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Abstract. We present GiaBATA, a system for storing, aggregating, and querying
Semantic Web data, based on declarative logic programming technology, namely
on the dlvhex system, which allows us to implement a fully SPARQL compliant
semantics, and on DLVDB , which extends the DLV system with persistent storage
capabilities. Compared with off-the-shelf RDF stores and SPARQL engines, we
offer more flexible support for rule-based RDFS and other higher entailment
regimes by enabling custom reasoning via rules, and the possibility to choose the
reference ontology on a per query basis. Due to the declarative approach, GiaBATA
gains the possibility to apply well-known logic-level optimization features of logic
programming (LP) and deductive database systems. Moreover, our architecture
allows for extensions of SPARQL by non-standard features such as aggregates,
custom built-ins, or arbitrary rulesets. With the resulting system we provide
a flexible toolbox that embeds Semantic Web data and ontologies in a fully
declarative LP environment.

1 Introduction

Thanks to W3C standards such as RDF(S), OWL, and recently RIF, – see www.w3.
org/2001/sw/ for an overview –, an increasing bulk of machine-readable data and
knowledge encoded in rules and ontologies are becoming available on the Web. This vast
amount of information uses rather lightweight ontologies in contrast to the full power
of expressive description logic reasoning, which imposes new demands on systems to
deal with Semantic Web data. A Semantic Web system should be able to handle and
evaluate arbitrarily complex queries on large amounts of RDF instance data that are not
manageable in memory. Thus, current RDF stores (see Sec. 2) provide persistent storage
facilities and typically support SPARQL [1, 2]. On top of SPARQL, data processing
requires ontological inferences as well as custom, possibly nonmonotonic rules, which
are crucial, e.g., for modelling mappings between vocabularies. Moreover, it should be
possible to query combinations of different data graphs, ontologies, and rules dynami-
cally harvested from the Web. In this respect, most available RDF databases only offer
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@prefix bob: <http://bob.org/foaf.rdf#> .
bob:me foaf:name "Bob"; foaf:knows : a .
: a foaf:name "Alice" ;

rdfs:seeAlso <http://alice.org/foaf.rdf> .

@prefix alice: <http://alice.org/foaf.rdf#> .
alice:me a foaf:Person; foaf:name "Alice" ;

foaf:knows [ foaf:name "Bob"] ;
foaf:knows [ foaf:name "Charles"] .

(a) Graph bob.org/foaf.rdf (b) Graph alice.org/foaf.rdf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
...
foaf:knows rdfs:range foaf:Person. myOnt:isFriendOf rdfs:subPropertyOf foaf:knows.
...

(c) Graph example.org/myOnt.rdfs, an extension of the FOAF ontology

Fig. 1. Two RDF graphs, and an extract of the FOAF ontology.

limited support for dynamic inference, custom reasoning via rules, or querying upon
datasets of choice.

We propose an architecture aiming at closing this gap by providing the GiaBATA
system which caters for knowledge-intensive applications on top of Semantic Web data
by combining (a) SPARQL querying on varying datasets and varying schemes, (b) rule-
based RDFS and (limited) OWL inference, and (c) a persistent storage system based on
deductive database technology. Based on systems described in Sec. 2, our proposed RDF
store fulfils the above goals and is easily extensible by features such as using arbitrary
aggregates and built-in predicates as well as adding custom rules to SPARQL [3].

Motivating Example. Take the two data graphs about our well-known friends Alice,
Bob, and Charles in Fig. 1(a)+(b). Both use vocabulary defined in an extended FOAF
ontology (http://xmlns.com/foaf/spec/); the relevant part is in Fig. 1(c).

For instance, a SPARQL query could be used to extract names of persons mentioned
in graphs that belong to friends of Bob. We assume that Bob provides links to the graphs
associated to the persons he knows using rdfs:seeAlso statements:

select ?N from <http://example.org/myOnt.rdfs> from <http://bob.org/foaf.rdf>
from named <http://alice.org/foaf.rdf>

where { bob:me myOnt:isFriendOf ?X . ?X foaf:seeAlso ?G .
graph ?G { ?P a foaf:Person; foaf:name ?N } }

(1)

The dataset DS = (G,N) of a SPARQL query is defined by the default graphG obtained
from the RDF merge [4] (denoted ]) of all graphs mentioned in from clauses plus a
set of named graphs N = {(g1, G1), . . . , (gk, Gk)}, i.e., pairs of IRIs given in from
named clauses and their corresponding graphs. In our example, the dataset is being
specified explicitly by a set of from and from named clauses, i.e., the dataset of query
(1) would be DS 1 = ( GmyOnt ] Gbob.org, {(<http://alice.org/>, Galice.org)}).

Since neither of the three source graphs contain a triple matching the pattern bob:me
myOnt:isFriendOf ?X in the where clause, most existing RDF stores with SPARQL
support would return an empty result on (1). This is because typically SPARQL engines
only take simple RDF entailment into account when answering queries, which boils down
to basic graph pattern matching. When taking ontological inference by the statements of
the myOnt ontology into account, however, one would expect to obtain three matchings
for the variable ?N: {?N/"Alice", ?N/"Bob", ?N/"Charles"}.

In order to obtain this expected answer, SPARQL’s basic graph pattern matching
needs to be extended, see [1, Section 12.6]. In principle, this means that the graph pattern
in the where clause needs to be matched against a graph enlarged by applying inferences



prescribed by the given entailment regime.1 SPARQL extensions providing entailment
regimes other than simple RDF entailment are still an open research problem.2

Approximations of entailment regimes such as RDFS and OWL [5–7], however, can
be modeled by finite Datalog rulesets that cover sound but not necessarily complete
RDFS and OWL inferences. For instance, the RDF Semantics document contains an
informative set of entailment rules, a subset of which is implemented by most available
RDF stores. However, these rules could be dynamically evaluated upon query time, or
inferences could be materialized at graph loading time, producing a persistent extended
graph which queries are issued on. Materialization upon loading time has drawbacks
though: when the dataset includes a number of different graphs, it is not clear upfront
(i) which ontology should be taken into account for which data graph, and (ii) to which
graph the inferred triples “belong,” which in turn complicates querying named graphs.

As for (i), assume that a user agent wants to issue another query on graph bob.org
with the original FOAF ontology instead of our modified version within the default graph.
Since the property myOnt:isFriendOf is stated to be a subproperty of foaf:knows,
the triple bob:me myOnt:isFriendOf : a, which could be inferred from GmyOnt ]
Gbob.org, would most probably contribute in an undesired way to such a different query.
Current RDF stores however prevent to parametrize inference with an ontology of choice,
since typically inferences are computed upon loading time once and for all.

As for (ii), queries upon datasets including named graphs are even more problematic.
Even if inference was supported properly, the answer to (1) over dataset DS 1 is just
{?N/"Alice"}. The myOnt ontology is only merged into the default graph, but not into
the named graph. Thus, there is no way to infer that "Bob" and "Charles" are actually
names of foaf:Persons within the named graph Galice.org. Indeed, SPARQL does not
allowed to explicitly specify a dataset to be merged with named graphs.

In order to overcome both point (i) and (ii) above, the current nonintuitive semantics
of SPARQL with RDFS can be mitigated by slightly extending SPARQL’s syntax. We
give the possibility of specifying ontologies which are used for the entire dataset, includ-
ing named graphs, by means of the new directive using ontology. For instance, to
specify the dataset DS 2 = (GmyOnt ] Gbob.org, {(<http://alice.org/>, GmyOnt ]
Galice.org)}), we allow the following syntax replacing the first line of query (1):

select ?N using ontology <http://example.org/myOnt.rdfs> ...

Hence, the using ontology construct allows for coupling the given dataset with
the proper class/property hierarchy of the myOnt data schema. The possibility of query
dependent and dynamic ontology inference shows the effectiveness of this approach.

2 System Description and Evaluation

GiaBATA is based on a combination of the DLVDB [8] and dlvhex [9] systems, and
caters for persistent storage of both data and ontology graphs. The former system is
a variant of the DLV system with built-in database support. The latter is a solver for
the so called HEX-programs [9]. dlvhex features an extensible plugin system which
we used for developing a rewriter-plugin able to translate SPARQL queries to HEX-
programs. Our prototype supports the standard SPARQL specifications extended with

1 The entailment rules for getting the expected results for (1) are RDFS3 and RDFS7 from [4].
2 cf. http://www.polleres.net/sparqltutorial/, Unit 5b, for details
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Fig. 2. The GiaBATA system

the syntax outlined above, arbitrary entailment regimes (currently, we support RDFS),
and the addition of custom rules. We provide a SPARQL-protocol compliant Web service
interface. Fig. 2 shows a high-level view of our system architecture. It consists of four
main components: (i) a SPARQL to datalog rewriter as part of a plugin for dlvhex
(see [10, 11]), (ii) a schema rewriter which manipulates the rewritten datalog rules, adds
auxiliary definitions in order to match the underlying database schema, and implements
the chosen semantics by adding rules to the input of the module in (iii) the DLVDB

datalog engine, which rewrites the input program to native SQL queries, and thereby
accesses triples persistently stored in (iv) a DBMS of choice storing the RDF data
according to a particular storage schema. This architecture provides a fully declarative
implementation of SPARQL and brings support for further (deductive) database and LP
optimization and extensibility.

By and large, the chosen database schema for the triples exploits a main table storing
quadruples composed of subject, predicate, object, and the source graph of each triple.
This representation has been improved [12] by additional relations mapping URIs/literal
string to integer values, which avoids string matching in favour of integer comparison.

We have investigated the persistent storage facilities as well as SPARQL features
of some of the state-of-the-art RDF stores, namely, Sesame RDF database 2.0, Owlim
v3.0b8, AllegroGraph 3.0.1, and Jena/Joseki 3.2.3 All systems support persistent storage,
either based on RDBMS or on other dedicated backends, and deal with RDFS inferencing
and partial or non-standard OWL fragments. While a persistence strategy is provided,
both reasoning and query evaluation are usually performed in main memory, adopting
a materialization strategy. In our tests we focused on querying under ρDF inference
regime [5], requiring the capability to match patterns against named graphs. The inves-
tigation revealed that combining RDFS and named graph queries lead to unexpected
behavior. While inference is properly handled as long as the query ranges over the whole
dataset, RDFS reasoning fails in case of queries using explicit default or named graphs.
That leaves dynamic named graph queries with inference infeasible in current systems.

3 Related Work and Outlook of the Demo

There are earlier approaches to integrate ontological inference in a logic programming
environment. As opposed to SWI Prolog’s Semantic Web library [13] which also offers
SPARQL support, we support Answer Set Programming as underlying LP paradigm,

3 http://www.openrdf.org/, http://www.ontotext.com/owlim/, http://
jena.hpl.hp.com/, and http://agraph.franz.com/



instead of Prolog. In contrast to OntoDLV [14], which supports proprietary ontology
and query languages, the focus of GiaBATA is on compliance with Web standards such
as SPARQL, RDF(S), OWL, and RIF. We currently work on the efficiency of FILTER
expressions by rewriting them to SQL queries over the underlying database, see [15,
16]. Moreover, one of the next steps includes to support arbitrary database schemes.
Applying optimization techniques from both the DB and LP area should boost evaluation
performance. Extensions of SPARQL by aggregates and custom built-ins presented in
earlier works [11] carry over to our persistent storage version with minor modifications.
We are going to add support for extended graphs, that is SPARQL “views” as defined
also in [11].

The live discussion will provide a better insight into GiaBATA showing use cases
that cover the key features of the system in accessing, storing and querying Semantic
Web data. For features explanation we will refer to largely adopted benchmark suites,4

while ad hoc showcases will help to understand the advantages of our proposed using
ontology extension. Finally, the users will get an overview of GiaBATA’s capabilities
and will learn how to interact with it.

References
1. Prud’hommeaux, E., (eds.), A.S.: SPARQL Query Language for RDF (January 2008) W3C

Recommendation.
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