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Abstract. RDF Schema (RDFS) as a lightweight ontology language is gaining
popularity and, consequently, tools for scalable RDFS inference and querying are
needed. SPARQL has become recently a W3C standard for querying RDF data, but it
mostly provides means for querying simple RDF graphs only, whereas querying with
respect to RDFS or other entailment regimes is left outside the current specification.
In this paper, we show that SPARQL faces certain unwanted ramifications when
querying ontologies in conjunction with RDF datasets that comprise multiple named
graphs, and we provide an extension for SPARQL that remedies these effects.
Moreover, since RDFS inference has a close relationship with logic rules, we
generalize our approach to select a custom ruleset for specifying inferences to be
taken into account in a SPARQL query. We show that our extensions are technically
feasible by providing benchmark results for RDFS querying in our prototype system
GiaBATA, which uses Datalog coupled with a persistent Relational Database as
a back-end for implementing SPARQL with dynamic rule-based inference. By
employing different optimization techniques like magic set rewriting our system
remains competitive with state-of-the-art RDFS querying systems.

1 Introduction

Thanks to initiatives such as DBPedia or the Linked Open Data project,4 a huge amount of
machine-readable RDF [1] data is available, accompanying pervasive ontologies describing
this data such as FOAF [2], SIOC [3], or YAGO [4].

A vast amount of Semantic Web data uses rather small and lightweight ontologies
that can be dealt with rule-based RDFS and OWL reasoning [5–7], in contrast to the
full power of expressive description logic reasoning. However, even if many practical
use cases do not require complete reasoning on the terminological level provided by
DL-reasoners, the following tasks become of utter importance. First, a Semantic Web
system should be able to handle and evaluate (possibly complex) queries on large amounts
of RDF instance data. Second, it should be able to take into account implicit knowledge
found by ontological inferences as well as by additional custom rules involving built-ins

? This work has been partially supported by the Italian Research Ministry (MIUR) project Interlink
II04CG8AGG, the Austrian Science Fund (FWF) project P20841, by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Lion-2).

4 http://dbpedia.org/ and http://linkeddata.org/



or even nonmonotonicity. The latter features are necessary, e.g., for modeling complex
mappings [8] between different RDF vocabularies. As a third point, joining the first and the
second task, if we want the Semantic Web to be a solution to – as Ora Lassila formulated it
– those problems and situations that we are yet to define,5 we need triple stores that allow
dynamic querying of different data graphs, ontologies, and (mapping) rules harvested from
the Web. The notion of dynamic querying is in opposition to static querying, meaning that
the same dataset, depending on context, reference ontology and entailment regime, might
give different answers to the same query. Indeed, there are many situations in which the
dataset at hand and its supporting class hierarchy cannot be assumed to be known upfront:
think of distributed querying of remotely exported RDF data.

Concerning the first point, traditional RDF processors like Jena (using the default
configuration) are designed for handling large RDF graphs in memory, thus reaching their
limits very early when dealing with large graphs retrieved from the Web. Current RDF
Stores, such as YARS [9], Sesame, Jena TDB, ThreeStore, AllegroGraph, or OpenLink
Virtuoso6 provide roughly the same functionality as traditional relational database systems
do for relational data. They offer query facilities and allow to import large amounts of
RDF data into their persistent storage, and typically support SPARQL [10], the W3C
standard RDF query language. SPARQL has the same expressive power as non-recursive
Datalog [11, 12] and includes a set of built-in predicates in so called filter expressions.

However, as for the second and third point, current RDF stores only offer limited sup-
port. OWL or RDF(S) inference, let alone custom rules, are typically fixed in combination
with SPARQL querying (cf. Section 2). Usually, dynamically assigning different ontolo-
gies or rulesets to data for querying is neither supported by the SPARQL specification
nor by existing systems. Use cases for such dynamic querying involve, e.g., querying data
with different versions of ontologies or queries over data expressed in related ontologies
adding custom mappings (using rules or “bridging” ontologies).

To this end, we propose an extension to SPARQL which caters for knowledge-intensive
applications on top of Semantic Web data, combining SPARQL querying with dynamic,
rule-based inference. In this framework, we overcome some of the above mentioned limita-
tions of SPARQL and existing RDF stores. Moreover, our approach is easily extensible by
allowing features such as aggregates and arbitrary built-in predicates to SPARQL (see [8,
14]) as well as the addition of custom inference and mapping rules. The contributions of
our paper are summarized as follows:
• We introduce two additional language constructs to the normative SPARQL language.
First, the directive using ontology for dynamically coupling a dataset with an arbitrary
RDFS ontology, and second extended dataset clauses, which allow to specify datasets
with named graphs in a flexible way. The using ruleset directive can be exploited for
adding to the query at hand proper rulesets which might used for a variety of applications
such as encoding mappings between entities, or encoding custom entailment rules, such as
RDFS or different rule-based OWL fragments.
• We present the GiaBATA system [15], which demonstrates how the above extensions can
be implemented on a middle-ware layer translating SPARQL to Datalog and SQL. Namely,
the system is based on known translations of SPARQL to Datalog rules. Arbitrary, possibly
recursive rules can be added flexibly to model arbitrary ontological inference regimes,

5 http://www.lassila.org/publications/2006/SCAI-2006-keynote.pdf
6 See http://openrdf.org/, http://jena.hpl.hp.com/wiki/TDB/, http://
threestore.sf.net/, http://agraph.franz.com/allegrograph/, http://
openlinksw.com/virtuoso/, respectively.



@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix rel: <http://purl.org/vocab/relationship/>.
...
rel:friendOf rdfs:subPropertyOf foaf:knows.
foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:homepage rdf:type owl:inverseFunctionalProperty.
...

(a) Graph GM (<http://example.org/myOnt.rdfs>), a combination of the FOAF&Relationship ontologies.
<http://bob.org#me> foaf:name "Bob"; a foaf:Person;

foaf:homepage <http://bob.org/home.html>;
rel:friendOf [ foaf:name "Alice";

rdfs:seeAlso <http://alice.org> ].

(b) Graph GB (<http://bob.org>)

<http://alice.org#me> foaf:name "Alice"; a foaf:Person;
rel:friendOf [ foaf:name "Charles" ],

[ foaf:name "Bob";
foaf:homepage <http://bob.org/home.html> ].

(c) Graph GA (<http://alice.org>)

Fig. 1: An ontology and two data graphs

vocabulary mappings, or alike. The resulting program is compiled to SQL where possible,
such that only the recursive parts are evaluated by a native Datalog implementation. This
hybrid approach allows to benefit from efficient algorithms of deductive database systems
for custom rule evaluation, and native features such as query plan optimization techniques
or rich built-in functions (which are for instance needed to implement complex filter
expressions in SPARQL) of common database systems.
• We compare our GiaBATA prototype to well-known RDF(S) systems and provide
experimental results for the LUBM [16] benchmark. Our approach proves to be competitive
on both RDF and dynamic RDFS querying without the need to pre-materialize inferences.

In the remainder of this paper we first introduce SPARQL along with RDF(S) and
partial OWL inference by means of some motivating example queries which existing
systems partially cannot deal in a reasonably manner in Section 2. Section 3 sketches how
the SPARQL language can be enhanced with custom ruleset specifications and arbitrary
graph merging specifications. We then briefly introduce our approach to translate SPARQL
rules to Datalog in Section 4, and how this is applied to a persistent storage system.
We evaluate our approach with respect to existing RDF stores in Section 5, and then
conclusions are drawn in Section 6.

2 SPARQL and some Motivating Examples

Similar in spirit to structured query languages like SQL, which allow to extract, combine
and filter data from relational database tables, SPARQL allows to extract, combine and
filter data from RDF graphs. The semantics and implementation of SPARQL involves,
compared to SQL, several peculiarities, which we do not focus on in this paper, cf. [10,
18, 11, 19] for details. Instead, let us just start right away with some illustrating example
motivating our proposed extensions of SPARQL; we assume two data graphs describing
data about our well-known friends Bob and Alice shown in Fig. 1(b)+(c). Both graphs
refer to terms in a combined ontology defining the FOAF and Relationship7 vocabularies,
see Fig. 1(a) for an excerpt.

On this data the SPARQL query (1) intends to extract names of persons mentioned in
those graphs that belong to friends of Bob. We assume that, by means of rdfs:seeAlso
statements, Bob provides links to the graphs associated to the persons he is friend with.

select ?N from <http://example.org/myOnt.rdfs>
from <http://bob.org>
from named <http://alice.org>

where { <http://bob.org#me> foaf:knows ?X . ?X rdfs:seeAlso ?G .
graph ?G { ?P rdf:type foaf:Person; foaf:name ?N } }

(1)

7 http://vocab.org/relationship/



Here, the from and from named clauses specify an RDF dataset. In general, the dataset
DS = (G,N) of a SPARQL query is defined by (i) a default graph G obtained by the
RDF merge [20] of all graphs mentioned in from clauses, and (ii) a set N = {(u1, G1),
. . . , (uk, Gk)} of named graphs, where each pair (ui, Gi) consists of an IRI ui, given in
a from named clause, paired with its corresponding graph Gi. For instance, the dataset
of query (1) would be DS 1 = ( GM ] GB , {(<http://alice.org>, GA)}), where ]
denotes merging of graphs according to the normative specifications.

Now, let us have a look at the answers to query (1). Answers to SPARQL select
queries are defined in terms of multisets of partial variable substitutions. In fact the answer
to query (1) is empty when – as typical for current SPARQL engines – only simple RDF
entailment is taken into account, and query answering then boils down to simple graph
matching. Since neither of the graphs in the default graph contain any triple matching the
pattern <http://bob.org#me> foaf:knows ?X in the where clause, the result of (1)
is empty. When taking subproperty inference by the statements of the ontology in GM

into account, however, one would expect to obtain three substitutions for the variable ?N:
{?N/"Alice", ?N/"Bob", ?N/"Charles"}. We will explain in the following why this
is not the case in standard SPARQL.

In order to obtain the expected answer, firstly SPARQL’s basic graph pattern matching
needs to be extended, see [10, Section 12.6]. In theory, this means that the graph patterns
in the where clause needs to be matched against an enlarged version of the original graphs
in the dataset (which we will call the deductive closure Cl(·)) of a given entailment regime.
Generic extensions for SPARQL to entailment regimes other than simple RDF entailment
are still an open research problem,8 due to various problems: (i) for (non-simple) RDF
entailment regimes, such as full RDFS entailment, Cl(G) is infinite, and thus SPARQL
queries over an empty graph G might already have infinite answers, and (ii) it is not yet
clear which should be the intuitive answers to queries over inconsistent graphs, e.g. in
OWL entailment, etc. In fact, SPARQL restricts extensions of basic graph pattern matching
to retain finite answers. Not surprisingly, many existing implementations implement finite
approximations of higher entailment regimes such as RDFS and OWL [6, 5, 21]. E.g.,
the RDF Semantics document [20] contains an informative set of entailment rules, a
subset of which (such as the one presented in Section 3.2 below) is implemented by most
available RDF stores. These rule-based approximations, which we focus on in this paper,
are typically expressible by means of Datalog-style rules. These latter model how to infer a
finite closure of a given RDF graph that covers sound but not necessarily complete RDF(S)
and OWL inferences. It is worth noting that Rule-based entailment can be implemented
in different ways: rules could be either dynamically evaluated upon query time, or the
closure wrt. rulesetR, ClR(G), could be materialized when graph G is loaded into a store.
Materialization of inferred triples at loading time allows faster query responses, yet it has
drawbacks: it is time and space expensive and it has to be performed once and statically.
In this setting, it must be decided upfront

(a) which ontology should be taken into account for which data graph, and
(b) to which graph(s) the inferred triples “belong”, which particularly complicates the

querying of named graphs.

As for exemplifying (a), assume that a user agent wants to issue another query on
graph GB with only the FOAF ontology in mind, since she does not trust the Relation-
ship ontology. In the realm of FOAF alone, rel:friendOf has nothing to deal with

8 For details, cf. http://www.polleres.net/sparqltutorial/, Unit 5b.



foaf:knows. However, when materializing all inferences upon loading GM and GB into
the store, bob:me foaf:knows :a would be inferred from GM ] GB and would con-
tribute to such a different query. Current RDF stores prevent to dynamically parameterize
inference with an ontology of choice at query time, since indeed typically all inferences
are computed upon loading time once and for all.

As for (b), queries upon datasets including named graphs are even more problematic.
Query (1) uses GB in order to find the IRI identifiers for persons that Bob knows by
following rdfs:seeAlso links and looks for persons and their names in the named RDF
graphs found at these links. Even if rule-based inference was supported, the answer to
query (1) over dataset DS 1 is just {?N/"Alice"}, as “Alice” is the only (explicitly)
asserted foaf:Person in GA. Subproperty, domain and range inferences over the GM

ontology do not propagate to GA, since GM is normatively prescribed to be merged
into the default graph, but not into the named graph. Thus, there is no way to infer that
"Bob" and "Charles" are actually names of foaf:Persons within the named graph
GA. Indeed, SPARQL does not allow to merge, on demand, graphs into the named graphs,
thus there is no way of combining GM with the named graph GA.

To remedy these deficiencies, we suggest an extension of the SPARQL syntax, in order
to allow the specification of datasets more flexibly: it is possible to group graphs to be
merged in parentheses in from and from named clauses. The modified query, obtaining
a dataset DS 2 = ( GM ] GB , {(http://alice.org, GM ] GA)}) looks as follows:

select ?N
from (<http://example.org/myOnt.rdfs> <http://bob.org/>)
from named <http://alice.org>

(<http://example.org/myOnt.rdfs> <http://alice.org/>)
where { bob:me foaf:knows ?X . ?X rdfs:seeAlso ?G .

graph ?G { ?X foaf:name ?N . ?X a foaf:Person . } }

(2)

For ontologies which should apply to the whole query, i.e., graphs to be merged into
the default graph as well as any specified named graph, we suggest a more convenient
shortcut notation by adding the keyword using ontology in the SPARQL syntax:

select ?N
using ontology <http://example.org/myOnt.rdfs>
from <http://bob.org/>
from named <http://alice.org/>

where { bob:me foaf:knows ?X . ?X foaf:seeAlso ?G .
graph ?G { ?X foaf:name ?N . ?X a foaf:Person. } }

(3)

Hence, the using ontology construct allows for coupling the entire given dataset
with the terminological knowledge in the myOnt data schema. As our investigation of
currently available RDF stores (see Section 5) shows, none of these systems easily allow
to merge ontologies into named graphs or to dynamically specify the dataset of choice.

In addition to parameterizing queries with ontologies in the dataset clauses, we also
allow to parameterize the ruleset which models the entailment regime at hand. Per default,
our framework supports a standard ruleset that “emulates” (a finite subset of) the RDFS
semantics. This standard ruleset is outlined in Section 3 below. Alternatively, different
rule-based entailment regimes, e.g., rulesets covering parts of the OWL semantics á la
ter Horst [5], de Bruijn [22, Section 9.3], OWL2 RL [17] or other custom rulesets can be
referenced with the using ruleset keyword. For instance, the following query returns
the solution {?X/<http://alice.org#me>, ?Y/<http://bob.org#me>}, by doing
equality reasoning over inverse functional properties such as foaf:homepage when the



FOAF ontology is being considered:

select ?X ?Y
using ontology <http://example.org/myOnt.rdfs>
using ruleset rdfs
using ruleset <http://www.example.com/owl-horst>
from <http://bob.org/>
from <http://alice.org/>
where { ?X foaf:knows ?Y }

(4)

Query (4) uses the built-in RDFS rules for the usual subproperty inference, plus a
ruleset implementing ter Horst’s inference rules, which might be available at URL http:

//www.example.com/owl-horst. This ruleset contains the following additional rules,
that will “equate” the blank node used in GA for “Bob” with <http://bob.org#me>:9

?P rdf:type owl:iFP . ?S1 ?P ?O . ?S2 ?P ?O . → ?S1 owl:sameAs ?S2.
?X owl:sameAs ?Y → ?Y owl:sameAs ?X.
?X ?P ?O . ?X owl:sameAs ?Y → ?Y ?P ?O.
?S ?X ?O . ?X owl:sameAs ?Y → ?S ?Y ?O.
?S ?P ?X . ?X owl:sameAs ?Y → ?S ?P ?Y.

(5)

3 A Framework for Using Ontologies and Rules in SPARQL

In the following, we will provide a formal framework for the SPARQL extensions outlined
above. In a sense, the notion of dynamic querying is formalized in terms of the dependence
of BGP pattern answers [[P ]]O,R from a variable ontology O and ruleset R. For our
exposition, we rely on well-known definitions of RDF datasets and SPARQL. Due to space
limitations, we restrict ourselves to the bare minimum and just highlight some standard
notation used in this paper.
Preliminaries. Let I , B, and L denote pairwise disjoint infinite sets of IRIs, blank nodes,
and RDF literals, respectively. A term is an element from I ∪B ∪ L. An RDF graph G
(or simply graph) is defined as a set of triples from I ∪B × I ∪B × I ∪B ∪ L (cf. [18,
12]); by blank(G) we denote the set of blank nodes of G.10

A blank node renaming θ is a mapping I ∪B ∪ L→ I ∪B ∪ L. We denote by tθ the
application of θ to a term t. If t ∈ I ∪ L then tθ = t, and if t ∈ B then tθ ∈ B. If (s, p, o)
is a triple then (s, p, o)θ is the triple (sθ, pθ, oθ). Given a graph G, we denote by Gθ the
set of all triples {tθ | t ∈ G}. Let G and H be graphs. Let θG

H be an arbitrary blank node
renaming such that blank(G)∩ blank(HθG

H) = ∅. The merge of G by H , denoted G]H ,
is defined as G ∪HθG

H .
An RDF dataset D = (G0, N) is a pair consisting of exactly one unnamed graph, the

so-called default graph G0, and a set N = {〈u1, G1〉, . . . , 〈un, Gn〉} of named graphs,
coupled with their identifying URIs. The following conditions hold: (i) each Gi (0 ≤ i ≤
n) is a graph, (ii) each uj (1 ≤ j ≤ n) is from I , and (iii) for all i 6= j, 〈ui, Gi〉, 〈uj , Gj〉 ∈
N implies ui 6= uj and blank(Gi) ∩ blank(Gj) = ∅.

The syntax and semantics of SPARQL can now be defined as usual, cf. [10, 18, 12]
for details. For the sake of this paper, we restrict ourselves to select queries as shown
in the example queries (1)–(4) and just provide an overview of the necessary concepts. A
query in SPARQL can be viewed as a tuple Q = (V,D, P ), where V is the set of variables
mentioned in the select clause, D is an RDF dataset, defined by means of from and
from named clauses, and P is a graph pattern, defined in the where clause.

9 We use owl:iFP as shortcut for owl:inverseFunctionalProperty.
10 Note that we allow generalized RDF graphs that may have blank nodes in property position.



Graph patterns are in the simplest case sets of RDF triples (s, p, o), where terms and
variables from an infinite set of variables Var are allowed, also called basic graph patterns
(BGP). More complex graph patterns can be defined recursively, i.e., if P1 and P2 are
graph patterns, g ∈ I∪Var andR is a filter expression, then P1 optional P2, P1 union
P2, P1 filter R, and graph g P1 are graph patterns.
Graph pattern matching. Queries are evaluated by matching graph patterns against
graphs in the dataset. In order to determine a query’s solution, in the simplest case BGPs
are matched against the active graph of the query, which is one particular graph in the
dataset, identified as shown next.

Solutions of BGP matching consist of multisets of bindings for the variables mentioned
in the pattern to terms in the active graph. Partial solutions of each subpattern are joined
according to an algebra defining the optional, union and filter operators, cf. [10,
18, 12]. For what we are concerned with here, the most interesting operator though is the
graph operator, since it changes the active graph. That is, the active graph is the default
graph G0 for any basic graph pattern not occurring within a graph sub pattern. However,
in a subpattern graph g P1, the pattern P1 is matched against the named graph identified
by g, if g ∈ I , and against any named graph ui, if g ∈ Var , where the binding ui is
returned for variable g. According to [12], for a RDF dataset D and active graph G, we
define [[P ]]DG as the multiset of tuples constituting the answer to the graph pattern P . The
solutions of a query Q = (V,D, P ) is the projection of [[P ]]DG to the variables in V only.

3.1 SPARQL with Extended Datasets

What is important to note now is that, by the way how datasets are syntactically defined in
SPARQL, the default graph G0 can be obtained from merging a group of different source
graphs, specified via several from clauses – as shown, e.g., in query (1) – whereas in
each from named clause a single, separated, named graph is added to the dataset. That is,
graph patterns will always be matched against a separate graph only. To generalize this
towards dynamic construction of groups of merged named graphs, we introduce the notion
of an extended dataset, which can be specified by enlarging the syntax of SPARQL with
two additional dataset clauses:

– For i, i1, . . . , im distinct IRIs (m ≥ 1), the statement “from named i(i1 . . . im)” is
called extended dataset clause. Intuitively, i1 . . . im constitute a group of graphs to be
merged: the merged graph is given i as identifying IRI.

– For o ∈ I we call the statement “using ontology o” an ontological dataset clause.
Intuitively, o stands for a graph that will merged with all graphs in a given query.

Extended RDF datasets are thus defined as follows. A graph collection G is a set
of RDF graphs. An extended RDF dataset D is a pair (G0, {〈u1,G1〉, . . . , 〈un,Gn〉})
satisfying the following conditions: (i) each Gi is a nonempty graph collection (note
that {∅} is a valid nonempty graph collection), (ii) each uj is from I , and (iii) for
all i 6= j, 〈ui,Gi〉, 〈uj ,Gj〉 ∈ D implies ui 6= uj and for G ∈ Gi and H ∈ Gj ,
blank(G) ∩ blank(H) = ∅. We denote G0 as dg(D), the default graph collection of D.

Let D and O be an extended dataset and a graph collection, resp. The ordinary RDF
dataset obtained from D and O, denoted D(D,O), is defined as( ⊎

g∈dg(D)

g ]
⊎

o∈O
o,
{
〈u,

⊎
g∈G

g ]
⊎

o∈O
o〉 | 〈u,G〉 ∈ D

})
.



We can now define the semantics of extended and ontological dataset clauses as follows.
Let F be a set of ordinary and extended dataset clauses, and O be a set of ontological
dataset clauses. Let graph(g) be the graph associated to the IRI g: the extended RDF
dataset obtained from F , denoted edataset(F ), is composed of:

(1) G0 = {graph(g) | “from g” ∈ F}. If there is no from clause, then G0 = ∅.
(2) A named graph collection 〈u, {graph(u)}〉 for each “from named u” in F .
(3) A named graph collection 〈i, {graph(i1), . . . , graph(im)}〉 for each “from named

i(i1 . . . im)” in F .

The graph collection obtained from O, denoted ocollection(O), is the set {graph(o) |
“using ontology o” ∈ O}. The ordinary dataset of O and F , denoted dataset(F,O),
is the set D(edataset(F ), ocollection(O)).

Let D and O be as above. The evaluation of a graph pattern P over D and O having
active graph collection G, denoted [[P ]]D,O

G , is the evaluation of P over D(D,O) having

active graph G =
⊎

g∈G g, that is, [[P ]]D,O
G = [[P ]]D(D,O)

G .
Note that the semantics of extended datasets is defined in terms of ordinary RDF

datasets. This allows to define the semantics of SPARQL with extended and ontological
dataset clauses by means of the standard SPARQL semantics. Also note that our exten-
sion is conservative, i.e., the semantics coincides with the standard SPARQL semantics
whenever no ontological clauses and extended dataset clauses are specified.

3.2 SPARQL with Arbitrary Rulesets

Extended dataset clauses give the possibility of merging arbitrary ontologies into any
graph in the dataset. The second extension herein presented enables the possibility of
dynamically deploying and specifying rule-based entailments regimes on a per query basis.
To this end, we define a generic R-entailment, that is RDF entailment associated to a
parametric rulesetR which is taken into account when evaluating queries. For each such
R-entailment regime we straightforwardly extend BGP matching, in accordance with the
conditions for such extensions as defined in [10, Section 12.6].

We define an RDF inference rule r as the pair (Ante, Con), where the antecedent
Ante and the consequent Con are basic graph patterns such that V(Con) and V(Ante)
are non-empty, V(Con) ⊆ V(Ante) and Con does not contain blank nodes.11 As in
Example (5) above, we typically write RDF inference rules as

Ante→ Con . (6)

We call sets of inference rules RDF inference rulesets, or rulesets for short.

Rule Application and Closure. We define RDF rule application in terms of the immedi-
ate consequences of a rule r or a rulesetR on a graph G. Given a BGP P , we denote as
µ(P ) a pattern obtained by substituting variables in P with elements of I ∪B ∪ L. Let r
be a rule of the form (6) and G be a set of RDF triples, then:

Tr(G) = {µ(Con) | ∃µ such that µ(Ante) ⊆ G}.
11 Unlike some other rule languages for RDF, the most prominent of which being CONSTRUCT

statements in SPARQL itself, we forbid blank nodes; i.e., existential variables in rule consequents
which require the “invention” of new blank nodes, typically causing termination issues.



Accordingly, let TR(G) =
⋃

r∈R Tr(G). Also, let G0 = G and Gi+1 = Gi ∪ TR(Gi) for
i ≥ 0. It can be easily shown that there exists the smallest n such that Gn+1 = Gn; we
call then ClR(G) = Gn the closure of G with respect to rulesetR.

We can now further define R-entailment between two graphs G1 and G2, written
G1 |=R G2, as ClR(G1) |= G2. Obviously for any finite graph G, ClR(G) is finite. In
order to define the semantics of a SPARQL query wrt.R-entailment we now extend graph
pattern matching in [[P ]]DG towards respectingR.

Definition 1 (extended basic graph pattern matching for R-entailment). Let D be a
dataset and G be an active graph. The solution of a BGP P wrt.R-entailment, denoted
[[P ]]D,R

G , is [[P ]]DClR(G).

The solution [[P ]]D,R
G naturally extends to more complex patterns according to the

SPARQL algebra. In the following we will assume that [[P ]]D,R
G is used for graph pat-

tern matching. Our extension of basic graph pattern matching is in accordance with the
conditions for extending BGP matching in [10, Section 12.6]. Basically, these conditions
say that any extension needs to guarantee finiteness of the answers, and defines some
conditions about a “scoping graph.” Intuitively, for our extension, the scoping graph is
just equivalent to ClR(G). We refer to [10, Section 12.6] for the details.

To account for this generic SPARQL BGP matching extension parameterized by an
RDF inference rulesetRQ per SPARQL query Q, we introduce another novel language
construct for SPARQL:

– For r ∈ I we call “using ruleset r” a ruleset clause.

Analogously to IRIs denoting graphs, we now assume that an IRI r ∈ I may not only
refer to graphs but also to rulesets, and denote the corresponding ruleset by ruleset(r).
Each query Q may contain zero or more ruleset clauses, and we define the query ruleset
RQ =

⋃
r∈R ruleset(r), where R is the set of all ruleset clauses in Q.

The definitions of solutions of a query and the evaluation of a pattern in this query
on active graph G is now defined just as above, with the only difference that answer to a
pattern P are given by [[P ]]D,RQ

G .
We observe that whenever R = ∅, then R-entailment boils down to simple RDF

entailment. Thus, a query without ruleset clauses will just be evaluated using standard
BGP matching. In general, our extension preserve full backward compatibility.

Proposition 1. ForR = ∅ and RDF graph G, [[P ]]D,R
G = [[P ]]DG .

Analogously, one might useR-entailment as the basis for RDFS entailment as follows. We
consider here the ρDF fragment of RDFS entailment [6]. LetRRDFS denote the ruleset
corresponding to the minimal set of entailment rules (2)–(4) from [6]:
?P rdfs:subPropertyOf ?Q . ?Q rdfs:subPropertyOf ?R . → ?P rdfs:subPropertyOf ?R.
?P rdfs:subPropertyOf ?Q . ?S ?P ?O . → ?S ?Q ?O.
?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E . → ?C rdfs:subClassOf ?E.
?C rdfs:subClassOf ?D . ?S rdf:type ?C . → ?S rdf:type ?D.
?P rdfs:domain ?C . ?S ?P ?O . → ?S rdf:type ?C.
?P rdfs:range ?C . ?S ?P ?O . → ?O rdf:type ?C.

Since obviously G |=RDFS ClRRDFS
(G) and hence ClRRDFS

(G) may be viewed as a
finite approximation of RDFS-entailment, we can obtain a reasonable definition for defin-
ing a BGP matching extension for RDFS by simply defining [[P ]]D,RDFS

G = [[P ]]D,RRDFS

G .
We allow the special ruleset clause using ruleset rdfs to conveniently refer to this



particular ruleset. Other rulesets may be published under a Web dereferenceable URI, e.g.,
using an appropriate RIF [23] syntax.

Note, eventually, that our rulesets consist of positive rules, and as such enjoy a natural
monotonicity property.

Proposition 2. For rulesets R and R′, such that R ⊆ R′, and graph G1 and G2, if
G1 |=R G2 then G1 |=R′ G2.

Entailment regimes modeled using rulesets can thus be enlarged without retracting
former inferences. This for instance would allow to introduce tighter RDFS-entailment
approximations by extendingRRDFS with further axioms, yet preserving inferred triples.

4 Translating SPARQL into Datalog and SQL

Our extensions have been implemented by reducing both queries, datasets and rulesets to
a common ground which allows arbitrary interoperability between the three realms. This
common ground is Datalog, wherein rulesets naturally fit and SPARQL queries can be
reduced to. Subsequently, the resulting combined Datalog programs can be evaluated over
an efficient SQL interface to an underlying relational DBMS that works as triple store.
From SPARQL to Datalog. A SPARQL query Q is transformed into a corresponding
Datalog program DQ. The principle is to break Q down to a series of Datalog rules, whose
body is a conjunction of atoms encoding a graph pattern. DQ is mostly a plain Datalog
program in dlvhex [24] input format, i.e. Datalog with external predicates in the dlvhex
language. These are explained along with a full account of the translation in [11, 19]. Main
challenges in the transformation from SPARQL to Datalog are (i) faithful treatment of
the semantics of joins over possibly unbound variables [11], (ii) the multiset semantics of
SPARQL [19], and also (iii) the necessity of Skolemization of blank nodes in construct
queries [8]. Treatment of optional statements is carried out by means of an appropriate
encoding which exploits negation as failure. Special external predicates of dlvhex are used
for supporting some features of the SPARQL language: in particular, importing RDF data
is achieved using the external &rdf predicate, which can be seen as a built-in referring to
external data. Moreover, SPARQL filter expressions are implemented using the dlvhex
external &eval predicate in DQ.

Let us illustrate this transformation step by an example: the following query A asking
for persons who are not named “Alice” and optionally their email addresses

select * from <http://alice.org/>
where { ?X a foaf:Person. ?X foaf:name ?N.

filter ( ?N != "Alice") optional { ?X foaf:mbox ?M } }
(7)

is translated to the program DA as follows:

(r1) "triple"(S,P,0,default) :- &rdf[ "alice.org" ](S,P,0).
(r2) answer1(X_N,X_X,default) :- "triple"(X_X,"rdf:type","foaf:Person",default),

"triple"(X_X,"foaf:name",X_N,default),
&eval[" ?N != ’Alice’ ","N", X_N ](true).

(r3) answer2(X_M,X_X,default) :- "triple"(X_X,"foaf:mbox",X_M,default).
(r4) answer_b_join_1(X_M,X_N,X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r5) answer_b_join_1(null,X_N,X_X,default) :- answer1(X_N,X_X,default),

not answer2_prime(X_X,default).
(r6) answer2_prime(X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r7) answer(X_M,X_N,X_X) :- answer_b_join1(X_M,X_N,X_X,default).



where the first rule (r1) computes the predicate "triple" taking values from the built-in
predicate &rdf. This latter is generally used to import RDF statements from the specified
URI. The following rules (r2) and (r3) compute the solutions for the filtered basic graph
patterns {?X a foaf:Person. ?X foaf:name ?N. filter (?N != "Alice") }
and {?X foaf:mbox ?M }. In particular, note here that the evaluation of filter expres-
sions is “outsourced” to the built-in predicate &eval, which takes a filter expression and
an encoding of variable bindings as arguments, and returns the evaluation value (true,
false or error, following the SPARQL semantics). In order to emulate SPARQL’s
optional patterns a combination of join and set difference operation is used, which is
established by rules (r4)–(r6). Set difference is simulated by using both null values and
negation as failure. According to the semantics of SPARQL, one has to particularly take
care of variables which are joined and possibly unbound (i.e., set to the null value) in
the course of this translation for the general case. Finally, the dedicated predicate answer
in rule (r7) collects the answer substitutions for Q. DQ might then be merged with
additional rulesets whenever Q contains using ruleset clauses.
From Datalog to SQL. For this step we rely on the system DLVDB [25] that implements
Datalog under stable model semantics on top of a DBMS of choice. DLVDB is able
to translate Datalog programs in a corresponding SQL query plan to be issued to the
underlying DBMS. RDF Datasets are simply stored in a database D, but the native dlvhex
&rdf and &eval predicates in DQ cannot be processed by DLVDBdirectly over D. So,
DQ needs to be post-processed before it can be converted into suitable SQL statements.

Rule (r1) corresponds to loading persistent data into D, instead of loading triples via
the &rdf built-in predicate. In practice, the predicate "triple" occurring in program DA

is directly associated to a database table TRIPLE in D. This operation is done off-line by
a loader module which populates the TRIPLE table accordingly, while (r1) is removed
from the program. The &eval predicate calls are recursively broken down into WHERE
conditions in SQL statements, as sketched below when we discuss the implementation of
filter statements.

After post-processing, we obtain a program D′Q, which DLVDBallows to be executed
on a DBMS by translating it to corresponding SQL statements. D′Q is coupled with a
mapping file which defines the correspondences between predicate names appearing in
D′Q and corresponding table and view names stored in the DBMS D.

For instance, the rule (r4) of DA, results in the following SQL statement issued to
the RDBMS by DLVDB :

INSERT INTO answer_b_join_1
SELECT DISTINCT answer2_p2.a1, answer1_p1.a1, answer1_p1.a2, ’default’
FROM answer1 answer1_p1, answer2 answer2_p2
WHERE (answer1_p1.a2=answer2_p2.a2)
AND (answer1_p1.a3=’default’)
AND (answer2_p2.a3=’default’)
EXCEPT (SELECT * FROM answer_b_join_1)

Whenever possible, the predicates for computing intermediate results such as answer1,
answer2, answer b join 1, . . . , are mapped to SQL views rather than materialized
tables, enabling dynamic evaluation of predicate contents on the DBMS side.12

Schema rewriting. Our system allows for customizing schemes which triples are stored
in. It is known and debated [26] that in choosing the data scheme of D several aspects
have to be considered, which affect performance and scalability when handling large-scale
12 For instance, recursive predicates require to be associated with permanent tables, while remaining

predicates are normally associated to views.



RDF data. A widely adopted solution is to exploit a single table storing quadruples of form
(s, p, o, c) where s, p, o and c are, respectively, the triple subject, predicate, object and
context the triple belongs to. This straightforward representation is easily improved [27]
by avoiding to store explicitly string values referring to URIs and literals. Instead, such
values are replaced with a corresponding hash value.

Other approaches suggest alternative data structures, e.g., property tables [27, 26].
These aim at denormalizing RDF graphs by storing them in a flattened representation,
trying to encode triples according to the hidden “schema” of RDF data. Similarly to a
traditional relational schema, in this approach D contains a table per each known property
name (and often also per class, splitting up the rdf:type table).

Our system gives sufficient flexibility in order to program different storage schemes:
while on higher levels of abstraction data are accessible via the 4-ary triple predicate,
a schema rewriter module is introduced in order to match D′Q to the current database
scheme. This module currently adapts D′Q by replacing constant IRIs and literals with
their corresponding hash value, and introducing further rules which translate answers,
converting hash values back to their original string representation.
Magic sets. Notably, DLVDB can post-process D′Q using the magic sets technique, an
optimization method well-known in the database field [28]. The optimized program mD′Q
tailors the data to be queried to an extent significantly smaller than the original D′Q.
The application of magic sets allows, e.g., to apply entailment rules RRDFS only on
triples which might affect the answer to Q, preventing thus the full computation and/or
materialization of inferred data.
Implementation of filter statements. Evaluation of SPARQL filter statements is
pushed down to the underlying database D by translating filter expressions to appropriate
SQL views. This allows to dynamically evaluate filter expressions on the DBMS side. For
instance, given a rule r ∈ DQ of the form

h(X,Y) :- b(X,Y), &eval[f_Y](bool).

where the &eval atom encodes the filter statement (f Y representing the filter expres-
sion), then r is translated to

h(X,Y) :- b’(X,Y).

where b’ is a fresh predicate associated via the mapping file to a database view. Such a
view defines the SQL code to be used for the computation of f Y , like

CREATE VIEW B’ AS ( SELECT X,Y FROM B WHERE F_Y )

where F Y is an appropriate translation of the SPARQL filter expression f Y at hand to
an SQL Boolean condition,13 while B is the DBMS counterpart table of the predicate b.

5 Experiments

In order to illustrate that our approach is practically feasible, we present a quantitative
performance comparison between our prototype system, GiaBATA, which implements the
approach outlined before, and some state-of-the-art triple stores. The test were done on an
Intel P4 3GHz machine with 1.5GB RAM under Linux 2.6.24. Let us briefly outline the
main features and versions of the triple stores we used in our comparison.
13 A version of this translation can be found in [29].



AllegroGraph works as a database and application framework for building Semantic Web
applications. The system assures persistent storage and RDFS++ reasoning, a semantic ex-
tension including the RDF and RDFS constructs and some OWL constructs (owl:sameAs,
owl:inverseOf, owl:TransitiveProperty, owl:hasValue). We tested the free
Java edition of AllegroGraph 3.2 with its native persistence mechanism.14

ARQ is a query engine implementing SPARQL under the Jena framework.15 It can be
deployed on several persistent storage layers, like filesystem or RDBMS, and it includes
a rule-based inference engine. Being based on the Jena library, it provides inferencing
models and enables (incomplete) OWL reasoning. Also, the system comes with support
for custom rules. We used ARQ 2.6 with RDBMS backend connected to PostgreSQL 8.3.

GiaBATA [15] is our prototype system implementing the SPARQL extensions described
above. GiaBATA is based on a combination of the DLVDB [25] and dlvhex [24] systems,
and caters for persistent storage of both data and ontology graphs. The former system
is a variant of DLV [13] with built-in database support. The latter is a solver for HEX-
programs [24], which features an extensible plugin system which we used for developing
a rewriter-plugin able to translate SPARQL queries to HEX-programs. The tests were
done using development versions of the above systems connected to PostgreSQL 8.3.

Sesame is an open source RDF database with support for querying and reasoning.16 In
addition to its in-memory database engine it can be coupled with relational databases or
deployed on top of file systems. Sesame supports RDFS inference and other entailment
regimes such as OWL-Horst [5] by coupling with external reasoners. Sesame provides an
infrastructure for defining custom inference rules. Our tests have been done using Sesame
2.3 with persistence support given by the native store.

First of all, it is worth noting that all systems allow persistent storage on RDBMS.
All systems, with the exception of ours, implement also direct filesystem storage. All
cover RDFS (actually, disregarding axiomatic triples) and partial or non-standard OWL
fragments. Although all the systems feature some form of persistence, both reasoning
and query evaluation are usually performed in main memory. All the systems, except
AllegroGraph and ours, adopt a persistent materialization approach for inferring data.

All systems – along with basic inference – support named graph querying, but, with
the exception of GiaBATA, combining both features results in incomplete behavior as
described in Section 2. Inference is properly handled as long as the query ranges over the
whole dataset, whereas it fails in case of querying explicit default or named graphs. That
makes querying of named graphs involving inference impossible with standard systems.

For performance comparison we rely on the LUBM benchmark suite [16]. Our tests
involve the test datasets LUBMn for n ∈ {1, 5, 10, 30} with LUBM30 having roughly
four million triples (exact numbers are reported in [16]). In order to test the additional
performance cost of our extensions, we opted for showing how the performance figures
change when queries which require RDFS entailment rules (LUBM Q4-Q7) are considered,
w.r.t. queries in which rules do not have an impact (LUBM Q1-Q3, see Appendix of [16] for
the SPARQL encodings of Q1–Q7). Experiments are enough for comparing performance
trends, so we didn’t consider at this stage larger instances of LUBM. Note that evaluation
times include the data loading times. Indeed, while former performance benchmarks do

14 System available at http://agraph.franz.com/allegrograph/.
15 Distributed at https://jena.svn.sourceforge.net/svnroot/jena/ARQ/.
16 System available at http://www.openrdf.org/.
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Fig. 2: Evaluation

not take this aspect in account, from the semantic point of view, pre-materialization-at-
loading computes inferences needed for complete query answering under the entailment
of choice. On further reflection, dynamic querying of RDFS moves inference from this
materialization to the query step, which would result in an apparent advantage for systems
that rely on pre-materialization for RDFS data. Also, the setting of this paper assumes
materialization cannot be performed una tantum, since inferred information depends on
the entailment regime of choice, and on the dataset at hand, on a per query basis. We set a
120min query timeout limit to all test runs.

Our test runs include the following system setup: (i) “Allegro (native)” and “Alle-
gro (ordered)” (ii) “ARQ”; (iii) “GiaBATA (native)” and “GiaBATA (ordered)”; and
(iv) “Sesame”. For (i) and (iii), which apply dynamic inference mechanisms, we use
“(native)” and “(ordered)” to distinguish between executions of queries in LUBM’s native
ordering and in a optimized reordered version, respectively. The GiaBATA test runs both



use Magic Sets optimization. To appreciate the cost of RDFS reasoning for queriesQ4–Q7,
the test runs for (i)–(iv) also include the loading time of the datasets, i.e., the time needed
in order to perform RDFS data materialization or to simply store the raw RDF data.

The detailed outcome of the test results are summarized in Fig. 2. For the RDF test
queries Q1–Q3, GiaBATA is able to compete for Q1 and Q3. The systems ARQ and
Sesame turned out to be competitive for Q2 by having the best query response times,
while Allegro (native) scored worst. For queries involving inference (Q4–Q7) Allegro
shows better results. Interestingly, systems applying dynamic inference, namely Allegro
and GiaBATA, query pattern reordering plays a crucial role in preserving performance
and in assuring scalability; without reordering the queries simply timeout. In particular,
Allegro is well-suited for queries ranging over several properties of a single class, whereas
if the number of classes and properties increases (Q7), GiaBATA exhibits better scalability.
Finally, a further distinction between systems relying on DBMS support and systems using
native structures is disregarded, and since figures (in logarithmic scale) depict overall
loading and querying time, this penalizes in specific cases those systems that use a DBMS.

6 Future Work and Conclusion

We presented a framework for dynamic querying of RDFS data, which extends SPARQL by
two language constructs: using ontology and using ruleset. The former is geared
towards dynamically creating the dataset, whereas the latter adapts the entailment regime of
the query. We have shown that our extension conservatively extends the standard SPARQL
language and that by selecting appropriate rules in using ruleset, we may choose
varying rule-based entailment regimes at query-time. We illustrated how such extended
SPARQL queries can be translated to Datalog and SQL, thus providing entry points for
implementation and well-known optimization techniques. Our initial experiments have
shown that although dynamic querying does more computation at query-time, it is still
competitive for use cases that need on-the-fly construction of datasets and entailment
regimes. Especially here, query optimization techniques play a crucial role, and our results
suggest to focus further research in this direction. Furthermore, we aim at conducting a
proper computational analysis as it has been done for Hypothetical datalog [30], in which
truth of atoms is conditioned by hypothetical additions to the dataset at hand. Likewise,
our framework allows to add ontological knowledge and rules to datasets before querying:
note however that, in the spirit of [31], our framework allows for hypotheses (also called
“premises”) on a per query basis rather than a per atom basis.
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