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Unit 4 1. Introduction

Introduction

In the previous units, we were looking at combining rules and
ontologies more from a practical angle

Several systems/approaches presented provide means to perform “low
level” or “ad hoc” integration
Now we look at this issue from a more principled, theoretical
perspective
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Unit 4 1. Introduction 1.1 The Issue

The Issue

Description Logics have been carefully crafted as fragments of FO
Logic (in essence) that are decidable.

While powerful, the standard DLs have limits with respect to
expressing relationships.

Example: defining uncle from brother and parent

• easy in LP:

uncleOf (X,Y )← parentOf (Z, Y ), brotherOf (X,Z).

• in many DLs, the role uncleOf is not definable from roles brotherOf
and parentOf !

Note: the DL SROIQ (in forthcoming OWL2) allows role
composition
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Remedy

relations as the one above are naturally expressed as rules, which are
at the core of Logic Programming:
a rule

a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm,

where l = 1 and k = m can be naively read as a first-order sentence

(∀) b1 ∧ . . . ∧ bk ⊃ a1

where (∀) denotes the universal quantification of all variables.
SWRL adds such Horn clauses to OWL
However, while semantically smooth, this leads to undecidability in
general
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Remedy (ctd.)

This calls for decidable fragments. E.g.,
• DL-safe Horn rules, or
• Description Logic Programs (DLPs) which restrict OWL ontologies to

Horn rules in disguise

Furthermore, such uniform approaches are monotonic and rules have
more a constraints flavor than real rules semantics.
They lack, e.g.,
• minimality aspects
• negation as failure

We consider here hybrid knowledge bases, in which (full-fledged)
non-monotonic Logic Programming, based on the expressive Answer
Set Semantics [Gelfond and Lifschitz, 1991] (aka Answer Set
Programming), is combined with ontologies in (monotonic) classical
logic.
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Hybrid Knowledge Bases

A hybrid knowledge base KB = 〈T , P 〉 consists of
a FO theory T (the classical component) in a FO
language with signature (vocabulary) ΣT .
an LP P (the rules component) with signature ΣP .

The combined signature of KB is ΣKB = ΣT ∪ ΣP .

Predicates are either “classical” or “rules” predicates

Occurrence of rules-predicates in a FO theory is usually restricted,
function symbols are disallowed.

Main reason: Combinations of Horn logic and very simple DLs are
undecidable [Levy and Rousset, 1998].
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LP vs. Classical Logic

Nonmonotonic Logic Programs and OWL/DLs have related yet
different underlying settings

At the heart, the difference is between LP and Classical Logic

Main Differences:
• Closed vs. Open World Assumption

• Negation as failure vs. classical negation

• Strong negation vs. classical negation

• Treatment of equality

• Existential quantification

• Decidability enforcement

See e.g. [de Bruijn et al., 2006], [Eiter et al., 2006], [Rosati, 2006a],
[Motik et al., 2006];
impact for SW architecture [Horrocks et al., 2005], [Kifer et al., 2005]
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CWA vs. Open World Assumption

LP aims at building a single model, by “closing” the world/senario

Reiter’s CWA:

If T 6|= A, then conclude ¬A, for ground atom A

FO logic / DL knowledge bases describe (multiple) possible
worlds/scenarios

they keep the world “open”

In the Semantic Web, this is often reasonable

However, taking the agnostic stance of OWA may be not helpful for
drawing rational conclusions under incomplete information

A mix of CWA and OWA may be appropriate [Bruijn et al., 2005],
[Damásio et al., 2006], [Polleres et al., 2006], [Williamson et al., 2007]
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Negation as Failure vs. Classical Negation

P : person(X) ← author(X).
nonAuthor(X) ← not author(X).

person(joe_doe).

T : ∀X. (Author(X) ⊃ Person(X))∧
∀X. (¬Author(X) ⊃ NonAuthor(X))∧
Person(joe_doe).

Query: Is joe_doe not an author?

• Conclude nonAuthor(joe_doe) from P :

Author(joe_doe) is not provable (no rule has Author in the head).

• Do not conclude nonAuthor(joe_doe) from T :

Models of T exist in which Author(joe_doe) is true and
NonAuthor(joe_doe) is false.
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Strong vs. Classical Negation

P : person(X) ← author(X).
−person(joe_doe).

T : ∀X. (Author(X) ⊃ Person(X))∧
¬Person(joe_doe).

Conclude ¬Author(joe_doe) from T ;

Do not conclude −author(joe_doe) from P

strong negation can be seen as negation under OWA but in a single
model setting, where knowledge might be incomplete (neither A nor
−A is true).
Different from classical logic (Tertium not datur)

Note: there is no contraposition in LP!
−author(X)← −person(X).

is not equivalent to
person(X)← author(X).
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Treatment of Equality

In LP, usally we have Unique Names Assumption (UNA):
Syntactically different ground terms are different objects.

This holds for the customary Herbrand interpretations considered in LP

knowsOtherPeople(X) ← knows(X, Y ), X 6= Y.
knows(“http : //polleres.net/foaf.rdf#me′′,

“http : //www.polleres.net/foaf.rdf#me′′).

Under LP semantics (“ 6=” amounts to “not =”), conclude

knowsOtherPeople(“http : //polleres.net/foaf.rdf#me′′)

RDF and OWL consider also non-Herbrand interpretations; no UNA

OWL allows to relate objects using owl:sameAs and owl:differentFrom
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Existential Quantification

Furthermore, there are related problems with existential quantifiers:

T : ∀X∃Y. (Person(X) ⊃ hasNationality(X, Y ))

(in DL Syntax, Person v ∃hasNationality)
Skolemization of Y in the consequent

T : ∀X. (Person(X) ⊃ hasNationality(X, fY (X)))

equi-satisfiable formula, could be seen as LP rule
however,
• LP dialect may exclude function symbols (e.g., Datalog)
• if so, Herbrand semantics can not be applied
• LP models become necessarily infinite

Recent interest in handling function symbols in ASP, e.g. [Bonatti,
2004], [Baselice et al., 2007], [Simkus and Eiter, 2007] + references
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Decidability Enforcement

Obstacle: the LP and DL worlds face undecidability issues from two
completely different angles.

LP: for function-free LPs, ground entailment can be determined by
checking subsets of a finite Herbrand base

DL: sometimes exploit that models have a particular form (e.g,
tree-shaped models), or that DL can be recast to a decidable
fragment of FOL.

But: DL SHOIN lacks the tree-model and finite-model property.

Levy and Rousset’s pioneering work 1998: Combinations of Horn
logic and very simple DLs are undecidable
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Decidability Enforcement (ctd.)

Problems with recursion and unsafety of rules

Recall: rule r is safe, if each variable in r occurs in a positive literal in r’s
body

Variants of safety are a key tool for decidability of some combinations.

L&R used role-safety: at least one of X,Y in every role atom R(X,Y ) in
rule r occurs with a rule-predicate in r not occurring in any rule head of P .

Example

uncleOf (X, Y )← parentOf (Z, Y ), brotherOf (X, Z).

is not role-safe; its variant

uncleOf (X, Y )←parentOf (Z, Y ), brotherOf (X, Z),
person(X), person(Y ),

where person is for facts in P , is role-safe.
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Hybrid Approaches: Taxonomy

Different approaches to a semantics for a hybrid KB KB = 〈T , P 〉

• Strict semantic separation (loose coupling)

• Tight semantic integration

• Full integration

Surveys and discussion (selection):
• KNOWLEDGEWEB [Pan et al., 2004]

• REWERSE [Antoniou et al., 2005]

• ReasoningWeb [Rosati, 2006a], [Eiter et al., 2006]
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Loose Coupling

Strict semantic separation between rules / ontology

RDFS

Ontologies 
(OWL)

Rules
(RIF)

• View rule base P and FO theory T as separate, independent
components. ΣT and ΣP do (a priori) not share meaning.

• They are connected through a minimal “safe interface” for exchanging
knowledge (formulas, usually ground atoms).

Well-suited for practical implementation on top of existing LP and
DL reasoners.

Examples
nonmonotonic dl-programs [Eiter et al., 2004][Eiter et al., 2008];
defeasible logic+DLs [Wang et al., 2004] (,TRIPLE [Sintek and Decker, 2002])

Thomas Eiter ReasoningWeb’08 17/41



Unit 4 2. LP vs. Classical Logic 2.3 Tight Semantic Integration

Tight Semantic Integration

Rules
(RIF)

Ontologies
(OWL)

RDFS

Integrate FOL statements and the logic program to a large extent,
but keep predicates of ΣT and ΣP separate.

Build an integrated model M as the “union” of a model Mo of the
FO theory T and a model Ml of P with the same domain.

ensure “safe interaction” between Mo and Ml

Examples
CARIN [Levy and Rousset, 1998], DLP [Grosof et al., 2003],
DL-safe rules [Motik et al., 2005], R-hybrid KBs [Rosati, 1999], [Rosati, 2005a]
R+-hybrid KBs, DL+log [Rosati, 2005b],[Rosati, 2006b]
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Full Integration

RDFS

Ontologies
(OWL)

Rules
(RIF)

Unifiying Logic

No principled separation between ΣT , ΣP (but special axioms)

Examples

• Hybrid MKNF knowledge bases [Motik and Rosati, 2007a]
• FO-Autoepistemic Logic [de Bruijn et al., 2007a]
• Open Answer Set Programs [Heymans et al., 2007]
• Quantified Equilibrium Logic [de Bruijn et al., 2007b]

Related precursors: Terminological Default Logic [Baader and Hollunder,
1995], DLs of Minimal Knowledge [Donini et al., 2002]
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Sample Combination Approaches

Briefly review some concrete approaches

Consider one representative from each class

• nonmonotonic dl-programs [Eiter et al., 2004], [Eiter et al., 2008]

• DL+log [Rosati, 2006b]

• Hybrid MKNF knowledge bases [Motik and Rosati, 2007a], [Motik
and Rosati, 2007b]

Comparison of these approaches
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Loose Coupling: Non-monotonic dl-Programs

An extension of answer set programs with queries to DL knowledge bases
(through dl-atoms)

dl-atoms allow to query a DL knowledge base differently

bidirectional flow of information, with clean technical separation of DL
engine and ASP solver

DL EngineASP Solver ?

Use dl-programs as “glue” for combining inferences on a DL base.
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dl-atoms

Query the DL base T using the query interface of the DL engine

Query Q may be concept/role instance C(X)/R(X,Y ); subsumption test
C v D; etc (recent extension: conjunctive queries)

Important: Possible to modify the extensional part (ABox) of T , by
adding positive (]) or negative (−∪) assertions, before querying

Q evaluates to true iff the modified T proves Q.

Examples

• DL[Author ](“joey ′′)

• DL[Author ](X)

• DL[isAuthorOf ]my isauthorOf ;Author ](X)

add all assertions isAuthorOf (c) to T where my isAuthorOf (c) holds in P .

• DL[Author−∪no author ;Author ](X)

add all assertions ¬Author(c) to T , such that no author(c) holds in P .
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dl-Programs

More formally, dl-atoms have form DL[〈Add〉;Q]( ~X), where
• 〈Add〉 = S1op1p1, . . . , Smopmpm, is a list of additions Siopipi,

where Si is a concept/role, pi a unary/binary LP predicate, and
opi ∈ {], −∪};

• Q( ~X) is the query ( ~X contains variables and/or constants).

dl-programs are hybrid KB with dl-atoms in rules

A dl-program is a pair KB = 〈T , P 〉 where
• T is a FO theory corresponing to a DL knowledge base

• P consists of rules

a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm,

where each ai is a classical literal and each bj is either a classical
literal or a dl-atom (no function symbols)
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Example: Reviewer selection [Eiter et al., 2008] (adapted)

paper(p1); kw(p1,Semantic_Web); (1)

paper(p2); kw(p2,Bioinformatics); kw(p2,ASP); (2)

kw(P, K2)← kw(P, K1), DL[hasMember ](S, K1),
DL[hasMember ](S, K2);

(3)

paperArea(P, A)← DL[keywords ] kw ; inArea](P, A); (4)

cand_rev(X, P )← paperArea(P, A), DL[CandidateReviewer ](X),
DL[expert ](X, A);

(5)

assign(X, P )← cand_rev(X, P ),not −assign(X, P ); (6)

−assign(Y, P )← cand_rev(Y, P ), assign(X, P ), X 6= Y ; (7)

has_rev(P )← assign(X, P ); (8)

error(P )← paper(P ),not has_rev(P ). (9)

Determine paper area with enhanced keyword info (key word clusters) (3), (4)

Use ontology to determine candidate reviewers (5)

(6)–(9) is a plain ASP selection program (choose one cand_rev per paper) )
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Answer Sets

The semantis of dl-programs is defined in terms of answer sets,
generalizing classical Answer Set Semantics [Gelfond and Lifschitz, 1991].

As usual, ground the rules over constants C (=: gr(P ))

C contains the constants in P and additional ones from T (by default, all
occurring in T ),

A model is a consistent set of classical ground literals M built from the
predicates in P and the constants in C.

A ground dl-atom DL[〈Add〉;Q](c) is true in M , iff T ∪ 〈Add〉M |= Q(c)
for the modification 〈Add〉M

M is a model of P , if it satisfies all rules of gr(P )
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Answer Sets (ctd.)

Single out special models of P as (strong) answer sets of KB

Use a reduct sPM akin to the Gelfond-Lifschitz reduct PM

In building PM , treat dl-atoms like ordinary atoms:
sPM contains all rules obtained from gr(P ) by removing

1 all rule instances
a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm

such that for some bj , where j ∈ {k + 1, . . . ,m}, it holds that bj is
true in M (which for a classical literal bj means bj ∈M), and

2 all negation-as-failure literals not bj from the remaining rules.

M is a (strong) answer set of KB iff M is the least model of sPM (resp. a
minimal model of sPM , if rules are disjunctive).

Variants exist (different treatment of the dl-atoms).
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Example: Reviewer selection (ctd.)

Answer sets of KB depend on the instances of hasMember , keywords,
inArea, expert CandidateReviewer

Suppose in T expert(jim,“A1”), expert(tim,“A1”), expert(sue,“A2”)
ReviewerCandidate(jim), ReviewerCandidate(tim),
ReviewerCandidate(sue,LP), hasMember(c1, ASP), hasMember(c1, LP) are
true (named clusters)

further, that inArea(p1,“A1”) is true and inArea(p2,“A2”) is true after
asserting keywords(p2,LP).

M = { (1), (2), kw(p2, LP), paperArea(p1, “A1′′), paperArea(p2, “A2′′),
cand_rev(p1, jim), cand_rev(p1, tim), cand_rev(p2, sue),
assign(jim, p1), −assign(tim, p1), assign(sue, p2),
has_rev(p1), has_rev(p2) }

is an answer set of KB.
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Example: Reviewer selection (ctd.) /2

M = { (1), (2), kw(p2, LP), paperArea(p1, “A1′′), paperArea(p2, “A2′′),
cand_rev(p1, jim), cand_rev(p1, tim), cand_rev(p2, sue),
assign(jim, p1), −assign(tim, p1), assign(sue, p2),
has_rev(p1), has_rev(p2) }

Part 0: Facts
Part 1: kw , paperArea, (LP , ASP in same cluster)
Part 2 cand_rev
Part 3: choice for assign; has_rev ; reduct sPM (relevant part)

Note: A second answer set is M = {. . . −assign(jim, p1),assign(tim, p1). . . }
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dl-Programs: Applications

dl-programs facilitate some advanced reasoning tasks

• Closed World Reasoning

Emulate CWA and Extended CWA (ECWA) on top of a DL
knowledge base.

• Default Reasoning

Poole-style and Reiter-style Default Logic over DL knowledge bases
(for restricted fragments, to the effect of Terminological Default
Logic).
Front-end [Dao, 2008]

• Minimal Model Reasoning

Single out “minimal” models of a DL base
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Example: Reviewer Candidate Selection using Defaults

T = { ¬ex :ConflictingReviewer v ex :CandidateReviewer ,
ex :Senior(joe), ex :Senior(bob), ex :ConflictingReviewer(bob) }.

Besides known candidate reviewers, by default also every senior author is a
candidate reviewer (unless a conflict is apparent)

This is mimicked by the following dl-program:

r0 : cand_rev(P )←DL[ex :CandidateReviewer ];

r1 : cand_rev(P )←DL[ex :Senior ](P ), not conflict(P );

r2 : conflict(P )←DL[ex :CandidateReviewer]cand_rev ;
ex :ConflictingReviewer ](P ).

Under Answer Set Semantics, r2 effects maximal application of r1.

Single answer set: M = { cand_rev(joe), conflict(bob) }; reduct sP M
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Tight Integration: DL+log

[Rosati, 2006b] Latest in chain of extensions of the DL ALC with rules
[AL-log ; R-, R+-hybrid KBs]

choices:

• Distinguish predicates in ΣP and ΣT and (the latter may appear in
rule heads); no function symbols

• a fixed, countably infinite domain, standard names for the elements.
• Models of KB = 〈T , P 〉 are of form I ∪M , where I is a model of T

and M of P when fixing classical atoms in P to I.
• No strong negation, weak negation limited to rule-predicates
• Uses weak (DL-)safety to ensure decidability
• Decidable, if certain union of conjunctive queries containment

(CQ/UCQ) in T is decidable,
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Weak (DL-)safety
Each variable X in a rule r must occur in some positive body atom of r, and this
atom must have a rule predicate if X occurs in an atom with classical predicate in the
head of r.

Weak safety allows to access unnamed individuals in classical atoms (not
directly possible in dl-programs)

Example. Consider KB = 〈T , P 〉, where
• T = {author v ∃isAuthorOf , author(turing)}
• P = { scientist(X)← isAuthorOf (X, Y ), not likes(X, astrology) }

• the rule is weakly DL-safe
• scientist(turing) follows from KB, even if publications of turing are

unknown!

Note: the dl-rule
scientist(X)← DL[isAuthorOf ](X, Y ), not likes(X, astrology)

would not entail scientist(turing) (needs rewriting)
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DL+log : Semantics

DL+log has a stable model (answer set) semantics

Roughly, a 2-step reduction

Step 1: Take some interpretation I of the classical predicates.

• Ground P and “reduce” it wrt. I, by “evaluating” classical atoms in
rules wrt. I.

• The resulting ground program PI contains no classical predicates.

Step 2: Build a stable model M of PI as usual, using the
Gelfond-Lifschitz reduct PM

I

Thomas Eiter ReasoningWeb’08 33/41



Unit 4 3. Sample Combination Approaches 3.2 Tight Integration: DL+log

Example

T = { Multilingual v ¬Monolingual ; Multilingual tMonolingual v Author

Author v ∃isAuthorOf ; Author(joey) }
P = { novelist(X) | scientist(X)← writer(X);

Monolingual(X)← novelist(X);

Multilingual(X)← scientist(X);

scientist(X)← writer(X), isAuthorOf (X, Y ), not likes(X, astrology);

writer(joey) }

Classical predicates Monolingual , Multilingual , isAuthorOf occur in rules.

Take I s.t. {Author(joey), Multilingual(joey)} holds in it: PI

M1 = {writer(joey), scientist(joey)}: PI
M
1 has min. model M1 ⇒ stable

M2 = {writer(joey), novelist(joey)}: PI
M
2 hasn’t min. model M2 ⇒ unstable

Take I s.t. where {Monolingual(joey), Person(joey)} holds in it: PI
No stable model (in any such M , likes(joey , astrology) must be false)
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Full Integration: Hybrid MKNF

Builds on a FO-version of the Lifschitz bimodal logic MKNF [Lifschitz,
1991]

Rules r are of the form

Kh1 ∨ · · · ∨Khl ← Kb1, . . .Kbm,not bm+1, . . . ,not bn

where the hi, bj are function-free FO atoms
• Kφ ≈ “φ is known to hold under the values of the not-atoms”
• notφ ≈ “there is the possibility that φ is false”.

The FO part T is converted to a formula MKNF(T ) = K(
∧
φ∈T φ)

(assuming finiteness)

The approach faithfully extends LP and DL; it generalizes CARIN, AL-log ,
and DL-safe rules;

Allows “closed world glasses” on classical predicates, stating exceptions

Decidable for decidable T under DL-safety
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Hybrid MKNF: Semantics

Kripke-style semantics for modal logics (“maximal” S5-models wrt.
operator K)

Uses as DL+log a fixed, countably infinite domain and standard
names (no function symbols), in fact Herbrand interpretations

A model is a structure (I,M,N ), where I is an interpretation, and
M,N are sets of interpretations (possible worlds)

at world I, atoms, propositional combinations of formulas, and
quantifiers are evaluated as usual in first-order logic.

• Kφ evaluates to true at I, if φ evaluates to true at each I ′ ∈M
(S5 semantics);

• notφ evaluates to true at I, if φ evaluates to false at some I ′ ∈ N .
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Hybrid MKNF: Semantics (ctd.)

M is an MKNF model of KB = 〈T , P 〉, if
1 the formula

MKNF(KB) = MKNF(T ) ∧MKNF(P )

is true in (I,M,M) for each world I ∈ M where MKNF(P ) is the
usual rewriting of P to FO logic (rewrite rules as universal
implications), and

2 noM′ ⊃M exists such that MKNF(KB) evaluates to true in
(I,M′,M) for some world I ∈ M′

Note: condition 2) implements the Minimal Knowledge Principle

for modal-free φ, the formula Kφ is equivalent to φ
not implements negation as failure
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Hybrid MKNF: Example

T = { Multilingual v ¬Monolingual ; Multilingual tMonolingual v Author

Author v ∃isAuthorOf ; Author(joey); Lefthanded v Author }
P = { Knovelist(X) ∨Kscientist(X)← Kwriter(X);

KMonolingual(X)← Knovelist(X);

KMultilingual(X)← Kscientist(X);

Kscientist(X)← Kwriter(X),KisAuthorOf (Y, X),
not likes(X, astrology);

Kwriter(joey);

KRighthanded(X)← KAuthor(X), not Lefthanded(X) }

Authors are righthanded, if not lefthanded

Assume that, by default, a person is not lefthanded

conclude Righthanded(joey) from KB

Not expressible in DL+log in this way
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Assessment (+ . . . yes, – . . . no, +∼ . . . yes, with some proviso)

dl-programs DL+log hybrid MKNF SWRL
Distinguish classical and rule predicates

+ + – –
Domain of Discourse for P

Herbrand Universe of P – +∼ + –
Combined Signature + +∼ + –
Arbitrary domains – – – +

Uniqueness of names
unique names in HU of P + + + –
Special equality predicate +∼ +∼ + +
No uniqueness – – – +

Knowledge Interaction: from FO theory T to logic program P

Per single model – + – +
Entailment + – + –

Knowledge Interaction: from logic program P to FO theory T
Per single model – + + +
Entailment + – – –

Decidability
+∼ +∼ +∼ –

A number of criteria
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Unit 4 3. Sample Combination Approaches 3.4 Assessment

Assessment /2

Predicate distinction: indication of the level of coupling

Domain of discourse of P : SWRL is an outlier, all other approaches are
more or less close to Herbrand universes

Uniqueness of Names: again, SWRL is different from the others
In dl-programs and DL+log , special equality predicates might defined as
congruence relations in KB

Knowledge interaction from T to P : literals with “classical” predicate in
a rule depend for a model M of P on a single model of/multiple model
entailment from T

Knowledge interaction from P to T :

• single-model interaction: each model M of P constrains the models
of T to ones where all classical predicates are larger than in M

• entailment based interaction: positive conclusions about the classical
predicates from a model M of P are added to T
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Unit 4 4. Further Aspects

Further Aspects

Several extensions and further/alternative aspects have been considered
(see lecture notes), including

Probabilistic ASP for SW

Fuzzy ASP for SW

Stable models for extended RDF/S

Well-founded semantics

Mapping of FOL/DL into LP
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