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Abstract Towards combining rules and ontologies for the Semantic Web, nonmonotonic

Description Logic Programs (dl-programs) have been proposed as a powerful formalism

to couple nonmonotonic logic programming and Description Logic reasoning on a clear

semantic basis. In this paper, we present cq-programs, which enhance dl-programs with

conjunctive queries (CQ) and union of conjunctive queries (UCQ) over Description

Logics knowledge bases, as well as with disjunctive rules. The novel formalism has

two advantages. First, it offers increased expressivity because it allows for (U)CQs

in the bodies of the rules. The (U)CQs allow one to access unnamed individuals in

the rules and they increase the expressivity of the formalism, as evident from the

increase in complexity from NEXP to 2-EXP. And second, when implemented as a

combination between a logic programming system and a DL-reasoner, this integration

of rules and ontologies gives rise to strategies for optimizing calls to the DL-reasoner, by

exploiting specific support for (U)CQs. To this end, we present equivalence preserving

transformations which can be used for program rewriting, and we present respective

generic rewriting algorithms. Experimental results for a cq-program prototype show that

this can lead to significant performance improvements, and suggest that cq-programs

and program rewriting provide a useful basis for dl- and cq-program optimization.
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1 Introduction

Rule formalisms that combine logic programming with other sources of knowledge,

especially terminological knowledge expressed in Description Logics (DLs), have gained

increasing interest in the past years. This process was mainly fostered by current efforts

in the Semantic Web development of designing a suitable rules layer on top of the

existing ontology layer. Such couplings between DLs (in the form of ontologies) and

logic programming appear in different flavors, which roughly can be categorized in (i)

systems with full semantic integration, (ii) systems with strict semantic integration,

and (iii) systems with strict semantic separation, which amounts to coupling heteroge-

neous systems [1,8,33,34]. In this paper, we will concentrate on the latter, considering

ontologies as an external source of information with semantics that are independent

from the logic program. One representative of this category was presented in [8,10],

extending the answer-set semantics of logic programs towards so-called dl-programs,

which have been conceived to couple existing reasoning engines for nonmonotonic logic

programming and for Description Logics, respectively, in a meaningful way despite all

syntactic and semantic mismatches between the underlying formalisms.

A dl-program consists of a DL part L and a rule part P , and allows queries from

P to L. These queries are facilitated by a special type of atoms, which also permit

to hypothetically enlarge the assertional part of L with facts imported from the logic

program P , thus allowing for a bidirectional flow of information.

The types of queries expressible by dl-atoms in [8,10] are concept and role member-

ship queries, as well as subsumption queries. Since the semantics of logic programs is

usually defined over a domain of explicit individuals, this approach may fail to derive

certain consequences, which are implicitly contained in L. This is illustrated by the

following example.

Example 1 Consider the following simplified version of a scenario in [28].

L =

8>><>>:
hates(Cain,Abel), hates(Romulus,Remus),

father(Cain,Adam), father(Abel ,Adam),

father v parent ,

∃father .∃father−.{Remus}(Romulus)

9>>=>>;
P = {BadChild(X)← DL[parent ](X,Z),DL[parent ](Y,Z),DL[hates](X,Y )}

Apart from the explicit facts, L states that each father is also a parent and that

Romulus and Remus have a common father. The single rule in P specifies that an

individual hating a sibling is a BadChild . From this dl-program, BadChild(Cain) can

be concluded, but not BadChild(Romulus).

The reason is that, in a dl-program, variables must be instantiated over its Herbrand

base (containing the individuals in L and P ), and thus unnamed individuals, like the

father of Romulus and Remus, are not considered. In essence, this means that dl-atoms

only allow for building conjunctive queries that are DL-safe in the spirit of [28], which

ensures that all variables in the query can be instantiated to named individuals. While

DL-safeness was mainly motivated by retaining decidability of the formalisms, unsafe

conjunctive queries are admissible under certain conditions [34]. In this vein, we extend

dl-programs by permitting conjunctive queries or unions thereof (respectively, CQs and

UCQs in the following), to L as first-class citizens in the language.
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Example 2 In the example above, we may use

P ′ = {BadChild(X)← DL[parent(X,Z), parent(Y,Z), hates(X,Y )](X,Y )},

where the body of the rule is a CQ {parent(X,Z), parent(Y,Z), hates(X,Y )} to L with

distinguished variables X and Y . We then obtain the desired result; that is, we can

derive the fact BadChild(Romulus).

The extension of dl-programs to cq-programs, introduced in this paper, has some

attractive features.

• First and foremost, the expressiveness of the formalism is significantly increased,

since existentially quantified and therefore unnamed individuals can be respected in

query answering with the help of (u)cq-atoms.

• In addition, cq-programs have the nice feature that the integration of rules and the

ontology is decidable whenever answering (U)CQs over the ontology (possibly extended

with assertions) is decidable. In particular, recent results on the decidability of answering

(U)CQs for expressive DLs can be exploited in this direction [14,30,31]. Furthermore,

it also allows us to express, via conjunction of cq-atoms and negated cq-atoms in rule

bodies, certain decidable conjunctive queries with negations; note that negation quickly

leads to undecidability [36].

• The availability of CQs opens the possibility to express joins in different, equivalent

ways and therefore to the design of a software component, which employs automatic

rewriting techniques. Such rewriting component, starting from a given program (L,P ),

might produce an equivalent, yet more efficient, program (L,P ′).

Example 3 Both

r : BadParent(Y )← DL[parent ](X,Y ),DL[hates](Y,X)

and

r′ : BadParent(Y )← DL[parent(X,Y ), hates(Y,X)](X,Y )

equivalently single out (not necessarily all) bad parents. Here, in r the join between

parent and hates is performed in the logic program, while in r′ it is performed on the

DL-side.

DL-reasoners including RACER, KAON2, and Pellet increasingly support answering

CQs. This can be exploited to push joins of multiple atoms from the rule part to the

DL-reasoner, or vice versa. Multiple calls to the DL-reasoner are an inherent bottleneck

in evaluating cq-programs. Reducing the number of calls can significantly improve

performance of reasoning.

Motivated by the last aspect, we then focus on the following contributions.

• We present a suite of equivalence-preserving transformation rules, by which rule

bodies and rules involving (u)cq-atoms can be rewritten. Based on these rules, we

then describe algorithms which transform a given cq-program P into an equivalent,

optimized cq-program P ′.
• We report an experimental evaluation of such rewriting techniques, based on a

prototype implementation of cq-programs using dlvhex [9,38] and RACER. It shows

the effectiveness of the techniques, and that significant performance increases can be

gained. The experimental results are interesting in their own right, since they shed light

on combining conjunctive query results from a DL-reasoner.
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• We have implemented a prototype reasoner for cq-programs and present its archi-

tecture in Section 7. To the best of our knowledge, it is currently the most expressive

implementation of a system integrating nonmonotonic rules and ontologies.

• Furthermore, we analyze the computational complexity of cq-programs and show

that they have higher complexity than dl-programs; already for the description logic

SHIF(D), which underlies the OWL-Lite standard, deciding the existence of an answer

set is 2-EXP-complete, as compared to the PNEXP-completeness of the problem for dl-

programs. Thus, cq-programs are a more expressive formalism for representing problems

than dl-programs from a computational perspective.

The rest of the paper is structured as follows. The next section recalls concepts of

Description Logics. In Section 3, we formally define cq-programs and consider some

elementary semantic properties, while in Section 4 we consider their computational

complexity. After that, we present in Section 5 a suite of equivalence preserving

rewriting rules, which are used by a generic rewriting algorithm that is given in Section 6.

Experimental results for a prototype implementation are reported in Section 7. Section 8

concludes the paper with a discussion of related work and further issues.

2 Description Logics

In this section, we recall the Description Logics (DLs) SHIF(D) and SHOIN (D),

which provide the logical underpinning of the Web ontology languages OWL-Lite and

OWL-DL, respectively (see [2,16,18] for further details and background on DLs).1

Intuitively, DLs model a domain of interest in terms of concepts and roles, which

represent classes of individuals and binary relations on classes of individuals, respectively.

A DL-knowledge base encodes on the one hand concept and role hierarchies, i.e., subset

relationships between classes of individuals and between binary relations on classes

of individuals. On the other hand, such knowledge bases may express membership

assertions of individuals to classes, and membership of pairs of individuals to roles.

Other important ingredients of SHIF(D) (resp., SHOIN (D)) are datatypes (resp.,

datatypes and individuals) in concept expressions.

We first describe the syntax of SHOIN (D), which has the following datatypes and

basic building blocks. We assume a set E of elementary datatypes and a set V of data

values. A datatype theory D = (∆D, ·D) consists of a datatype (or concrete) domain

∆D and a mapping ·D that assigns to every elementary datatype a subset of ∆D and

to every data value an element of ∆D. Let Ψ = (A∪RA ∪RD, I∪V) be a vocabulary,

where A, RA, RD, and I are pairwise disjoint (denumerable) sets of atomic concepts,

abstract roles, datatype (or concrete) roles, and individuals, respectively. We denote by

R−A the set of inverses R− of all R ∈ RA.

Roles and concepts are defined as follows. A role is an element of RA ∪R−A ∪RD.

Concepts are inductively defined as follows. Every atomic concept C ∈ A is a concept.

If o1, o2, . . . are individuals from I, then {o1, o2, . . .} is a concept (called oneOf). If

C and D are concepts, then also (C u D), (C t D), and ¬C are concepts (called

conjunction, disjunction, and negation, respectively). If C is a concept, R is an abstract

role from RA ∪R−A, and n is a nonnegative integer, then ∃R.C, ∀R.C, ≥nR, and ≤nR
are concepts (called exists, value, atleast, and atmost restriction, respectively). If D is

1 We focus on these DLs because of the importance of the OWL standard. Conceptually,
cq-programs can be defined for other DLs as well with little change.
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a datatype, U is a datatype role from RD, and n is a nonnegative integer, then ∃U.D,

∀U.D, ≥nU , and ≤nU are concepts (called datatype exists, value, atleast, and atmost

restriction, respectively).

We next define axioms and knowledge bases as follows. An axiom is an expression

of one of the following forms:

1. C v D, called concept inclusion axiom, where C and D are concepts;

2. R v S, called role inclusion axiom, where either R,S ∈ RA or R,S ∈ RD;

3. Trans(R), called transitivity axiom, where R ∈ RA;

4. C(a), called concept membership axiom, where C is a concept and a ∈ I;

5. R(a, b) (resp., U(a, v)), called role membership axiom, where R ∈ RA (resp., U ∈
RD) and a, b ∈ I (resp., a ∈ I and v is a data value); and

6. a = b (resp., a 6= b), or = (a, b) (resp., 6= (a, b)), called equality (resp., inequality)

axiom, where a, b ∈ I.

The syntax of SHIF(D) is the one of SHOIN (D), but without the oneOf con-

structor and with the atleast and atmost constructors limited to 0 and 1.

Definition 1 A (SHOIN (D)) DL knowledge base (DL-KB) L is a finite set of axioms.

It is in SHIF(D), if all its axioms are from SHIF(D).

In the introductory Example 1, for instance, we have a DL-KB L which has four

role membership axioms, one concept membership axiom, and one concept inclusion

axiom; L is not in SHIF(D), since the last axiom involves the oneOf constructor.2

The DL-KB L given in Example 8 below, however, is in SHIF(D).

The semantics of a DL-KB L is given in terms of first-order interpretations I =

(∆I , ·I) with respect to a datatype theory D = (∆D, ·D) (alternatively, it can be given

by a mapping π(L) of L to first-order logic, cf. [2]). It consists of a nonempty (abstract)

domain ∆I disjoint from ∆D, and a mapping ·I that assigns to each C∈A a subset CI

of ∆I , to each o ∈ I an element oI of ∆I , to each R ∈ RA a subset RI of ∆I ×∆I ,

and to each U ∈ RD a subset UI of ∆I ×∆D; the mapping is extended to all concepts

and roles as usual.

The interpretation I is a model of a L, if it satisfies each axiom α in L, where

satisfaction I |= α is defined as usual, cf. [2,16,18]. An axiom α is a logical consequence

of L, denoted L |= α, if I |= α for each model I of L.

A DL-KB L is satisfiable, if L has some model. To gain decidability of this problem,

number restrictions in L are restricted to so called simple abstract roles [17]; as for

computability, we tacitly assume that DL-KBs fulfill this condition.

Example 4 The DL-KB L in Example 1 is clearly satisfiable; e.g., the interpretation I =

(∆I , ·I) such that ∆I = {Cain,Abel ,Adam,Romulus,Remus,Mars}, each individual o

is interpreted by itself (i.e., oI = o), and for hatesI = {(Cain,Abel), (Romulus,Remus)}
and fatherI = parentI = {(Cain,Adam), (Abel ,Adam), (Remus, Mars), (Romulus,

Mars)} is a model of L. Moreover, L |= ¬parent v ¬father but L 6|= ∃father−.{Adam}.

2.1 (Unions of) Conjunctive Queries

Definition 2 A conjunctive query (CQ) q(X) is an expression

{X | Q1(X1), . . . , Qn(Xn)}, (1)

2 We remark that L is in SHOI, which is another subclass of SHOIN (D), for which
answering conjunctive queries as in the example is decidable; see, e.g., [32].
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where each Qi is a concept or role expression and each Xi is a singleton or pair of

variables and individuals, and where X ⊆
Sn

i=1 vars(Xi) are its distinguished (or output)

variables. A union of conjunctive queries (UCQ) q(X) is a disjunction

q1(X) ∨ · · · ∨ qm(X) (2)

of CQs qi(X), 1 ≤ i ≤ m, whose distinguished variables are X.

We will omit X if it is clear from the context. Intuitively, a CQ q(X) is a conjunction

Q1(X1) ∧ · · · ∧ Qn(Xn) of concept and role expressions, which is true for a ground

substitution σ of the variables in X by individuals and data values Xσ (a so called

answer), if in each model of the DL-KB the conjunction is satisfiable. A UCQ q(X) is

true for σ, whenever some qi(X) is true for σ. More formally, the semantics of CQs and

UCQs is as follows.

Definition 3 For any CQ q(X) = { X | Q1(X1), . . . , Qn(Xn)}, let

φq(X) = ∃Y
n̂

i=1

Qi(Xi), (3)

where Y are the variables of X1∪· · ·∪Xn not in X, and for any UCQ q(X) =
Wm

i=1 qi(X),

let

φq(X) =
m_

i=1

φqi(X). (4)

Then, for any (U)CQ q(X), the set of answers of q(X) on L is the set of tuples

ans(q(X), L) = {c ∈ (I ∪∆D)|X| | L |= φq(c)}. (5)

Here φq(c) is short for φq(Xσ) such that Xσ = c for some ground substitution σ.

Existential quantifiers in φq(c) are evaluated as usual in first-order logic.3

Example 5 Regarding Example 2, cq1(X,Y ) = {X,Y | parent(X,Z), parent(Y,Z),

hates(X,Y )} and cq2(X,Y ) = {X,Y | father(X,Y ), father(Y,Z)} are CQs with out-

put X,Y , and ucq(X,Y ) = cq1(X,Y )∨cq2(X,Y ) is a UCQ. Since L |= φcq1(Cain,Abel),

the tuple (Cain,Abel) is an answer of cq1(X,Y ) on L. In fact, ans(cq1(X,Y ), L) =

{(Cain,Abel), (Romulus,Remus)}, while ans(cq2(X,Y ), L) = ∅, as in L we know noth-

ing about grandfathers. Furthermore, ans(ucq(X,Y ), L) = ans(cq1(X,Y ), L).

3 CQ Programs

After having recalled Description Logics, we now define rules on top of DL knowledge

bases. To this end, we introduce cq-programs, which generalize nonmonotonic dl-

programs [10,11] with disjunction in the head and allow for conjunctive and unions of

conjunctive queries over DL knowledge bases. The former extension (disjunctive heads)

had also been cursory introduced in [8], but was not further analyzed there. The latter

extension is completely novel.

As in [8,10], we assume besides a vocabulary Ψ of a DL-KB, a function-free first-

order vocabulary Φ of nonempty finite sets C and P of constant resp. predicate symbols,

3 Here, typing of variables wrt. I and ∆D is implicit: syntactically malformed ground atoms
evaluate to false.
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and a set X of variables. It is assumed that C ⊆ I ∪∆D holds, which serves to ensure

that all objects in the rules (represented by constants) are known as individuals in the

DL knowledge base; typically, C = I ∪∆D holds.4

A term is either a constant from C or a variable from X . Given p ∈ P, an atom is

defined as p(t1, . . . , tk), where k is called the arity of p and each t1, . . . , tk are terms. A

classical literal (or simply literal) l is an atom a or a (classically) negated atom ¬a. A

weakly negated literal (or negation as failure (NAF ) literal) is a default-negated literal

not l.

3.1 Syntax

Informally, a cq-program consists of a DL-KB L and a generalized disjunctive program

P , which may involve queries to L. Roughly, such a query may ask whether a specific

description logic axiom, a conjunction or a union of conjunctions of DL axioms is

entailed by L or not. Note that predicate symbols in P are different from those in L.

Definition 4 A dl-atom α is in form DL[λ; q](X), where λ = S1 op1p1, . . . , Sm opmpm

(m ≥ 0) is a list of expressions Si opi pi called input list, each Si is either a concept or

a role, opi ∈ {], −∪, −∩}, pi is a predicate symbol matching the arity of Si, and q is either

– a (U)CQ with output variables X (in this case, α is called a (u)cq-atom), or

– q(X) is a dl-query as in [10] (in this case, α is called an ordinary dl-atom), i.e.,

1. a concept inclusion axiom F or its negation ¬F with X void, or

2. of form C(X) or ¬C(X), where C is a concept, X = t, and t is a term, or

3. of form R(X) or ¬R(X), where R is a role, X = (t1, t2), and t1 and t2 are

terms.

Each pi is an input predicate symbol ; intuitively, opi = ] increases Si by the extension

of pi, while opi = −∪ increases ¬Si; opi = −∩ constrains Si to pi.

Please note that a dl-atom α cannot be classically negated.

Example 6 In Ex. 1, DL[parent ](X,Z), DL[parent ](Y,Z), and DL[hates](X,Y ) are ordi-

nary dl-atoms, while in Ex. 2, DL[parent(X,Z), parent(Y,Z), hates(X,Y )](X,Y ) is a cq-

atom with output X,Y . The cq-atom DL[parent ] p; parent(X,Y ), parent(Y,Z)](X,Z)

with output X,Z extends L by adding the extension of p to the role parent , and then

joins parent with itself.

Definition 5 A cq-rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn, (6)

where every ai is a literal and every bj is either a literal or a dl-atom. We define H(r) =

{a1, . . . , ak} and B(r) = B+(r) ∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) =

{bm+1, . . . , bn}. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. If H(r) = ∅ and B(r) 6= ∅,
then r is a constraint, and if |H(r)| ≤ 1 then r is non-disjunctive.

A cq-program KB = (L,P ) consists of a DL-KB L and a finite set of cq-rules P . It

is non-disjunctive, if each r ∈ P is non-disjunctive, and positive, if B−(r) = ∅ for all

r ∈ P and −∩ does not occur in P .

4 This assumption may be varied, by allowing the rules to see only a subset of the individuals
in the DL-KB, and/or allowing constants in the rules not occurring in the DL-KB; this can be
modeled with the current convention. We omit further discussion here, and similar for access
to equality in the DL-KB, which can be modeled like role access; see [7].
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WhiteWine t RedWine vWine; WhiteWine v ¬RedWine;

Trans(locatedIn); ≥ 1.locatedIn vWine t Region; > v ∀locatedIn.Region;

locatedIn(southAustraliaRegion, australianRegion);

locatedIn(mountadamRiesling, southAustraliaRegion);

locatedIn(mountadamChardonnay, southAustraliaRegion);

locatedIn(mountadamPinotNoir , southAustraliaRegion);

WhiteWine(mountadamChardonnay);

RedWine(mountadamPinotNoir);

hasFlavor(mountadamRiesling, delicate);

locatedIn(stonleighSauvignonBlanc,newZealandRegion);

locatedIn(mongridgeMerlot ,newZealandRegion);

locatedIn(selaksIceWine,newZealandRegion);

RedWine(longridgeMerlot);

WhiteWine(selaksIceWine);

hasFlavor(stonleighSauvignonBlanc, delicate)

Fig. 1 Simplistic wine ontology

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W ),DL[RedWine](R), (r1)

DL[locatedIn](W,L),DL[locatedIn](R,L),

not DL
ˆ
locatedIn(L,L′)

˜
(L).

← visit(X), visit(Y ), X 6= Y. (r2)

some visit ← visit(X). (r3)

← not some visit . (r4)

delicate region(W )← visit(L), delicate(W ),DL[locatedIn](W,L). (r5)

delicate(W )← DL[hasFlavor ](W, delicate). (r6)

Fig. 2 Delicate wine region program

Example 7 In Examples 1 and 2, P and P ′ contain single rules which are positive, and

thus (L,P ) and (L,P ′) are both non-disjunctive positive cq-programs.

Example 8 Let KB = (L,P ), where L is shown in Figure 1, a simplistic variant of the

well-known Wine ontology [39], and P is the program shown in Figure 2. Informally,

in L, the concepts WhiteWine and RedWine are disjoint, and locatedIn is a transitive

role, whose domain the union of Wine and Region, and whose codomain is Region. The

next statements are assertions about various wines and areas of cultivation. The rule r1
in P selects a maximal region in which both red and white wine grow, and the next

three rules make sure that exactly one such region is picked, by enforcing that no more

than two regions are chosen (r2) and that at least one is chosen (rules r3 and r4). The

last two rules r5 and r6 single out all the sub-regions of the selected region producing

some delicate wine, i.e., if a wine has a delicate flavor which is specified by individual

delicate.
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Note that the program P exclusively uses instance retrieval queries—with one

exception in the first rule: the weakly negated dl-atom is a conjunctive query with

only one query atom, since we have to remove the non-distinguished variable L′ from

the output to keep the rule safe. The program will be used throughout the paper for

demonstrating our rewriting methods.

3.2 Semantics

Let KB = (L,P ) be a cq-program. The Herbrand base of P , denoted HBP , is the set

of all ground literals with a standard predicate symbol that occurs in P and constant

symbols in C. An interpretation I relative to P is a consistent subset of HBP . The

grounding of P , denoted ground(P ), is the set of all ground instances of rules in

P (with respect to C); here, in ordinary dl-atoms the output variables are replaced

by constants and in (u)cq-atoms the distinguished variables in q(X) are replaced by

constants, and the output list X is replaced by the empty list; e.g., DL[parent ](X,Y ) is

instantiated, for the substitution X 7→ Cain, Y 7→ Adam to DL[parent ](Cain,Adam)

and DL[parent(X,Z), parent(Y,Z)](X,Y ) is instantiated for the same substitution to

DL[parent(Cain, Z), parent(Adam, Z)]().

We first define satisfaction of atoms with respect to an interpretation.

Definition 6 Let I be an interpretation of P . Then

– an ordinary ground atom l ∈ HBP is satisfied by I, or I is a model of l under L,

denoted I |=L l, iff l ∈ I;

– a ground ordinary dl-atom a = DL[λ;Q](c) is satisfied by I under L, denoted

I |=L a, if L ∪ λ(I) |= Q(c), where λ(I) =
Sm

i=1Ai(I) and

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = ];

– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪;

– Ai(I) = {¬Si(e) | pi(e) ∈ I does not hold}, for opi = −∩;5

– a ground instance a(c) of a (u)cq-atom a(X) = DL[λ; q](X), is satisfied by I under

L, denoted I |=L a(c), if c ∈ ans(q(X), L ∪ λ(I)).

We next define satisfaction of rules and models of a cq-programs.

Definition 7 Let r be a ground cq-rule. We define (i) I |=L H(r) iff there is some

a ∈ H(r) such that I |=L a, (ii) I |=L B(r) iff I |=L a for all a ∈ B+(r) and I 6|=L a for

all a ∈ B−(r), and (iii) I |=L r iff I |=L H(r) whenever I |=L B(r). We say that I is a

model of a cq-program KB = (L,P ), or I satisfies KB , denoted I |= KB , iff I |=L r

for all r ∈ ground(P ). A cq-program KB is satisfiable, if it has some model, and is

unsatisfiable otherwise.

The Gelfond-Lifschitz transform of program P without dl-atoms relative to an

interpretation I ⊆ HBP , denoted P I , is the positive program obtained from ground(P )

by (i) deleting every rule r with B−(r) ∩ I 6= ∅, and (ii) deleting the negative body

5 We note that negative role assertions Si(e) in λ(I), which are syntactically not allowed in
SHIF(D) and SHOIN (D), can be emulated by using that L′ ∪ {¬R(a, b)} is unsatisfiable iff
L′ ∪ {A(a), B(b), ∃R.B v ¬A} is unsatisfiable (where A and B are two fresh atomic concepts
and L′ is any DL-KB) [20]. Negated datatype role membership axioms can be removed in
a similar way. In OWL 2 (formerly OWL 1.1), negative property membership assertions are
allowed [40].
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from every remaining rule. I is an answer set of P if it is a minimal model (w.r.t. set

inclusion) of P I .

We remark that any ordinary dl-atom DL[λ; q](X), where q is a role or a concept,

can be easily cast to an equivalent cq-atom DL[λ; q′](X′), where q′ is a CQ; for example,

DL[parent ](X,Z) can be cast to DL[parent(X,Z)](X,Z), and DL[hates](Cain, Z) to

DL[hates(Cain, Z)](Z).

3.3 Minimal-model semantics for positive cq-programs

We first consider positive cq-programs. Like for ordinary positive programs, every non-

disjunctive positive cq-program that is satisfiable has a single minimal model, which

naturally characterizes its semantics. The proof of the next lemma is analogous to the

proof for normal positive dl-programs [7].

Lemma 1 Let KB = (L,P ) be a non-disjunctive positive cq-program. If the interpre-

tations I1, I2 ⊆ HBP are models of KB, then I1 ∩ I2 is also a model of KB.

Proof Suppose that I1, I2 ⊆ HBP are models of KB , that is, Ii |=L r for every

r ∈ ground(P ) and i ∈ {1, 2}. We show that I = I1 ∩ I2 is also a model of KB , that is,

I |=L r for every r ∈ ground(P ). Consider any r ∈ ground(P ), and assume that I |=L l

for all l ∈ B+(r) = B(r). That is, I |=L l for all classical literals l ∈ B(r) and I |=L a

for all cq-atoms a ∈ B(r). Hence, Ii |=L l for all classical literals l ∈ B(r), for every

i ∈ {1, 2}. Furthermore, since every cq-atom in ground(P ) is monotonic relative to KB ,

it holds that Ii |=L a for all dl-atoms a ∈ B(r), for every i ∈ {1, 2}. Since I1 and I2 are

models of KB , it follows that Ii |=L H(r), for every i ∈ {1, 2}, and thus I |=L H(r).

This shows that I |=L r. Hence, I is a model of KB . ut

As an immediate corollary of this result, every satisfiable non-disjunctive positive

cq-program KB has a unique minimal model, which is contained in every model of KB .

Corollary 1 Let KB = (L,P ) be a non-disjunctive positive cq-program. If KB is

satisfiable, then there is a unique model I ⊆ HBP of KB s.t. I ⊆ J for all models

J ⊆ HBP of KB.

Example 9 The cq-program (L,P ) in Ex. 1 has the single minimal model {Bad-

Child(Cain)}, while (L,P ′) in Ex. 2 has the single minimal model {BadChild(Cain),

BadChild(Romulus)}.

On the other hand, if a cq-program contains disjunction, then multiple minimal

models of KB may exist.

Example 10 Consider the program in Example 8. If we remove “not” from P by

replacing rule r1 with

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W ),DL[RedWine](R),

DL[locatedIn](W,L),DL[locatedIn](R,L),

i.e., we abandon the maximality condition on the region L, then we get a positive

cq-program which has three minimal models. The following minimal models are abridged

versions of these models:

1. {delicate region(mountadamRiesling),visit(australianRegion), . . . },
2. {delicate region(stonleighSauvignonBlanc),visit(newZealandRegion), . . . },
3. {delicate region(mountadamRiesling),visit(southAustraliaRegion), . . . },
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3.4 Strong answer-set semantics for cq-programs

We now define the strong answer-set semantics of general cq-programs. It reduces to the

minimal model semantics for positive cq-programs, using a generalized transformation

that removes all NAF-literals and every nonmonotonic dl-atom. A dl-atom is said to

be monotonic in the sense given by the following definition:

Definition 8 A ground dl-atom a is monotonic relative to KB = (L,P ) iff I |=L a

implies I ′ |=L a, for all I ⊆ I ′ ⊆ HBP , otherwise a is nonmonotonic.

Possibly nonmonotonic dl-atoms are treated similarly as NAF-literals. This is

particularly useful, if we do not know a priori whether some dl-atoms are monotonic,

and determining this might be costly; notice, however, that absence of −∩ in an input

list of a dl-atom is a simple syntactic criterion that implies monotonicity of a dl-atom.

For any cq-program KB = (L,P ), we denote by DLP the set of all ground dl-atoms

that occur in ground(P ). We assume that KB has an associated set DL+
P ⊆ DLP

of ground dl-atoms which are known to be monotonic, and we denote by DL?
P =

DLP \DL+
P the set of all other ground dl-atoms.6 An input literal of a ∈ DLP is a

ground literal with an input predicate of a and constant symbols in Φ.

Definition 9 The strong dl-reduct of P relative to L and an interpretation I ⊆ HBP ,

denoted sP I
L, is the set of all rules obtained from ground(P ) by

(i) deleting every cq-rule r such that either I 6|=L a for some a ∈ B+(r) ∩DL?
P , or

I |=L l for some l ∈ B−(r); and

(ii) deleting from each remaining cq-rule r all literals in B−(r) ∪ (B+(r) ∩DL?
P ).

Notice that (L, sP I
L) has only monotonic dl-atoms and no NAF-literals anymore.

Thus, (L, sP I
L) is a positive cq-program, and by Corollary 1, has a minimal model, if it is

satisfiable and non-disjunctive. We thus define the strong answer-set semantics of general

cq-programs by reduction to the minimal model semantics of positive cq-programs as

follows.

Definition 10 Let KB = (L,P ) be a cq-program. A strong answer set of KB is an

interpretation I ⊆ HBP such that I is a minimal model of (L, sP I
L).

Example 11 The minimal models shown in Example 9 are strong answer sets of the

resp. cq-programs.

The program KB from Example 8 has the following two answer sets (only the

positive facts of the predicates delicate region and visit are listed):

1. {delicate region(mountadamRiesling), visit(australianRegion), . . . }, and

2. {delicate region(stonleighSauvignonBlanc), visit(newZealandRegion), . . . }.
Compared to the program in Example 10, the third answer set of the latter is

pruned, according to which southAustraliaRegion is selected for a visit, since that region

is not a maximal feasible region (it is located in australianRegion of the first answer

set).

6 The set DL+
P is a parameter which allows one to freely reflect an epistemic state about the

monotonic behavior of dl-atoms with respect to the underlying DL knowledge base L, which is
crucial for the definition of strong answer sets. Note that determining whether a given ground
dl-atom is monotonic with respect to L is computationally expensive in general; by modeling
the monotonicity as unknown, we can trade the respective effort for a semantic weakening, as
more answer sets will be possible. We remark that technically, for DL+

P = ∅ we obtain the
concept of weak answer set from [10,7], generalized to cq-programs.
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The following result shows that the strong answer-set semantics of a cq-program

KB = (L,P ) without dl-atoms coincides with the ordinary answer set semantics of P.

Theorem 1 Let KB = (L,P ) be a cq-program without dl-atoms. Then, I ⊆ HBP is a

strong answer set of KB iff it is an answer set of the ordinary program P .

Proof Let I ⊆ HBP . Then, P has no dl-atoms implies sP I
L = P I . Hence, I is a minimal

model of (L, sP I
L) iff I is a minimal model of P I . Therefore, I is a strong answer set of

(L,P ) iff I is an answer set of P . ut

The next result shows that, as desired, strong answer sets of a cq-program KB are

models of KB , too, and moreover minimal models of KB if all dl-atoms are monotonic

(and known as such, i.e., DL?
P = ∅).

Theorem 2 Let KB = (L,P ) be a cq-program, and let I be a strong answer set of KB.

Then, (a) I is a model of KB, and (b) I is a minimal model of KB if DLP = DL+
P .

Proof (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we

have to show that I |=L r for all r ∈ ground(P ). Consider any r ∈ ground(P ). Suppose

that I |=L l for all l ∈ B+(r) and I 6|=L l for all l ∈ B−(r). Then, the cq-rule r′ that is

obtained from r by removing all the literals in B−(r) ∪ (B+(r) ∩DL?
P ) is contained in

sP I
L. Since I is a minimal model of (L, sP I

L) and thus in particular a model of (L, sP I
L),

it follows that I is a model of r′. Since I |=L l for all l ∈ B+(r′) and I 6|=L l for all

l ∈ B−(r′) = ∅, it follows that I |=L H(r) = H(r′). This shows that I |=L r. Hence, I

is a model of KB .

(b) By part (a), every strong answer set I of KB is a model of KB . Assume that

every dl-atom of KB is monotonic, that is, DLP = DL+
P . We show now that I is a

minimal model of KB . Towards a contradiction, suppose the contrary, that is, there

is a J ⊂ I such that J is a model of KB . Since J is a model of KB , we obtain that J

is a model of (L, sPJ
L ). Since every dl-atom a ∈ DLP is monotonic relative to KB , it

follows that sP I
L ⊆ sP

J
L . Hence, J is also a model of (L, sP I

L). But this contradicts that

I is a minimal model of (L, sP I
L). Therefore, I is a minimal model of KB . ut

These and many other of the semantic properties of dl-programs are naturally

inherited to cq-programs, like the existence of a unique answer set for non-disjunctive

positive programs (if any answer set exists), or for non-disjunctive programs if not is

used in a stratified way.

Furthermore, the strong answer set semantics for cq-programs without −∩ can be

equivalently defined, like for dl-programs without −∩, in terms of answer sets of hex-

programs (see [9,19]). The latter semantics is based on a characterization of answer

sets of ordinary disjunctive logic programs that uses an alternative reduct [12], and,

informally, states that M is an answer set if M is a minimal model of the rules in the

grounding of the program whose body is satisfied by M . It can be used to emulate

various extensions of normal logic programs apart from dl-programs, including programs

with monotone cardinality atoms [22]. By means of this correspondence, one can easily

implement cq-programs without −∩ on top of dlvhex, which is a prototype implementation

of hex programs; we provide additional details on an implementation of cq-programs

in Section 7.

The examples in the introduction show that cq-programs are more expressive than

dl-programs in [8,10]. This can be made also formally more precise by comparing the

computational complexity of cq-programs and ordinary dl-programs, which shows that

the former can express more difficult problems. This will be done in the next section.
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Table 1 Complexity of deciding strong answer set existence for different cq-programs (com-
pleteness results); for positive such programs, it is listed in parentheses if different.

program KB = (L,P ) L in SHIF(D) L in SHOIN (D)

non-disjunctive dl-program NEXP (EXP) PNEXP(NEXP)

disjunctive dl-program NEXPNP (NEXP) NEXPNP (NEXP)

non-disjunctive cq-program 2-EXP ?

disjunctive cq-program 2-EXP ?

4 Computational Complexity

In this section, we address the computational complexity of cq-programs, and comple-

ment some results in [10] with results for disjunctive dl-programs. However, we refrain

from giving an extensive complexity study here as in [10], and confine to consider the

problem of deciding the existence of a strong answer set for a given (finite) cq-program

KB = (L,P ). Clearly, this problem is decidable if answering (union of) conjunctive

queries over L, augmented with positive and negative assertions, is decidable. This is

the case for many description logics including SHIF(D), while it is currently unknown

whether this is feasible for SHOIN (D), as the decidability of answering conjunctive

queries for this logic is open, cf. [13].

The complexity results are compactly summarized in Table 1, in which the results for

non-disjunctive dl-programs are recalled from [10]. Recall that NEXP are the problems

solvable in non-deterministic exponential time, and that AB is the class of problems

solvable in class A with the help of an oracle for the class B; for further references and

background, cf. [4].

Furthermore, we recall that deciding whether an ordinary disjunctive logic program

(without dl-atoms) has some answer set is NEXPNP-complete, and is NEXP-complete

if the program is disjunction-free, cf. [4]; the latter result is the correspondent of the

seminal result that stable model semantics of normal logic programs is NP-complete in

the propositional case [24]. For SHIF(D), answering UCQs is 2-EXP-complete, i.e.,

complete for double exponential time, as follows from the results of [3] and [21];7 in

fact, Lutz has shown that answering CQs is already 2-EXP-hard for the description

logic ALC [21], which is a core of expressive description logics.

The results show that allowing cq-queries significantly increases the expressiveness of

programs compared to allowing only ordinary dl-queries (assuming the widely accepted

hypothesis that NEXPNP is strictly included in 2-EXP). In fact, for SHOIN (D) it is

currently not known whether cq-programs are decidable. Interestingly, for disjunctive

dl-programs, the dl-atoms do not add complexity compared to the ordinary case,

while for cq-programs the rules do not add complexity, i.e., KB has the complexity of

answering (U)CQs over a DL-KB. This also means that we can transform, in polynomial

time, disjunctive dl-programs to ordinary disjunctive logic programs (thus eliminating

completely the ontology part), and disjunctive cq-programs to answering CQs (thus

eliminating all rules); whether this will be of use in practice remains to be explored in

future investigation.

7 We always assume proper datatypes, such that they do not increase the complexity of
query answering in the underlying DL SHIF resp. SHOIN .
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In the case of positive programs, i.e., in absence of −∩ and not , deciding strong

answer set existence for disjunctive dl-programs has the same complexity as for non-

disjunctive programs with a DL-KB from SHOIN (D), which is lower than for arbitrary

dl-programs (assuming that NEXP is properly included in NEXPNP). The reason is that

the technique for the latter in [10] immediately extends to disjunctive programs. The

NEXP lower bound is inherited from the NEXP-hardness of deciding the consistency

of positive ordinary disjunctive logic programs with constraints, which can be easily

shown adapting proofs e.g. in [4]. For cq-programs, on the other hand, the restriction

to positive programs does not lower the complexity.

We now establish the results more formally. The following lemma is useful.

Lemma 2 Let KB = (L,P ) be a cq-program, let I be an interpretation for KB, and

let a = DL[λ;Q](c) be a ground dl-atom. Then, deciding whether I |=L a is feasible (i)

in co-NEXP, if L is from SHOIN (D) and a is not a (u)cq-atom, (ii) in EXP, if L is

from SHIF(D) and a not a (u)cq-atom, and (iii) in 2-EXP if L is from SHIF(D).

Proof Given I, we need to compute λ(I), which can be done in polynomial time, and

then test L ∪ λ(I) |= Q(c). Obviously, adding all unnegated assertions and negative

concept assertions to L is straightforward, and the negative role assertions and datatype

role memberships can be emulated, using e.g. the technique in Footnote 5, in polynomial

time in a DL-KB L′ such that L∪ λ(I) |= Q(c) iff L′ |= Q(c), where L′ is in SHIF(D)

(resp., SHOIN (D)) if L is in SHIF(D) (resp., SHOIN (D)). Thus (iii) follows by

the results of [3]. Items (i) and (ii) have been established implicitly in [10]. ut

Theorem 3 Given a vocabulary Φ and a cq-program KB = (L,P ), the problem of

deciding whether KB has a strong answer set has the complexity as stated in Table 1

for each combination of program class P and DL knowledge base class L.

Proof The results for non-disjunctive dl-programs were shown in [10,7], and we refer the

reader to these papers for the (very detailed) proofs. Let us consider next disjunctive

dl-programs. The NEXPNP upper bound for the case where L is from SHOIN (D) is

easily derived from Lemma 2 as follows. There are polynomially many ground dl-atoms

that occur in the grounding ground(P ) of P . Recall that for such a ground dl-atom

of form a = DL[λ;Q](c), where λ = S1 op1 p1, . . . , Sm opm pm, and an interpretation

I for KB , λ(I) =
Sm

i=1Ai(I) denotes the value of the input list λ with respect to I.

Now if there are n constant symbols in Φ, then each value λ(I) has size bounded by

mn2, and the number of distinct values λ(I1), . . . , λ(Ir), over all interpretations I for

KB , is bounded by r ≤ (2n2
)m = 2mn2

, which is single exponential in m and n. Thus,

each λ(I) has size polynomial in the size of KB , and the number r of distinct λ(I) is

single exponential in the size of KB . As a consequence, all distinct updates L ∪ λ(I1),

. . . , L ∪ λ(Ir) can be computed in single exponential time, and with the help of an NP

oracle, all possible queries answers L ∪ λ(Ij) |= Q(c), for all j = 1, . . . , r and tuples c,

can be computed in single exponential time; note that a NP oracle is sufficient here

and that we do not need a NEXP oracle: if we pad L with exponentially many dummy

tautologies to L′ (which is feasible in exponential time), then L′ ∪ λ(Ij) |= Q(c) iff

L ∪ λ(Ij) |= Q(c), and by its particular form deciding L′ ∪ λ(Ij) |= Q(c) is in co-NP.

We can therefore decide the existence of some strong answer set M of (L,P ) in two

steps as follows. In a first step, we compute a table of all query results L∪λ(Ij) |= Q(c).

Once we have this database, evaluating ground dl-atoms a with respect to a particular

interpretation I is cheap (compute λ(I), determine the Ij such that λ(I) = λ(Ij),



15

and do a table lookup). In the second step, we proceed similarly as for an ordinary

disjunctive logic program, but with an adapted algorithm: guess M , compute sPM
L , and

check whether M satisfies sPM
L and, using an NP oracle, whether there is no M ′ ⊂M

that satisfies sPM
L . Overall, this is feasible in non-deterministic exponential time using

an NP oracle, which shows that the problem is in NEXPNP. The NEXPNP-hardness is

inherited from ordinary disjunctive logic programs [4].

In presence of (u)cq-atoms, 2-EXP is clearly a lower bound for the complexity of

the problem, even for simple positive non-disjunctive cq-programs, since by the result

of [21] evaluating a single ground dl-atom is 2-EXP-hard. On the other hand, 2-EXP is

also an upper bound: as for dl-programs, we can first construct a table of all relevant

(possibly exponentially many) ground cq-atoms a, with all distinct values λ(I1), . . . ,

λ(Ir) for the input list λ of each a (again, r is at most single exponential) and query

results L∪ λ(Ij) |= Q(c), for all j = 1, . . . , r and tuples c can be constructed, such that

deciding strong answer set existence for (L,P ) can be done in a second step similarly as

for ordinary disjunctive logic programs. Computing the table in the first step is feasible

in 2-EXP, and the second step is then feasible in NEXPNP, thus in 2-EXP. Overall,

this yields a 2-EXP upper bound.

Finally, it remains to prove the entries for positive disjunctive dl-programs. Here, the

same characterization for the existence of a strong answer set as in the non-disjunctive

case from [10] can be exploited, whose proof is analogous: KB = (L,P ) has a strong

answer set iff there exists an interpretation I and a subset S ⊆ {a ∈ DLP | I 6|=L a}
such that the ordinary positive program PI,S , which is obtained from ground(P ) by

deleting each rule that contains a dl-atom a ∈ S and all remaining dl-atoms, has a

model J such that J ⊆ I. Such an I and S can be guessed and verified in exponential

time, which proves membership in NEXP. ut

5 Rewriting Rules

In this section, we turn to equivalence preserving rewritings of (u)cq-atoms, which can

be exploited for program optimization.

As shown in Example 3, in cq-programs we might have different possibilities for

defining the same query. Indeed, the rules r and r′ there are equivalent over any

knowledge base L. However, the evaluation of r′ might be implemented by performing

the join between parent and hates on the DL side in a single call to a DL-reasoner,

while r can be evaluated performing the join on the logic program side, over the results

of two calls to the DL-reasoner. In general, making more calls is more costly, and thus

r′ may be preferable from an implementation point of view. Moreover, the size of the

result transferred by the single call in this rule r′ is smaller than the results of the two

calls.

Towards exploiting such rewriting, we present some transformation rules for replacing

a rule or a set of rules in a cq-program with another rule or set of rules, while preserving

the semantics of the program (see Table 2). By means of (repeated) rule application,

we can transform the program into another, equivalent program, which we consider in

the next section. Indeed, a component for rewriting programs is conceivable, which

rewrites a given cq-program (L,P ) into a refined, equivalent cq-program (L,P ′), which

can be evaluated more efficiently. Recall that as for rule application, any ordinary

dl-atom DL[λ;Q](t), where t is a non-empty list of terms, is equivalent to the cq-atom

DL[λ;Q(t)](X), where X = vars(t). Throughout this and the next section, we disregard
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for simplicity explicit consideration of datatypes; the results should be adjusted, without

major problems, to accommodate them.

In the rewriting rules, the input lists λ1 and λ2 are assumed to be semantically

equivalent (denoted λ1
.
= λ2), that is, λ1(I) = λ2(I), for every Herbrand interpretation

I. This means that λ1 and λ2 modify the same concepts and roles with the same

predicates in the same way; this can be easily recognized (in fact, in linear time). More

liberal but more expensive notions of equivalence, taking L and/or P into account,

might be considered.

Note that the rewriting rules (A), (B), (C), and (E) are applicable in an arbitrary

program P , but (D) and (F) can only be applied in a specific context given by the

preconditions on the rules in the program P .

Query Pushing (A) By this rule, cq-atoms DL[λ1; cq1](Y1) and DL[λ2; cq2](Y2) in

the body of a rule (A1) can be merged to a rule (A2).

Example 12 The rule

a← DL[R1(X,Y ), R2(Y,Z)](X),DL[R3(X,Y )](X,Y )

is equivalent to the rule

a← DL
ˆ
R1(X,Y ′), R2(Y ′, Z), R3(X,Y )

˜
(X,Y ).

Query Pushing can be similarly done when cq1 and cq2 are UCQs; here, we simply

distribute the subqueries and form a single UCQ.

Variable Elimination I + II (B) Suppose an output variable X of a cq-atom in a

rule r of form (B1a) or (B1b) occurs also in an atom X = t. Assume that t is different

from X and that, in case of form (B1a) the underlying DL-KB is under Unique Name

Assumption (UNA) whenever t is an output variable. Then, we can eliminate X from

r as follows. Standardize the non-output variables of cq-atoms apart from the other

variables in r, and replace uniformly X with t in cq, B, and H; let cqX/t, BX/t, and

HX/t denote the respective results. Remove X from the output Y and, if t is a variable

Z, add Z to them; the resulting rule r′, in (B2) is then equivalent to the rule r1 in

(B1a) or to the rule r2 in (B1b). By repeated application of this rule, we may eliminate

multiple output variables of a cq-atom. Note that variables X in equalities X = t not

occurring in any output list can always be eliminated by simple replacement.

Example 13 The rules

r : a(X,Y )← DL[R(X,Z), C(Y ), X = Y ](X,Y ), b(Y )

and

r′ : a(Y, Y )← DL[R(Y,Z), C(Y )](Y ), b(Y )

have the same outcome on every DL-KB L. Here, r′ should be preferred due to the

lower arity of its cq-atom. Similarly, the rule

a(X,Y )← DL[R(X,Z), C(Y ), Y = c](X,Y ), b(Y )

can be simplified to the rule

a(X, c)← DL[R(X,Z), C(c)](X), b(c).

Example 14 Assume that the Unique Name Assumption is not adopted in the Variable

Elimination I rule. To show that we get wrong answers, take the cq-program (L,P ),

where L = {C(a), a = b} and P = {p(X) ← DL[C(X), X = a](X)}. Applying our

Variable Elimination I rewriting, we get P ′ = {p(a)← DL[C(a)]()}. Now, in P we can

infer both p(a) and p(b), whereas in P ′ only p(a) holds.
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Table 2 Equivalences (H = a1∨ · · · ∨ ak; B = b1, . . . , bm, not bm+1, . . . , not bn)

Query Pushing

r : H ← DL[λ1; cq1](Y1),DL[λ2; cq2](Y2), B. (A1)

r′ : H ← DL[λ1; qp(cq1, cq2)](Y1 ∪Y2), B. (A2)

where λ1
.
= λ2, qp(cq1, cq2) = cq′1 ∪ cq′2, and cq′1, cq

′
2 are constructed as follows. Let Z1

and Z2 be the non-distinguished (i.e., existential) variables of cq1 and cq2, respectively.
Rename each X ∈Z1 occurring in cq2 and each X ∈Z2 occurring in cq1 to a fresh variable.

Variable Elimination I

r1 : H ← DL[λ1; cq ∪ {X = t}](Y), B. (B1a)

r′ : HX/t ← DL
ˆ
λ2; cqX/t

˜
(Y \ {X, t}), BX/t. (B2)

Variable Elimination II

r2 : H ← DL[λ1; cq](Y), X = t, B. (B1b)

r′ : HX/t ← DL
ˆ
λ2; cqX/t

˜
(Y \ {X, t}), BX/t. (B2)

where λ1
.
= λ2, X ∈ Y, ·X/t denotes replacement of variable X by t, and L must be under

UNA for Variable Elimination I.

Inequality Pushing

r : H ← DL[λ1; cq](Y), X 6= t, B. (C1)

r′ : H ← DL[λ2; cq ∪ {X 6= t}](Y), B. (C2)

where λ1
.
= λ2, X ∈ Y, and L must be under UNA. If t is a variable, then also t ∈ Y.

Fact Pushing

P̄ =


f(c1), f(c2), . . . , f(c`),
H ← DL[λ1;ucq](Y), f(Y′), B.

ff
(D1)

P̄ ′ =


f(c1), f(c2), . . . , f(c`),
H ← DL[λ2; fp(ucq)](Y), B.

ff
(D2)

where λ1
.
= λ2, cj are ground, Y′ ⊆ Y, ucq =

Wr
i=1 cqi, and fp(ucq) =Wr

i=1

“W`
j=1 cqi ∪ {Y′ = cj}

”
. Applicability for P̄ ⊆ P of a general cq-program (L,P )

requires that f does not occur in heads of rules in P \ P̄ .

Let H,H′, Hi be heads, B,B′, Bi be bodies, and r be a rule of form H ← a(Y), B.

Unfolding

P̄ = {r} ∪ {H′ ∨ a(Y′)← B′.} (E1)

P̄ ′ = P̄ ∪ {H′θ ∨Hθ ← B′θ,Bθ.} (E2)

where θ is the most general unifier (mgu) of a(Y) and a(Y′) (thus a(Yθ) = a(Y′θ)).

Complete Unfolding

P = Q ∪ {r} ∪ { ri : Hi ∨ a(Yi)←Bi.} (F1)

P ′ = (P \ {r}) ∪ { r′i : Hiθi ∨Hθi ←Biθi, Bθi.} (F2)

where 1 ≤ i ≤ `, Q has no rules of form r, ri, no a(Z) ∈ Hi is unifiable with a(Y), and θi

is the mgu of a(Y) and a(Yi) (thus a(Yθi) = a(Yiθi)).

Inequality Pushing (C) If the DL-engine is used under the UNA and supports

inequalities in the query language, we can easily rewrite rules with inequality (6=) in

the body by pushing it to the cq-query. A rule of form (C1) can be replaced by (C2).
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Example 15 Consider the rule

big(M)←DL[Wine](W1),DL[Wine](W2),W1 6= W2,

DL[hasMaker ](W1,M),DL[hasMaker ](W2,M).

Here, we want to know all wineries producing at least two different wines. We can

rewrite above rule, by Query and Inequality Pushing, to the rule

big(M)← DL

»
Wine(W1),Wine(W2),W1 6= W2,

hasMaker(W1,M), hasMaker(W2,M)

–
(M,W1,W2).

A similar rule is applicable to a ucq-atom DL[λ;ucq](Y) in place of DL[λ; cq](Y).

In that case, we have to add {X 6= t} to each cqi in ucq =
Wm

i=1 cqi.

Example 16 To illustrate what goes wrong if we would not adopt the Unique Name

Assumption in Inequality Pushing, take the cq-program (L,P ), where L = {A(a), B(b)}
and P = {p(X) ← DL[B(X)](X), X 6= a}. Applying Inequality Pushing, we get

P ′ = {p(X)← DL[B(X), X 6= a](X)}. Now, in P we can infer p(b), whereas in P ′ we

cannot infer p(b), since in some models of L it holds that a = b.

Fact Pushing (D) Suppose we have a program with “selection predicates,” i.e., facts

which serve to select a specific property in a rule. We can push such facts into a ucq-atom

and remove the selection atom from the rule body.

Example 17 Consider the program P , where we only want to know the children of joe

and jill:

P =


f(joe). f(jill).

fchild(Y )← DL[isFatherOf ](X,Y ), f(X).

ff
We may rewrite the program to a more compact one with the help of ucq-atoms:

f(joe). f(jill).

fchild(Y )← DL

»
isFatherOf (X,Y ),

X = joe

ff
∨


isFatherOf (X,Y ),

X = jill

ff–
(X,Y ).

Such a rewriting makes sense in situations were isFatherOf has many values and

thus would lead to query, while uselessly, for each known father-child relationship.

The program P̄ in (D1) can be rewritten to P̄ ′ in (D2).

Unfolding (E) and Complete Unfolding (F) Unfolding rules is a standard method

for partial evaluation of ordinary disjunctive logic programs under answer set semantics,

cf. [37]. It can be also applied in the context of cq-programs, with no special adaptation.

After folding rules with (u)cq-atoms in their body into other rules, subsequent Query

Pushing might be applied. In this way, inference propagation can be shortcut.

The following results state that the above rewritings preserve equivalence. Let

P ≡L Q denote that (L,P ) and (L,Q) have the same answer sets.

Theorem 4 Let r and r′ be rules of form (Θ1) and (Θ2), respectively, Θ ∈ {A,B,C},
where UNA is adopted for Variable Elimination I and Inequality Pushing. Let (L,P )

be a cq-program with r ∈ P . Then, P ≡L (P \ {r}) ∪ {r′}.

Theorem 5 Let P̄ and P̄ ′ be rule sets of form (Θ1) and (Θ2), respectively, Θ ∈
{D,E}. Let (L,P ) be a cq-program such that P̄ ⊆ P . Then, P̄ ≡L P̄ ′ and P ≡L

(P \ P̄ ) ∪ P̄ ′.

Theorem 6 Let P and P ′ be rule sets of form (F1) and (F2). Then, P ≡L P ′.

In the remainder of this section, we formally prove these results, where we first

consider Theorem 4, and then Theorems 5 and 6 in Section 5.2.
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5.1 Proof of Theorem 4

We first state some useful Lemmas.

Lemma 3 Let a = DL[λ1; cq1](Y1) and b = DL[λ2; cq2](Y2) be two cq-atoms such

that λ1
.
= λ2, and θ be a ground substitution over domain Y1 ∪Y2. Then, I |=L aθ

and I |=L bθ iff I |=L DL[λ1; (cq′1 ∪ cq′2)θ]().

Proof (⇒) Suppose I |=L aθ and I |=L bθ. Therefore both L ∪ λ1(I) |= φcq1(Y1θ) and

L ∪ λ2(I) |= φcq2(Y2θ) hold. Thus, L ∪ λ1(I) |= φcq′1
(Y1θ) ∧ φcq′2

(Y2θ) because of

λ1
.
= λ2, and this implies that L ∪ λ1(I) |= φcq′1∪cq′2

((Y1 ∪ Y2)θ), because for the

rewritten non-distinguished variables Y′
1 ∪Y′

2 of cq′1(Y1θ) ∪ cq′2(Y2θ), it holds that

Y′
1 ∩Y′

2 = ∅ due to the variable renaming used during the rewriting. Consequently,

I |=L DL[λ1; (cq′1 ∪ cq′2)θ]().

(⇐) Let I |=L DL[λ1; (cq′1 ∪ cq′2)θ](), hence L ∪ λ1(I) |= φcq′1∪cq′2
((Y1 ∪Y2)θ) implies

that both L ∪ λ1(I) |= φcq1(Y1θ) and L ∪ λ1(I) |= φcq2(Y2θ) hold. From λ1
.
= λ2, we

conclude that L ∪ λ2(I) |= φcq2(Y2θ), hence I |=L aθ and I |=L bθ.

For the case were we have UCQs ucq1 =
Wr1

i=1 cq1,i and ucq2 =
Wr2

i=1 cq2,i in place of

cq1 and cq2, respectively, the proof is straightforward by using
Wr1

i=1

“Wr2
j=1 cq

′
1,i ∪ cq

′
2,j

”
instead of cq′1 ∪ cq′2. ut

Lemma 4 Let a = DL[λ1; cq ∪ {X = t}](Y) and b = DL[λ2; cqX/t](Y \ {X, t}) be cq-

atoms such that λ1
.
= λ2, and θ be a ground substitution over domain Y. The following

statements hold:

(1) If t ∈ Y and L is under UNA, then I |=L aθ iff I |=L bθ.

(2) If t /∈ Y, then I |=L aθ iff I |=L bθ.

Proof (1) (⇒) Suppose I |=L aθ. I |=L (X = t)θ and UNA in L imply that Xθ and tθ

denote the same individual symbol. Hence, cq(Yθ) = cqX/t(Y \ {X, t})θ (even if

X or t do not occur in the query atoms in cq) and λ1
.
= λ2 implies I |=L b.

(⇐) Now suppose I |=L bθ. Since X does not appear in b, we replace occurrences

of t in cqX/t(Y \ {X, t}) to X such that cq(Y) is obtained. Moreover, setting Xθ

to tθ implies (X = t)θ. Therefore, I |=L aθ.

(2) The proof is essentially the same as (1). Here, we do not need UNA for replacing X

by t, since t is not in the domain of θ. X = t assures then that both terms denote

the same individual in the universe. See also Lemma 6.1 in [29]. ut

Lemma 5 Let a = DL[λ1; cq](Y) and b = DL[λ2; cq ∪ {X 6= t}](Y) be cq-atoms such

that λ1
.
= λ2, X ∈ Y, and θ be a ground substitution over a domain Y. Then, for L

being under UNA, I |=L aθ and I |=L (X 6= t)θ iff I |=L bθ.

Proof (⇒) Suppose I |=L aθ and I |=L (X 6= t)θ. We derive that Xθ and tθ are

syntactically different. Hence, cq(Yθ) ∪ {X 6= t}θ holds in L ∪ λ2(I) by λ1
.
= λ2,

therefore I |=L bθ.

(⇐) Now we assume that I |=L bθ. Since L ∪ λ2(I) satisfies cq(Yθ) and {X 6= t}θ, we

conclude that L ∪ λ1(I) |=L cq(Yθ) and hence I |=L aθ and I |=L (X 6= t)θ. ut
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In the following, let ρ be a rule of form r1, r2 (i.e., of form (B1a) resp. (B1b)), or r

(i.e., (A1) resp. (C1)). Let r′ be a rule of form (A2), (B2), and (C2), resp. Then, let

P ′ = (P \ {ρ}) ∪ {r′}, where ρ and r′ are equivalent rules according to the rewriting

rules (A), (B), or (C). We will show now that I is a (strong) answer set of (L,P ) iff I

is a (strong) answer set of (L,P ′).

Proof (for rewriting rules (A), (B), and (C) of Theorem 4) We first show for positive

cq-programs (L,P ), I is a minimal model of (L,P ) iff I is a minimal model of (L,P ′).
(⇒) Suppose I is a minimal model of (L,P ). Towards a contradiction, assume I

is not a model of (L,P ′). Thus, for a ground substitution θ, there is a ground version

of r′ in ground(P ′), r′θ, such that I 6|=L H(r′θ) and I |=L B(r′θ). Since I |=L P ,

in particular ρθ ∈ ground(P ), we get that (i) I |=L B(ρθ) and I |=L H(ρθ), or (ii)

I 6|=L B(ρθ). In case of (i), we get a contradiction for I 6|=L H(r′θ), since I |=L H(ρθ)

and H(ρθ) = H(r′θ), hence I is a model of (L,P ′). Now for case (ii), we have that

I 6|=L B(ρθ), hence a literal of B(ρθ) is false in I. If a ∈ B(ρθ) is false in I, then

a ∈ B(r′θ) is false in I by Lemma 3 or 5 (resp. 4) for ρ of form r (resp. r1 or r2), which

is a contradiction for I |=L B(r′θ). Again, I is a model of (L,P ′).
Now assume that J ⊂ I is a minimal model of (L,P ′), therefore J is not a model of

(L,P ). For a ground substitution θ, there is a ground version of ρθ in ground(P ) such that

J 6|=L H(ρθ) and J |=L B(ρθ). Since J |=L r′θ for a ground r′θ ∈ ground(P ′), we obtain

the following cases. If J |=L B(r′θ) and J |=L H(r′θ), we derive a contradiction, since

H(ρθ) = H(r′θ). Otherwise, if J 6|=L B(r′θ), we derive a contradiction at J |=L B(ρθ),

since Lemma 3, 4, and 5 applies here as well. Consequently, I is a minimal model of

(L,P ′).
(⇐) Let I be a minimal model of (L,P ′). We assume now that I is not a model of

(L,P ). Thus, for a ground substitution θ, there is a ground version of ρ in ground(P ),

ρθ, such that I 6|=L H(ρθ) and I |=L B(ρθ). By (⇒), we derive a contradiction, hence

I is a model of (L,P ).

To show that I is also a minimal model of (L,P ), assume the contrary, there is a

J ⊂ I such that J is a minimal model of (L,P ). This entails that J is not a model for

P ′. Again, using (⇒) and Lemma 3, 4, or 5, we conclude that J cannot be a minimal

model of (L,P ), hence I is a minimal model of (L,P ).

Now we establish the proof for rewriting rules (A), (B), and (C) in Section 5.

Let I be a strong answer set of (L,P ). Since sP I
L and sP ′IL are positive cq-programs,

we show now that I is a minimal model of sP I
L iff I is a minimal model of sP ′IL . To this

end, consider a ground rule of form ρ ∈ P with ρθ ∈ ground(P ), where θ is a ground

substitution. We distinguish the cases:

(i) ρθ /∈ sP I
L: this implies that I 6|=L a for a ∈ B+(ρθ) ∩ DL?

P , or I |=L l for

l ∈ B−(ρθ). We conclude that r′θ /∈ sP ′IL , since whenever b ∈ B+(ρθ) ∩DL?
P is

used in the process of the rewriting, and I does not satisfy b, and by the actual

Lemma 3, 4, or 5, I does not satisfy b′ ∈ B+(r′θ) ∩ DL?
P ′ either, where b′ is

the outcome of the resp. rewriting rule. Thus, sP I
L = sP ′IL , which implies I is a

minimal model of sP I
L iff I is a minimal model of sP ′IL .

(ii) ρθ ∈ sP I
L: then, I |=L a for all a ∈ B+(ρθ)∩DL?

P , and I 6|=L l for all l ∈ B−(ρθ).

Therefore, by applying the actual Lemma 3, 4, or 5, r′θ ∈ sP ′IL . Hence, I |=L ρθ

iff I |=L r′θ, so I is a minimal model of sP I
L iff I is a minimal model of sP ′IL .

Therefore, (L,P ) has the same answer sets as (L,P ′). ut
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5.2 Proofs for Theorems 5 and 6

We split the proofs for Theorems 5 and 6 in two parts, the first part considers rewriting

rule (D) of Theorem 5, while the second part deals with rewriting rules (E) and (F)

of Theorems 5 and 6, respectively. We will show for each part of the proof that I is a

strong answer set of (L,P ) iff I is a strong answer set of (L,P ′). Again, we first state

some useful lemmas.

Lemma 6 Let r and r′ be positive cq-rules of form

r : H ← DL

"
λ1;

r_
i=1

cqi

#
(Y), f(Y′), B

and

r′ : H ← DL

24λ2;

r_
i=1

0@_̀
j=1

cqi ∪
˘
Y′ = cj

¯1A35(Y), B,

respectively, where λ1
.
= λ2 and Y′ ⊆ Y, let θ be a ground substitution over a domain

Y, and let I be a Herbrand interpretation such that f(cj) ∈ I for 1 ≤ j ≤ ` are all the

literals with predicate f in I. Then, I |=L rθ if and only if I |=L r′θ.

Proof (⇒) Assume I |=L f(cj) for 1 ≤ j ≤ ` and I |=L rθ hold. By I |=L rθ, either (i)

I |=L H(rθ) and I |=L B+(rθ) or (ii) I 6|=L B+(rθ).

(i) I |=L B+(rθ) implies I |=L f(Y′θ). Since I |=L f(cj) for 1 ≤ j ≤ `, we

obtain that f(Y′θ) = f(c) for a c ∈ {c1, . . . , c`}. Thus, the disjunction over

cqiθ ∪ {Y′θ = cj} for 1 ≤ j ≤ ` must hold for some cj = c. By λ1
.
= λ2, we

obtain L ∪ λ2(I) |=
Wr

i=1

“W`
j=1 cqiθ ∪

˘
Y′θ = cj

¯”
, therefore I satisfies

DL

24λ2;

r_
i=1

0@_̀
j=1

cqiθ ∪
˘
Y′θ = cj

¯1A35()

under L, and I |=L r′θ.
(ii) We obtain another two cases. First, I 6|=L Bθ implies I 6|= B+(r′θ), hence I |=L r′θ.

Secondly, some of f(Y′θ) and DL
ˆ
λ1;
Wr

i=1 cqiθ
˜
() are not satisfied under L. By

λ1
.
= λ2, this implies that I does not satisfy

DL

24λ2;

r_
i=1

0@_̀
j=1

cqiθ ∪
˘
Y′θ = cj

¯1A35()

under L either, thus I |=L r′θ.

(⇐) Assume I |=L r′θ. Either I |=L H(r′θ) and I |=L B+(r′θ), or I 6|=L B+(r′θ).
Similar to the (⇒) direction, we obtain now that I |=L rθ. ut

The next lemma is a generalization of a similar lemma in [37] for ordinary positive

disjunctive logic programs to cq-programs.

Lemma 7 Let (L,P ) be a positive cq-program and I a minimal model of (L,P ). Then,

an atom a is in I iff there is a ground rule a ∨H ← B from P such that I \ {a} |= B

and I \ {a} 6|= H.
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Proof (⇒) Suppose for some atom a in I, there is no ground rule a ∨H ← B from P

such that I \ {a} |=L B and I \ {a} 6|=L H. Then, for each ground rule r of the form

a ∨H ← B, I \ {a} 6|=L B or I \ {a} |=L H; hence it holds that I \ {a} |=L B implies

I \ {a} |=L H. In this case, I \ {a} satisfies each rule r and becomes a model of (L,P ),

which contradicts the assumption that I is a minimal model. Hence the result follows.

(⇐) Assume that a is not in I. Then I \ {a} = I, and for a ground rule a ∨H ← B in

P , I |=L B and I 6|=L H imply a ∈ I, which is a contradiction. ut

We are now ready to give proofs for Theorems 5 and 6.

Proof (for rewriting rule (D) of Theorem 5) For positive cq-programs (L, P̄ ) and (L, P̄ ′)
(where P̄ ′ = (P̄ \ {r}) ∪ {r′}) the minimal models coincide; this follows from Lemma 6

and the fact that for every minimal model I of (L, P̄ ) resp. (L, P̄ ′), it holds that f(c) ∈ I
iff c = cj for some j ∈ {1, . . . , `}.

Now let (L,P ) and (L,P ′) be positive cq-programs, where P̄ ⊆ P and P ′ =

(P \ P̄ ) ∪ P̄ ′ such that f does not occur in the heads of P \ P̄ . Since P ′ is logically

equivalent to P , we obtain that the minimal models of (L,P ) and (L,P ′) coincide.

For the general case, (L, P̄ ) and (L, P̄ ′) are cq-programs without restriction, we

show now that sP̄ I
L = (sP̄ I

L)′, where (sP̄ I
L)′ is obtained from applying rewriting rule

(D) to the ground program (L, sP̄ I
L).

Let I be a strong answer set of (L, P̄ ). I is a minimal model of the positive cq-

program (L, sP̄ I
L). As shown above, I is a minimal model of (L, sP̄ I

L) iff I is a minimal

model of (L, (sP̄ I
L)′). Consider r ∈ P̄ , for a ground substitution θ of r; we obtain the

case distinction:

(i) I 6|=L B−(rθ) and I |=L B+(rθ) ∩ DL?
P̄ : In this case, rθ ∈ sP̄ I

L, therefore

r′θ ∈ (sP̄ I
L)′. Since r′ ∈ P̄ ′ and (i) hold, we conclude that r′ ∈ sP̄ ′IL.

(ii) for some l ∈ B−(rθ), I |=L l, or for some a ∈ B+(rθ)∩DL?
P̄ , I 6|=L a hold: In this

case, rθ /∈ sP̄ I
L, therefore r′θ /∈ (sP̄ I

L)′. Since r′ ∈ P̄ ′ and (ii) hold, we conclude

that r′ /∈ sP̄ ′IL.

Thus, sP̄ ′
I
L = (sP̄ I

L)′, that is, the reduct of the rewritten rules P̄ ′ is equal to the

rewritten rules of the reduct of P̄ , hence I is a minimal model of (L, (sP̄ I
L)′) iff I is

a minimal model of (L, sP̄ ′
I
L). Therefore, I is a strong answer set of (L, P̄ ) iff I is a

strong answer set of (L, P̄ ′).

Now we are ready to finish the proof and show coincidence of strong answer sets for

unrestricted (L,P ) and (L,P ′), where P̄ ⊆ P and P ′ = (P \ P̄ ) ∪ P̄ ′ such that f does

not occur in the heads of P \ P̄ . Since P ′ is logically equivalent to P , we obtain that

the strong answer sets of (L,P ) and (L,P ′) are in one-to-one correspondence. ut

Proof (for rewriting rules (E) and (F) of Theorem 6) We first show that for positive

cq-programs (L, P̄ ) and (L, P̄ ′), the minimal models coincide.

To this end, let P̄ consist of the positive cq-rules

r : H ← a(Y), B

and

r1 : H ′ ∨ a(Y′)← B′,
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where B = b1, . . . , bm, B′ = b′1, . . . , b
′
n, H = a1 ∨ · · · ∨ ak, H ′ = a′1 ∨ · · · a′l, and

DLP̄ = DL+
P̄

, such that for an mgu θ of a(Y) and a(Y′), a(Yθ) = a(Y′θ). And let P̄ ′

consist of all the rules in P̄ and the positive cq-rule

r′1 : H ′θ ∨Hθ ← B′θ,Bθ.

Due to the unfolding rule (E), P̄ ′ = P̄ ∪ {r′1}, which is logically equivalent to P̄ , hence

(L, P̄ ) and (L, P̄ ′) have the same minimal models and thus P̄ ≡L P̄ ′. Similarly, when

P̄ ⊆ P for an arbitrary positive set of cq-rules P and P ′ = P ∪ {r′1}, I is a minimal

model of P iff I is a minimal model of P ′.
Now we show that in case of Complete Unfolding (F), the positive cq-program

(L,P ) has the same minimal models as the positive cq-program (L,P ′).
Let r be as above, Q be a set of positive cq-rules such that no rules of form r and

ri appear in it, where ri is a cq-rule of form

ri : Hi ∨ a(Yi)← Bi (1 ≤ i ≤ `),

such that each Hi either does not contain a literal of form a(Z), or no a(Z) ∈ Hi is

unifiable with a(Y); and P be the set of cq-rules Q ∪ {r} ∪ {ri | 1 ≤ i ≤ `}, while

P ′ = (P \ {r}) ∪ {r′i : Hiθi ∨ Hθi ← Biθi, Bθi (1 ≤ i ≤ `)} for mgus θi such that

a(Y) and a(Yi) unify.

(⇒) Assume I is a minimal model of (L,P ). Since I satisfies ground versions of r

and all ground ri, we obtain that I satisfies all of the corresponding ground versions

of r′i. Thus, we get that I is a model of (L,P ′). Towards a contradiction, assume that

J is a minimal model of (L,P ′), such that J ⊂ I. J is not a model of (L,P ) and a

ground r must occur unsatisfied in ground(P ), thus for a ground substitution η of r,

J 6|=L rη, which implies J |=L B(rη) and J 6|=L H(rη). By J |=L B(rη), it follows that

J |=L a(Yη). By Lemma 7, we get for a ground r′σ of a rule r′ ∈ P ′, i.e., either r′iσ
or riσ, where σ is a ground substitution, a(Yη) ∈ H(r′σ). Since r′σ = r′ση, we get

a(Yη) = a(Yση), and hence a(Yση) ∈ H(r′ση). From J |=L B(rη) and J 6|=L H(rη),

we conclude J |=L B(rση) and J 6|=L H(rση). We distinguish the cases:

(i) r′ = r′i: Assume that r′ση is a ground instance of r′i and a(Yση) ∈ H(r′iση). The

mgu θi of a(Y) and a(Yi) implies ση = θiρ for some ρ. Since a(Yθi) = a(Yiθi),

we get a(Yση) = a(Yiση). Since a(Y) is not unifiable with any literal in Hi of

ri, a(Yiση) /∈ Hiση. Thus, a(Yiση) must be one of Hθση. J |=L a(Yση) implies

J |=L Hθση, but this contradicts J 6|=L H(rση). Therefore, I is also a minimal

model of (L,P ′).
(ii) r′ = ri: Now suppose r′ση is a ground instance of ri with a(Yση) = a(Yiση).

Applying Lemma 7, from a(Yση) ∈ J , we conclude J \{a(Yση)} |=L B(riση) and

J \ {a(Yση)} 6|=L Hiση. Since a(Yση) /∈ B(riση), we get J |=L B(riση). Since

a(Y) is not unifiable with any literal in Hi of ri, we obtain a(Yση) /∈ Hiση and

also J 6|=L Hiση. J |=L B(rση) and J 6|=L H(rση) now implies that J 6|=L r′iση.

Since a(Yση) = a(Yiση) and a(Yθi) = a(Yiθi), we get ση = θiρ for some ρ, thus

r′iση is a ground instance of r′i ∈ P
′. Hence, r′iρ ∈ ground(P ′) is not satisfied,

which contradicts the assumption that J is a model of (L,P ′). Therefore, I is a

minimal model of (L,P ′).

(⇐) Let I be a minimal model of (L,P ′). Assuming that I is not a model of (L,P ),

then I 6|=L rη for a ground substitution η. This implies I 6|=L H(rη) and I |=L B(rη),

which in turn guarantees that I |=L a(Yη). By Lemma 7, we obtain for a ground
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version r′σ of a rule r′ ∈ P̄ ′, i.e., either r′iσ or riσ, where σ is a ground substitution,

a(Yη) ∈ H(r′σ). We will now apply a similar proof to the (⇒) direction and get the

desired contradictions. Thus, I is a model of (L,P ). Now we show that I is in fact a

minimal model. To this end, assume that there is a minimal model J ⊂ I of (L,P ).

Proceeding as in (⇒), J is also a minimal model of (L,P ′), which contradicts our

assumption that I is a minimal model of (L,P ′), hence I is also a minimal model of

(L,P ).

Now we turn our attention to the general case, that is, (L,P ) and (L,P ′) are

cq-programs without restrictions. We show that sP ′IL = (sP I
L)′, where (sP I

L)′ is the

complete unfolded positive cq-program of the reduct of (L,P ).

Let I be a strong answer set of (L,P ). I is a minimal model of (L, sP I
L), which is a

positive program. Hence, by our first part of the proof, I is a minimal model of (L, sP I
L)

iff I is a minimal model of (L, (sP I
L)′). Let us consider r, ri ∈ P . We have an mgu θi

for a(Yθi) = a(Yiθi), and for a ground substitution η, a(Yη) = a′(Yiη). This implies

that η = θiρ for some substitution ρ. We now distinguish the cases:

(i) I 6|=L B−(rη), I 6|=L B−(riη), I |=L B+(rη) ∩DL?
P , and I |=L B+(riη) ∩DL?

P :

Here, rη, riη ∈ sP I
L. By our unfolding rule, we get that r′iη ∈ (sP I

L)′. Since r′i ∈ P̄
′,

η = θiρ, and (i) hold, we conclude r′iη is in sP ′IL .

(ii) for some l ∈ B−(rη)∪B−(riη), I |=L l, or for some a ∈ (B+(rη)∪B+(riη))∩DL?
P ,

I 6|=L a hold: In this case, some of rη and riη is not in sP I
L. Therefore, r′iη is not

in (sP I
L)′. Since r′i ∈ P

′, η = θiρ, and (ii) hold, we conclude r′iη is not in sP ′IL

either.

Thus, sP ′IL = (sP I
L)′, i.e., the reduct of the complete unfolded program P ′ and the

complete unfolded reduct of P coincide. This implies I is a minimal model of (L, (sP I
L)′)

iff I is a minimal model of (L, sP ′IL ). Therefore, I is a strong answer set of (L,P ′). ut

6 Rewriting Algorithms

Based on the results above, we describe algorithms which combine rewriting rules into

a single module for optimizing cq-programs. The optimization process takes several

steps. In each step, a special rewriting algorithm works on the result handed over by

the preceding step. Note that, in general, some of the rewriting rules might eliminate

some predicate name from a given program. This might not be desired if such predicate

names play the role of output predicates. Indeed, usually a program P contains auxiliary

rules conceived for importing knowledge from an ontology, or to compute intermediate

results, while important information, from the user’s point of view, is carried by output

predicates. We introduce thus a set F of filter predicates which are explicitly preserved

from possible elimination.

The first step performs unfolding, taking filter predicates from F into account. That

is, only literals with a predicate from F are kept.

Algorithm 1 uses the function factpush(P ) for Fact Pushing. This function tries

to turn a program P into a more efficient one by merging rules according to the

Fact Pushing (D) equivalence in Section 5. The algorithm also combines filtering and

unfolding (see equivalences (E) and (F)) using unfold(a, rH , rB), which takes two rules

rH and rB and returns the unfolding of rB with rH w.r.t. a literal a. Note that

do unfold(a, rH , rB , P ) is a generic function for deciding whether the unfolding of a

rule rH in rB w.r.t. a given program P and a literal a can be done (or is worth being
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Algorithm 1: merge(P, F ): Merge cq-rules in program P w.r.t. F

Input: Program P , Filter F = {p1, . . . , pn}
Result: Unfolded program P
repeat1

P l = P = factpush(P )2

C = {a, a′ | ∃ r, r′ ∈ P : a′ ∈ H(r′), a ∈ B+(r), and a′ unifiable with a}3

if C 6= ∅ then4

choose a ∈ C5

P ′ = ∅6

RH = {r ∈ P | a unifies with a′ ∈ H(r)}7

RB = {r ∈ P | a unifies with a′ ∈ B+(r)}8

stop unfold = true9

forall rB ∈ RB do10

forall rH ∈ RH do11

if do unfold(a, rH , rB , P ) then12

stop unfold = false13

add rH and unfold(a, rH , rB) to P ′14

if | {b ∈ H(rH) such that b unifies with a} | > 1 then add rB to P ′15

else16

add rH and rB to P ′17

end18

end19

end20

P = P ′ ∪ (P \ (RB ∪RH))21

end22

until P l = P or stop unfold is true23

return filter(P, F )24

Algorithm 2: RuleOptimizer(P ): Optimize the bodies of all cq-rules in P

foreach r ∈ P such that B+(r) 6= ∅ do1

choose b ∈ B+(r)2

B+(r) = BodyOptimizer
`
b, B+(r) \ {b}, ∅, ∅

´
3

r = VarElim(r)4

end5

return P6

done); this decision may be taken, e.g., using a cost model (as we will see later in this

section). do unfold may also use, e.g., an internal counter for the numbers of iterations

or rule unfoldings, and return false if a threshold is exceeded. The case where more than

one atom in the head of rB unifies with a must be considered in do unfold , because

we cannot apply the complete unfolding rewriting rule in this scenario. The function

filter(P, F ) eliminates rules which have no influence on the filtered output. Such rules

are those of form H ← B where H is nonempty and has no predicate from F and no

literal a unifiable either (i) with some literal in the body of a rule from P , or (ii) with

some literal in a disjunctive rule head in P , or (iii) with the opposite of some literal in

a rule head in P .

The following theorem states that Algorithm 1 works correctly. For finite sets

of cq-rules P and Q, a DL-KB L, and a set of predicates F , let P ≡F
L Q denote

that (L,P ) and (L,Q) have the same strong answer sets w.r.t. F . That is, if M

is a strong answer set of (L,P ), then (L,Q) has a strong answer set N such that

M \ {p(c) | p /∈ F} = N \ {p(c) | p /∈ F} and vice versa.
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Algorithm 3: BodyOptimizer(o,B,C,O): Push queries in body B w.r.t. o

Input: atom o, body B, carry atoms C, and optimized body O
Result: pushed optimized body B
if B 6= ∅ then1

choose b ∈ B2

if do push(o, b) then3

o = push(o, b)4

else5

C = C ∪ {b}6

end7

if |B| > 1 then8

return BodyOptimizer(o,B \ {b}, C,O)9

else if |C| 6= ∅ then10

choose c ∈ C11

return BodyOptimizer(c, C \ {c}, ∅, O ∪ {o})12

end13

end14

return O ∪ {o}15

Algorithm 4: VarElim(r): Eliminate variables in r

Input: cq-rule r
Result: optimized r
forall a = DL[λ; cq](Y) in B+(r) s.t. X ∈ Y do1

if either X = t is in cq and L is under UNA, or X = t is in B+(r) then2

r = H(r)X/t ← DL
ˆ
λ; cqX/t

˜
(Y \ {X, t}), (B+(r) \ {a})X/t, not B−(r)X/t3

end4

end5

return r6

Theorem 7 For a cq-program (L,P ) and filter F , P ≡F
L merge(P, F ).

Proof Algorithm 1 first copies P to P l and applies Fact Pushing to P . Now suppose

that we cannot do the Unfolding part of the algorithm, i.e., C = ∅ and only the Fact

Pushing step takes part in the optimization process. merge(P ) eventually halts, since

we cannot push any facts in P , therefore P = P l. By part (D) of Theorem 5, Fact

Pushing preserves the answer sets, hence P ≡F
L merge(P, F ).

Now assume that we unfold some rules in P , i.e., C 6= ∅. Some rules in P have a

common atom a ∈ C in the head and in the positive body, while a does not occur in the

negative part of any rule in P . These a can be unfolded using the Unfolding rule (E).

Algorithm 1 then proceeds by possibly unfolding all the rules rH ∈ RH and rB ∈ RB by

means of unfold(a, rH , rB), i.e., folding rH into rB w.r.t. a. Since pred(H(r)) ∩ P 6= ∅,
we always add r to P ′. Thus, either unfold(a, rH , rB)∪{rH} or {rH , rB} are contained

in P ′, depending on the outcome of do unfold . Eventually, after all the unfolding had

been carried out for a particular a ∈ C, we replace P by P ′ ∪ (P \ (RB ∪RH)), which

amounts to replacing P by (P \ P̄ ) ∪ P̄ ′ for all possible P̄ and P̄ ′, which are defined as

in Theorem 5. Therefore, by part (E) of Theorem 5, one unfolding step for an a ∈ C
preserves the answer sets, hence after all other atoms of C had been unfolded, we

still have the same answer sets as the program we started the unfolding procedure

with. Ultimately, for this case, the unfolding procedure halts, since in each round of

merge(P, F )’s main-loop, we check whether P equals P l, the program P from which

we started an optimization round, which indicates that no Unfolding or Fact Pushing
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could take place. Thus, at the end of the main loop, P ≡L Q holds. The final call of

filter(P, F ) removes rules which may lead only to the inclusion of atoms p(c) in the

strong answer sets where p /∈ F , and p(c) can not interfere with other rules by the

conditions (i)–(iii). Thus, P ≡F
L Q holds. ut

After the unfolding process, we can use Algorithm 2 for optimizing all the different

kinds of queries in P . Here, inside of the subroutine BodyOptimizer() (Algorithm 3),

we utilize push(o, b), which takes any combination of two dl-atoms and generates an

optimized (u)cq-atom according to the rewriting rules (A) and (C). Similar to do unfold

in Algorithm 1, do push(o, b) is a generic function for checking the applicability of the

rewriting rules (A) and (C), i.e., it checks for compatibility of the input lists of the

atoms o and b, and decides whether pushing of o and b should be done (for instance,

UNA is necessary for (C)). After that, the algorithm eliminates variables with help of

Algorithm 4 in the output of dl-atoms according to Variable Elimination (B).

Theorem 8 For every cq-program (L,P ), P ≡L RuleOptimizer(P ).

Proof We show now that AS(P ) = AS(RuleOptimizer(P )). Since RuleOptimizer(P )

takes each r ∈ P and tries to optimize it, we have to check that each round of the

main-loop preserves the answer sets.

For each r with B+(r) = ∅, it is clear that no pushing can be performed, hence the

answer sets remain the same.

For a rule r with dl-atoms in the positive body, i.e., with an arbitrary b ∈ B+(r),

I |=L B+(r) iff I |=L BodyOptimizer
`
b,B+(r) \ {b}, ∅, ∅

´
. Since the whole optimization

procedure boils down to repetitive pushing of atoms via push(o, b), we only have to

check that o and b in contrast to push(o, b) have the same answers over an arbitrary

DL-KB L. We obtain that in a rule r with o, b in B+(r), we get a rule r′ by replacing

o, b in r with its optimized form push(o, b). Thus, by Theorem 4, we immediately get

that AS(P ) = AS((P \ {r}) ∪ {r′}).
The next subroutine called is VarElim(r), which implements Variable Elimination I

and II by carefully taking each dl-atom in r into account, which has an atom X = t

in its CQ or in the rule body. Again, by Theorem 4, each replacement in the rules

preserves the answer sets. ut

Example 18 Let us reconsider the region program on the wine ontology in Example 8.

Using the optimization methods for cq-programs we obtain from P an equivalent

program P ′, where the rule r1 in P is replaced by

visit(L) ∨ ¬visit(L)← DL

»
WhiteWine(W1),RedWine(W2),

locatedIn(W1, L), locatedIn(W2, L)

–
(W1,W2, L),

not DL
ˆ
locatedIn(L,L′)

˜
(L),

and rule r5 in P is replaced by

delicate region(W )← visit(L),DL

»
hasFlavor(W, delicate),

locatedIn(W,L)

–
(W,L).

The dl-queries in the first rule were pushed into a single CQ. Furthermore, the rule

defining delicate was folded into the last rule, and subsequently Query Pushing was

applied to it.
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Regarding the computational cost of the rewriting algorithms, Algorithm 1 runs, in

general, in exponential time in the size of the program P , due to unfolding of the rules

in all possible ways. Fact pushing and filtering are cheap pre- and post-processing steps,

respectively, and mgus can be computed in linear time; unfold(a, rH , rB) runs in linear

time as well. Using do unfold(a, rH , rB , P ), we can control the unfolding operations; if

we only allow unfolding of rB from the initial program P , we get all unfolded rules in

one step from P . More generally, if rB must have been unfolded from P in constantly

many steps, Algorithm 1 can be implemented to run in polynomial time.

Algorithm 2 and 4 are linear in the size of P modulo BodyOptimizer(). Algorithm 3

is quadratic in the size of the supplied body atoms B in the worst case (due to recursive

calls on the carry atoms in C), but is linear if we always push atoms, i.e., do push(o, b)

always returns true; for small rules (size bounded by a constant), the cost is also small.

Cost Based Query Pushing The functions do unfold and do push in Algorithm 1 and

3 determine whether we can benefit from unfolding or query pushing. Given the input

parameters, they should know whether doing the operation leads to a “better” program

in terms of evaluation time, size of the program, arity of (u)cq-atoms, data transmission

time, etc.

In the database area, cost estimations are based on a cost model, which usually

contains information about the size of a database and its relations, an estimate of the

selectivity of joins and selections, the cost of the data transfer, etc. In our setting,

similar knowledge can be used to determine the cost for pushed queries.

An example for a useful strategy estimating the costs is to exploit knowledge about

presence of functional roles in L. A role R is functional, if for all individuals x, y1, y2

it holds that R(x, y1) ∧R(x, y2)→ y1 = y2, i.e., x is a key in R. For functional roles,

query pushing is always useful since they act as a selective filter that might drastically

decrease the result set.

Example 19 The fact that every person has only one mother may be stated by the

functional property hasMother , expressed by the axiom person v ≤ 1.hasMother . The

following rule retrieves all mothers of men:

r : a(Y )← DL[hasMother ](X,Y ),DL[Man](X).

After application of Query Pushing, we obtain the rule

r′ : a(Y )← DL[hasMother(X,Y ),Man(X)](X,Y ).

In r we get two answers with size |hasMother |+ |Man|, while in r′ we retrieve at most

|Man| many tuples. Pushing would be even more effective if the concept was very

selective, e.g., if we had Nobel Laureate instead of Man.

For further discussion of possible cost model strategies see [19].

7 Implementation and Experiments

In this section, we provide experimental results for the rule transformations and the

performance gain obtained by applying the various optimization techniques. We have

tested the rule transformations using the prototype implementation of the DL-plugin

for dlvhex,8 a logic programming engine featuring higher-order syntax and external

8 both available at http://www.kr.tuwien.ac.at/research/dlvhex/
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Table 3 Some test queries

region program: (Full program optimization) The unoptimized program P is in Fig. 2, the final

result P ′ after the program optimization is:

visit(L) ∨ ¬visit(L)← DL

»
WhiteWine(W1),RedWine(W2),

locatedIn(W1, L), locatedIn(W2, L)

–
(W1,W2, L),

not DL
ˆ
locatedIn(L,L′)

˜
(L).

← visit(X), visit(Y ), X 6= Y.

some visit ← visit(X).

← not some visit .

delicate region(W )← visit(L),DL[hasFlavor(W, delicate), locatedIn(W,L)](W,L).

delicate(W )← DL[hasFlavor ](W, delicate).

vicodi program: (Fact Pushing)

Pv =


c(vicodi:Economics), c(vicodi:Social),
v(X)← DL[hasCategory](X,Y ), c(Y ).

ff

P ′v =

8<:
c(vicodi:Economics), c(vicodi:Social),

v(X)← DL

»
hasCategory(X,Y ),
Y = vicodi:Economics

ff
∨


hasCategory(X,Y ),
Y = vicodi:Social

ff–
(X,Y ).

9=;
semintec query: (Query Pushing)

Ps2 =


s2(X,Y, Z) ← DL[Man](X),DL[isCreditCard ](Y,X),DL[Gold ](Y ),

DL[livesIn](X,Z),DL[Region](Z)

ff
P ′s2

=


s2(X,Y, Z) ← DL

»
Man(X),Gold(Y ),Region(Z),

isCreditCard(Y,X), livesIn(X,Z)

–
(X,Y, Z).

ff
semintec costs: (Query Pushing, Functional Property)

Pl = {l(X,Y )← DL[hasLoan](X,Y ),DL[Finished ](Y ).}
P ′l = {l(X,Y )← DL[hasLoan(X,Y ),Finished(Y )](X,Y ).}

lubm faculty: (Query Pushing, Inequality Pushing, Variable Elimination)

Pf =

8<: f(X,Y ) ← DL[Faculty](X),DL[Faculty](Y ), D1 = D2, U1 6= U2,
DL[doctoralDegreeFrom](X,U1),DL[worksFor ](X,D1),
DL[doctoralDegreeFrom](Y, U2),DL[worksFor ](Y,D2).

9=;
P ′f =

8><>: f(X,Y ) ← DL

264 Faculty(X),Faculty(Y ), U1 6= U2,
worksFor(X,D1),worksFor(Y,D1),

doctoralDegreeFrom(X,U1),
doctoralDegreeFrom(Y, U2)

375(X,Y, U1, U2, D1).

9>=>;

atoms (see [9,38]), which uses RACER 1.9 as DL-reasoner (cf. [15]). To our knowledge,

this is currently the only implemented system for such a coupling of nonmonotonic

logic programs and Description Logics.

In [19], a partial equivalence between strong answer set semantics and hex semantics

has been given, which is the foundation for our prototype implementation. More

specifically, every cq-program without −∩ in its dl-atom input lists can be translated into
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a hex-program with the same answer set (modulo auxiliary atoms), i.e., only monotonic

dl-atoms are supported.

The DL-plugin supports all forms of dl-atoms, including (U)CQs, by rewriting them

to corresponding external atoms (and additional auxiliary rules) in a hex-program.

Due to the nature of RACER’s (U)CQ implementation—only named individuals are

under consideration—our prototype is also limited to this restricted form of (U)CQs.

Regarding optimization, the DL-plugin features a software component for caching

dl-queries, pushing of DL external atoms, and a minimalistic form for unfolding rules

in a hex-program.

Regarding our experiment setup, the tests were done on a P4 3GHz PC with 1GB

RAM under Linux 2.6. As an ontology benchmark, we used the testsuite described in

[27], which is available on the Web.9 The testsuite includes the following four families

of ontologies:

– the well-known Wine ontology [39], which describes wine types, wineries, wine-

growing regions, and related information. The standard ontology is wine 0, and

wine i (1 ≤ i ≤ 9) is wine 0 with 2i repetitions of the ABox.

– vicodi,10 an ontology about European history. It describes relationships between

historic persons, their role in history, and locations. vicodi 0 is the original ontology,

and vicodi i (1 ≤ i ≤ 4) consists of additional i copies of the ABox statements.

– semintec,11 a financial ontology with information about loans, credit cards, and

personal details like place of residence. Again, semintec 0 is the standard ontology,

and the result of replicating i times the ABox is denoted as semintec i, for 1 ≤
i ≤ 4. In Pl we use the role hasLoan, which is an inverse functional property with

|hasLoan| = 682(n + 1), |Finished | = 234(n + 1), where n is obtained from the

ontology instance semintec n.

– lubm is short for Lehigh University Benchmark ontology,12 which has been conceived

as a tool for benchmarking DL reasoning systems. It encodes knowledge about

fictional universities, their departments, students and staff. We used the LUBM

Data Generator to create the Department ontologies for University 1. We then

created 15 ontologies out of this setup, where each ontology lubm n has Department

1 up to Department n in the ABox.

A more detailed description of the used ontologies is given in [27]. For further experiments

and results see [19]. The experiments included particular query rewriting rules for the

test queries and a full program optimization of the region program (see Table 3 for

the test programs and their rewritten counterparts with ′). The evaluation task of the

given test programs was to compute all strong answer sets of the unoptimized and

the optimized programs; Pv, Ps2 , Pl, and Pf had one answer set, whereas our region

example had several answer sets. Since all test programs are very small, the time needed

to compute the program optimizations can be ignored. The results of our experiments

are shown in Fig. 3. Missing entries mean memory exhaustion during evaluation.

In most of the tested programs, the performance boost using the aforementioned

optimization techniques was substantial. Due to the size of the respective ontologies, in

some cases the DL-engines failed to evaluate the original dl-queries, while the optimized

9 http://kaon2.semanticweb.org/download/test_ontologies.zip
10 http://www.vicodi.org/
11 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
12 http://swat.cse.lehigh.edu/projects/lubm/
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Fig. 3 Evaluation time for the examples.
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programs did terminate with the correct result. All ontologies have been kept under

UNA.

In detail, for the region program, we used the ontologies wine 0 through wine 9. As

can be seen from the top-left graph in Fig. 3, there is a significant speedup, and in case

of wine 9 only the optimized program could be evaluated. Most of the computation

time was spent by RACER. We note that the result of the join in the first rule had only

size linear in the number of top regions L; a higher performance gain may be expected

for ontologies with larger joins.

The vicodi test series revealed the power of Fact Pushing (see the top-right graph

in Fig. 3). While the unoptimized vicodi program (Table 3) could be evaluated only

with ontologies vicodi 0 and vicodi 1, all ontologies vicodi 0 up to vicodi 4 could

be handled with the optimized program.

The semintec tests dealt with Query Pushing for single rules. The rule in Ps2 is

from one of the benchmark queries in [27], while Pl tests the performance increase when

pushing a query to a functional property (see Table 3). In both cases, we performed the

tests on the ontologies semintec 0 up to semintec 4. As shown in Fig. 3 (bottom-left

graph) the evaluation speedup was significant. We could complete the evaluations of

Ps2 on all semintec ontologies only with the optimization. The performance gain for

Pl is in line with the constant join selectivity.

In the lubm test setup, the test query Pf select all faculty members which work for

the same department, but obtained their doctoral degree from different universities. The

results in the bottom-right graph of Fig. 3 showed a drastic performance improvement.
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8 Conclusion

In this paper, we have presented cq-programs, which generalize dl-programs in [10] with

disjunctive rule heads (which had been cursory considered in [8]) and the possibility to

pose also conjunctive queries (CQs) and unions of conjunctive queries (UCQs) against

a Description Logic (DL) knowledge base. These programs are more expressive than

dl-programs, as they allow to access unnamed individuals in the DL-knowledge base, and

also offer higher problem solving capacity as a host language in terms of computational

complexity. Furthermore, the framework can be easily adapted to other Description

Logics besides the ones considered here, and has the nice feature of retaining decidability

as long as answering CQs or UCQs, respectively (after possible enrichment of the DL

knowledge base), is decidable.

A number of other approaches for combining rules and ontologies have been proposed;

we refer to [1,5,8,33,34] for surveys and comparisons, as well as for discussions of general

issues that arise with this problem. Roughly, the various approaches can be divided into

three groups: (i) approaches fostering a loose coupling between rules and ontologies, in

which the parts are kept separate but are connected via well-defined reasoning interfaces;

(ii) approaches pursing a tight integration, in which the vocabulary of the rules and the

ontology parts are kept separately but a common model-based is semantics is defined;

and (iii) approaches fostering a full integration, in which a common vocabulary is used

though rules and ontology axioms may be handled differently.

Rosati’s well-known DL+log formalism [35,34], which belongs to the second class,

and the more expressive hybrid MKNF knowledge bases [25,26] and Quantified Equi-

librium Logic (QEL) [6], which belong to the third group, are closest in spirit to dl-

and cq-programs, as they support nonmonotonic negation and use constructions from

nonmonotonic logics. However, it seems that the expressiveness of all these formalisms

is different from dl- and cq-programs, as far as embeddings are concerned. It is reported

in [25] that dl-programs (and hence also cq-programs) can not be captured using

MKNF rules. In turn, the semantics of DL+log-programs inherently involves deciding

containment of CQs in UCQs, which seems to be not expressible in cq-programs in

general. No detailed comparison between QEL and dl-programs is made in [6], but like

for DL+log and hybrid MKNF, intuitive embeddings between QEL and cq-programs

are not straightforward. The reason is that cq-programs can combine hypothetical

inferences under different (yet not independent) assumptions in a non-trivial way, which

seems more difficult to achieve in the QEL framework. On the other hand, QEL allows

for an easy extension of the language, for instance to accommodate nested expressions

in which rule and ontology predicates occur at varying levels; a similar extension for

cq-programs is not obvious. A detailed study of the expressive relationships between

cq-programs and other formalisms remains for future work.

We remark, however, that as concerns particular reasoning tasks, cq-programs and

dl-programs are as expressive as DL+log and hybrid MKNF, relative to Description

Logics of choice. It was reported in [35] that the satisfiability problem of DL+log

bases is Σp
2 -complete for the Description Logic DL-Lite under data complexity, i.e., the

knowledge base is fixed except that assertions in the DL knowledge base, which must

be of form A(c) for atomic roles and concepts A, and facts in the program part may

change. In DL-Lite, answering CQs and UCQs is polynomial under data complexity; it

is not difficult to establish, by adapting the arguments in Lemma 2 and Theorem 3 that

dl- and cq-programs are Σp
2 -complete under data complexity for DL-Lite (we recall
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that, under data complexity, deciding the existence of an answer set for an ordinary

function-free disjunctive logic program is Σp
2 -complete, cf. [4]).

In [25,26], the data complexity of entailment from hybrid MKNF knowledge bases

has been studied for a range of DLs and syntactic fragments of the rules part. It was

shown that, for DL-Lite, entailment of a ground atom (prefixed with a modal operator)

is Πp
2 -complete for DL-Lite under data complexity, as well as for generic DLs in which

the inference of ground atoms is in co-NP under data complexity. This can be similarly

established for dl- and cq-programs, as long as the data complexity of (U)CQ answering

is co-NP-complete (after possible enrichment of the DL knowledge base with negative

assertions); for SHIF and SHIQ, this follows from the results in [13].

Apart from increasing the expressiveness of dl-programs, we have also shown that

CQs and UCQs can be fruitfully used for program optimization and rewriting. By

pushing CQs to the highly optimized DL-reasoner, significant speedups can be gained,

and in some cases evaluation is only feasible in that way. The results are promising

and suggest that this path of optimization should be further explored. To this end,

refined strategies implementing the tests do unfold and do push are desirable, as well

as further rewriting rules. In particular, an elaborated cost model for query answering

would be interesting. However, given the continuing improvements on DL-reasoners,

such a model had to be revised more frequently and thus developing a particular model

at this point seems less attractive.

Another interesting issue is to interface other DL-reasoners than RACER that host

CQs, e.g., KAON2 or Pellet. In particular, interfacing with an engine for answering

arbitrary CQs or UCQs on highly expressive DLs would be intriguing; respective

algorithms are currently crafted, and prototype implementations are expected to be

available in the near future. On the other hand, also an investigation of cq-programs for

Description Logics with limited expressiveness, such that answering CQs and/or UCQs

is tractable, or even rewritable to first-order expressions, is of interest. Under suitable

syntactic restrictions, this facilitates the compilation of cq-programs to fragments of

nonmonotonic logics programs that can be evaluated efficiently. Finally, a study of the

expressibility of cq-programs, in terms of defining multi-valued functions as in [23], is

on the agenda of future work.
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