary dl-atoms, as described
here. Caching of cq- and ucq-atoms can be imagined, but this implies checking for query
containment, which is more costly in general. For more information on query containment,
see [Abiteboul et al., 1995, Calvanese et al., 2007b], and cf. [Amiri et al., 2003] for query
caching using query containment.

Ground dl-queries For a given cq-program (L,P ), external calls must be issued in order
to verify whether a given ground dl-atom DL[λ;Q](~c) fulfills I |=L DL[λ;Q](~c), where
I is the current interpretation. In this setting, the caching machinery (see DL Cache
component in Figure 4.3) exploits properties of monotonic dl-atoms. An easy way to verify
that a dl-atom is monotonic is to check the absence of the −∩ operator in its input list.
Note that in our implemented system, DL external atoms (and hence dl-atoms) are always
monotonic.

The ensuing property from [Eiter et al., 2005a] provides the underpinning of our caching
scenery: Given a monotonic ordinary ground dl-atom a = DL[λ;Q](~c) and two interpre-
tations I1 and I2 such that I1 ⊆ I2, monotonicity of a implies that (i) if I1 |=L a then
I2 |=L a, and (ii) if I2 6|=L a then I1 6|=L a.

With this we are able to build a caching algorithm DLCache(I, L, a, cache) in Algorithm 2
for querying and automatic cache maintenance in spirit of the cache maintenance strategy
in [Eiter et al., 2005a].

In the following, we will outline this algorithm. The basic idea is to cache the boolean
answers to ground dl-atoms a, where only the minimal (resp. maximal) input λ(I) for
previously supplied interpretations I is stored in the caching subsystem if I |=L a (resp.
I 6|=L a). Exploiting above property, for a monotonic ground dl-atom a we keep a set
cache(a) of pairs 〈λ(I), o〉, where o ∈ {true, undefined}. If 〈λ(I), true〉 ∈ cache(a), then
we conclude that J |=L a for each J such that λ(I) ⊆ λ(J). Dually, if 〈λ(I), undefined〉 ∈
cache(a), we conclude that J 6|=L a for each J such that λ(I) ⊇ λ(J).

Suppose a ground dl-atom a = DL[λ;Q](~c), an interpretation I, and a cache set cache(a)
are given as input to our caching system. In order to check whether I |=L a, cache(a) is
consulted and updated in method DLCache(I, L, a, cache) of Algorithm 2.

Non-ground dl-queries Caching strategies for non-ground queries over DL-KBs is possible
too, but we cannot exploit the dl-atom monotonicity property as in the ground situation.
Therefore, we restrict our caching strategy to the case where λ(I1) = λ(I2) and save the
whole answers to a dl-query.

For each ordinary non-ground dl-atom a(~t) = DL[λ;Q](~t), a set cache(a(~t)) of pairs
〈λ(I), a↓(λ(I))〉 is maintained, where a↓(I) is the set of answers to Q(~t), i.e., the set of
ground tuples ~c such that I |=L a(~c). Whenever for some interpretation I, a↓(I) is needed,
then cache(a) is looked up for some pair 〈J, a↓(J)〉 such that λ(I) = J .

More general approaches to the one given here can be conceived, such as for two dl-atoms
DL[λ1;Q](~t) and DL[λ2;Q](~t), we can maintain the cache similarly whenever λ1

.= λ2; this
applies to the ground case of our caching system too.

4.5.3 Knowledge base reusing

Due to the clear semantic separation of the logic programming and the DL part in the
dl-plugin, we may reuse DL-KBs loaded in a previous evaluation session. Obviously, this is
only possible if the DL-reasoner supports running in “server mode”, i.e., the DL-reasoner
process runs independent of dlvhex and waits for queries. This has the effect that we do not
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Algorithm 2: DLCache(I, L, a, cache): cache querying and maintenance
Input: Interpretation I, DL-KB L, ground dl-atom a, and DL cache cache
Result: I |=L a?
choose 〈J, o〉 from cache(a)
if (o = true ∧ J ⊆ λ(I)) ∨ (o = undefined ∧ J ⊇ λ(I)) then return o
else

if I |=L a then
o = true
foreach 〈J, o〉 ∈ cache(a) do

if λ(I) ⊂ J then remove 〈J, o〉 from cache(a)
end

else
o = undefined
foreach 〈J, o〉 ∈ cache(a) do

if λ(I) ⊃ J then remove 〈J, o〉 from cache(a)
end

end
add 〈λ(I), o〉 to cache(a)
return o

end

have to wait for the DL-reasoner to classify the TBox of the desired ontology again every
time we start the dlvhex reasoning process (see also the branch after the “Open DL-KB”
state in the query processing Figure 4.5).

This optimization method only works under the assumption, that different Ontologies
have different associated names. Suppose a previously loaded Ontology has been updated
in the data source and the associated name of this Ontology did not change. Since there is
no easy way to decide whether we need to reload the DL-KB in the DL-reasoner, we still
use the outdated preloaded Ontology of the DL-reasoner, which may be incompatible with
the program, or gives unexpected results. This is circumvented by forcing the DL-reasoner
to reload the DL-KB in every dlvhex reasoning session.

4.6 Plugin Usage

The dl-plugin interfaces hex-programs with OWL ontologies by using a DL reasoning
system. Currently, the DL-reasoner RacerPro is supported. It provides five external atoms,
roughly divided in (i) querying atoms, i.e., external atoms which requests answers from the
DL-reasoner to a given query, and (ii) the DL-KB consistency checking external atom, a
boolean atom which decides whether augmenting a DL-KB with the given input parameters
results in a consistent DL-KB. The atoms of the first category support query answering
to concept (C) and role (R and DR) queries, conjunctive queries (CQ), and union of
conjunctive queries (UCQ).

4.6.1 Command line options

dlvhex advertises its supplied command line options to the plugins, such that each plugin
can pick its particular option for further processing and state modification.

The dl-plugin accepts the next command line arguments:
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L URI or file path of the OWL ontology L
a name of a binary predicate whose extension denotes addition to a concept
b name of a binary predicate whose extension denotes addition to the complement of

a concept
c name of a ternary predicate whose extension denotes addition to a role
d name of a ternary predicate whose extension denotes addition to the complement of

a role

Table 4.1: Common input parameters of all dl-plugin external atoms

• --ontology=URI: In cq-programs (L,P ), set the corresponding DL-KB L to URI, where
URI is the location of an OWL Ontology in URI syntax. See 4.6.3 for more information
about cq-programs.

• --kb-reload: With this option, we force a reload of a previously loaded DL-KB.

• --dlsetup=ARG[,ARG]*: Setup some DL-reasoner options according to the supplied list
of arguments ARG, which may be -una for disabling the Unique Name Assumption in the
DL-reasoner.

• --dlopt=MOD[,MOD]*: Setup particular optimization features according to the supplied
list of modifiers MOD, which may be -push for disabling push optimizations and -cache for
disabling the DL-Cache.

• --dldebug=LEVEL: For debugging purposes, set LEVEL accordingly to increase the ver-
bosity of the log messages during query evaluation.

4.6.2 External atoms

The dl-plugin supports all DL external atoms and the &dlConsistent external atom, which
will be defined later.

All external atoms share common input parameters. Their intended meaning is specified
in Table 4.1. A more detailed explanation of all external atoms with examples, the concrete
syntax for queries q in DL external atoms, and the output list X1, . . . , Xn is now subject
of the remainder of this section.

Concept queries Queries to concepts are stated using the external atom

&dlC[L,a,b,c,d,q](X), (4.1)

where q is a concept name and X is a term. If the external atom has a non-ground output,
i.e., X is a variable, then (4.1) retrieves all known members of concept q. Otherwise, if X is
an individual, then (4.1) holds iff X is an instance of concept q.

Example 4.10. The following rule expresses a simple concept query:

wine(X) :- &dlC["wine.rdf",a,b,c,d,"Wine"](X).

Provided that a, b, c, and d do not occur elsewhere in the hex-program, this rule
would do nothing else than putting all members of concept Wine of the wine ontology
"wine.rdf"8 into the predicate wine.

8see http://www.w3.org/TR/owl-guide/wine.rdf

http://www.w3.org/TR/owl-guide/wine.rdf
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The term “Wine” is expressed in RDF and has thus an XML namespace attached to it.
Since the concept Wine uses the default namespace name

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#, (4.2)

we simply refer to the concept of all wines as is. This would not be possible, if Wine is in
the scope of a different namespace than the default namespace (4.2). Consider an ontology,
where the concept of all wines is defined as follows:

<owl:Class rdf:ID="vin:Wine"/>

Here, the term "Wine" is bound to the XML namespace vin. To refer to the concept
vin:Wine, which is short for the RDF/XML URI

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Wine, (4.3)

we may use two different methods for doing so. First, we can use the fully expanded concept
name (4.3) in the query part of the external atoms, or second, we introduce a namespace
in the hex-program itself. This is accomplished by adding a namespace declaration to the
program. Take, for instance, the program in Example 4.10. Adding the XML namespace
vin to it results in the program

#namespace(vin,"http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#")
wine(X) :- &dlC["wine.rdf",a,b,c,d,"vin:Wine"](X).

Note that we may define an arbitrary namespace prefix for the namespace URI (4.2).
The next two examples show the basic usage pattern of concept querying external atoms
in hex-programs.

Example 4.11. Now imagine we want to extend the wine concept by a new individual
currently not known to be a wine. We use the concept augmentation mechanisms of the
&dlC atom.

wine(X) :- &dlC["wine.rdf",w,b,c,d,"Wine"](X).
w("Wine","Uhudler").

In the preceding example, we add the individual Uhudler to the concept Wine. The
&dlC atom expects a predicate name as second parameter; in this case w. This predicate
must be binary and its first argument denotes the concept to be extended and the second
the actual individual to be added to the concept.

This sort of augmentation of DL-KBs can be extended to involve even more flexible
queries. In the next program, we supplement Uhudler to Wine and all italian redwines to
the concept RedWine.

wine(X) :- &dlC["wine.rdf",w,b,c,d,"Wine"](X).
w("Wine","Uhudler").
w("RedWine",X) :- redwine(X), grows(X,italy).

Example 4.12. Similarly, we may increase the ABox of an ontology by role axioms. The
third input parameter of a &dlC atom specifies the ternary predicate name.

wine(X) :- &dlC["wine.rdf",a,b,l,d,"Wine"](X).
l(locatedIn,X,Y) :- grows(X,Y).

In this program, before we query the concept Wine, we extend concept locatedIn by
predicate grows with the aid of l.
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Role queries Role querying is accomplished using the external atom

&dlR[L,a,b,c,d,q](X,Y), (4.4)

where q is a role name and X and Y are terms. If the external atom has a non-ground
output, i.e., both X and Y are variables, then (4.4) retrieves all known pairs of role q. If
both X and Y is are individuals, then (4.4) holds iff (X,Y) is an instance of role q. If only
one of X and Y is ground, then we retrieve all fillers for respective individual in the role.

OWL Datatype Properties queries are subject to a different atom.

&dlDR[L,a,b,c,d,q](X,Y) (4.5)

is basically the same as the &dlR atom, but q is a Datatype Property here.
The input mechanism of role querying atoms are similar to the input mechanism of &dlC

external atoms.

Example 4.13. The next example retrieves all pairs (X,NewZealandRegion) from role
locatedIn right after the ABox has been increased by the extension of l, i.e., all grows are
added to locatedIn.

nzwine(X) :- &dlR["wine.rdf",a,l,c,d,locatedIn](X,"NewZealandRegion").
l(locatedIn,X,Y) :- grows(X,Y).

Conjunctive and union of conjunctive queries The next two atoms provide support for
conjunctive and union of conjunctive queries:

&dlCQ[L, a, b, c, d, cq](X1, . . . , Xn), (4.6)
&dlUCQ[L, a, b, c, d, ucq](X1, . . . , Xn), (4.7)

where cq and ucq is a conjunctive query and a union of conjunctive queries, respectively.
Both output lists are formed of an n-ary tuple (X1, . . . , Xn), where each Xi is a variable.
Note that in general, hex-programs allow ground terms as arguments in external atoms,
but ground terms in the output of &dlCQ and &dlUCQ atoms are useless. Therefore, we
omit the case where some Xi may be ground.

A conjunctive query cq is a query of form

Q1( ~X1), Q2( ~X2), . . . , Qn( ~Xn), (4.8)

where for 1 ≤ i ≤ n each Qi is a concept or role name and ~Xi a single term or a pair of
terms.

Similarly, a union of conjunctive queries ucq is a query of form

cq1 v cq2 v · · · v cqn, (4.9)

where for 1 ≤ i ≤ n each cqi is a conjunctive query.
The examples below show how to use query DL-KBs using the &dlCQ and &dlUCQ

external atoms.

Example 4.14. Consider the following rule issuing a conjunctive query over the wine
ontology. As result, we retrieve all dry wines from the Burgundy region in predicate bdw.

#namespace(vin,"http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#")
bdw(X) :- &dlCQ["wine.rdf",a,b,c,d,"Burgundy(X),hasSugar(X,vin:Dry)"](X).

Example 4.15. The next rule retrieves all white wines or pasta dishes; it is a convenient
example for expressing UCQs.

#namespace(food,"http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#")
wp(X) :- &dlUCQ["wine.rdf",a,b,c,d,"WhiteWine(X) v food:Pasta(X)"](X).
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DL-KB consistency The last external atom is &dlConsistent , which tests the given
DL-KB for consistency under the specified extensions. It is of form

&dlConsistent[L,a,b,c,d]. (4.10)

If L is consistent after possibly augmenting the ABox according to the input list, the
atom (4.10) evaluates to true, otherwise false.

Example 4.16. The program

u("Wine","Uhudler").
:- not &dlConsistent["wine.rdf",u,u,c,d].

has no answer set, since we augment the ABox of wine.rdf by the axioms Wine(Uhudler)
and ¬Wine(Uhudler).

4.6.3 cq-programs

cq-programs, as defined in Section 3, can be evaluated using dlvhex and the dl-plugin.
Section 4.4 gives a partial equivalence between cq-atoms and the external atoms defined in
the dl-plugin.

In order to process cq-programs with dlvhex, the concrete syntax for dl-atoms of form
(3.3) is

DL[S1 op1 p1,...,Sm opm pm; q](X1,...,Xn)

where q(X1,...,Xn) is a dl- or (u)cq-query and opi is += and -= for opi = ] and −∪,
resp. Since we do not encode the ontology in the program, we must add the option
--ontology=URL to the dlvhex command line arguments, where URL is a file or a URL to
an OWL Ontology.

Example 4.17. An simple example of a cq-program is (L,P ), where L is the wine ontology
in http://www.w3.org/TR/owl-guide/wine.rdf and P is the rule

wine(X) :- DL[Wine](X).

(L,P ) is equivalent to the program in Example 4.10, provided that above rule is in a file
called wine.dlp and we call dlvhex as follows:

$ dlvhex --ontology=http://www.w3.org/TR/owl-guide/wine.rdf wine.dlp

Similarly, we encode Example 4.11 as cq-program

wine(X) :- DL[Wine += w; Wine](X).

w("Uhudler").

and get the same extensions in wine as in the hex-rule, given that we call the dlvhex
program in the same way as above.

http://www.w3.org/TR/owl-guide/wine.rdf


On my planet, to rest is to rest—to cease using energy. To me, it is
quite illogical to run up and down on green grass, using energy, instead
of saving it.

—Spock in Star Trek, Shore Leave, stardate 3025.2

5
Optimization of cq-Programs

In this chapter we present optimization techniques and algorithms as well as experimental
results for optimizing cq-programs introduced in [Eiter et al., 2007a] and presented in Chap-
ter 3. These results provide the theoretical framework for the optimization implementation
in Chapter 4.

Motivated by the potential optimization aspect of conjunctive and union of conjunctive
queries over DL-KBs in cq-programs, we now focus on the following contributions.

• In Section 5.1 we present a suite of equivalence-preserving transformation rules, by which
rule bodies and rules involving (u)cq-atoms can be rewritten. Based on these rules, we
then describe algorithms which transform a given cq-program (L,P ) into an equivalent,
optimized cq-program (L,P ′) in Section 5.2.

In a sense, they constitute a first example where the investigation on the common
fragment between a rule language and a description logics formalism has a practical revenue
in terms of evaluation times.

• We report an experimental evaluation of the rewriting techniques in Section 5.3, based
on the prototype implementation of cq-programs presented in Chapter 4 using dlvhex [Eiter
et al., 2005b] and RacerPro [Haarslev and Möller, 2001]. It shows the effectiveness of the
techniques, and that significant performance increases can be gained. The experimental
results are interesting in their own right, since they shed light on combining conjunctive
query results from a DL-reasoner.

5.1 Rewriting Rules for cq- and ucq-Atoms

As shown in Example 3.3, in cq-programs we might have different possibilities for defining
the same query. Indeed, the rules r and r′ there are equivalent over any description logic
knowledge base L. However, the evaluation of r′ might be implemented by performing the
join between parent and hates on the DL side in a single call to a DL-reasoner, while r
can be evaluated performing the join on the logic program side, over the results of two
calls to the DL-reasoner. In general, making more calls is more costly, and thus r′ may be
preferable from a computational point of view. Moreover, the size of the result transferred
by the single call in rule r′ is smaller than the results of the two calls.

71
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Towards exploiting such rewriting, we present some transformation rules for replacing a
rule or a set of rules in a cq-program with another rule or set of rules, while preserving
the semantics of the program. By means of (repeated) rule application, we transform the
program into another, equivalent program, which we consider in the next section. Such
repeated application process is dealt with in the algorithms presented in Section 5.2. Put
together, these algorithms form a software component for rewriting cq-programs. Indeed,
a rewriting module is conceivable, which rewrites a given cq-program (L,P ) into a refined,
equivalent cq-program (L,P ′), which can be evaluated more efficiently. The rules are
compactly summarized in Table 5.1, and will be discussed, with the necessary details, in
the sequel. Note that as for rule application, any ordinary dl-atom DL[λ;Q](~t), where ~t is
a non-empty list of terms, is equivalent to the cq-atom DL[λ;Q(~t)]( ~X), where ~X = vars(~t).

In the rewriting rules, the input lists λ1 and λ2 are assumed to be semantically equivalent
(denoted λ1

.= λ2), that is, λ1(I) = λ2(I), for every Herbrand interpretation I. This means
that λ1 and λ2 modify the same concepts and roles with the same predicates in the same
way; this can be easily recognized (in fact, in linear time). More liberal but more expensive
notions of equivalence, taking L and/or P into account, might be considered.

5.1.1 Query Pushing (A)

By this rule, cq-atoms DL[λ1; cq1]( ~Y1) and DL[λ2; cq2]( ~Y2) in the body of a rule (A1) can
be merged.

r : H ←DL[λ1; cq1]( ~Y1),DL[λ2; cq2]( ~Y2), B. (A1)

r′ : H ←DL
[
λ1; cq′1 ∪ cq′2

]
( ~Y1 ∪ ~Y2), B. (A2)

In rule (A2), cq′1 and cq′2 are constructed by renaming variables in cq1 and cq2 as follows.
Let ~Z1 and ~Z2 be the non-distinguished variables of cq1 and cq2, respectively. Rename
each X ∈ ~Z1 occurring in cq2 and each X ∈ ~Z2 occurring in cq1 to a fresh variable. Then
cq′1 ∪ cq′2 is the CQ given by all the atoms in both CQs.

Example 5.1. The rule

a← DL[R1(X,Y ), R2(Y, Z)](X),DL[R3(X,Y )](X,Y )

is equivalent to the rule

a← DL
[
R1(X,Y ′), R2(Y ′, Z), R3(X,Y )

]
(X,Y )

over all DL-KBs.

Query Pushing can be similarly done when cq1 and cq2 are UCQs; here, we simply
distribute the subqueries and form a single UCQ.

5.1.2 Variable Elimination (B)

Suppose an output variable X of a cq-atom in a rule r of form (B1a) or (B1b) occurs also
in an atom X = t. Assume that t is different from X and that, in case of form (B1a) the
underlying DL-KB is under Unique Name Assumption (UNA) whenever t is an output
variable. Then, we eliminate X from r as follows. Standardize the non-output variables of
cq-atoms apart from the other variables in r, and replace uniformly X with t in cq, B, and
H; let cqX/t, BX/t, and HX/t denote the respective results. Remove X from the output ~Y
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Query Pushing

r : H ← DL[λ1; cq1]( ~Y1),DL[λ2; cq2]( ~Y2), B. (A1)

r′ : H ← DL
[
λ1; cq′1 ∪ cq′2

]
( ~Y1 ∪ ~Y2), B. (A2)

where λ1
.= λ2.

Variable Elimination

r1 : H ← DL[λ1; cq ∪ {X = t}](~Y ), B. (B1a)

r2 : H ← DL[λ1; cq](~Y ), X = t, B. (B1b)

r′ : HX/t ← DL
[
λ2; cqX/t

]
(~Y \ {X} ∪ ω(t)), BX/t. (B2)

where λ1
.= λ2, X ∈ ~Y , ·X/t denotes replacement of variable X by t, and

ω(t) = {Z} if t is a variable Z and ω(t) = ∅ otherwise.
Inequality Pushing

r : H ← DL[λ1; cq](~Y ), X 6= t, B. (C1)

r′ : H ← DL[λ2; cq ∪ {X 6= t}](~Y ), B. (C2)
where λ1

.= λ2 and X ∈ ~Y . If t is a variable, then also t ∈ ~Y .
Fact Pushing

P̄ =
{
f(~c1), f(~c2), . . . , f(~cl),
H ← DL[λ1;

∨r
i=1 cqi](~Y ), f( ~Y ′), B.

}
(D1)

P̄ ′ =

{
f(~c1), f(~c2), . . . , f(~cl),
H ← DL

[
λ2;
∨r
i=1

(∨l
j=1 cqi ∪ { ~Y ′ = ~cj}

)]
(~Y ), B.

}
(D2)

where λ1
.= λ2, ~cj are ground, ~Y ′ ⊆ ~Y .

Let H,H ′, Hi be heads, B,B′, Bi be bodies, and r be a rule of form H ← a(~Y ), B.

Unfolding

P̄ = {r} ∪ {H ′ ∨ a( ~Y ′)← B′.} (E1)
P̄ ′ = P̄ ∪ {H ′θ ∨Hθ ← B′θ,Bθ.} (E2)

where θ is the mgu of a(~Y ) and a( ~Y ′) (thus a(~Y θ) = a( ~Y ′θ)).

Complete Unfolding

P = Q ∪ {r} ∪ { ri : Hi ∨ a(~Yi) ← Bi. (1 ≤ i ≤ l) } (F1)

P ′ = (P \ {r}) ∪ { r′i : Hiθi ∨Hθi ← Biθi, Bθi. (1 ≤ i ≤ l) } (F2)
where Q has no rules of form r, ri, no a(~Z) ∈ Hi is unifiable with a(~Y ), and
θi is the mgu of a(~Y ) and a(~Yi) (thus a(~Y θi) = a(~Yiθi)).

Table 5.1: Equivalences (H = a1 ∨ · · · ∨ ak, B = b1, . . . , bm, not bm+1, . . . ,not bn)

and, if t is a variable Z, add Z to them; the resulting rule r′, in (B2) is then equivalent to
the rule r1 in (B1a) or to the rule r2 in (B1b).

r1 : H ← DL[λ1; cq ∪ {X = t}](~Y ), B. (B1a)

r2 : H ← DL[λ1; cq](~Y ), X = t, B. (B1b)

r′ : HX/t ← DL
[
λ2; cqX/t

]
(~Y \ {X} ∪ ω(t)), BX/t. (B2)

By repeated application of this rule, we may eliminate multiple output variables of a
cq-atom. Note that variables X in equalities X = t not occurring in any output list can
always be eliminated by simple replacement.
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Example 5.2. The rule

r : a1(X) ∨ a2(Y )← DL[R(X,Z), C(Y ), X = Y ](X,Y ), b(Y )

and rule
r′ : a1(Y ) ∨ a2(Y )← DL[R(Y, Z), C(Y )](Y ), b(Y )

have the same outcome on every DL-KB L. Here, r′ should be preferred due to the lower
arity of its cq-atom.

Similarly, the rule a(X,Y )← DL[R(X,Z), C(Y ), Y = c](X,Y ), b(Y ) is simplified to the
rule a(X, c)← DL[R(X,Z), C(c)](X), b(c).

5.1.3 Inequality Pushing (C)

If the DL-engine is used under the UNA and supports inequalities in the query language,
we easily rewrite rules with inequality (6=) in the body by pushing it to the cq-query. A
rule of form (C1) can be replaced by (C2).

r : H ← DL[λ1; cq](~Y ), X 6= t, B. (C1)

r′ : H ← DL[λ2; cq ∪ {X 6= t}](~Y ), B. (C2)

Example 5.3. Consider the rule

r : bigwinery(M)← DL[Wine](W1),DL[Wine](W2),W1 6= W2,

DL[hasMaker ](W1,M),DL[hasMaker ](W2,M).

Here, we want to know all wineries producing at least two different wines. We rewrite r,
by Query and Inequality Pushing, to the rule

r′ : bigwinery(M)← DL
[

Wine(W1),Wine(W2),W1 6= W2

hasMaker(W1,M), hasMaker(W2,M)

]
(M,W1,W2).

A similar rule works for a ucq-atom DL[λ;ucq](~Y ) in place of DL[λ; cq](~Y ). In that case,
we have to add {X 6= t} to each cqi in ucq =

∨m
i=1 cqi.

Observe that, in general, answering CQs becomes undecidable when 6= appears in a
(U)CQ (see [Calvanese et al., 2007b]); [Rosati, 2007b] identifies various DLs for which
(U)CQs with inequalities remain decidable.

5.1.4 Fact Pushing (D)

Suppose we have a program with “selection predicates,” i.e., facts which serve to select
a specific property in a rule. We can push such facts into a ucq-atom and remove the
selection atom from the rule body.

Example 5.4. Consider the program P , where we only want to know the children of joe
and jill.

f(joe). f(jill).
fchild(Y )← DL[isFatherOf ](X,Y ), f(X).

We may rewrite the program to a more compact one with the help of ucq-atoms.

f(joe). f(jill).

fchild(Y )← DL
[
{isFatherOf (X,Y ), X = joe}∨
{isFatherOf (X,Y ), X = jill}

]
(X,Y ).
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Such a rewriting makes sense in situations were isFatherOf has many tuples and thus
would lead to transfer all known father child relationships.

The program P̄ in (D1) can be rewritten to P̄ ′ in (D2).

P̄ =
{
f(~c1), f(~c2), . . . , f(~cl),
H ← DL[λ1;

∨r
i=1 cqi](~Y ), f( ~Y ′), B.

}
(D1)

P̄ ′ =

{
f(~c1), f(~c2), . . . , f(~cl),
H ← DL

[
λ2;
∨r
i=1

(∨l
j=1 cqi ∪ { ~Y ′ = ~cj}

)]
(~Y ), B.

}
(D2)

In general, a cq-program P such that P̄ ⊆ P and f does not occur in heads of rules in
P \ P̄ can be rewritten to (P \ P̄ ) ∪ P̄ ′.

5.1.5 Unfolding (E) and Complete Unfolding (F)

Unfolding rules is a standard method for partial evaluation of ordinary disjunctive logic
programs under answer-set semantics, cf. [Sakama and Seki, 1997] and Section 2.7. It can
be also applied in the context of cq-programs, with no special adaptation. After folding
rules with dl-atoms in their body into other rules, subsequent Query Pushing might be
applied. In this way, inference propagation can be shortcut.

Accordingly, for a rule r of form

H ← a(~Y ), B,

where H = a1 ∨ · · · ∨ ak and B = b1, . . . , bm, not bm+1, . . . ,not bn, rules of form (E1) can be
equivalently rewritten to the rules (E2) as follows. Suppose r and r′ do not share variables
(otherwise, rename variables in r′ first). Let θ be a most general unifier of a(~Y ) and a( ~Y ′);
then, apply θ to r without a(~Y ), and then we add H ′θ in the head and B′θ in the body.

P̄ = {r} ∪ {r′ : H ′ ∨ a( ~Y ′)← B′.} (E1)
P̄ ′ = P̄ ∪ {H ′θ ∨Hθ ← B′θ,Bθ.} (E2)

Similarly, if r is in P of (F1) such that Q does not contain rules of form r or ri, 1 ≤ i ≤ l,
then we replace P by the equivalent P ′ in (F2) using the unifiers θi for each ri.

P = Q ∪ {r} ∪ { ri : Hi ∨ a(~Yi)← Bi. (1 ≤ i ≤ l) } (F1)

P ′ = (P \ {r}) ∪ { r′i : Hiθi ∨Hθi ← Biθi, Bθi. (1 ≤ i ≤ l) } (F2)

Notice that if P̄ ⊆ P , then we are free to add the rule r′ to P without changing its
answer sets. Moreover, in Complete Unfolding, we remove r from P after having unfolded
a(~Y ) in the body of r in all possible ways to P ′.

5.1.6 Equivalence theorems

The following results state that the above rewritings preserve equivalence. Let P ≡L Q
denote that (L,P ) and (L,Q) have the same answer sets. See Appendix A.2 for the proofs
of the theorems.

Theorem 5.5. Let r and r′ be rules of form (Θ1) and (Θ2), respectively, Θ ∈ {A,B,C}.
Let (L,P ) be a cq-program with r ∈ P . Then, P ≡L (P \ {r}) ∪ {r′}.

Theorem 5.6. Let P̄ and P̄ ′ be rule sets of form (Θ1) and (Θ2), respectively, Θ ∈ {D,E}.
Let (L,P ) be a cq-program such that P̄ ⊆ P . Then, P̄ ≡L P̄ ′ and P ≡L (P \ P̄ ) ∪ P̄ ′.

Theorem 5.7. Let P and P ′ be rule sets of form (F1) and (F2). Then, P ≡L P ′.
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5.2 Rewriting Algorithms

Based on the results above, we describe algorithms which combine them into a single
module for optimizing cq-programs. The optimization process takes several steps. In
each step, a special rewriting algorithm works on the result handed over by the preceding
step. Note that, in general, some of the rewriting rules might eliminate some predicate
name from a given program. This might not be desired if such predicate names play the
role of output predicates. Indeed, it is usual that a program P contains auxiliary rules
conceived for importing knowledge from an ontology, or to compute intermediate results,
while important information, from the user point of view, is carried by output predicates.
We introduce thus a set F of filter predicates which are explicitly preserved from possible
elimination.

5.2.1 Rewriting with Unfolding and Fact Pushing

The first step performs unfolding, taking into account the content of F . That is, only
literals with a predicate from F are kept.

Algorithm 3 uses the function factpush(P ) for Fact Pushing. This function tries to turn
a program P into a more efficient one by merging rules according to the equivalences in
Section 5.1.4. The algorithm also combines filtering and unfolding using unfold(a, r, r′),
which takes two rules r and r′ and returns the unfolding of r′ with r w.r.t. a literal a. Note
that do unfold(a, r, r′, P ) is a generic function for deciding whether the unfolding of a rule
r in r′ w.r.t. a given program P and a literal a can be done (or is worth being done); this
may be carried out, e.g., using a cost model (as we will see later in Section 5.2.3). do unfold
may also use, e.g., an internal counter for the numbers of iterations or rule unfoldings, and
return false if a threshold is exceeded. Also, complete unfolding cannot take place if more
than one atom in the head of r′ can unify with a. The function filter(P, F ) eliminates rules
which have no influence on the filtered output. Such rules are those of form H ← B where
H is nonempty and has no predicate from F and no literal a unifiable either (i) with some
literal in the body of a rule from P , or (ii) with some literal in a disjunctive rule head in
P , or (iii) with the opposite of some literal in a rule head in P .

Theorem 5.8. For a cq-program (L,P ) and filter F , P ≡L merge(P, F ) w.r.t. F .

Proof. See Appendix A.2.

5.2.2 Rewriting with Pushing and Variable Elimination

After the unfolding process, we may use Algorithm 4 for optimizing all the different
kinds of queries in P . Here, push(a1, a2) takes any combination of two dl-, cq-, and ucq-
atoms and generates an optimized cq- or ucq-atom. Similar to do unfold in Algorithm 3,
do push(a1, a2) is a generic function to decide whether the Query/Inequality Pushing
should take place, i.e., it checks compatibility of the input lists of the atoms and whether
pushing of a1 and a2 yields a more efficient query.

The last part in this algorithm eliminates variables in the output of dl-atoms according
to the Variable Elimination rule.

Theorem 5.9. For every cq-program (L,P ), P ≡L RuleOptimizer(P ).

Proof. See Appendix A.2.
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Algorithm 3: merge(P, F ): Merge cq-rules in program P w.r.t. F
Input: Program P , Filter F = {p1, . . . , pn}
Result: Unfolded program P
repeat

P l = P = factpush(P )
C = {a, a′ | ∃ r, r′ ∈ P : a′ ∈ H(r′), a ∈ B+(r), and a′ unifiable with a}
if C 6= ∅ then

choose a ∈ C
P ′ = ∅
RH = {r ∈ P | a unifies with a′ ∈ H(r)}
RB = {r ∈ P | a unifies with a′ ∈ B+(r)}
stop unfold = true
forall rB ∈ RB do

forall rH ∈ RH do
if do unfold(a, rH , rB, P ) then

stop unfold = false
add rH and unfold(a, rH , rB) to P ′

if |{b ∈ H(rH) such that b unifies with a}| > 1 then
add rB to P ′

end
else

add rH and rB to P ′

end
end

end
P = P ′ ∪ (P \ (RB ∪RH))

end
until P l = P or stop unfold is true
return filter(P, F )

Algorithm 4: RuleOptimizer(P ): Optimize the bodies of all cq-rules in P

Input: Set of cq-rules P
Result: pushed and variable eliminated cq-rules
foreach r ∈ P such that B+(r) 6= ∅ do

choose b ∈ B+(r)
B+(r) = BodyOptimizer(b, B+(r) \ {b}, ∅, ∅)
forall a = DL[λ; cq](~Y ) in B+(r) s.t. X = t in cq or B+(r) do

if X /∈ ~Y then
r = H(r) ← DL

[
λ; cqX/t

]
(~Y ), B+(r) \ {a},notB−(r)

else
r = H(r)X/t ← DL

[
λ; cqX/t

]
(~Y \ {X} ∪ ω(t)),

(B+(r) \ {X = t, a})X/t,notB−(r)X/t
end

end
end
return P
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Algorithm 5: BodyOptimizer(o,B,C,O): Push queries in body B wrt. o
Input: atom o, body B, carry C, and optimized body O
Result: pushed optimized body B
if B 6= ∅ then

choose b ∈ B
if do push(o, b) then o = push(o, b) else C = C ∪ {b}
if |B| > 1 then

return BodyOptimizer(o,B \ {b}, C,O)
else if |C| 6= ∅ then

choose c ∈ C, return BodyOptimizer(c, C \ {c}, ∅, O ∪ {o})
end

end
return O ∪ {o}

Example 5.10. Let us reconsider the region program on the wine ontology in Example 3.7.
Using the optimization methods for cq-programs we obtain from P an equivalent program
P ′, where we replace rule (1) and rule (5) in P by

visit(L) ∨ ¬visit(L)← DL
[

WhiteWine(W1), RedWine(W2),
locatedIn(W1, L), locatedIn(W2, L)

]
(W1,W2, L), (1’)

not DL
[
locatedIn(L,L′)

]
(L),

and

delicate region(W )← visit(L),DL
[
hasF lavor(W,wine:Delicate),

locatedIn(W,L)

]
(W,L), (5’)

respectively. The dl-queries in rule (1) had been pushed into a single CQ; the result is (1’).
Furthermore, to obtain (5’), rule (6) has been folded into rule (5), and subsequently Query
Pushing was applied to it.

5.2.3 Cost-based query pushing

The functions do unfold and do push in Algorithms 3 and 5 determine whether we can
benefit from unfolding or query pushing. Given the input parameters, they should know
whether doing the operation leads to a “better” program in terms of evaluation time, size
of the program, arity of cq- or ucq-atoms, data transmission time, etc.

In the database area, cost estimations are based on a cost model, which usually has
information about the size of a database and its relations, an estimate of the selectivity of
joins and selections, the cost of the data transfer, etc. In our setting, similar knowledge
can be used to determine the cost for pushed queries.

Example 5.11. Suppose we have a description logic knowledge base L with concepts
Mammal and SeaAnimal . Let |Mammal | = m and |SeaAnimal | = n. Consider the rule

r : a(X)← DL[Mammal ](X),DL[SeaAnimal ](X).

Without optimization we need to send to the DL-engine two queries and would get one
answer with m mammals and another answer with n animals living in the sea. Usually,
the intersection of Mammal and SeaAnimal is very small and we need to throw away a lot
of unnecessary individuals.
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Applying query pushing, we rewrite r to

r′ : a(X)← DL[Mammal(X),SeaAnimal(X)](X).

and get all sea animals which are also mammals in only one step, thus saving one query
and retrieve only a small amount of individuals in contrast to m+ n individuals.

Example 5.12. Consider the DL-KB L in Example 5.11, but now we want to compute
the cartesian product of all sea animals and mammals. The corresponding rule is

r : a(X,Y )← DL[Mammal ](X),DL[SeaAnimal ](Y ).

Due to query pushing, we would obtain r′ from r

r′ : a(X,Y )← DL[Mammal(X),SeaAnimal(Y )](X,Y ).

In this example, it is not obvious if we should push both dl-atoms to one cq-atom.
Suppose m = n = 10, so in rule r we would transfer 20 tuples from the DL-engine and
perform the join operation locally in the ASP solver. Contrary, in r′ we would receive 100
tuples, which may cost more than two consecutive queries due to network latency.

Example 5.13. In this example we push a role query livesIn(X,Y ) to the concept query
SmallTown(Y ). In rule

r : a(X,Y )← DL[livesIn](X,Y ),DL[SmallTown](Y ),

we retrieve both extensions of livesIn and SmallTown, while in

r′ : a(X,Y )← DL[livesIn(X,Y ),SmallTown(Y )](X,Y ),

we retrieve much less tuples, whenever SmallTown is small.

The previous examples may give some hints on optimization strategies based on the size
of concept and role extensions. Another useful strategy is to exploit functional properties
in OWL. An OWL property R is functional, if for all individuals x, y1, y2 it holds that
R(x, y1) ∧ R(x, y2) → y1 = y2, i.e., x is a key in R. Similarly, R is inverse functional, if
R− is functional, i.e., for all individuals x1, x2, y R(x1, y) ∧R(x2, y)→ x1 = x2.

Example 5.14. That every person has only one mother may be stated by the functional
property hasMother , which is expressed by the axiom > v ≤ 1.hasMother . The following
rule retrieves all mothers of men:

r : a(Y )← DL[hasMother ](X,Y ),DL[Man](X).

After application of Query Pushing, we obtain the rule

r′ : a(Y )← DL[hasMother(X,Y ),Man(X)](X,Y ).

In r we get two answers with size |hasMother | + |Man|, while in r′ we retrieve at most
|Man| tuples due to the functional nature of hasMother . Pushing would be even more
attractive if the concept used would be very selective, e.g., if we used Nobel Laureate
instead of Man.

Optimization techniques using a sophisticated cost model have been considered for
answering single CQs in [Sirin and Parsia, 2006]. In the previously mentioned paper, this
model has been shown to be very effective for optimizing conjunctive queries. The difference
to our approach is that we know about all possible queries which occur in a cq-program in
advance, hence we are able to draw a distinction between local queries in a single cq-rule
and the effect of optimizing the whole program before the first query has been sent to the
DL-reasoner. It is reasonable to take the optimization procedures of the DL-reasoners into
account, owing to the fact that this would even more refine the effectiveness of optimized
cq-programs.
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5.3 Experimental Results

In this section, we provide experimental results for the rule transformations described in
the above section and the performance gain obtained by applying the various optimization
techniques. The results reinforce the optimization potential that are at the basis of our
rewriting rules.

vicodi program: (Fact Pushing)

Pv =
{

c(vicodi:Economics), c(vicodi:Social),
v(X)← DL[hasCategory ](X,Y ), c(Y ).

}

P ′v =


c(vicodi:Economics), c(vicodi:Social),

v(X)← DL


{

hasCategory(X,Y ),
Y = vicodi:Economics

}
∨{

hasCategory(X,Y ),
Y = vicodi:Social

}
(X,Y ).


semintec query: (Query Pushing)

Ps2 =
{
s2(X,Y, Z) ← DL[Man](X),DL[isCreditCard ](Y,X),DL[Gold ](Y ),

DL[livesIn](X,Z),DL[Region](Z)

}
P ′s2 =

{
s2(X,Y, Z) ← DL

[
Man(X),Gold(Y ),Region(Z),

isCreditCard(Y,X), livesIn(X,Z)

]
(X,Y, Z).

}
semintec costs: (Query Pushing, Functional Property)

Pl = {l(X,Y )← DL[hasLoan](X,Y ),DL[Finished ](Y ).}
P ′l = {l(X,Y )← DL[hasLoan(X,Y ),Finished(Y )](X,Y ).}

hasLoan is an inverse functional property and |hasLoan| = 682(n + 1), |Finished | =
234(n+ 1), where n is obtained from the ontology instance semintec n.
lubm faculty: (Query Pushing, Inequality Pushing, Variable Elimination)

Pf =


f(X,Y ) ← DL[Faculty ](X),DL[Faculty ](Y ), D1 = D2, U1 6= U2,

DL[doctoralDegreeFrom](X,U1),DL[worksFor ](X,D1),
DL[doctoralDegreeFrom](Y,U2),DL[worksFor ](Y,D2).


P ′f =

 f(X,Y ) ← DL


Faculty(X),Faculty(Y ), U1 6= U2,

worksFor(X,D1),worksFor(Y,D1),
doctoralDegreeFrom(X,U1),
doctoralDegreeFrom(Y,U2)

(X,Y, U1, U2, D1).


Table 5.2: Some test queries

We have tested the rule transformations using the prototype implementation of the
dl-plugin for dlvhex,1 a logic programming engine featuring higher-order syntax and external
atoms (see [Eiter et al., 2005b] and previous sections), which uses RacerPro 1.9 as DL-
reasoner (cf. [Haarslev and Möller, 2001]). Note that RacerPro does not have full
support for (U)CQs over DLs, instead, only ground (U)CQs are available, i.e., during the

1http://www.kr.tuwien.ac.at/research/dlvhex/

http://www.kr.tuwien.ac.at/research/dlvhex/
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query evaluation process the non-distinguished variables in a given (U)CQ is replaced
by known individuals from the DL-KB. As a consequence of this we cannot derive all
consequences in cq-program P ′ in Example 3.2 with our dl-plugin. Current implementations
of other DL-reasoners do not support the full range of (U)CQs either: the KAON2 engine2

provides ground conjunctive queries like RacerPro, whereas the Pellet reasoner3 fully
adopts conjunctive queries with existential variables as long they do not contain cycles in
the query graph. Advancements in the respective implementations of the DL-reasoners
will close this gap, but due to our software architecture which advocates separation of
the rule and ontology component, this would not affect our part of the implementation.
To our knowledge, this is currently the only implemented system for such a coupling of
nonmonotonic logic programs and description logics.

The tests were done on a P4 3GHz PC with 1GB RAM under Linux 2.6. As an ontology
benchmark, we used the testsuite described in [Motik and Sattler, 2006].4 The experiments
covered the region program (Example 3.7) and its optimized version (Example 5.10), the
bigwinery program in Example 5.3, as well as particular query rewritings, including the

2http://kaon2.semanticweb.org/
3http://pellet.owldl.com/
4Available at http://kaon2.semanticweb.org/download/test_ontologies.zip

http://kaon2.semanticweb.org/
http://pellet.owldl.com/
http://kaon2.semanticweb.org/download/test_ontologies.zip
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Figure 5.3: Evaluation time for semintec example
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Figure 5.4: Evaluation time for semintec cost example

ones in Table 5.2 (Ps2 is taken from [Motik and Sattler, 2006]). The rewritten programs
are presented below each experimental query in this table. The results are shown in
Figures 5.1–5.6 and will be briefly explained in the following. The horizontal axis in these
diagrams shows the used ontologies, and the vertical axis serves to display the used time
in seconds (Figure 5.1 and 5.2 use a logarithmic scale). Missing entries in the diagrams
indicate that the evaluation failed due to memory exhaustion during query evaluation of
RacerPro. For fully detailed test results see Table B.1–B.6 in Appendix B. Statistical
information of the used ontologies is listed in [Motik and Sattler, 2006] for the wine,
semintec, and vicodi ontologies; the modified lubm ontology is recorded in Table B.7.

In most of the tested programs, the performance boost using the aforementioned opti-
mization techniques was substantial. Due to the size of the respective ontologies, in some
circumstances the DL-engine failed to evaluate the original dl-queries, while the optimized
programs did terminate with the correct result.

• In detail, for the region program, we used the ontologies wine 0 through wine 9. As can
be seen from the graph in Figure 5.1, there is a significant speedup, and in case of wine 9
only the optimized program could be evaluated. Most of the computation time was spent
by RacerPro. We note that the result of the join in the first rule had only size linear in the
number of top regions L; a higher performance gain may be expected for ontologies with
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Figure 5.5: Evaluation time for vicodi example
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larger joins.

• We experimented with the bigwinery rule from Example 5.3 over various wine ontologies
(see Figure 5.2). However, different technical realizations of inequalities (using not and
same-as query atoms or injective variables) lead to largely diverging results. Using
RacerPro’s native inequality predicate (not (same-as · · · )) resulted in a very bad runtime
behaviour; in fact, issuing the bigwinery query with same-as atom in the nRQL expression
lead to a much slower query evaluation on the RacerPro side. To overcome this flaw in
the RacerPro implementation, we used so-called injective variables for W1 and W2, i.e.,
variables prefixed with a ? sign in the nRQL query. Such variables are always bound to
different individuals, therefore only different individuals show up in each tuple of the result
and consequently are implicitly tied up through an inequality predicate. The test outcome
shows that there is a huge advantage in using r′ over r. Pushing the inequality inside the
query part, however, increased the query evaluation time. Leaving the inequality in the
cq-program, i.e., only apply Query Pushing to r, leads to the rule

r′′ : bigwinery(M)←DL

 Wine(W1),Wine(W2),
hasMaker(W1,M),
hasMaker(W2,M)

(W1,W2,M),W1 6= W2.
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Using above rule gave a substantial better evaluation time for the bigwinery example. So
it seems that there is a problem in RacerPro when it comes to inequality evalution in
nRQL queries, because, as it turned out, the number of tuples transferred in case of r′

with pushed inequality is 2.625 times smaller than in case of r′′. From that point of view,
inequalities inside of conjunctive queries should be preferred.

• The semintec tests dealt with Query Pushing for single rules. The rule in Ps2 is from
one of the benchmark queries in [Motik and Sattler, 2006], while Pl tests the performance
increase when pushing a query to a functional property (see Table 5.2). In both situations,
we performed the tests on the ontologies semintec 0 up to semintec 4. As shown in
Figure 5.3 and Figure 5.4 the evaluation speedup was significant. We could complete the
evaluations of Ps2 on all semintec ontologies only with the optimization. The performance
gain for Pl is in line with the constant join selectivity.

• The vicodi test series revealed the power of Fact Pushing (see Figure 5.5). While the
unoptimized vicodi program (Table 5.2) could be evaluated only with ontologies vicodi 0
and vicodi 1, all ontologies vicodi 0 up to vicodi 4 could be handled with the optimized
program.

• In the lubm test setup, we used the LUBM Data Generator5 to create the Department
ontologies for University 1 (cf. [Guo et al., 2005]). We then created 15 ontologies out of
this setup, where each ontology lubm n has Department 1 up to Department n in the
ABox. See also Table B.7 for statistical information for our generated ontologies. The test
query Pf results in Figure 5.6 show a drastic performance improvement.

5http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/


The goal of computer science is to build something that will last at least
until we’ve finished building it.

—anonymous

6
Applications

In this chapter, we present a selection of applications for cq-programs. While the appli-
cability of rule languages in the context of Semantic Web reasoning is evident, we will
demonstrate two practical usage scenarios for our cq-programs in not so obvious fashions.
The first application is set in the bioinformatics area, namely in the integration of different
kinds of biomedical ontologies, and the second application for cq-programs deals with
musical genre classification using ontologies and rules.

6.1 Biomedical Ontologies with Rules

Ontologies are very popular in the Life Sciences, especially biomedical ontologies in the
bioinformatics community. As reported in [Hoehndorf et al., 2007], ontologies of that kind
may be classified into two broad categories: canonical and pathological ontologies. The
first range of ontologies are used to describe an idealized view of a biomedical domain
such as anatomical relationships in a healthy human being. For instance, such ontologies
are used to catalogue statements like “every human has an appendix.” The second
type of ontologies describes exceptional associations from the idealized view of canonical
ontologies. Considering the general appendix statement, in most cases of appendicitis it is
mandatory to remove the appendix, hence some human individuals live without this body
part. Pathological ontologies are thus capable of modelling human beings which lack an
appendix, whereas canonical ontologies would not be able to perform this task. Moreover,
a human without appendix would introduce an inconsistency in canonical ontologies.

Now given that the combination of instances of these kinds of biomedical ontologies
immediately lead to inconsistency, the authors of [Hoehndorf et al., 2007] argue that
integration endeavours for creating a common ontological framework—which comprises
of canonical and pathological ontologies—should be performed using a nonmonotonic
reasoning machinery. Hoehndorf et al. show this by using the GFO-Bio ontology [Herre
et al., 2006], which comes in form of an OWL file.1 GFO-Bio is a top-level ontology, i.e.,
an ontology tailored for describing abstract categories and relationships which is suitable
throughout multiple domains. In case of biomedical ontologies, top-level categories embrace
concepts such as Cell, Organism, Anatomical Part, Biological Process, and similar biological
subject matters. Top-level ontologies thus are usable to model domain-specific knowledge

1http://www.onto-med.de/ontologies/gfo.owl
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in domain ontologies, which are restricted to a specific domain, for instance genetic or
human anatomy ontologies.

In order to build a combined canonical and pathological domain ontology using the
top-level concepts and roles in GFO-Bio, some form of nonmonotonic reasoning must
be applied to circumvent inconsistencies similar to that in the appendix example earlier.
Hoehndorf et al. do this by using Default Logic [Reiter, 1980]. Without going into details,
a default logic theory comprises of a set of first-order sentences and a set of default rules,
which can be seen as nonstandard inference rules. The next example shows a formalization
of our running example of a prototypical human in default logic. In the light of our
appendix example, a “default” human includes an appendix:

human(x) : has part(x, appendix )
has part(x, appendix )

(6.1)

The prior default rule should be read as “given a human x, if it is consistent to assume
that x has an appendix, then we derive that x has an appendix.” With such kind of
nonmonotonic reasoning, the integration of canonical and pathological ontologies using
GFO-Bio as top-level ontology is now doable; the consistency of the theory is preserved,
while the inconsistency that would have been arisen from human beings without appendices
is circumvented.

As shown in [Eiter et al., 2007b], dl-programs (and thus hex-programs) are applicable
for default reasoning with description logics. [Hoehndorf et al., 2007], too, considers such a
setup for their implementation by using the above line of reasoning over integrated top-level
ontologies. Hence, hex-programs with DL external atoms come as a handy tool to support
reasoning in such an ontological integration effort with built-in optimization features.

Example 6.1. An example for a hex-program using GFO-Bio as upper ontology is the
following variant of a hex-program shown in [Hoehndorf et al., 2007]:

class(X)← &dlC [“gfo-bio.owl”, a, b, c, d, “Category”](X). (1)
ind(X)← &dlC [“gfo-bio.owl”, a, b, c, d, “Individual”](X). (2)

inst(X,Y )← &dlR[“gfo-bio.owl”, a, b, c, d, “instance of ”] (X,Y ), (3)
ind(X), class(Y ).

has part(X, appendix )← inst(X,Y ), (4)
not &dlR[“patho.owl”, a, b, c, d, “lacks part”] (X, appendix ),
&dlR[“canonical.owl”, a, b, c, d, “has part”] (Y, appendix).

In rule (1), we import all Category members into the predicate class. Similarly, (2)
retrieves all Individual instances into ind . In (3), we get all X which are instance of Y ,
where X is an ind and Y is a class . Rule (4) is a sophisticated version of default rule (6.1).
In this rule, we integrate the pathological ontology patho.owl with the canonical ontology
canonical.owl using the categories defined in gfo-bio.owl. This shows how nonmonotonic
formalisms like hex-programs with DL external atoms provide practical value in this kind
of ontology integration.

Observe that in Example 6.1 various cq-program optimizations may be applied to support
a more efficient program evaluation. For instance, various residual programs are obtained
by unfolding the rules; after that, query pushing yields conjunctive queries to decrease the
amount of queries to the GFO-Bio ontology.
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Figure 6.1: Genre Hierarchy in MX-Onto

6.2 Genre Classification with Ontologies and Rules

Genre Classification is a hot topic in the machine learning and music information retrieval
community. Whole conferences are devoted to this subject. However, logical methods—
usually orthogonal to the approaches in machine learning—using specifically tailored music
ontologies may be applied to reason over musical genre relationships.

In [Ferrara et al., 2006], it is reported that rules are used to classify genres according to
context-based representation of music. This representation is generated by score analysis,
i.e., analysis of musical notation on score sheets. In this approach, a four-dimensional music
resource context is built, which is made up of Ensemble, Rhythm, Harmony, and Melody
features. The resource-context is then described in the MX-Onto ontology.2 Basically, this
ontology is composed of two parts: the Context Layer, which is composed of the extracted
resource context information built from score analysis, and the Genre Classification Layer,
which consists of a predefined genre taxonomy. The genre classification mechanism includes
a set of SWRL rules [Horrocks et al., 2004], which, given the resource context information,
infers the corresponding genre for a particular music resource.

Example 6.2. An example for a classification is the following SWRL rule, which classifies
music resources into the quartet genre:

Music Resource(?r) ∧ ensemble(?r, ?b) ∧ number of parts(?b, ?c) ∧
ensemble part(?b, ?d) ∧ performers(?d, ?e) ∧ ?c = 4 ∧ ?e = 1⇒ quartet(?r). (6.2)

Informally, rule (6.2) classifies music resources ?r in an ensemble having exactly four parts
performed by exactly one performer.

Figure 6.1 shows a small part of the concept hierarchy in MX-Onto. The quartet concept
is a subclass of an Ensemble, whereas the more music genre specific concepts are subclasses
from CriticalClassification.

2http://islab.dico.unimi.it/ontologies/mxonto.owl

http://islab.dico.unimi.it/ontologies/mxonto.owl
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The quality of the well-established methods for classifying music into genres—like machine
learning algorithms—may be increased when using the aforementioned style of musical
information processing. Some genres are typically hard to tell apart for the machine
learning algorithms; jazz pieces are widely known specimen in the class of “hard genres”
(see [Tzanetakis and Cook, 2002]).

We claim that the approach in [Ferrara et al., 2006] can be equally well performed in
cq-programs. Take, for instance, our previous example and translate the SWRL rule (6.2)
into a cq-program (L,P ), where P is the cq-rule

q(R) ← DL
[

Music Resource(R), ensemble(R,B),number of parts(B,C),
ensemble part(B,D), performers(D,E), C = 4, E = 1

]
(R)

and L is the context part of the MX-Onto ontology in http://islab.dico.unimi.it/
ontologies/mxonto-context.owl. This newly created information for quartets can now
be fed into the genre part of MX-Onto in the ontology http://islab.dico.unimi.it/
ontologies/mxonto-genre.owl as L′, using Quartet ] q in all dl-atoms, and adding the
answer set of P as part of the new classification program. For instance, retrieving all Jazz
and Quartet exemplars from the ontology is made by using this rule in P ′:

q(quartet1), . . . q(quartetk),
jazz quartet(Q) ← DL[Quartet ] q; Jazz (Q),Quartet(Q)](Q),

where {q(quartet1), . . . , q(quartetk)} is the answer set of (L,P ).
Since DL external atoms allow to specify the DL-KB as input, we describe the above

mechanism as single hex-program P ′, thus eliminating the intermediate step of adding the
answer set of (L,P ) to P ′:

q(“Quartet”, R)←

&dlCQ

“mxonto-context.owl”, a, a, a, a,
Music Resource(R), ensemble(R,B),

number of parts(B,C), C = 4, E = 1,
ensemble part(B,D), performers(D,E)

(R).

jazz quartet(Q)← &dlCQ [“mxonto-genre.owl”, q, a, a, a, “Jazz (Q),Quartet(Q)”](Q).

The extension of jazz quartet contains all classified members of music resources for musical
pieces falling into the jazz quartet genre. As one can easily imagine, nowadays statistical
methods would probably fail to recognize such musical compositions without this kind of
background knowledge.

http://islab.dico.unimi.it/ontologies/mxonto-context.owl
http://islab.dico.unimi.it/ontologies/mxonto-context.owl
http://islab.dico.unimi.it/ontologies/mxonto-genre.owl
http://islab.dico.unimi.it/ontologies/mxonto-genre.owl


If you wish to make an apple pie from scratch, you must first invent the
universe.

—Carl Sagan, Cosmos

7
Conclusion

In this work, we have studied an extension to the dl-program [Eiter et al., 2004b, 2006a]
formalism called cq-programs. dl-programs combine description logics knowledge bases
and nonmonotonic logic programs. Built on this approach, our extension of cq-programs
is composed of (i) allowing conjunctive queries (CQs) and unions of conjunctive queries
(UCQs) over a Description Logic (DL) knowledge base, and (ii) extended disjunctive logic
programs. The effect of this extension is a higher expressiveness in the logic programming
part and in the queries to the DL part. cq-programs retain decidability of reasoning as
long as answering CQs resp. UCQs over DLs is decidable.

As we have explored in this thesis, CQs and UCQs over DLs open the path for program
optimization. By pushing CQs to the highly optimized DL-reasoner, significant speedups
can be gained. Partial evaluation of logic programs can be exploited to bring particular
queries closer together, which, eventually, are pushed to build a single and more efficient
query. As the experimental results show, in some cases evaluation is only feasible in
optimized programs. This implies that integrated formalisms like cq-programs must cope
with optimization strategies.

We introduced the dl-plugin, which is an implementation for dl- and cq-programs—and
more general, hex-programs with DL external atoms—using the hex-program solver dlvhex
and DL-reasoner RacerPro. We showed that cq-programs without nonmontonic dl-atoms
may be reformulated as hex-programs and evaluated in dlvhex. Moreover, the dl-plugin
hosts certain of the previously mentioned optimization methods for dl- and cq-programs as
program rewriting module for hex-programs, hence hex-programs shall be optimized too.
Query caching for ordinary dl-queries is realized in the DL external atoms; this is another
valuable technique for reducing the total amount of calls to the DL-reasoner.

7.1 Future Work

The results are promising and suggest to further the path of optimization. To this end,
refined strategies implementing the tests do unfold and do push in Algorithm 3 and 5 are
desirable, as well as further rewriting rules for the query part and the logic program. In
particular, an elaborated cost model for query answering, which is able to decide whether
a rewriting action contributes positively to the evaluation speed, would be interesting.
However, given the continuing improvements on DL-reasoners, such a model had to be
revised more frequently. In general, results from the distributed database field should have
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potentiality to gain further insights. Another suggested extension would be to develop
query caching for CQs. Remaining work includes also a thorough study on the complexity
of the cq-program formalism.

In view of optimization techniques, syntactic rewriting and semantic caching provide
valuable results, but the interaction between those two methods has not been investigated.
It is possible that under certain conditions, caching might be more effective than rewriting
the program, and vice versa; the aforementioned cost model could give even better results.
At the time of writing, dlvhex does not support datalog queries. Once this feature is
implemented, additional optimization paths like the magic-set rewriting method can be
applied in our framework. Weight constraints in dl- and cq-programs, or hex-programs
with DL external atoms, have not been considered yet for program optimization. In
addition, some features only present in hex-programs like variable arguments in input
lists of external atoms might result in novel rewriting rules; one idea in this direction is to
adapt the Fact Pushing rewriting rule for covering this specific case.

As the current implementation supports RacerPro, another interesting issue is to interface
with other DL-reasoners that host CQs, e.g., KAON2 or Pellet, and to compare the results.
In particular, coupling with an engine for answering arbitrary CQs or UCQs on highly
expressive DLs would be intriguing. Moreover, complexity results for conjunctive query
answering in some tractable DLs show that ontologies expressed in these specific DLs
may be translated into a relational database instance and CQ processing outsourced to
a relational database system. This scenario is appealing for large ABox instances, since
we would bypass the DL-engine and use standard database systems with support for huge
databases and fast query answering. For this purpose, the dl-plugin has to interface with a
relational database. Alternatively, the rewriting module of the dl-plugin could be adapted
to use not yet available database external atoms.

Given that many proposed integrated ontology/rules formalisms exist (see Section 1.3),
which are quite diverse and use different semantics, it would be absorbing to show that
some of them could be automatically rewritten into an equivalent cq-program. Even if no
full translation was possible, it would be interesting to look at specific restrictions of these
languages and provide reformulation algorithms. This would have a big practical impact,
since only some of the hybrid languages are implemented and virtually none of them deal
with optimization issues. Additionally, this could provide helpful insights for combined
knowledge base formalisms.



Is this the right room for an argument?

—Monty Python’s Flying Circus, Argument Clinic
A

Proofs

A.1 Proofs for Section 4

A.1.1 Proof Theorem 4.8

Proof. (⇒) Let I be a minimal model of KB . Towards a contradiction, suppose Iπ is
not a model of τL(P ). There is an r ∈ grnd(τL(P )) such that Iπ 6|= r, which implies
Iπ 6|= H(r) and Iπ |= B(r). This r must be a ground version for a rule in τL(ρ), where
ρ = a1 ∨ · · · ∨ ak ← b1, . . . , bm in P , such that w.l.o.g. a = DL[λ; q]( ~X) ∈ B(ρ) is the only
dl-atom in ρ. For a ground substitution θ, we obtain two cases, (i) r = ρθ, or (ii) r is a
ground version for a rule in πL(a).

(i) Either I |=L H(ρθ) and I |=L B(ρθ), or I 6|=L B(ρθ). For the first case, we
immediately derive a contradiction for Iπ 6|= H(r), since H(r) = H(ρθ) and I ⊆ Iπ.
In the second case, by Lemma 4.7, I 6|=L B(ρθ) implies Iπ 6|= B(r). Consequently, Iπ
is a model of τL(P ).

(ii) Since Iπ is the answer set of π(P ), it is a model of grnd(π(P )). Thus, we get a
contradiction, since r is a ground version of a rule in πL(a) and πL(a) ⊆ π(P ), hence
r ∈ grnd(π(P )). As a result, Iπ is a model of τL(P ).

Towards another contradiction, suppose J ⊂ Iπ is a minimal model of τL(P ). J is not
a model of KB , there is a ground r ∈ ground(P ) such that J |=L B(r) and J 6|=L H(r).
We obtain two cases, (i) J ∩ I 6= I, i.e, J does not contain some literals from I, and (ii)
J ∩ I = I, i.e., J does not contain a ground atom with predicate from {pcλ,mcλ, prλ,mrλ}.
For case (i), J ∩ I ⊂ I and I ⊆ Iπ. Since r is also in grnd(τL(P )), by Lemma 4.7, J 6|= r.
This is a contradiction to J being the minimal model of τL(P ). For case (ii), we get a
contradiction right off for J being not a model of KB , since I is a model for KB . Therefore,
Iπ is a minimal model of τL(P ).

(⇐) Assume Iπ is a minimal model of τL(P ). Towards a contradiction, suppose I is not a
model of KB . There is an r ∈ ground(P ) such that I 6|=L r, thus I 6|=L H(r) and I |=L B(r).
Since τL does not change ordinary cq-rules, w.l.o.g. assume that r contains one dl-atom
a = DL[λ; q](~c) in B(r). Now let r′ = τL(r) with a′ = &dlT [“L”, pcλ,mcλ, prλ,mrλ, q](~c) ∈
B(r′) and the corresponding &dlT . From I |=L B(r) and Lemma 4.7, we get Iπ |= B(r′),
since I |=L a iff Iπ |= a′. Since Iπ is a model of r′, we obtain Iπ |= H(r′). But this is a
contradiction to I 6|=L H(r), since H(r′) = H(r). Thus, I is a model of KB .
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Towards another contradiction, suppose J ⊂ I is a minimal model of KB . Let Jπ be
the answer set of J ∪ π(P ), hence Jπ ⊂ Iπ. Jπ is not a model of τL(P ), thus there is
an r ∈ grnd(τL(P )) such that Jπ |= B(r) and Jπ 6|= H(r). Let ρ ∈ P be a rule of form
a1∨· · ·∨ak ← b1, . . . , bm, such that w.l.o.g. a = DL[λ; q]( ~X) ∈ B(ρ) is the only dl-atom in ρ.
For a ground substitution θ, we obtain two cases, (i) r = (a1∨· · ·∨ak ← τL(b1), . . . , τL(bm))θ,
or (ii) r is a ground version of a rule in πL(a).

(i) Since ρθ ∈ ground(P ) and J |=L ρθ, by Lemma 4.7, we get that Jπ is a model for r.
This is a contradiction for the assumption that Jπ 6|= r.

(ii) By Jπ being a model for π(P ) and π(P ) ⊆ τL(P ), we derive a contradiction, since
r ∈ grnd(π(P )) and by assumption Jπ 6|= r.

Therefore, I is a minimal model of KB .

A.1.2 Proof Theorem 4.9

Proof. Let I be a strong answer set of KB and Iπ be the answer set of I ∪ π(P ). Let
r ∈ ground(P ). I is a minimal model of the positive sP IL. Let ρ be the single rule
τL(r) \ πL(r). We distinguish the cases

(i) r ∈ sP IL: in this case, I |=L a for all a ∈ B+(r) and I 6|=L l for all l ∈ B−(r). In
particular, all dl-atoms are satisfied by I. By Lemma 4.7, Iπ |= b for all b ∈ B+(ρ)
and Iπ 6|= l for all l ∈ B−(ρ), hence Iπ |= B(ρ) and ρ ∈ fτL(P )Iπ .

(ii) r /∈ sP IL: here, I 6|=L a for an a ∈ B+(r) or I |=L l for an l ∈ B−(r). By Lemma 4.7,
we obtain I 6|= B(ρ), hence ρ /∈ fτL(P )Iπ .

Therefore, by Theorem 4.8, Iπ is a minimal model of fτL(P )Iπ iff I is a minimal model
of sP IL. Hence, Iπ is an answer set of τL(P ) iff I is a strong answer set of KB .

A.2 Proofs for Section 5

In order to prove the main results, we first state some Lemmas.

Lemma A.1. Let DL[λ1; cq1]( ~Y1) and DL[λ2; cq2]( ~Y2) be two cq-atoms such that λ1
.= λ2,

and θ be a ground substitution over domain ~Y1 ∪ ~Y2. Then, I |=L DL[λ1; cq1]( ~Y1θ) and
I |=L DL[λ2; cq2]( ~Y2θ) iff I |=L DL[λ1; cq′1 ∪ cq′2](( ~Y1 ∪ ~Y2)θ).

Proof. (⇒) Suppose I |=L DL[λ1; cq1]( ~Y1θ) and I |=L DL[λ2; cq2]( ~Y2θ). Therefore both
L ∪ λ1(I) |= φcq1( ~Y1θ) and L ∪ λ2(I) |= φcq2( ~Y2θ) hold. Thus, L ∪ λ1(I) |= φcq′1( ~Y1θ) ∧
φcq′2( ~Y2θ) because of λ1

.= λ2, and this implies that L ∪ λ1(I) |= φcq′1∪cq′2(( ~Y1 ∪ ~Y2)θ),

because for the rewritten non-distinguished variables ~Y ′1 ∪ ~Y ′2 of cq′1( ~Y1θ) ∪ cq′2( ~Y2θ), it
holds that ~Y ′1 ∩ ~Y ′2 = ∅ due to the variable renaming during the rewriting. Consequently,
I |=L DL[λ1; cq′1 ∪ cq′2](( ~Y1 ∪ ~Y2)θ).

(⇐) Let I |=L DL[λ1; cq′1 ∪ cq′2](( ~Y1 ∪ ~Y2)θ), hence L∪λ1(I) |= φcq′1∪cq′2(( ~Y1∪ ~Y2)θ) implies
that both L∪λ1(I) |= φcq1( ~Y1θ) and L∪λ1(I) |= φcq2( ~Y2θ) hold. From λ1

.= λ2, we conclude
that L ∪ λ2(I) |= φcq2( ~Y2θ), hence I |=L DL[λ1; cq1]( ~Y1θ) and I |=L DL[λ2; cq2]( ~Y2θ).

For the case were we have UCQs ucq1 =
∨r1
i=1 cq1,i and ucq2 =

∨r2
i=1 cq2,i in place of cq1

and cq2, respectively, the proof is straightforward. We just use
∨r1
i=1

(∨r2
j=1 cq

′
1,i ∪ cq′2,j

)
instead of cq′1 ∪ cq′2.
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Lemma A.2. Let a = DL[λ1; cq ∪ {X = t}](~Y ) and b = DL[λ2; cqX/t](~Y \ {X} ∪ ω(t)) be
cq-atoms such that λ1

.= λ2, and θ be a ground substitution over domain ~Y . The following
statements hold:

(1) If t ∈ ~Y and L is under UNA, then I |=L aθ iff I |=L bθ.

(2) If t /∈ ~Y , then I |=L aθ iff I |=L bθ.

Proof. (1) (⇒) Suppose I |=L aθ. (X = t)θ and UNA in L implies that Xθ and tθ denote
the same individual symbol. Hence, cq(~Y θ) = cqX/t(~Y \ {X} ∪ ω(t))θ (even if X or t do
not occur in the query atoms in cq) and λ1

.= λ2 implies I |=L b.
(⇐) Now suppose I |=L bθ. Since X does not appear in b, we replace occurrences of t

in cqX/t(~Y \ {X} ∪ ω(t)) to X such that cq(~Y ) is obtained. Moreover, setting Xθ to tθ
implies (X = t)θ. Therefore, I |=L aθ.

(2) The proof is essentially the same as (1). Here, we do not need UNA for replacing X
by t, since t is not in the domain of θ. X = t assures then that both terms denote the same
individual in the universe. See also Lemma 6.1 in [Nonnengart and Weidenbach, 2001].

Lemma A.3. Let DL[λ1; cq](~Y θ) and DL[λ2; cq ∪ {X 6= t}](~Y θ) be cq-atoms such that
λ1

.= λ2, X ∈ ~Y , and θ be a ground substitution over a domain ~Y . Then, for L being
under UNA, I |=L DL[λ1; cq](~Y θ) and I |=L (X 6= t)θ iff I |=L DL[λ2; cq ∪ {X 6= t}](~Y θ).

Proof. (⇒) Suppose I |=L DL[λ1; cq](~Y θ) and I |=L (X 6= t)θ. We derive that Xθ and
tθ are syntactically different. Hence, cq(~Y θ) ∪ {X 6= t}θ holds in L ∪ λ2(I) by λ1

.= λ2,
therefore I |=L DL[λ2; cq ∪ {X 6= t}](~Y θ).

(⇐) Now we assume that I |=L DL[λ2; cq ∪ {X 6= t}](~Y θ). Since L∪λ2(I) satisfy cq(~Y θ)
and {X 6= t}θ, we conclude that L ∪ λ1(I) |=L cq(~Y θ) and hence I |=L DL[λ1; cq](~Y θ) and
I |=L (X 6= t)θ.

Lemma A.4. Let r and r′ be positive cq-rules of form

r : H ← DL

[
λ1;

r∨
i=1

cqi

]
(~Y ), f( ~Y ′), B

and

r′ : H ← DL

λ2;
r∨
i=1

 l∨
j=1

cqi ∪
{
~Y ′ = ~cj

}(~Y ), B,

respectively, where λ1
.= λ2 and ~Y ′ ⊆ ~Y , θ be a ground substitution over a domain ~Y , and

I be a Herbrand interpretation such that f(~cj) ∈ I for 1 ≤ j ≤ l are all the literals with
predicate f in I. Then, I |=L rθ if and only if I |=L r

′θ.

Proof. (⇒) Assume I |=L f(~cj) for 1 ≤ j ≤ l and I |=L rθ hold. By I |=L rθ, either (i)
I |=L H(rθ) and I |=L B

+(rθ) or (ii) I 6|=L B
+(rθ).

(i) I |=L B
+(rθ) implies I |=L f( ~Y ′θ). Since I |=L f(~cj) for 1 ≤ j ≤ l, we obtain that

f( ~Y ′θ) = f(~c) for a ~c ∈ {~c1, . . . , ~cl}. Thus, the disjunction over cqi ∪ { ~Y ′θ = ~cj}
for 1 ≤ j ≤ l must hold for some ~cj = ~c. By λ1

.= λ2, we obtain L ∪ λ2(I) |=∨r
i=1

(∨l
j=1 cqi ∪

{
~Y ′θ = ~cj

})
, therefore I satisfies

DL

λ2;
r∨
i=1

 l∨
j=1

cqi ∪
{
~Y ′θ = ~cj

}(~Y θ)

under L, and I |=L r
′θ.
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(ii) We obtain another two cases. First, I 6|=L Bθ implies I 6|= B+(r′θ), hence I |=L r
′θ.

Secondly, some of f( ~Y ′θ) and DL[λ1;
∨r
i=1 cqi](~Y θ) are not satisfied under L. By λ1

.=

λ2, this implies that I does not satisfy DL
[
λ2;
∨r
i=1

(∨l
j=1 cqi ∪

{
~Y ′θ = ~cj

})]
(~Y θ)

under L either, thus I |=L r
′θ.

(⇐) Assume I |=L r
′θ. Either I |=L H(r′θ) and I |=L B

+(r′θ), or I 6|=L B
+(r′θ). Similar

to the (⇒) direction, we obtain now that I |=L rθ.

The next Lemma is a generalization of Lemma 2.20 to cq-programs.

Lemma A.5. Let (L,P ) be a positive cq-program and I a minimal model of (L,P ). Then,
an atom a is in I iff there is a ground rule a ∨H ← B from P such that I \ {a} |= B and
I \ {a} 6|= H.

Proof. (⇒) Suppose for some atom a in I, there is no ground rule a∨H ← B from P such
that I \ {a} |=L B and I \ {a} 6|=L H. Then, for each ground rule r of the form a∨H ← B,
I \ {a} 6|=L B or I \ {a} |=L H; hence it holds that I \ {a} |=L B implies I \ {a} |=L H. In
this case, I \ {a} satisfies each rule r and becomes a model of (L,P ), which contradicts
the assumption that I is a minimal model. Hence the result follows.

(⇐) Assume that a is not in I. Then I \ {a} = I, and for a ground rule a ∨H ← B in
P , I |=L B and I 6|=L H imply a ∈ I, which is a contradiction.

A.2.1 Proof Theorem 5.5

In the following, let ρ be a rule of form r1, r2 (i.e., of form (B1a) resp. (B1b)), or r
(i.e., (A1) resp. (C1)). Let r′ be a rule of form (A2), (B2), and (C2), resp. Then, let
P ′ = (P \ {ρ}) ∪ {r′}, where ρ and r′ are equivalent rules according to the rewriting rules
(A), (B), or (C). We will show now that I is a (strong) answer set of (L,P ) iff I is a
(strong) answer set of (L,P ′).

Proof for (A), (B), and (C)

Proof. We first show for positive cq-programs (L,P ), I is a minimal model of (L,P ) iff I
is a minimal model of (L,P ′).

(⇒) Suppose I is a minimal model of (L,P ). Towards a contradiction, assume I is not
a model of (L,P ′). Thus, for a ground substitution θ, there is a ground version of r′ in
ground(P ′), r′θ, such that I 6|=L H(r′θ) and I |=L B(r′θ). Since I |=L P , in particular
ρθ ∈ ground(P ), we get that (i) I |=L B(ρθ) and I |=L H(ρθ), or (ii) I 6|=L B(ρθ). In case
of (i), we get a contradiction for I 6|=L H(r′θ), since I |=L H(ρθ) and H(ρθ) = H(r′θ),
hence I is a model of (L,P ′). Now for case (ii), we have that I 6|=L B(ρθ), hence a literal
of B(ρθ) is false in I. If a ∈ B(ρθ) is false in I, then a ∈ B(r′θ) is false in I by Lemma A.1
or A.3 (resp. A.2) for ρ of form r (resp. r1 or r2), which is a contradiction for I |=L B(r′θ).
Again, I is a model of (L,P ′).

Now assume that J ⊂ I is a minimal model of (L,P ′), therefore J is not a model of
(L,P ). For a ground substitution θ, there is a ground version of ρθ in ground(P ) such that
J 6|=L H(ρθ) and J |=L B(ρθ). Since J |=L r

′θ for a ground r′θ ∈ ground(P ′), we obtain
the following cases. If J |=L B(r′θ) and J |=L H(r′θ), we derive a contradiction, since
H(ρθ) = H(r′θ). Otherwise, if J 6|=L B(r′θ), we derive a contradiction at J |=L B(ρθ),
since Lemma A.1, A.2, and A.3 applies here as well. Consequently, I is a minimal model
of (L,P ′).

(⇐) Let I be a minimal model of (L,P ′). We assume now that I is not a model of
(L,P ). Thus, for a ground substitution θ, there is a ground version of ρ in ground(P ), ρθ,
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such that I 6|=L H(ρθ) and I |=L B(ρθ). By (⇒), we derive a contradiction, hence I is a
model of (L,P ).

To show that I is also a minimal model of (L,P ), assume the contrary, there is a J ⊂ I
such that J is a minimal model of (L,P ). This entails that J is not a model for P ′. Again,
using (⇒) and Lemma A.1, A.2, or A.3, we conclude that J cannot be a minimal model of
(L,P ), hence I is a minimal model of (L,P ).

Now we establish the proof for rewriting rules (A), (B), and (C) in Section 5.1.1, 5.1.2,
and 5.1.3, respectively.

Let I be a strong answer set of (L,P ). Since sP IL and sP ′IL are positive cq-programs,
we show now that I is a minimal model of sP IL iff I is a minimal model of sP ′IL . To this
end, consider a ground rule of form ρ ∈ P with ρθ ∈ ground(P ), where θ is a ground
substitution. We distinguish the cases:

(i) ρθ /∈ sP IL: this implies that I 6|=L a for a ∈ B+(ρθ) ∩DL?
P , or I |=L l for l ∈ B−(ρθ).

We conclude that r′θ /∈ sP ′IL , since whenever b ∈ B+(ρθ)∩DL?
P is used in the process

of the rewriting, and I does not satisfy b, and by the actual Lemma A.1, A.2, or A.3,
I does not satisfy b′ ∈ B+(r′θ) ∩DL?

P ′ either, where b′ is the outcome of the resp.
rewriting rule.

(ii) ρθ ∈ sP IL: then, I |=L a for all a ∈ B+(ρθ) ∩DL?
P , and I 6|=L l for all l ∈ B−(ρθ).

Therefore, by applying the actual Lemma A.1, A.2, or A.3, r′θ ∈ sP ′IL .

Thus, sP IL = sP ′IL , which implies I is a minimal model of sP IL iff I is a minimal model of
sP ′IL . Therefore, (L,P ) has the same answer sets as (L,P ′).

A.2.2 Proofs Theorem 5.6 and 5.7

We split the proofs for Theorem 5.6 and 5.7 in two parts, the first part considers rewriting
rule (D) of Theorem 5.6, while the second part deals with rewriting rules (E) and (F) of
Theorem 5.6 and 5.7, respectively. We will show for each part of the proof that I is a
strong answer set of (L,P ) iff I is a strong answer set of (L,P ′).

Proof for (D)

Proof. We first show that for positive cq-programs (L, P̄ ) and (L, P̄ ′), the minimal models
coincide. By Lemma A.4, we get for positive P̄ ′ = (P̄ \ {r}) ∪ {r′} a logically equivalent
set of cq-rules, hence the minimal models of (L, P̄ ) and (L, P̄ ′) coincide.

Now let (L,P ) and (L,P ′) be positive cq-programs, where P̄ ⊆ P and P ′ = (P \ P̄ )∪ P̄ ′
such that f does not occur in the heads of P \ P̄ . Since P ′ is logically equivalent to P , we
obtain that the minimal models of (L,P ) and (L,P ′) coincide.

For the general case, (L, P̄ ) and (L, P̄ ′) are cq-programs without restriction, we show
now that sP̄ IL = (sP̄ IL)′, where (sP̄ IL)′ is obtained from applying rewriting rule (D) to the
ground program (L, sP̄ IL).

Let I be a strong answer set of (L, P̄ ). I is a minimal model of the positive cq-program
(L, sP̄ IL). As shown above, I is a minimal model of (L, sP̄ IL) iff I is a minimal model of
(L, (sP̄ IL)′). Consider r ∈ P̄ , for a ground substitution θ of r; we obtain the case distinction:

(i) I 6|=L B
−(rθ) and I |=L B

+(rθ)∩DL?
P̄

: In this case, rθ ∈ sP̄ IL, therefore r′θ ∈ (sP̄ IL)′.

Since r′ ∈ P̄ ′ and (i) hold, we conclude that r′ ∈ sP̄ ′IL.
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(ii) for some l ∈ B−(rθ), I |=L l, or for some a ∈ B+(rθ) ∩DL?
P̄

, I |=L a hold: In this
case, rθ /∈ sP̄ IL, therefore r′θ /∈ (sP̄ IL)′. Since r′ ∈ P̄ ′ and (ii) hold, we conclude that
r′ /∈ sP̄ ′IL.

Thus, sP̄ ′IL = (sP̄ IL)′, that is, the reduct of the rewritten rules P̄ ′ is equal to the rewritten
rules of the reduct of P̄ , hence I is a minimal model of (L, (sP̄ IL)′) iff I is a minimal model
of (L, sP̄ ′IL). Therefore, I is a strong answer set of (L, P̄ ) iff I is a strong answer set of
(L, P̄ ′).

Now we are ready to finish the proof and show that for unrestricted (L,P ) and (L,P ′),
where P̄ ⊆ P and P ′ = (P \ P̄ ) ∪ P̄ ′ such that f does not occur in the heads of P \ P̄ .
Since P ′ is logically equivalent to P , we obtain that the strong answer sets of (L,P ) and
(L,P ′) coincide.

Proof for (E) and (F)

Proof. We first show that for positive cq-programs (L, P̄ ) and (L, P̄ ′), the minimal models
coincide.

To this end, let P̄ consists of the positive cq-rules

r : H ← a(~Y ), B

and
r1 : H ′ ∨ a( ~Y ′)← B′,

where B = b1, . . . , bm, B′ = b′1, . . . , b
′
n, H = a1∨· · ·∨ak, H ′ = a′1∨· · · a′l, and DLP̄ = DL+

P̄
,

such that for an mgu θ of a(~Y ) and a( ~Y ′), a(~Y θ) = a( ~Y ′θ). And let P̄ ′ be consists of all
the rules in P̄ and the positive cq-rule

r′1 : H ′θ ∨Hθ ← B′θ,Bθ.

Due to the unfolding rule (E), P̄ ′ = P̄ ∪ {r′1}, which is logically equivalent to P̄ , hence
(L, P̄ ) and (L, P̄ ′) have the same minimal models and thus P̄ ≡L P̄ ′. Similarly, when
P̄ ⊆ P for an arbitrary positive set of cq-rules P and P ′ = P ∪ {r′1}, I is a minimal model
of P iff I is a minimal model of P ′.

Now we show that in case of Complete Unfolding (F), the positive cq-program (L,P )
has the same minimal models as the positive cq-program (L,P ′).

Let r be as above, Q be a set of positive cq-rules such that no rules of form r and ri
appear in it, where ri is a cq-rule of form

ri : Hi ∨ a(~Yi)← Bi (1 ≤ i ≤ l),

such that each Hi either does not contain a literal of form a(~Z), or no a(~Z) ∈ Hi is
unifiable with a(~Y ); and P be the set of cq-rules Q ∪ {r} ∪ {ri | 1 ≤ i ≤ l}, while
P ′ = (P \ {r}) ∪ {r′i : Hiθi ∨Hθi ← Biθi, Bθi (1 ≤ i ≤ l)} for mgus θi such that a(~Y )
and a(~Yi) unify.

(⇒) Assume I is a minimal model of (L,P ). Since I satisfies ground versions of r and
all ground ri, we obtain that I satisfies all of the corresponding ground versions of r′i.
Thus, we get that I is a model of (L,P ′). Towards a contradiction, assume that J is a
minimal model of (L,P ′), such that J ⊂ I. J is not a model of (L,P ) and a ground r
must occur unsatisfied in ground(P ), thus for a ground substitution η of r, J 6|=L rη, which
implies J |=L B(rη) and J 6|=L H(rη). By J |=L B(rη), it follows that J |=L a(~Y η). By
Lemma A.5, we get for a ground r′σ of a rule r′ ∈ P ′, i.e., either r′iσ or riσ, where σ is
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a ground substitution, a(~Y η) ∈ H(r′σ). Since r′σ = r′ση, we get a(~Y η) = a(~Y ση), and
hence a(~Y ση) ∈ H(r′ση). From J |=L B(rη) and J 6|=L H(rη), we conclude J |=L B(rση)
and J 6|=L H(rση). We distinguish the cases:

(i) r′ = r′i: Assume that r′ση is a ground instance of r′i and a(~Y ση) ∈ H(r′iση). The
mgu θi of a(~Y ) and a(~Yi) implies ση = θiρ for some ρ. Since a(~Y θi) = a(~Yiθi), we get
a(~Y ση) = a(~Yiση). Since a(~Y ) does not occur unifiable in Hi of ri, a(~Yiση) /∈ Hiση.
Thus, a(~Yiση) must be one of Hθση. J |=L a(~Y ση) implies J |=L Hθση, but this
contradicts J 6|=L H(rση). Therefore, I is also a minimal model of (L,P ′).

(ii) r′ = ri: Now suppose r′ση is a ground instance of ri with a(~Y ση) = a(~Yiση).
Applying Lemma A.5, from a(~Y ση) ∈ J , we conclude J \ {a(~Y ση)} |=L B(riση)
and J \ {a(~Y ση)} 6|=L Hiση. Since a(~Y ση) /∈ B(riση), we get J |=L B(riση).
Since a(~Y ) does not occur unifiable in Hi of ri, we obtain a(~Y ση) /∈ Hiση and also
J 6|=L Hiση. J |=L B(rση) and J 6|=L H(rση) now implies that J 6|=L r

′
iση. Since

a(~Y ση) = a(~Yiση) and a(~Y θi) = a(~Yiθi), we get ση = θiρ for some ρ, thus r′iση is a
ground instance of r′i ∈ P ′. Hence, r′iρ ∈ ground(P ′) is not satisfied, which contradicts
the assumption, that J is a model of (L,P ′). Therefore, I is a minimal model of
(L,P ′).

(⇐) Let I be a minimal model of (L,P ′). Assuming that I is not a model of (L,P ),
then I 6|=L rη for a ground substituion η. This implies I 6|=L H(rη) and I |=L B(rη), which
in turn guarantees that I |=L a(~Y η). By Lemma A.5, we obtain for a ground version r′σ
of a rule r′ ∈ P̄ ′, i.e., either r′iσ or riσ, where σ is a ground substitution, a(~Y η) ∈ H(r′σ).
We will now apply a similar proof to the (⇒) direction and get the desired contradictions.
Thus, I is a model of (L,P ). Now we show that I is in fact a minimal model. To this end,
assume that there is a minimal model J ⊂ I of (L,P ). Proceeding as in (⇒), J is also a
minimal model of (L,P ′), which contradicts our assumption that I is a minimal model of
(L,P ′), hence I is also a minimal model of (L,P ).

Now we turn our attention to the general case, that is, (L,P ) and (L,P ′) are cq-programs
without restrictions. We show that sP ′IL = (sP IL)′, where (sP IL)′ is the complete unfolded
positive cq-program of the reduct of (L,P ).

Let I be a strong answer set of (L,P ). I is a minimal model of (L, sP IL), which is a
positive program. Hence, by our first part of the proof, I is a minimal model of (L, sP IL)
iff I is a minimal model of (L, (sP IL)′). Let us consider r, ri ∈ P , we have an mgu θi for
a(~Y θi) = a(~Yiθi), and for a ground substitution η, a(~Y η) = a′(~Yiη). This implies that
η = θiρ for some substitution ρ. We now distinguish the cases:

(i) I 6|=L B
−(rη), I 6|=L B

−(riη), I |=L B
+(rη) ∩DL?

P , and I |=L B
+(riη) ∩DL?

P : Here,
rη, riη ∈ sP IL. By our unfolding rule, we get that r′iη ∈ (sP IL)′. Since r′i ∈ P̄ ′, η = θiρ,
and (i) hold, we conclude r′iη is in sP ′IL .

(ii) for some l ∈ B−(rη) ∪B−(riη), I |=L l, or for some a ∈ (B+(rη) ∪B+(riη)) ∩DL?
P ,

I |=L a hold: In this case, some of rη and riη is not in sP IL. Therefore, r′iη is not in
(sP IL)′. Since r′i ∈ P ′, η = θiρ, and (ii) hold, we conclude r′iη is not in sP ′IL either.

Thus, sP ′IL = (sP IL)′, i.e., the reduct of the complete unfolded program P ′ and the complete
unfolded reduct of P coincide. This implies I is a minimal model of (L, (sP IL)′) iff I is a
minimal model of (L, sP ′IL ). Therefore, I is a strong answer set of (L,P ′).
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A.2.3 Proof Theorem 5.8

Proof. Algorithm 3 first copies P to P l and applies Fact Pushing to P . Now suppose that
we cannot do the Unfolding part of the algorithm, i.e., C = ∅ and only the Fact Pushing
step takes part in the optimization process. merge(P ) eventually halts, since we cannot
push any facts in P , therefore P = P l. By part (D) of Theorem 5.6, Fact Pushing preserves
the answer sets, hence P ≡L merge(P, F ).

Now assume that we unfold some rules in P , i.e., C 6= ∅. Some rules in P have a
common atom a ∈ C in the head and in the positive body, while a does not occur in the
negative part of any rule in P . These a can be unfolded using the Unfolding rule (E).
Algorithm 3 then proceeds by possibly unfolding all the rules r ∈ R and r′ ∈ R′ by means
of unfold(a, r, r′), i.e., folding r into r′ w.r.t. a. Since pred(H(r)) ∩ P 6= ∅, we always add
r to P ′. Thus, either unfold(a, r, r′) ∪ {r} or {r, r′} are contained in P ′, depending on
the outcome of do unfold . Eventually, after all the unfolding had been carried out for a
particular a ∈ C, we replace P by P ′ ∪ (P \ (R ∪R′)), which amounts to replacing P by
(P \ P̄ ) ∪ P̄ ′ for all possible P̄ and P̄ ′, which are defined as in Theorem 5.6. Therefore, by
part (E) of Theorem 5.6, one unfolding step for an a ∈ C preserves the answer sets, hence
after all other atoms of C had been unfolded, we still have the same answer sets as the
program we started the unfolding procedure with. Ultimately, for this case, the unfolding
procedure halts, since in each round of merge(P, F )’s main-loop, we check whether P
equals P l, the program P from which we started an optimization round, which indicates
that no Unfolding or Fact Pushing could take place.

A.2.4 Proof Theorem 5.9

We show now that AS(P ) = AS(RuleOptimizer(P )).

Proof. Since RuleOptimizer(P ) takes each r ∈ P and tries to optimize it, we have to check
that each round of the main-loop preserves the answer sets.

For each r with B+(r) = ∅, it is clear that no pushing can be performed, hence the
answer sets remain the same.

For a rule r with dl-atoms in the positive body, i.e., with an arbitrary b ∈ B+(r),
I |=L B

+(r) iff I |=L BodyOptimizer(b, B+(r) \ {b}, ∅, ∅). Since the whole optimization
procedure boils down to repetitive pushing of atoms via push(o, b), we only have to check
that o and b in contrast to push(o, b) have the same answers over an arbitrary DL-KB
L. We obtain that in a rule r with o, b in B+(r), we get a rule r′ by replacing o, b in
r with its optimized form push(o, b). Thus, by Theorem 5.5, we immediately get that
AS(P ) = AS((P \ {r}) ∪ {r′}).

The second loop in RuleOptimizer(P ) implements Variable Elimination by carefully
taking each dl-atom in every rule of P into account, which has an atom X = t in its CQ
or in the rule body. Again, by Theorem 5.5, each replacement in the rules preserves the
answer sets.



Dilbert: Wait, wait, with just one rat, we don’t think any
conclusions can be drawn.

Pointy- Oh, we’ll draw conclusions, alright. You can be sure of
haired that. Take this to the boys in the statistical distortion
boss: department. They’ll fix the data for you.

—Dilbert, The Fact

B
cq-Program Experiments: Setup and Results

The following tables B.1–B.6 show the outcome of the experiments described in Section 5.3.
As reported there, we used the ontology testsuite from [Motik and Sattler, 2006] and the
benchmark framework from [Guo et al., 2005]. In addition, [Motik and Sattler, 2006]
provides some statistical information for the test ontologies used in their experiments. The
corresponding test programs are shown in Table 5.2.

Our lubm faculty experiment does not use the existing lubm ontologies—the current
version of RacerPro is not able to handle a lubm ontology with two full universities and
all their departments—, instead, fifteen test ontologies has been created out of the existing
department ontologies using the lubm data generator UBA 1.7 with applied Linux file
path patch:1

java -cp UBA/classes edu.lehigh.swat.bench.uba.Generator -index 0 -seed 0
-univ 1 -onto http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl.

Since the resulting ontologies import the Web-accessible lubm class hierarchy, we carefully
incorporated the contents of this TBox-only ontology at http://www.lehigh.edu/~zhp2/
2004/0401/univ-bench.owl into the generated OWL files to rule out the network latency
in our experiment setup. Each resulting lubm department ontology n include the lubm
Departments 1 up to n of lubm University 1, for 1 ≤ n ≤ 15. Following the statistical data
presented in [Motik and Sattler, 2006], we will also report on statistical information for the
generated lubm ontologies. The statistics have been extracted using the OWL-Tools utility
for the KAON2 DL-reasoner.2 With this tool, the number of class axioms for ontology
lubm department 1–n have been counted using

owl dump lubm1-n.owl -ClassMember,

whereas object property axioms have been calculated using

owl dump lubm1-n.owl -ObjectPropertyMember.

Table B.7 summarized the number of ABox assertions for each of the lubm ontologies.
All table entries are measured in seconds; missing entries (“—”) indicate that the

experiment timed out—the RacerPro process has been stuck in those situations—, or
RacerPro used too much system resources.

1http://projects.semwebcentral.org/projects/lubm/
2http://owltools.ontoware.org/
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unoptimized optimized
wine n RacerPro program evaluation RacerPro program evaluation

0 3.170 3.294 2.052 2.152
1 9.235 9.642 5.608 5.824
2 14.944 15.912 11.329 11.832
3 22.240 24.136 14.889 15.890
4 29.403 32.490 16.321 17.646
5 34.955 40.032 19.447 21.454
6 76.337 94.492 37.578 45.426
7 173.664 252.846 80.682 117.520
8 387.360 1006.394 170.196 427.008
9 — — 378.121 1744.900
10 — — — —

Table B.1: region experiment results

unoptimized optimized optimized
program program program

wine n RacerPro evaluation RacerPro evaluation RacerPro evaluation
0 2.310 2.400 0.900 1.036 1.039 1.102
1 5.897 6.018 2.060 2.136 2.030 2.090
2 9.165 9.348 3.250 3.356 3.210 3.284
3 12.775 13.012 4.529 4.646 5.707 5.798
4 16.916 17.222 5.597 5.722 6.928 7.166
5 20.033 20.412 6.960 7.104 7.495 7.638
6 39.566 40.428 12.973 13.214 13.731 13.912
7 83.363 85.876 25.914 26.370 27.759 28.086
8 180.028 188.790 55.420 56.304 61.140 61.880
9 424.398 455.136 123.693 125.468 143.262 144.964
10 — — 270.478 274.932 296.008 299.302

Table B.2: bigwinery experiment results

unoptimized optimized
semintec n RacerPro program evaluation RacerPro program evaluation

0 91.112 92.972 25.323 25.868
1 199.600 203.948 50.240 51.300
2 331.753 338.560 86.036 87.646
3 — — 111.870 114.124
4 — — 228.471 231.100

Table B.3: semintec experiment results
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unoptimized optimized
semintec n RacerPro program evaluation RacerPro program evaluation

0 32.218 33.360 24.489 25.024
1 76.655 79.062 48.648 49.726
2 116.945 120.750 75.710 77.308
3 170.251 175.716 107.571 109.694
4 — — 135.426 138.114

Table B.4: semintec costs experiment results

unoptimized optimized
vicodi n RacerPro program evaluation RacerPro program evaluation

0 10.826 13.256 9.182 10.220
1 26.209 31.234 18.802 20.186
2 — — 34.755 36.684
3 — — 47.396 49.730
4 — — 64.998 67.868

Table B.5: vicodi experiment results

unoptimized optimized
LUBM(1,0) program program
Dept. 1–n RacerPro evaluation RacerPro evaluation

1 8.979 9.246 1.596 1.922
2 16.690 17.180 3.018 3.544
3 24.334 25.190 3.579 4.160
4 33.763 35.256 4.653 5.400
5 48.340 50.688 5.655 6.610
6 52.204 54.738 6.735 7.896
7 72.257 77.064 7.934 9.364
8 79.886 84.588 10.310 12.030
9 87.310 96.434 10.578 12.570
10 111.749 124.244 13.035 15.392
11 126.940 160.982 12.236 14.224
12 127.890 141.138 13.042 15.290
13 167.801 223.724 15.982 18.606
14 168.043 188.262 16.216 18.762
15 184.066 269.086 17.946 20.714

Table B.6: lubm faculty experiment results
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LUBM(1,0)
Dept. 1–n C(a) R(a, b)

1 1623 4115
2 2883 7308
3 4070 10337
4 5297 13423
5 6511 16753
6 7752 20156
7 8782 22918
8 10050 26504
9 11339 30127
10 12363 32973
11 13575 36402
12 14813 39847
13 15920 42911
14 17185 46732
15 18128 49336

Table B.7: lubm faculty ontology statistics
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M. Krötzsch and S. Rudolph. Conjunctive Queries for EL with Composition of Roles.
In Proceedings of the 20th International Workshop on Description Logics (DL-2007),
volume 250 of CEUR-WS Online Proceedings, pages 355–362. CEUR-WS.org, June 2007.
URL http://CEUR-WS.org/Vol-250/paper_58.pdf. 2.8.1
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