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Abstract. Answer Set Programming (ASP) is a declarative problem solving para-
digm, rooted in Logic Programming and Nonmonotonic Reasoning, which has
been gaining increasing attention during the last years. This article is a gentle
introduction to the subject; it starts with motivation and follows the historical
development of the challenge of defining a semantics for logic programs with
negation. It looks into positive programs over stratified programs to arbitrary
programs, and then proceeds to extensions with two kinds of negation (named
weak and strong negation), and disjunction in rule heads. The second part then
considers the ASP paradigm itself, and describes the basic idea. It shows some
programming techniques and briefly overviews Answer Set solvers. The third part
is devoted to ASP in the context of the Semantic Web, presenting some formalisms
and mentioning some applications in this area. The article concludes with issues
of current and future ASP research.

1 Introduction

Over the the last years, Answer Set Programming (ASP) [1–5] has emerged as a declar-
ative problem solving paradigm that has its roots in Logic Programming and Non-
monotonic Reasoning. This particular way of programming, in a language which is
sometimes called AnsProlog (or simply A-Prolog) [6, 7], is well-suited for modeling
and (automatically) solving problems which involve common sense reasoning: it has
been fruitfully applied to a range of applications (for more details, see Section 6). A
number of extensions of the ASP core language, which goes back to the seminal paper
by Gelfond and Lifschitz [8], have been developed (resulting in an AnsProlog∗ language
family). These extensions aim at increasing the expressiveness of the formalisms and/or
providing convenient constructs for application-specific problem representation; see,
e.g., [9] for an account of such extensions.

The basic idea of ASP is to describe problem specifications by means of a non-
monotonic logic program: solutions to instances of such a problem will be represented
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Fig. 1. Sudoku puzzle (left) and solution (right)

by the intended models of the program (the so-called answer sets, or stable models) at
hand. Rules and constraints, which describe the problem and its possible solutions rather
than a concrete algorithm, are basic elements of such programs.

Such a problem encoding can be then fed into an answer set (AS) solver, which
computes some or multiple answer set(s) of the program, from which the solutions of
the problem can easily be read off.

As a simple motivating example, consider the popular Sudoku game.3

Example 1 (Sudoku). In its original version, a Sudoku consists of a tableau that has 81
cells arranged in a grid, which is divided into nine sub-tableaux (the blocks or regions)
of equal size having nine fields each. The initial game setup has some of the entries filled
with numbers between 1 and 9 (see Figure 1, left, for an example).

The question is now whether the tableau can be completed in a way such that each
row and each column shows every digits from 1 to 9 exactly once, and moreover that
also each block has this property. An example for a completed Sudoku grid is on the
right in Figure 1, which is the unique solution to the initial puzzle on the left.4

In general, the problem of solving Sudoku tables automatically appears to be non-
trivial: in principle, one can devise a brute force algorithm that considers all possible
assignments and checks whether the solution constraint is satisfied. For a versatile
programmer, it is not difficult to write a program in her favorite programming language,
be it Java, C++, or some other language, to compute and print a solution to instances of
this problem.

In this traditional, time-consuming approach, a human programmer receives an
informal specification of the problem at hand, such as the Sudoku above, and manually
converts it into imperative code that is able to solve instances of the problem. However,
one might conceive to tackle this issue from a completely different perspective.

For instance, one can think of having access to appropriate means for directly
describing the problem at hand in a declarative specification. This specification, if
properly polished from ambiguities of natural language and expressed in a proper syntax,

3 This game has nowadays worldwide popularity, and world and national championships are held
in big tournaments each year across Europe.

4 To date, many variants of Sudoku emerged, like, e.g., color-Sudoku, Samurai-Sudoku, etc.
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would be not much different in its meaning from the formulation of Sudoku of our
example. Also, such a specification could be automatically executed, in the sense that
some computational engine takes this specification as input, together with a problem
instance, and then produces a solution as output. In such a vision, the human programmer
would switch her focus from how to solve a problem to how to state a problem, which is
a much easier and faster task. 5

The Prolog language, and its extensions conceived for handling constraints, can be
seen at a first glance as tools for such “declarative problem solving.” Prolog is indeed
well-suited for this particular case.

There are however aspects which make the suitability of Prolog (with respect to
AnsProlog) less apparent. Among such aspects, there is the fact that many common
problems require preference handling (that is, the possibility to describe which solutions
are preferred to others with respect to some “quality” criterion), and to properly deal with
incomplete information (that is, the ability to properly complete missing information
with default assumptions, or with assumptions of falsity, or with using some notion of
undefinedness). The next example shows the impact of such aspects.

Example 2 (Social Dinner Example). Imagine the organizers of this course planning
a fancy dinner for the course participants. To make the event a great success, the
organizers decide to ask the attendees to declare their personal wine preferences. Soon,
the organizers become aware of the fact that there is no wine, which satisfies all of the
participant preferences. Thus, they aim at automatically finding the cheapest selection of
bottles such that any attendee can have her preferred wine at the dinner. This solution
should take into account that people usually like wine from their home country, but may
not like to drink it abroad.

The organizers quickly realize that several, different specification tools are needed to
accomplish this task : in this example, it is more difficult to model the scenario appro-
priately, and in particular to adequately represent and handle the emerging preferences,
priorities, and defaults in absence of complete information, along with conflicts that
emerge from them.

This situation motivates a general-purpose approach for modeling and solving also
many other problems, which take among others the following aspects into account:

– Possibility of integrating diverse domains;
– Spatial and temporal reasoning (here, the notorious Frame Problem is challenging);
– Possibility of modeling constraints;
– Reasoning with incomplete information; and
– Possibility of modeling preferences and priority.

The ASP paradigm has been proposed as a possible solution about ten years ago, as
the underlying non-monotonic logic programs are well-positioned to cover these aspects.
In the following, we shall briefly look at the roots of ASP and at the relationship of ASP
to Prolog, before we turn to the technical preliminaries.

5 A specification of the Sudoku problem expressed in AnsProlog is reported in Appendix A.
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1.1 Roots of ASP

ASP is strongly rooted in the area of Knowledge Representation and Reasoning, and
therein in logic programming. However, rather than to foster a general problem solving
paradigm, the roots of ASP are in formalisms that aimed at particular representation and
reasoning tasks, such as

– modeling an agent’s belief sets,
– commonsense reasoning,
– defeasible inferences, and
– preferences and priority.

To this end, many logic-based formalisms for knowledge representation have been
developed. As an inherent feature, these formalisms are nonmonotonic, that is, they have
the property that a growing stock of beliefs may invalidate part of the conclusions that
were previously drawn in lack of complete knowledge.

The formalisms, which address above objectives, were motivated by the vision of
John McCarthy and other pioneers in AI: logic is an ideal tool for representing and
processing knowledge. Oversimplified, the idea can be explained as follows:

– declare knowledge about a “world” of interest by logical sentences;
– more precisely, one should use predicate logic for knowledge representation;
– derive new (implicit) knowledge by an automated inference procedure.

For example, the simple knowledge base

K = {human(socrates),∀x(human(x)⇒ mortal(x))}

might informally express the fact that Socrates is human and the rules that all hu-
mans are mortal in predicate logic; from this knowledge base, we can derive the fact
mortal(socrates) using deductive inference procedures, using different methods; log-
ical calculi allow us to derive inferences in a purely syntactic way by manipulating
formulas according to inference rules. In our example, we can infer mortal(socrates)
e.g. from the rules of Modus Ponens: φ, φ⇒ψψ , and Specialisation: ∀x(φ(x)), individual c

φ(c) .
Loosely speaking, with such a calculus the derivation of new knowledge boils down

to simply a search for a proof in terms of inference rule applications from a set of starting
axioms. However, a big problem is that, for predicate logic in general, the existence of
such a proof is undecidable (as shown in the 1930s by Church) and thus the dream of
a “calculus ratiocinator” (or a “thinking machine”) in the sense of Leibniz, can not be
materialized in general. The insight was that knowledge processing needs control (which
inference rule(s) should be applied?) and that often knowledge can be formulated in
terms of rules and facts.

1.2 Prolog

After Robinson’s breakthrough with the Resolution principle in automated theorem
proving, in the early 1970s logic programming has been developed as a new knowledge
based problem solving paradigm.

Prolog (“Programming in Logic”) emerged as a general purpose programming
language, whose guiding principle has been popularized by Kowalski’s [10] slogan:
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ALGORITHM = LOGIC + CONTROL

where the LOGIC on the right hand side stands for the problem specific knowledge, and
the CONTROL for the “processing” of that knowledge in a suitable inference procedure.

Computing with Prolog programs is done using a predicate language, featuring the
following:

– Terms are used to access objects, where constants stand for individuals (e.g., joe)
and variables (e.g., X) for unknown individuals, and function symbols (like in
father(joe)) are available.

– Terms are used to model basic data structures, like records, e.g name(joe, doe).
– Instead of iteration, there is extensive use of recursion.
– In connection with this, the list constructor [·|·] can be used, which also allows to

define higher-order objects (like sets).
– Solutions are obtained via queries (goals) that are posed to the program, where

formal proofs provide answers. They build on
• SLD-resolution, a special variant of the resolution calculus, and
• unification, as the basic mechanism to manipulate data structures.

The following is a simple Prolog program, familiar from most beginner courses in
Prolog, for appending two lists and for reverting a list, respectively.

append([ ], X,X). (1)
append([X|Y ], Z, [X|T ])← append(Y,Z, T ). (2)

reverse([ ], [ ]). (3)
reverse([X|Y ], Z)← append(U, [X], Z), reverse(Y, U). (4)

The above program recursively defines the predicates append(X,Y, Z) and reverse(X,Y ),
where the latter is defined in terms of the former. By posing a query against the pro-
gram, we then can reverse lists. E.g., to reverse the list [a, b, c], we can pose the query
?− reverse([a, b, c], X). A proof of the query yields a substitution: X = [c, b, a], which
then gives an answer. One can also pose queries that allow to reason backwards from the
output to the input (which is not possible in imperative programming). E.g., if we pose
? − reverse([a|X], [b, a]). the answer substitution X = b tells us that the “input” for
the output [b, a] must consist of [a, b].

In principal, above way of programming is a major step forward to our goal of writing
programs in a declarative way, but an important point is that it may make a difference
how and in which order the clauses of a Prolog programs are given. Although logically
equivalent in terms of predicate calculus, if we replace rule (4) above by

reverse([X|Y ], Z)← reverse(Y, U), append(U, [X], Z). (5)

and then ask ? − reverse([a|X], [b, c, d, b]), the evaluation does not terminate (or is
stopped because resources are exhausted, with no result). Similar behavior may be found
if rules in a program are moved around. This is not a bug of Prolog but intrinsic in its
highly efficient inference algorithm (which is sound but incomplete). Operators like the
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cut (which allow to prune the search space further, at the risk of losing solutions if done
improperly), allow the fine control of the evaluation algorithm.

This example raises the legitimate question whether programming in Prolog is truly
declarative. In fact, if one keeps in mind the goal of having specifications in which a
problem is declared, without knowledge on how this declaration will be processed, it is
desirable, as far as termination and finding of a solution is concerned, that

– the order of program rules does not matter, and that
– the order of subgoals in a rule body does not matter.

This calls for “pure” declarative programming, in which we (possibly) trade the effi-
ciency of problem solving for strict declarativity of the formalism. The major exponent
of this “pure” declarative programming paradigm is the stable model semantics of logic
programs, which will be introduced in the sections below.

The stable model semantics is often confused with ASP. Indeed the semantics of the
latter has been specified in terms of the former in the seminal paper [11].

The success of ASP is based on the easy usage of ASP as a modeling language,
and on the variety of sophisticated algorithms and techniques for evaluating A-Prolog
programs, which originated from research on computational complexity of reasoning
tasks for such programs. The complexity of ASP reasoning is well understood, and a
detailed picture of it and its major extensions can be found in [12]. Advanced AS solvers
such as Smodels, DLV, GnT, Cmodels, Clasp, or ASSAT (see [13]), are able to deal with
large problem instances; demonstration efforts of the potential of ASP are made at the
AS solver competition [14] which takes place at the International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR) since 2007.

1.3 Structure of the Article

The rest of this article is divided into three parts as follows. The first part introduces
the stable models semantics of normal logic programs and the answer set semantics of
extended logic programs, as well as of extensions thereof. Concepts and notions are
given following a historical timeline, which incidentally coincides with the development
of increasingly expressive specification languages based on rules. We first recall the least
model semantics of Horn logic programming (Section 2) and then turn to the issue of
negation in logic programs (Section 3). Then, we consider stratified logic programs, for
which the perfect model semantics is the canonical semantics (Section 3.1). We then
present the stable model semantics of normal logic programs (Section 4) which coincides
with the perfect model semantics on stratified programs (and thus generalizes it). After
that, we proceed with some extensions in Section 5; in particular, with constraints, with
strong negation—where we arrive at the notion of answer sets—and with disjunctive
rule heads.

The second part then considers the ASP paradigm itself. It describes the general idea
and shows some ASP programming techniques (Section 6). Furthermore, it overviews
AS solvers and their general architecture and implementation principles (Section 7); as
an example, we briefly present the AS solver DLV.
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The third part is devoted to ASP in the context of the Semantic Web, presenting
some formalisms and mentioning some applications in this area (Section 8). The article
concludes with issues of current and future ASP research.6

2 Horn Logic Programming

We will consider logic programs built from simple constituent blocks, which correspond
syntactically to the language of predicate calculus. We will have constants, which
represent individuals of the domain of discourse, like sarah , chicago, and 2. They will
be represented with lowercase starting letter, or with natural numbers. Variables, like
X , City , Name, denote an individual variable, and are written with uppercase starting
letter. Also, one might form functional terms combining constants, functions symbols
and variables such as in next(a, Y ), where next is a binary function symbol.

In some sense, variables and constants can be seen as subjects and objects participat-
ing to the scenario we are modeling, which can be tied together through predicates, like
hasName and link . Predicates relate with variables and constants through atoms, like
link(chicago, paris) or hasName(C, sarah). Note that the former atom has no vari-
ables in it (it is ground), while the latter is nonground. Functional terms are syntactically
equivalent to atoms, yet they have different meaning. A (ground) atom is connected to
its truth value and acts as a propositional variable: for instance, hub(rome) might be
true or false in the sense that rome might be a hub or not; on the other hand, father(gb),
when seen as a functional term, denotes an individual of our domain of discourse (“the
father of gb”), for which truth or falsity makes no sense in general.

On top of these simple notions we use the idea of rules. Rules are grouped in sets
that we will call (logic) programs.

We will start with a class of logic programs featuring the simplest form of a rule.

2.1 Positive Logic Programs

Definition 1 (Positive Logic Program). A positive logic program P is a finite set of
clauses (rules) in the form

a← b1, . . . , bm , (6)

where a, b1, . . . , bm are atoms of a first-order language L. We call a the head of the rule,
while b1, . . . , bm represents the rule’s body. A fact is a rule with empty body such as
a←, denoted for short as a.

To give an intuition of the meaning of a rule, a reader familiar with imperative pro-
gramming languages might interpret this construct as an abstraction of the if . . . then . . .
construct common in traditional programming languages, to which, as it has been illus-
trated, Modus Ponens might apply. For a reader familiar with first order logic, rules can
be seen as material implications restricted to Horn clauses, where A ← B is read as
B ⊃ A or B → A.

6 The accompanying slides are available at http://www.kr.tuwien.ac.at/staff/
tkren/pub/2009/rw2009-lecture.zip.
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For instance, the rule

connected(cagliari)← hub(rome), link(rome, cagliari)

might be “procedurally” read as “if Rome is a hub, and there is a link between Rome
and Cagliari, then Cagliari is a connected airport,” or, when seen as a first-order Horn
clause in predicate logic, the same rule can be interpreted as “in any possible scenario in
which Rome is a hub and there is a link between Rome and Cagliari, it is the case that
Cagliari is connected.”

However, we will observe later that rules in declarative logic programming do not
strictly correspond to the procedural scheme of imperative languages, nor to material
implication. Nevertheless, they are declarative constructs, and we make this more clear
later in this section.

The above example rule is ground, but logic programs might contain nonground
rules like

connected(X)← hub(Y ), link(Y,X) ,

which can be read as the universally quantified clause ∀X,Y hub(Y ) ∧ link(Y,X) ⊃
connected(X). Importantly, one must distinguish between the imperative and logical
reading of clauses: a variable X in imperative programming associates a single value
to it and stands for a named storage cell, whereas X reads as “any X having a certain
property” in the logical interpretation of clauses.

We can also think of a logic program as a description of a scenario, in which certain
assertions, either specific and related to certain individuals (that is, ground), or general
(that is, nonground, or partially ground), must hold.

The following definitions clarify this intuition.

Definition 2 (Herbrand Universe, Base, Interpretation). Given a logic program P ,
the Herbrand universe of P , HU (P ) , is the set of all terms which can be formed from
constants and functions symbols in P (resp. the vocabulary of L, if explicitly known).

The Herbrand base of P , HB(P ), is the set of all ground atoms which can be formed
from predicates occurring in P and the terms in HU (P ). A (Herbrand) interpretation is
an interpretation I over HU (P ), that is, I as subset of HB(P ).

An interpretation can be seen as a set denoting which ground atoms are true in a
given scenario.

Example 3. Assume the following program P1 is given:

h(0, 0).

t(a, b, r).

p(0, 0, b).

p(f(X), Y, Z)← p(X,Y, Z ′), h(X,Y ), t(Z,Z ′, r).

h(f(X), f(Y ))← p(X,Y, Z ′), h(X,Y ), t(Z,Z ′, r).

The unique function symbol appearing in P1 is f , and the constant symbols in P1

are r, a, b, and 0. Thus, HU(P1) = {0, a, b, r, f(0), f(f(0)), . . . , f(a), f(f(a)), . . . },
which represents the (infinite) set of individuals possibly involved in P1.
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The Herbrand base is HB(P1) = {p(0, 0, 0), p(a, a, a), . . . , h(0, 0), . . . , t(0, 0, 0),
t(a, a, a), . . .}, and represents the set of all possible ground assertions which might hold.

Some possible Herbrand interpretations are

– I1 = ∅,
– I2 = HB(P1),
– I3 = {h(0, 0), t(a, b, r), p(0, 0, b)},

and so on. An interesting question is which scenarios (interpretations) are compatible
with P1. For instance, the interpretation {h(0, 0), t(a, b, r)} is contradicting P1, which
follows from the simple expectation that, in virtue of the last fact in P1, also p(0, 0, b)
should be considered true.

Definition 3. A ground instance of a clause C of the form (6) is any clause C ′ obtained
from C by applying a substitution

θ : Var(C)→ HU (P )

to the variables in C, denoted as Var(C). For any clause C, we denote by grnd(C) the
set of all possible ground instances of C, and for any program P we let grnd(P ) =⋃
C∈P grnd(C) (called the grounding of P ).

Intuitively, grnd(C) allows for the materialization of the universal quantification of
variables appearing in C. Roughly speaking, C is a shortcut denoting a set of clauses
grnd(C). The range of each variable appearing inC is given by the set of terms appearing
in the Herbrand universe.

Example 4. Consider the following program P2:

p(f(X), Y, Z)← p(X,Y, Z ′), h(X,Y ), t(Z,Z ′, r).

h(0, 0).

The ground instances of the first rule in P2 are

p(f(0), 0, 0)← p(0, 0, 0), h(0, 0), t(0, 0, r).

...
p(f(0), r, 0)← p(0, r, 0), h(0, r), t(0, 0, r).

...
p(f(r), r, r)← p(r, r, r), h(r, r), t(r, r, r).

7

Definition 4. Let I be an interpretation. Then I is a model of

7 Note that in practice most of the ground rules appearing in grnd(C) for given C might have no
actual impact when computing the least model of C as defined next.
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– a ground (variable-free) clause C = a ← b1, . . . , bm, denoted I |= C, if either
{b1, . . . , bm} * I or a ∈ I;

– a clause C, denoted I |= C, if I |= C ′ for every C ′ ∈ grnd(C);
– a program P , denoted I |= P , if I |= C for every clause C ∈ P .

Intuitively, a model of P is an interpretation which is compatible with assertions
appearing in P .

Example 5. Reconsider the program P2 in Example 4. Note that I1 = ∅ is not a model
of P2 (the fact h(0, 0) is not true in I1), while I2 = HB(P2) is a model; indeed,
for every program P it clearly holds that HB(P ) is a model of P . However, I3 =
{h(0, 0), t(0, 0, r), p(0, 0, 0)} is not a model of P2, since the first rule would require
p(f(0), 0, 0) ∈ I3.

2.2 Minimal Model Semantics

In general, there are multiple “compatible” interpretations of a program P , that is, there
can be multiple interpretations, which are models of P . Some of them are however
trivial, e.g., think of I2 in the previous example w.r.t. P2, or they convey information
which is not encoded in P2. For instance, I4 = I3 ∪ {p(f(0), 0, 0), h(r, r)} is a model
of P2. There is however no evidence that h(r, r) should be true according to P2: indeed
we might remove it from I4, obtaining a smaller model I5 = I3 ∪ {p(f(0), 0, 0)}.

On the other hand, we cannot remove p(f(0), 0, 0) from I5 since the first rule of the
program would not be satisfied. In other words, p(f(0), 0, 0) is an atom which has to be
necessarily true in the scenario described by P2, while this is not the case for h(r, r).

One might ask at this point whether there exists a particular canonical model for a
program which contains only the atoms which are necessarily true according to P . This
notion of “necessity” is commonly called foundedness.

Example 6. Consider the small program P3

a← b. b← c. c.

The truth of atom a in the model I = {a, b, c} is “founded.” Intuitively, c must appear in
any model of P3, which implies that also b and then a are necessarily true.

Given the program P4

a← b. b← a. c.

we obtain that the truth of atom a in model I = {a, b, c} is not founded. In other words,
there is no necessity of a appearing in a model. Indeed, I ′ = {c} is also a model.

The above intuition can be translated into a formal semantics, which prefers models
having as few true facts as is possible.

Definition 5. A model I of a program P is minimal, if there exists no model J of P
such that J ⊂ I .

Theorem 1. Every positive logic program P has a single minimal model (called the
least model), denoted LM (P ).
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This is entailed by the following property:

Proposition 1. If I and J are models of P , then also I ∩ J is a model of P .

Example 7. For P3 = {a ← b. b ← c. c.}, we have LM (P3) = {a, b, c}. For
P4 = {a← b. b← a. c.}, we get the least model LM (P4) = {c}

For program P1 above, we have

LM (P1) = {h(0, 0), t(a, b, r), p(0, 0, b), p(f(0), 0, a), h(f(0), f(0))} .

Computation of the Least Model. A natural question is, how we can compute the least
model LM (P ) of a program P .

By means of the immediate consequence operator, one can obtain LM (P ) through
an iterative process. Let TP : 2HB(P ) → 2HB(P ) be an operator defined as

TP (I) =

{
a

∣∣∣∣ there exists some a← b1, . . . , bm
in grnd(P ) such that {b1, . . . , bm} ⊆ I

}
.

We define T 0
P = ∅, and T i+1

P = TP (T iP ) for i ≥ 0.

Theorem 2. TP has a least fixpoint, lfp(TP ), and the sequence 〈T iP 〉, i ≥ 0, converges
to it, i.e., lfp(TP ) = LM (P ).

The above result can be proved by means of the fixpoint theorems of Knaster-Tarski
and of Kleene given in Appendix B. The second part of the theorem is easily shown by
observing that lfp(TP ) is a model of P and no smaller model exists.

Example 8. The immediate consequence operator captures the idea that if all the atoms
in a rule r body are founded, then also the head of r must be founded.

For instance, for P3 = {a← b. b← c. c.}, we have

T 0
P3

= {}, T 1
P3

= {c}, T 2
P3

= {c, b}, T 3
P3

= {c, b, a}, T 4
P3

= T 3
P3

.

Hence, lfp(TP3
) = {c, b, a}. For P4 = {a← b. b← a. c.}, we have

T 0
P4

= {}, T 1
P4

= {c}, T 2
P4

= T 1
P4

.

Hence lfp(TP4
) = {c}.

For program P1 above, we have

T 0
P1

= ∅,
T 1
P1

= {h(0, 0), t(a, b, r), p(0, 0, b)}
T 2
P1

= {h(0, 0), t(a, b, r), p(0, 0, b), p(f(0), 0, a), h(f(0), f(0))}
T 3
P1

= T 2
P1
.
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3 Negation in Logic Programs

Positive logic programs allow for declarative modeling of a variety of problems. However,
it turns out that many situations require a construct which model the intuitive notion of
negation. Negation is a natural linguistic concept and happens to be extensively required
when natural problems have to be modeled declaratively. For instance, given the rule

connected(X)← hub(Y ), link(Y,X) ,

which defines airports connected to at least one hub airport, one might think of defining
airports which are not connected to any hub. This can be modeled intuitively by put the
not modifier in front of atoms, and considering the rule

badlyConnected(X)← not connected(X) .

We will define normal logic programs as a set of clauses having the form

a← b1, . . . , bm,not c1, . . . ,not cn (n,m ≥ 0) (7)

where a and all bi, cj are atoms in a first-order language L. Note that rule bodies now
include expressions which we call (default) negated literals not c1, . . . ,not cl, which
consist of atoms ci preceded by the negation modifier not. Accordingly, the atoms
b1, . . . , bk are called positive literals.

Intuitively, a ground literal corresponds to a propositional variable as it was the case
for atoms: a negated literal has a truth value which is opposite to its corresponding
positive literal. For instance, if hub(rome) is true, then not hub(rome) is false.

Once negated literals are syntactically defined, one can think of a proper formal
meaning for rules in which they appear. The Prolog semantics has been pragmatically
and operationally extended from SLD to SLDNF in terms of Negation as failure: here,
one considers as false a negated literal not a(·), if the truth of its corresponding positive
literal cannot be (finitely) proved through SLD resolution.

It is important to observe that negation in classical logic is different from negation in
logic programming (cf. surveys [15, 16] and [17, 18] for more discussion).

Example 9. Consider the program P5:

man(dilbert).

single(X)← man(X),not husband(X).

husband(X)← fail . % fail = ”false” in Prolog

Under Prolog semantics, if we ask the query

?− single(X).

we obtain as an answer
X = dilbert .

Intuitively, the answer is motivated by the fact that husband(dilbert) cannot be proved
from P5. For proving single(dilbert) using forward chaining, one can use the first rule of
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the program, in which it must be first shown that man(dilbert) holds, and then that there
is no proof for husband(dilbert); indeed, there is no evidence that husband(dilbert) is
true in P5.

Note however that this operational approach fails to give a satisfactory answer for
programs like P6

man(dilbert).

single(X)← man(X),not husband(X).

husband(X)← man(X),not single(X).

where single(dilbert) and husband(dilbert) are mutually dependent using negation.
An SLD resolution algorithm would loop forever when trying to answer the query
single(X).

Approaches which give meaning to logic programs via a model theoretic definition
(that is, providing an appropriate notion for a “best” model) are able to treat recursive
definitions for positive programs properly, for which a unique minimal model exists.
However, P6 has two minimal Herbrand models

M1 = {man(dilbert), single(dilbert)}, and
M2 = {man(dilbert), husband(dilbert)} .

Both M1 and M2 satisfy P6 and constitute a minimal set of necessarily true facts which
are compatible with P6. One thus may guess that introducing negation in logic programs
induces a major problem regarding the meaning of normal logic programs.

The debate about the proper semantics for attributing meaning to negation in logic
programs has been long lasting,8 and provoked what we could call the Great Logic
Programming Schism. Indeed, there are two philosophically very different approaches:

1. To keep the idea of defining a single model for a program, possibly including also
problematic classes of programs with negation. This can be achieved by properly
defining which single model should be selected among all classical models of a
program. This line of research produced the notion of perfect model [21] which has
been agreed being satisfactory for the class of so-called “stratified programs.” For
general normal problems, the most popular semantics is perhaps the one based on
the well-founded model [22].

2. To identify a collection of multiple preferred models. This line of research abandons
the “dogmatic” requirement of a single model and accepts the possibility of having
multiple scenarios compatible with a given program. Note that, in general, for such
multiple models approaches, we have a single model for positive and stratified
programs which corresponds to the least and perfect model, respectively.

Answer Set Programming and its underlying stable model semantics is based on the
latter methodology.

8 The interested reader might refer to [15, 19, 20] for surveys about the matter.
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3.1 Stratified Negation

As a first class of programs with negation we will consider stratified programs [23].
Stratified programs have the property that one can find an ordering for the evaluation of
the rules in the program, such that the value of negative literals can be predetermined.

Intuitively, for evaluating the body of a rule containing not r(t), the value of the
negative literal r(t) should be known. This mimics the negation-as-failure approach as
follows:

1. First evaluate r(t);
2. if r(t) is false, then not r(t) is true;
3. if r(t) is true, then not r(t) is false and the rule is not applicable.

Example 10. We can evaluate the single rule program

boring(chess)← not interesting(chess)

according to this recipe: as interesting(chess) clearly evaluates to false, the negated
literal not interesting(chess) evaluates to true; hence, also boring(chess) evaluates
to true. This results in the Herbrand model H = {boring(chess)} of P , which is the
intuitive meaning of P .

Note however that this implicitly introduces a particular order of evaluation for rules
and make specifications procedural more than declarative.

Dependency Graph. The above method makes only sense if there is no cyclic negation
in programs. Otherwise, it is not possible to find an “evaluation ordering” for a program.
The notion of dependency graph of programs captures this intuition.

Definition 6 (Dependency graph). The dependency graph of a program P , dep(P ) =
〈V,E〉, consists of

– a set of nodes V , which is defined as the set of all predicates p occurring in P , and
– a set of arcs E, which contains arcs of form p → q if and only if an atom with

predicate name p is in the head of a rule r ∈ P and the body of r contains a literal
with predicate name q. If this literal is under negation, the edge will be marked with
? (p→? q).

Example 11. Consider the following program P7

man(dilbert).

husband(X)← man(X), married(X).

single(X)← man(X),nothusband(X).

and its dependency graph dep(P7) shown in Figure 2. The order of evaluation for negated
predicates is built according to the following policy: If there is a path in dep(P7) from
a predicate p = p0 → p1 → p2 → · · · → pn−1 → pn to a predicate q = pn, such that
some pi → pi+1 is marked with ?, then q must be evaluated prior to p. In this example
we have a path single →? husband → married , thus both husband and married must
be evaluated before single .
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Fig. 2. dep(P7)

Stratification. We formalize the notion of stratification as follows. Let pred(R) denote
the set of predicate names occurring in a set of rules R.

Definition 7 (Stratification). A stratification of a set of rules P is a partitioning Σ =
{Si | i ∈ {1, . . . , n}} of pred(P ) into n nonempty and pairwise disjoint sets of predicate
names such that

(a) if p ∈ Si, q ∈ Sj , and p→ q is in dep(P ) then i ≥ j; and
(b) if p ∈ Si, q ∈ Sj , and p→? q is in dep(P ) then i > j.

The sets S1, . . . , Sn are called the strata of P w.r.t. Σ. A program P is called stratified,
if it has some stratification Σ.

Note that there are programs which are not stratified, such as P6 above. The strat-
ification Σ specifies an evaluation order for the predicates in a logic program. Here
evaluation of a predicate p means to compute the set of true atoms that have p as pred-
icate name. This sequential evaluation can be done by computing a series of iterative
least models.

Definition 8. Let P a logic program with a stratification Σ = {S1, . . . , Sk} of length
k ≥ 1. We define PSi as the subset of the rules of P which have a head atom whose
predicate belongs to Si, and HB?(PSi

) =
⋃
j≤i{p(t) ∈ HB(P ) | p ∈ Sj}. We define

the iterative least models Mi ⊆ HB(P ) with i ∈ {1, . . . , k} by:

(i) M1 is the least model of PS1
;

(ii) if i > 1, then Mi is the least subset M of HB(P ) such that (a) M is a model
of PSi

, and (b) M ∩HB?(PSi−1
) = Mi−1 ∩HB?(PSi−1

).

We denote by MP,Σ the iterative least model Mk.

Example 12. Consider again the program P7:

man(dilbert).

husband(X)← man(X), married(X).

single(X)← man(X), not husband(X).

According to the dependency graph dep(P7), a stratification Σ for P7 is

S1 = {man,married}, S2 = {husband}, S3 = {single} .
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Fig. 3. An example railroad network

We obtain M1 = LM (PS1
) = {man(dilbert)} from the evaluation of PS1

=
{man(dilbert)}. When evaluating M2 we obtain

PS2
= {husband(X)← man(X),married(X)} .

Note that HB?(PS1) = {man(dilbert),married(dilbert)}. It is easy to see that M2 =
{man(dilbert)} is a model for PS2 , and that M2∩HB?(PS1) = M1∩HB?(PS1); also,
M2 is the least model having these properties.

For the evaluation of M3, note that

PS3
= {single(X)← man(X), not husband(X)} .

Thus one finds that M3 = {single(dilbert)} ∪M2 is the least model of PS3 such that
M3 ∩HB?(PS2) = M2 ∩HB?(PS2).

It is worth noting that stratifications are not unique. For instance, one can com-
pute the iterative least models using an alternative stratification Σ′, in which S1 =
{man,married , husband} and S2 = {single}.

In both cases the iterative least model obtained at the last iteration is the same. An
important result tells us that, provided a stratification exists, other stratifications produce
the same final model.

Theorem 3 ([23]). Let P be a stratified program. Then for every stratifications Σ and
Σ′ of P , it holds that MP,Σ = MP,Σ′ .

Hence, we can drop the dependency of MP,Σ on a given stratification Σ and define
MP = MP,Σ (for a Σ of choice) as the canonical model for P , which is referred to as
perfect model [21].9

Example 13 (Railroad network). Take, as an example, the railroad network given in
Figure 3. The goal is to determine whether safe connections between locations are
possible. Given two railroad stations a and b, a cutpoint station c for a and b is such that
if connections to c fail, there is no alternative connection between a and b. We will say
that the connection between a and b is safe if there are no cutpoints between a and b. In
Figure 3, ter is a cutpoint for olfe and semel , while quincy is not.

The above problem can be modeled as follows. First, we introduce the set of predi-
cates:

9 In fact, Przymusinski and Apt et al. developed their semantics independently, but the proposals
coincide on stratified programs, and the name perfect model for MP is customary.
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linked(A,B)← link(A,B). (R1)

linked(A,B)← link(B,A). (R2)

connected(A,B)← linked(A,B). (R3)

connected(A,B)← connected(A,C), linked(C,B). (R4)

cutpoint(X,A,B)← connected(A,B), station(X), (R5)

not circumvent(X,A,B).

circumvent(X,A,B)← linked(A,B), X 6= A, station(X), X 6= B. (R6)

circumvent(X,A,B)← circumvent(X,A,C), circumvent(X,C,B). (R7)

has icut point(A,B)← cutpoint(X,A,B), X 6= A,X 6= B. (R8)

safely connected(A,B)← connected(A,B), (R9)

not has icut point(A,B).

station(X)← linked(X,Y ). (R10)

Fig. 4. Railroad program Pr

– station(a): a is a railway station;
– link(a, b): there is a direct connection from station a to b;
– linked(a, b): the symmetric closure of link; that is, linked(a, b) and linked(b, a)

hold whenever link(a, b) holds;
– connected(a, b): there is path linking a to b, either direct or through intermediate

stations;
– cutpoint(x, a, b): each existing path from a to b goes through station x;
– circumvent(x, a, b): when going from a to b one can avoid x; that is, there is a path

between a and b not passing from x;
– has icut point(a, b): there is at least one cutpoint between a and b;
– safely connected(a, b): a and b are connected with no cutpoint.

We will assume that atoms of form link(a, b) are given as set of facts describing
the railroad network at hand. Other predicates are defined according to the program Pr
shown in Figure 4.10 Informally, R1 and R2 define linked as the symmetric closure of
link , and connected is defined by means of rules R3 and R4. Roughly speaking, R3

expresses that a and b are connected if there is a direct link among them, while R4

expresses that a and b are connected if there is a node c, which a is connected to, and
c has a link to b. Negation is exploited in R5 for defining cutpoints: x is a cutpoint
for all the paths from a to b if a and b are connected and x is a station for which
circumvent(x, a, b) does not hold.

Now, let us analyze how to define the notion of circumvention. There are two ways for
circumventing a station x when going from a to b: either there exists a direct link from
a to b (rule R6) or one can circumvent x when going from a to c and then circumvent
x when going from c to b (rule R7).
10 The predicate 6= is a “built-in” predicate, which cannot be user defined. It is thus not shown in

the evaluation and the dependency graph.
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Fig. 5. Dependency graph dep(Pr) of the railroad program Pr

Accordingly, the path from a to b has a cutpoint if there is a nontrivial (i.e., x is
neither equal to a or b) cutpoint from a to b (rule R9). Again, negation is exploited for
defining when a and b are safely connected (rule R9): couples of endpoint stations are
safely connected if they are connected and do not have cutpoints. Eventually, rule R10

defines a station as those nodes which are directly linked to others.
The dependency graph of Pr is shown in Figure 5. A possible stratification of Pr is

Σr = {S1, S2, S3}, where

– S1 = {link , linked , station, circumvent , connected},
– S2 = {cutpoint , has icut point}, and
– S3 = {safely connected}.

We then get the iterative least models

– M1 = { linked(semel , bis), linked(bis, ter), linked(ter , olfe), . . . ,
connected(semel , olfe), . . . , circumvent(quincy , semel , bis), . . . },

– M2 = M1 ∪ { cutpoint(ter , semel , olfe), has icut point(semel , olfe), . . . }, and
– M3 = M2 ∪ { safely connected(semel , bis), safely connected(semel , ter) }.

The iterative least model M3 is then a perfect model for Pr. Note that M3 does not
contain safely connected(semel , olfe).

3.2 Unstratified Negation

The notion of perfect model is however inadequate whenever a program has no stratifica-
tion. This happens when two or more predicates are mutually defined over “not,” like in
the following program Pu:

man(dilbert).

single(X)← man(X),not husband(X).

husband(X)← man(X),not single(X).

Note that Pu has two minimal models (which, as shown next, are stable):
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– M = {man(dilbert), single(dilbert)} and
– N = {man(dilbert), husband(dilbert)};

both might be seen as “plausible” scenarios compatible with Pu.
In general, we can associate to a program P a set of preferred (or plausible) models

PM (P ). In the presence of multiple plausible models, each describing a possible scenario
specified by a given program, a natural question is how to interpret and how to reconcile
possible discrepancies between models appearing in PM (P ).

One can consider this issue from two complementary points of view:

1. One point is to see P as a knowledge base, in which explicit (facts) and implicit
(rules) information is stored, and wonder if a given query q (or, in general, a formula)
holds. Queries can be ground (e.g., q = man(dilbert) holds if q is true w.r.t. Pu
according to some criterion), or nonground (e.g., for evaluating q = man(X) we
have to find the set of values x such that man(x) holds in Pu).
In this respect, a ground query q can be answered under Cautious (Skeptical) Rea-
soning, that is q evaluates to true if it is true in every model in PM (P ), or under
Brave (Credulous) Reasoning, in which q is true if it is true in some preferred model.
Similarly, answering a non-ground query q amounts to finding the set of all the
ground assignments of q which hold in any preferred model (cautious reasoning) or
in some preferred model (brave reasoning).

2. Cautious and brave reasoning can be seen as a form of quantification/iteration over
preferred models, which however still depict a single scenario. In cautious reasoning
the single scenario (the set of true facts) is described by the intersection of all the
models, while in brave reasoning one considers their union, this way discarding the
richer information given in PM (P ).
However, each model in PM (P ) brings peculiar information: it can be seen as
the representation of a possible world compatible with P , or, in other words, as
a solution to the problem instance encoded by P . Model generation (that is, the
computation of the set PM (P )) in this respect is—more than query answering—of
valuable importance.

Example 14. The preferred models M and N of Pu represent “possible worlds” compat-
ible with Pu. The ground atom man(dilbert) is a cautious and brave consequence of Pu.
But, neither single(dilbert) nor husband(dilbert) are cautious consequences, whereas
both are brave consequences of Pu (the first holds in M while the second holds in N ).

4 Stable Semantics

Many definitions for PM (P ) have been conceived in the past, cf. [15, 24]. We will
concentrate from this point on the—largely considered the most prominent one—notion
of preferred model based on stable models.

4.1 Normal Logic Programs – Syntax

A logic program P based on the stable model semantics has the same syntactic building
blocks as stratified programs: importantly, it is not necessary that P has a stratification,
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as we do not rely on the notion of perfect model for computing its semantics. Also,
we keep the the notions of Herbrand universe HU (P ), Herbrand base HB(P ), and
interpretation as for not-free (“positive”) logic programs.

4.2 Stable Model Semantics

First, we will define the stable model semantics for a variable-free (ground) program.
The intuition behind stable model semantics is to treat negated atoms in a special

way. Intuitively, such atoms are a source of “contradiction” or “unstability.”

Example 15. In Pu from above, one can consider M ′ = {man(dilbert)} as possi-
ble, preferred model. Assuming facts in M ′ as true, note however that the two rules
of Pu would enforce to assume that besides man(dilbert) also single(dilbert) and
husband(dilbert) are true. On the other hand, if one considers M ′′ = {man(dilbert),
single(dilbert), husband(dilbert)} as the set of true facts, it turns out that the two rules
of Pu have now their bodies false, and do not give evidence of truth for single(dilbert)
and husband(dilbert).

“Stability” can thus be seen as follows: if an interpretation M of P is not—in the
sense formalized below—self-contradicting, then it is stable.

Definition 9. The Gelfond-Lifschitz reduct [8] (short GL-reduct or simply reduct) of a
program P w.r.t. an interpretation M , denoted PM , is a program obtained by

1. removing rules with not a in the body for each a ∈M ; and
2. removing literals not a from all other rules.

Intuitively, given an interpretation M , the conditions 1 and 2 above enforce truth
values for negative literals. If a ∈M , then a rule’s body with the negative literal not a
cannot become true. On the other hand, if a /∈ M , the not a can be assumed true and
removed from any body where it occurs.

In other words, M can be seen as an assumption about which negated literals are true
and what are false; the program PM incorporates these assumptions. Note that PM is a
positive program, and thus has a least model LM (PM ). If PM does not “contradict” M ,
one should expect that LM (PM ) = M , that is, M can be reconstructed from scratch
applying the rules of PM . If this happens to be the case, then M can be regarded as
being “stable.”

Definition 10. An interpretation M of P is a stable model of P , if

M = LM (PM ).

Note that PM = P for any “not”-free program P . Thus, LM (P ) (which is equal to
LM(PM )) is its single stable model.

Example 16. If we take Pu again in consideration

man(dilbert). (f1)
single(dilbert)← man(dilbert),not husband(dilbert). (r1)

husband(dilbert)← man(dilbert),not single(dilbert). (r2)

we may have the following “candidate” interpretations:
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– M1 = {man(dilbert), single(dilbert)},
– M2 = {man(dilbert), husband(dilbert)},
– M3 = {man(dilbert), single(dilbert), husband(dilbert)}
– M4 = {man(dilbert)},

One can verify that only M1 and M2 qualify themselves as stable models.

– if we consider M1 we get that the reduct PM1
u is

man(dilbert).

single(dilbert)← man(dilbert).

Note that husband(dilbert) /∈ M1, thus not husband(dilbert) is removed from
r1. On the other hand r2 is deleted from Pu since single(dilbert) ∈ M1: indeed,
under the assumption made in M1, the literal not husband(dilbert) is false and
will prevent r2 to trigger and make its head true.
The least model of PM1

u is {man(dilbert), single(dilbert)} which coincides with
M1.
Symmetrically, we can verify that M2 is stable as well.

– On the other hand, M3 and M4 are not stable. If we take M3 = {man(dilbert),
single(dilbert), husband(dilbert)} in consideration, we find that PM3

u consists
only of man(dilbert). Both r1 and r2 are indeed deleted. Thus, LM (PM3

u ) =
{man(dilbert)} 6= M3. This means that the assumptions made in M3 are not
“stable” with respect to negated literals in Pu.
If we take M4 = {man(dilbert)}, we observe that PM4

u consists of

man(dilbert).

single(dilbert)← man(dilbert).

husband(dilbert)← man(dilbert).

given that both not husband(dilbert) and not single(dilbert) are removed from
r1 and r2 respectively. Therefore, LM (PM4

u ) = {man(dilbert), single(dilbert),
husband(dilbert)} 6= M4.

Notably, there are situations in which “stability” is impossible and no meaning can
be assigned to a program.

Example 17. The program Pi
p← not p. (8)

has no stable models. Consider any interpretation M for Pi such that p /∈ M . Thus,
not p is true and the body of (8) is satisfied, which means that p should be true as well
in order for M being a model for Pi. But this is in direct contradiction to p /∈M . Now,
if we take an interpretation M ′ such that p ∈ M ′, we get that not p is false and our
rule (8) is satisfied, hence M ′ is a model for Pi. But it is not a stable model, as the reduct
PM

′

i = ∅, and we have that LM (PM
′

i ) = ∅, which is different from M ′.
If we take an arbitrary program P , and add the rule (8) (with p being a new proposi-

tional atom), we get that P has no stable model.
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Example 18. Consider the program Ps:

s← not q. (r1)
q ← not s. (r2)
p← q,not s. (r3)
f ← s,not f. (r4)

Ps has a single stable model M1 = {p, q}, while M2 = {s} is not stable.

– Indeed, for M1 = {p, q} we have that in PM1
s the rules r1 is deleted, while r2, r3

and r4 are modified, obtaining:

q.

p← q.

f ← s

For which LM (PM1
i ) = {p, q} = M1.

– For M2 = {s}, we get PM2
s by deleting r2 and r3 from Ps and updating r1 and r4:

s.

f ← s.

We get LM(PM2
s ) = {s, f} 6= M2. Note that M3 = {s, f} is not stable as

well. Indeed, one can observe that rule r4 prevents the existence of a stable model
containing s.

Programs with Variables. As for the case of positive and stratified programs, it is
immediate to lift the notion of stable model from propositional programs to non-ground
ones. Intuitively, this step amounts to considering non-ground rules (containing variables)
as shorthands for all their possible ground instances, obtained using a domain of choice
for the terms which can be constructed. This latter domain is usually the Herbrand
universe of the program at hand. The stable semantics of non-ground programs is thus
obtained by means of a reduction to the variable-free case.

Definition 11. Given a program P , an interpretation M of P is a stable model of P , if
M is a stable model of grnd(P ).

Example 19. Consider the following variant of Pu which we will call Pu′ :

man(dilbert). (r1)
woman(alice). (r2)

single(X)← man(X),not husband(X). (r3)
husband(X)← man(X),not single(X). (r4)
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We have that, for instance,

grnd(r3) = { single(dilbert)← man(dilbert),not husband(dilbert).

single(alice)← man(alice),not husband(alice). };

grnd(Pu′) = { man(dilbert).

woman(alice).

single(dilbert)← man(dilbert),not husband(dilbert).

single(alice)← man(alice),not husband(alice).

husband(dilbert)← man(dilbert),not single(dilbert).

husband(alice)← man(alice),not single(alice). }.

The program grnd(Pu′), and thus Pu′ , has the following stable models:

– M1 = {man(dilbert), woman(alice), single(dilbert)}
– M2 = {man(dilbert), woman(alice), husband(dilbert)}

4.3 Semantic Properties of Stable Models

The success of stable models as semantics for normal logic programs (with arbitrary
usage of negation) relies on two important aspects: first, stable models have a strong
theoretical basis, and enjoy many properties which reflect natural intuitions. Second,
as it will be seen in Section 6 they pave the way to a innovative problem modeling
methodology.

We survey here some important (most of which desirable) theoretical properties of
stable models. The reader can refer to [25–27] for other insights, alternative definitions
and properties of stable models.

We first consider the relationship between stable models and classical models of a
logic program, i.e., when negation as failure is interpreted as classical negation.

To this end, the notion of (classical) Herbrand model is easily lifted to clauses with
negated literals in their bodies.

Definition 12. Let I be an interpretation. Then I is a model of

– a ground clause C : a← b1, . . . , bm,not c1, . . . ,not cn, denoted I |= C, if either
{b1, . . . , bm} * I or {a, c1, . . . , cn} ∩ I 6= ∅.

– a clause C, denoted I |= C, if I |= C ′ for every C ′ ∈ grnd(C);
– a program P , denoted I |= P , if I |= C for every clause C in P .

Intuitively, the above definition lifts Definition 4 by taking in consideration negated
literals: an interpretation I is, again, “compatible” with a clause C either if it contains
the head of C, or if the body of C is false. A body can be false either if some positive bi
is not in I , or if some ci is in I . One expects that if the body of C is true, then also its
head must be true: indeed, if b1, . . . , bm ∈ I and c1, . . . , cn /∈ I , I can be model of C
only if it contains a.

The above definition complies with the notion of Herbrand model satisfying the
clause a ∨ not b1 ∨ . . . ∨ not bm ∨ c1 ∨ . . . ∨ cn, where not is interpreted as classical
negation. Now the following property holds:
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Theorem 4. 1. Every stable model M of P is a model of P .
2. A stable model M does not contain any model M ′ of P properly (M ′ 6⊂M ), i.e., is

a minimal model of P (w.r.t. ⊆).

The above properties guarantee that stable models of a program with negation enjoy
two of the desirable properties holding for least models of positive programs: first, a
stable modelM of P is “compatible” with all the rules of P , that is, it does not contradict
P . Also, M contains a minimal amount of facts which one must admit to be true for
gaining the “compatibility” with the scenario described by P , and no unnecessary and/or
redundant information.

Corollary 1. Stable models are incomparable w.r.t. ⊆, i.e., if M1 and M2 are different
stable models of P , then M1 *M2 and M2 *M1.

Also, stable models gracefully generalize the semantics for positive programs (the
least model of a positive program P is clearly the unique stable model of P ), and for
stratified semantics: indeed, the perfect model of a stratified program is also its unique
stable model.

Theorem 5. If a program P is stratified, then P has a single stable model, which
coincides with the perfect model.

Note, for instance, that the railroad program Pr is stratified. Its single stable model
coincides with the perfect model. It is indeed worth noting that there is only one stable
configuration for a stratified program although it can have multiple minimal models.

Example 20. If one considers the program Pm

p(a).

r(X)← p(X),not q(X).

we get two minimal models M1 = {p(a), r(a)} and M2 = {p(a), q(a)} for Pm. Note
that while M1 is stable, M2 is not stable, as the reduct grnd(Pm)M2 = {p(a)}, and
LM (grnd(Pm)M2) = {p(a)} 6= M2.

What makes M2 different from M1 is the fact that there is neither rule nor fact in
Pm justifying the presence of q(a) in a model.

Indeed one can see stable models as models in which all atoms a ∈M are somehow
“supported” by evidence: in a sense, a stable model “supports”, or “gives evidence” of
the truth of each a ∈M .

Theorem 6. Given a program P and an interpretation I , let

TP (I) =

{
a

∣∣∣∣ there is some r = a← b1, . . . , bm, c1, . . . ,not cn ∈ grnd(P )
such that {b1, . . . , bm} ⊆ I, {c1, . . . cm} ∩ I = ∅

}
.

If I is a stable model of P , then TP (I) = I .

Example 21. Note that q(a) in example 20 is unsupported in M2, indeed q(a) 6∈
TP (M2).
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Nonetheless, it must be noted that there are models which are minimal fixed points
of TP , but are however not stable:

Example 22. Consider the short program Ps:

a← not b.

b← c.

c← b.

Note that M1 = {a} and M2 = {b, c} are both minimal and such that TPs
(M1) = M1

and TPs
(M2) = M2, respectively. In particular, b and c are—in a sense—self-supported.

Consider the reducts PM1
s = {a ←; b ← c; c ← b} and PM2

s = {b ← c; c ← b}.
We have that LM (PM1

s ) = {a} = M1 and LM (PM2
s ) = ∅ 6= M2, thus M1 is a stable

model, whereas M2 is just a minimal model, but not a stable one.

Self-supported atoms are in general not desirable, since they can lead to paradoxical
scenarios in which true facts are not supported by evidence; a and b from the previous
example are indeed unfounded w.r.t M2 in the sense specified below.

Definition 13 ([22]). Given a program P , a set U ⊆ HBP is an unfounded set of
P relative to an interpretation I , if for every a ∈ U and every r ∈ ground(P ) with
H(r) = a, either

1. There is some atom b appearing as positive literal in the body of r which is such
that either b 6∈ I or b ∈ U , or

2. There is some atom b appearing as negative literal in the body of r such that b ∈ I .

For normal programs there exists the greatest unfounded set of P relative to I , denoted
by UP (I).

Intuitively, if I is compatible with P , then all atoms in UP (I) can be safely switched
to false and the resulting interpretation is still compatible with P . Assuming I as a set of
true facts, there is no rule in P that can justify an atom a ∈ U becoming true.

An interpretation I is called unfounded-free, if I ∩ U = ∅ for each unfounded set U
of P rel. to I . In other words, I is unfounded-free iff I ∩ UP (I) = {}.

11

The notion of unfounded set extends the notion of “non-supportedness” by implicitly
forbidding support of an atom by an atom which is unfounded. For gaining “foundedness”
byM an atom a ∈M necessitates support by a rule whose body is made true by founded
atoms only (not belonging to the unfounded set at hand).

Theorem 7 (implicit in [28]). Given a program P , a model M of P is stable iff M is
unfounded-free.

11 Note that, for more general classes of programs than normal programs (e.g., disjunctive program
as later defined in Section 5.3), UP (I) is undefined. More generally, we can then say that I is
unfounded-free, if there is no (non-empty) subset of I which is an unfounded set.
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Example 23. If we take Pu again in consideration

man(dilbert). (f1)
single(dilbert)← man(dilbert),not husband(dilbert). (r1)
husband(dilbert)← man(dilbert),not single(dilbert). (r2)

And the four following “candidate” interpretations:

– M1 = {man(dilbert), single(dilbert)},
– M2 = {man(dilbert), husband(dilbert)},
– M3 = {man(dilbert), single(dilbert), husband(dilbert)}
– M4 = {man(dilbert)},

One can observe thatM3 has the greatest unfounded setUPu
(M3) = {single(dilbert),

husband(dilbert)}: assuming M3 as a set of “true” facts, there is indeed no rule which
could make atoms in UPu(M3) true. M3 is thus not unfounded-free. Note that M4 is not
a model at all, since r1 and r2 are not satisfied.

Example 24. Note that the minimal model M2 = {b, c} of Ps is not unfounded free:
indeed UPs

(M2) = {b, c}.

Reasoning from stable models. Since a logic program P might have no, one, or
multiple stable models, the question is how inference from P should be defined. With
respect to a particular stable model M , a ground atom a is considered to be true (denoted
M |= a), if a ∈M , and false, if a /∈M . This is usually extended to inference from all
stable models of P in two dual modes, as mentioned already in Section 3.2:

Brave Reasoning An atom a is a brave (or credulous) consequence of P , denoted
P |=b a, if M |= a for some stable model of P ;

Cautious Reasoning An atom a is a cautious (or skeptical) consequence of P , denoted
P |=c a, if M |= a for every stable model of P .

These notions can be extended to propositional combinations of ground atoms in
the natural way (where M |= ¬a iff a /∈M ), and similarly to (combinations of) closed
formulas.

Both |=b and |=c are nonmonotonic, as adding further rules to P might invalidate a
conclusion.

Example 25. If we reconsider the program Pm in Example 20, then both Pm |=b r(a)
and Pm |=c r(a), as r(a) is true in the unique stable model of Pm. However, for
P ′m = Pm ∪ {q(a)}, neither P ′m |=b r(a) nor P ′m |=c r(a) holds, as r(a) is false in the
single stable model {p(a), q(a)} of P ′m.

From this example, one might believe that the nonmonotonic behavior of inference
is due to the fact that we added some fact (q(a)) that was missing before, but that this
would not happen if the fact were already a consequence; that is, that inference satisfies
cautious monotonicity:
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– If P |=x a and P |=x b, then P ∪ {a} |=x b.

where x ∈ {b, c}. This property is obviously fulfilled for classical inference |= in place
of |=x. However, it does not hold for cautious reasoning under stable semantics.

Proposition 2. In general, P |=c a and P |=c b does not imply that P ∪ {a} |=c b.

In fact, the property fails even if P has a single stable model. For example, consider the
program P = {b← not c; c← not b; a← not a; a← b}. This program has the single
stable model M = {a, b}, and thus P |=c a and P |=c b. However, the program P ∪{a}
has another stable model, viz. N = {a, c}, and thus P ∪ {a} 6|=c b. The property is,
however, true for brave reasoning.

Similarly then, also the stronger property of cumulativity fails:

– If P |=x a, then P |=x b iff P ∪ {a} |=x b.

That is, by adding consequences as “lemmas,” we might change the set of conclusions
that can be drawn (which is not the case for classical inference |=). In fact, this property
also fails for brave reasoning, as shown by the above examples (e.g., P ∪ {a} |=b c
while P 6|=b c).

In conclusion, care is needed when arguing about how rules in a program compute
truth values for atoms under stable semantics. As long as atoms do not depend on
negation through cycles, i.e., in the stratified part of a program, adding atoms that are
computed true as facts does not change the semantics. Fortunately, this can be generalized
to settings where a program can be split into an “lower’ and an “upper” part where the
former informally provides input to the latter in a modular way [29]. In other cases, one
has to carefully examine the effects of adding atoms—in an unfounded way—as facts.
More about properties of consequences from stable models can be found e.g. in [27].

4.4 Computational Properties

There are many computational tasks related to logic programs under stable model
semantics: one might want to check if a given program P is consistent (that is, it admits
at least one stable model), or to compute one, or all, of its models. Also it can be of
interest to determine truth of a given query Q under brave or cautious reasoning. We
briefly focus here on the problem CONS of deciding whether a given input program
P has some stable model, that is, deciding the consistency of P under stable model
semantics. The computational complexity of CONS has direct impact on other related
problems, thus giving an indication of the complexity of other related problems. For
instance, evidence of consistency can be given by computing one stable model.

It turns out that assessing consistency of a ground program P is in general NP-
complete.

Theorem 8 ([30]). The problem CONS of deciding whether a given ground program P
has some stable model is NP-complete.12

12 Recall that NP is the class of problems solvable in polynomial time on a non-deterministic
Turing machine [31].
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Intuitively, this result can be justified by thinking of a simple nondeterministic algorithm
for checking the existence of a stable model for P . For showing that CONS is in NP
one can: (i) guess a candidate stable model M ; (ii) check in polynomial time if M is
stable (e.g. by verifying UP (M) = {}). Also, one can show that it is possible to build a
program Pφ, having a stable model iff a given propositional formula φ in CNF is true
(where Pφ is of size at most polynomially higher than the size of φ).

However, computational complexity might change depending on allowed extensions
(disjunction, presence of function symbols, etc.):

– For “not”-free programs and stratified programs, CONS can be solved in polynomial
time (in fact, solvable in linear time);

– For programs with variables but not function symbols, CONS has exponentially
higher complexity (NEXP-complete);

– For non-ground, arbitrary programs (allowing functional terms), CONS is unde-
cidable. There are however known syntactic conditions on the usage of function
symbols which retain complexity in 2-EXP [32, 33] resp. 2-NEXP [34, 35].13

It is important to note the dramatic change in complexity when P is non-ground. This
should not be surprising if one considers that, usually, grnd(P ) is exponentially bigger
than P .

Example 26. Given the rule rg

r(X1, . . . , Xk)← h(a, b), c1(X1), . . . , ck(Xk)

one can easily observe that |grnd(rg)| = O(2k).

In particular one can observe that the size of a grounded program can be exponentially
bigger than its original non-ground counterpart if k is allowed to vary, that is, if programs
can have arbitrarily long rules, and arbitrarily large arities. This might not be the case if
a bound on such parameters is given (see e.g. [36]). Also, one might wonder why the
introduction of function symbols makes CONS undecidable. One can easily see that, in
this setting, it is possible to have stable models of infinite size:

Example 27. Consider the program Pf :

p(a).

p(f(X))← p(X).

We can observe that grnd(Pf ) = {p(a), p(f(a))← p(a), p(f(f(a)))← p(f(a)), . . . }
is infinite, as well as its unique stable model Minf = {p(a), p(f(a)), p(f(f(a)), . . .}.
It is thus not surprising that for non-ground programs, admitting functions symbols, CONS
and other related reasoning problems become as difficult as deciding the termination of
a Turing machine on a given input.14

13 A decision problem is in 2EXP (2NEXP) time, if it can be solved by a (non-)deterministic
Turing Machine in time O(22

p(n)

), where p(·) is a polynomial and n is the size of the input
instance.

14 The reader can find in [12] a thorough collection of results regarding computational complexity
of logic programming under various semantics including the stable models semantics.
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5 Extensions

In the above sections, we have dealt with the motivation and history of answer set
programming, and described syntax and semantics of gradually increasing expressive
program classes. In particular, we looked into the class of normal logic programs under
stable models semantics and showed their alluring semantic properties. But, so far, we
did not touch upon the full area of answer set programming. In this section, we will
approach the main topic of this chapter and show more syntactic extensions of normal
logic programs and define their semantics, which, eventually, brings us to the answer set
semantics.

We now turn our attention to three particular extensions of normal logic programs
that lead to the notion of Answer Set Programming: (i) (integrity) constraints (rules with
empty head) like

← edge(X,Y ), red(X), red(Y ) , (9)

which forces that adjacent nodes in a graph are not allowed to have the colour red;
(ii) strong (or “classical”) negation in atoms, e.g., −single(dilbert) (Dilbert is known
not to be a single); and (iii) disjunctive rules, i.e., allowing for disjunctions in rule heads
like in

female(X) ∨male(X)← person(X) ,

which intuitively means that persons are either female or male. For many crucial knowl-
edge representation tasks, these extensions are not only desirable, but also necessary for
succinct encodings of problems. Programs that permit strong negation are also called Ex-
tended Logic Programs (ELP). If ELPs additionally allow for disjunctive rules, we obtain
the class of disjunctive ELPs, which are also called Disjunctive Logic Programs (DLP).

Next, we will look into these important extensions in more detail and then provide
syntax and semantics of ELPs and DLPs.

5.1 Constraints

Integrity constraints check admissibility of models, possibly using auxiliary predicates
defined by normal stratified rules. For instance, the constraint rule (9) can be equally
well expressed as the “killing clause”

falsity ← not falsity , edge(X,Y ), red(X), red(Y ) , (10)

where falsity is a fresh propositional atom. Now, if there is an interpretation I for a
program with the constraint (9) such that I contains edge(a, b), red(a), and red(b), but
falsity /∈ I , then (10) is applicable and forces falsity to be true. But then, I cannot be
a model for our program, as falsity is false in I . This means that (10) “kills” all models
that do not satisfy the constraint (9).

5.2 Strong Negation

In Section 3, we have defined normal logic programs, i.e., logic programs that allow for
weak negation in rule bodies. The intuitive meaning of not a is that “a cannot be proved
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(derived) using rules,” and that a is false by default (or believed to be false). But this is
different from (provably) knowing that a is false, which is expressed by ¬a; in ASP, one
also writes −a for this.

Example 28 (by John McCarthy). Consider an agent A with the following task: “At a
railroad crossing, cross the rails if no train approaches.” We may encode this scenario
using one of the following two rules:

walk ← at(A,L), crossing(L),not train approaches(L). (11)
walk ← at(A,L), crossing(L),−train approaches(L). (12)

In the following, let us assume that A is at some crossing L.
If we take (11) as encoding for the railroad-crossing task, and A cannot infer from

her beliefs that train approaches(L) is true, then A will conclude to walk even though
A cannot be sure that there is no approaching train: her beliefs might not represent the
state of the world completely. Now, if we take (12) as the encoding, A will only walk if
she can prove that there is no approaching train.

In (11), an update to A’s knowledge can lead to revised conclusions; if we add
train approaches(L), then A will refuse to walk. This is the typical behavior of non-
monotonic rules like (11), but may not be desired in critical situations like crossing a
railroad, as an approaching train, which has not been perceived by A yet, might cause
devastating effects on the agent. From this point of view, the rule (12) employing strong
negation is preferable.

There are several ways to express negative knowledge using strongly negated atoms.
One way is to explicitly state them as facts in a knowledge base. For instance, the fact
−broken(battery) expresses that a battery is definitely not broken. If this knowledge
base concludes in a different rule that broken(battery) holds, then we face inconsistency,
and this causes to vanish all models of that particular knowledge base.

Another useful application for strong negation (in combination with weak negation)
is to express default rules. For example, we can express that “a bird flies by default” with
the rule flies(X)← bird(X),not −flies(X).

Extended Logic Programs. Adding strong negation to normal logic programs leads to
the so called extended logic programs.

Definition 14. An extended logic program (ELP) is a finite set of rules

a← b1, . . . , bm,not c1, . . . ,not cn (n,m ≥ 0) (13)

where a and all bi, cj are atoms or strongly negated atoms in a first-order language L.

The semantics of ELPs can be defined in different ways, either genuinely by con-
sidering sets of ground literals rather than sets of atoms as basis, as done in [11], or by
a simple reduction to normal logic programs that compiles strong negation away; we
follow here for simplicity the latter. To this end, we
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– view negative literals “−p(X)” as atoms with fresh predicate symbols −p, for each
atom p(X);

– add the clause
falsity ← not falsity , p(X),−p(X) (14)

to P (this prevents that p(X) and −p(X) are true at the same time); and
– select the stable models of the resulting program P ′. These are called answer sets of
P .

Note that extended logic programs have similar properties as normal logic programs
under stable models semantics. For a ground atom a, constraint (14) prevents that both
a and −a are contained in answer sets. One takes a three-valued view on this: an atom
may be true, false, or undefined (i.e., we don’t know if the atom is true or false). This
contrasts with the two-valued view of stable models of a normal logic program, in which
an atom a is either true (if a is in the model) or false (if a is not on the model, in the
spirit of Reiter’s Closed World Assumption [37]).15

The use of strong negation may cause inconsistency, even if a program does not have
weak negation. For example, take the program P

true.

trivial← true.

a← true.

−a← true.

which derives both a and −a. The constraint (14) prevents that P has answer sets, thus
P is inconsistent. However, this inconsistency is of a different quality than the one cause
by default negation (cf. Example 17).

Example 29. The next program is a knowledge base for determining if one should query
the science citation index (sci) or the citeseer database:

up(S)← website(S),not −up(S). (r1)
−query(S)← −up(S). (r2)
query(sci)← not −query(sci), up(sci). (r3)

query(citeseer)← not −query(citeseer),−up(sci), up(citeseer). (r4)
flag error ← −up(sci), −up(citeseer). (r5)

website(sci). website(citeseer).

In rule (r1), we define that websites are up by default, and (r2) encodes that a website
known to be not up should not be queried. The rules (r3) and (r4) give a preference on
the websites: whenever we cannot prove that sci is not usable and sci is available, then
we should query the science citation index, but we should only query citeseer if it is
available for querying and sci is down. In (r5), we simply raise an error-flag whenever
both websites are down.
15 The answer sets of an ELP P without strong negation coincide with the stable models of P ,

and thus the terms are often used interchangeably (confusing two- vs three-valuedness).
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The single answer set of this program is

M = {website(sci), website(citeseer), up(sci), up(citeseer), query(sci)} ,

whose intuitive meaning is that we should query the science citation index, even though
citeseer is up and running.

If we add to our knowledge base the rule

−query(S)← not query(S),−reliable(S) (r6)

and the facts that sci is down and citeseer is unreliable,

−up(sci) and − reliable(citeseer) ,

we can witness a different behavior. Intuitively, (r6) creates a nondeterminism in our
program, as for websites S that are known to be unreliable we can infer−query(S), pro-
vided that we cannot prove query(S). But rules (r3) and (r4) gives us similar knowledge,
except with unlike signs: we can infer a positive fact query(S) given that we cannot
prove −query(S). To resolve this conflicting views, we obtain for our knowledge base
under answer set semantics exactly two answer sets, with each intuitively describe the
corresponding alternative view on our site selection problem:

– M1 = {website(sci), website(citeseer), −up(sci),
up(citeseer),−reliable(citeseer),−query(sci), query(citeseer)}, and

– M2 = {website(sci), website(citeseer), −up(sci),
up(citeseer), −reliable(citeseer), −query(sci), −query(citeseer)},

i.e., in M1 we have chosen to query citeseer and in M2 we conclude that we should not
query citeseer, thus querying no website at all.

Relationship to Reiter’s Default Logic. It has been noted already in [11] that ELPs are
closely related to Reiter’s famous Default Logic [38]. For an ELP clause C of form (13),
consider the corresponding default

d(C) =
b1 ∧ · · · ∧ bm : ¬.c1, . . . , ¬.cn

a
,

where ¬.ci is the opposite of ci (i.e., ¬.a = ¬a and ¬.¬a = a).

Theorem 9. Let P be an extended logic program and let T = (∅, {d(C) | C ∈ P})
be the corresponding default theory. Then, M is an answer set of P if and only if
E = Cn(M) is a consistent default extension of T .

Thus, extended logic programs under answer set semantics can be regarded as a
fragment of default logic.
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5.3 Disjunction

The next extension to normal logic programs is disjunctions in rule heads. The use of
disjunction is natural to express indefinite knowledge. For instance, the rule

female(X) ∨male(X)← person(X)

expresses that all persons are either female or male. Another example is the disjunctive
fact

broken(left hand , tom) ∨ broken(right hand , tom)← ,

which expresses that tom has a broken arm, but it is unknown whether the left or the
right hand is broken.

Disjunctive information is a natural extension for expressing a “guess” and to create
non-determinism in logic programs, like in the rule

ok(C) ∨ −ok(C)← component(C) ,

which states that a component may be in a working condition or not working at all, and
in each of the alternative states of the component, we might have to take different actions
for solving our problem.

The semantics of disjunctive rules is such that we conclude one of the alternatives to
be true (the minimality principle).

In the next example, we look at different disjunctive programs, and the models they
admit.

Example 30. Disjunction is minimal, i.e., from a rule, we usually infer only a single
atom “at a time.” The single rule program

a ∨ b ∨ c← (15)

has three minimal models: {a}, {b}, and {c}. There exist no smaller models for (15),
since ∅ is not a model. The interpretation I = {a, b} for instance is a model of this
program, but both {a} and {b} are smaller than I and satisfy (15), hence I is not a
minimal model.

If we take a closer look into the minimal models of disjunctive programs, we observe
that they are actually subset minimal. Take, for instance, the program

a ∨ b← (16)
a ∨ c← (17)

This program has two minimal models: {a} and {b, c}. The interpretation J = {a, b, c}
is a model for both (16) and (17), hence it is a model of the program. But J is a proper
superset of {b, c}, thus J is not a minimal model. Note that {a} is the only singleton
minimal model, as both {b} and {c} do not satisfy the program.

In a similar vein, the program

a ∨ b← (18)
a← b (19)
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has the single minimal model {a}, as the model {a, b} is not minimal with respect to
set inclusion. The interpretation {b} is not a model; it satisfies rule (18), but it is not a
model for (19).

Note that disjunction should not be understood as exclusive. Take program

a ∨ b← (20)
b ∨ c← (21)
a ∨ c← (22)

which has three minimal models {a, b}, {a, c}, and {b, c}. Each of the three minimal
models are not contained in the other, but the intersection of any two of the minimal
models is nonempty.

Let us next consider the use for disjunctive rules vs. unstratified negation. Going
back to our Dilbert scenario, the program

man(dilbert). (23)
single(X)← man(X),not husband(X). (24)
husband(X)← man(X),not single(X). (25)

which expresses that a man is either a single or a husband, is equivalent to the disjunctive
program

man(dilbert). (26)
single(X) ∨ husband(X)← man(X). (27)

Here, the use of disjunction is more intuitive. In fact, one can see the rule (27) re-
sulting from (24) resp. (25) by “shifting” the negated literal not husband(X) (resp.
not single(X)) to the head (classically, the clauses are equivalent). While such shifting
works in this example, as well as under certain syntactic conditions (like headcycle-
freeness) [39], we note that in general, disjunctive rule heads are not syntactic sugar for
unstratified negation; this is also evidenced by complexity results provided in Section 5.3.

Extended Logic Programs with Disjunctions. The extension of ELPs with disjunctive
rule heads leads to the class of extended disjunctive logic programs in [11].

Definition 15. A extended disjunctive logic program (EDLP) is a finite set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not c1, . . . ,not cn (k,m, n ≥ 0)

where all ai, bj , and cl are atoms or strongly negated atoms.

The semantics for an EDLP can be defined similarly as for an extended logic program,
with the only difference being that instead of choosing a stable model M of P (i.e., M
is the least model of the reduct PM ), we define an answer set M of an EDLP P as a
minimal model M of the reduct PM , since multiple minimal models of PM might exist.
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Example 31. Consider the program P :

man(dilbert).

single(X) ∨ husband(X)← man(X).

There are two answer sets for P :

– M1 = {man(dilbert), single(dilbert)}, and
– M2 = {man(dilbert), husband(dilbert)}.

Please note that P is “not”-free (positive), hence the reduct grnd(P )M = grnd(P )
for every interpretation M .

It is worth mentioning here that answer sets of EDLPs can also be nicely defined
in equilibrium logic [40, 41], which is a non-monotonic version of the logic of here
and there, an intermediate logic between classical logic and intuitionistic logic. This
logic is well-suited to capture not only EDLPs, but also other extensions of normal logic
programs.

Semantic Properties of Disjunctive ELPs. The extensions of normal logic programs
to ELPs and DLPs considered in this section inherit most of the alluring properties of
stable models, which have been shown in Section 4.3.

We now define Herbrand interpretations to EDLPs. Since an extended logic program
may contain atoms under classical negation, an interpretation for EDLPs may also
contain strongly negated ground atoms, i.e., literals of form a or −a. But this means that
an interpretation can be inconsistent if it contains both a and−a. In [11], the inconsistent
answer set has been defined as the interpretation which contains all possible atoms
and their strongly negated counterparts. For our purposes, we deal only with consistent
interpretations and thus disregard the inconsistent answer set. We define models as
follows.

Definition 16. A interpretation I is a model of

– a ground clause C : a1 ∨ · · · ∨ ak ← b1, . . . , bm,not c1, . . . ,not cn, denoted
I |= C, if either {b1, . . . , bm} * I or {a1, . . . , ak, c1, . . . , cn} ∩ I 6= ∅;

– a clause C, denoted I |= C, if I |= C ′ for every C ′ ∈ grnd(C);
– a program P , denoted I |= P , if I |= C for every clause C in P .

The above definition takes all of our extensions into account: (i) constraints do not
have head literals, hence k = 0 and only the body part (the bi, cj) is taken into account;
(ii) rules with strong negation are considered by viewing all ai, bj , cl in I as classical
literals; as well as (iii) disjunctive rules (where n > 1), with the meaning that if the
rule body is satisfied, at least some literal ai, 1 ≤ i ≤ n, must be true. In a sense, such
interpretations represent three-valued states: a ground atom a is regarded true in I , if
a ∈ I , while a is regarded false in I , if −a ∈ I; of neither a nor −a is contained in I ,
then a is unknown in I .

Similar to stable models of normal logic programs, a (disjunctive) ELP P may have
no, one, or multiple answer sets, which are models of P , and, in fact, minimal models
of P .
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Theorem 10. Let P be a (disjunctive) ELP and M be an answer set of P .

1. M is a model of P .
2. M is a minimal model of P .

Hence, just like least models of positive programs and stable models of normal
programs, an answer set satisfies all rules of an EDLP. Moreover, an answer set is
a minimal model of the program, which intuitively means that it contains only the
absolutely necessary bare minimum of facts in order to satisfy a program.

Corollary 2. If M1 and M2 are two different answer sets of P then M1 * M2 and
M2 *M1.

Similarly to stable models for normal logic programs, one can define unfounded sets
for answer sets of of EDLPs to address the problem of self-supported literals. Leone et
al. [28] did this for programs without strong negation.

Definition 17 ([28]). Given an EDLP P without strong negation and an interpretation
I , a set U ⊆ HBP is an unfounded set of P relative to an interpretation I , if for every
a ∈ U and every r ∈ ground(P ) such that a appears in the head of r, at least one of
the conditions hold:

1. There is a literal b appearing in the positive body of r such that either b 6∈ I or
b ∈ U ;

2. There is a literal b appearing in the negative body of r such that b ∈ I; or
3. There is a literal b appearing in the head of r such that b /∈ U and b ∈ I .

Unlike for normal logic programs, we cannot guarantee the existence of a greatest
unfounded set for disjunctive programs relative to an interpretation. But there exist
interpretations for an EDLP, where the existence of a greatest unfounded set is guaranteed:
the unfounded-free interpretations. We call an interpretation I for an EDLP P unfounded-
free, if I ∩ U = ∅ for each unfounded set U for P w.r.t I .

Theorem 11 ([28]). Given an EDLP program P without strong negation, an interpreta-
tion M of P is an answer set iff M is unfounded-free.

The DLV system heavily relies on unfounded sets as its underlying principle to build the
answer sets of EDLPs (see Section 7.2 for more details).

Note that the notion of unfounded set is easily extended to answer sets of EDLPs
with strong negation, by adding the respective constraints; [42] defines unfounded sets
directly in Equilibrium Logic.

A recent development in the ASP area is a syntactic counterpart of unfounded sets:
loop formulas [43–45]. These formulas have been conceived as a way to transform
logic programs under stable and answer set semantics to propositional theories, and let
standard SAT solvers perform the task of computing the stable models of these extended
theories. In a nutshell, this translation uses Clark’s completion [46] for logic programs
to create a propositional theory and augment this theory by additional loop formulas,
which guarantee that this theory admits only stable models. Note that in general there
can be exponentially many loop formulas for a given EDLP [47].
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We end this section by looking into reasoning with answer sets, which is defined
just as reasoning with stable models: a classical literal a is a (i) brave (credulous)
consequence of program P , P |=b a, iff M |=b a for some answer set M of P ; and
(ii) cautious (skeptical) consequence of a program P , P |=c a, iffM |=c a for all answer
sets M of P . The behaviour with respect to properties like cautious monotonicity and
cumulativity is then similar as in the disjunction-free case.

Computational Properties of Disjunctive ELPs. Similar to normal logic programs
under stable model semantics, EDLPs under answer set semantics have many interesting
computational tasks, and a particular one is testing whether a program P is consistent,
i.e., whether P has some answer set. Here, we restrict our attention to the consistency
problem, give complexity results for various classes of EDLPs, and briefly sketch proofs
or give ideas how such a proof can look like. Let us start with the general case.

Theorem 12 ([48]). Deciding whether a given ground disjunctive program P has some
answer set is Σp

2 -complete in general.

Recall that Σp
2 = NPNP is the class of problems decidable in polynomial time on a

nondeterministic Turing machine with an oracle for solving problems in NP [49].
The membership of consistency of disjunctive ELPs can be shown by the following

argument: we first guess an answer set M for a program P , and verifying whether M
is a minimal model of PM is in co-NP (note that PM can be computed in polynomial
time), thus decidable with one call to an NP-oracle.

The intuition for the hardness part is as follows: we have to create a reduction from
validity of a quantified Boolean formula of the form ∃X∀Y E(X,Y ) to an EDLP P ,
where E(X,Y ) is in disjunctive normal form and X and Y are the (lists of) variables
occurring in E. For a detailed proof, we refer the reader to [48].

But there exist subclasses of EDLPs with lower computational complexity. For
instance, testing whether a strictly positive disjunctive ELPs has an answer set is easy,
since each positive program has a model and the Gelfond-Lifschitz reduct does not
change the given program.

For a ground DLP P with constraints, but without “not” in the rule bodies, deciding
whether P has some answer set is NP-complete. Hardness can be shown by a reduction
from SAT: given a propositional CNF-formula φ, we transform φ into a positive dis-
junctive program P with constraints by adding rules a ∨ ā← for each atom a in φ and
adding the “negation” C ′ of each clause C in φ as a rule of form u← C ′ to P , where u
is a fresh symbol (e.g., for a clause a ∨ b ∨ ¬c we add the rule u← ā, b̄, c), and finally
add the constraint← u; then, φ is satisfiable iff P has an answer set. Membership can be
shown by guessing an interpretation for the positive part of the program, and checking
if the interpretation is a minimal model of the positive part and is compliant with the
constraints in polynomial time.

Other classes of EDLPs exist which obtain lower complexity, for instance, deciding
consistency of headcycle-free EDLPs [39] is also NP-complete.

Similarly to normal logic program, we obtain an exponential blowup for nonground
EDLPs compared to the propositional case. In particular, verifying whether a nonground
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EDLP has some answer set is NEXPNP-complete, i.e., complete for the class of prob-
lems that run in exponential time on a nondeterministic Turing machine and have access
to an NP-oracle (see also [12]). If function symbols are allowed, the complexity does
not increase through disjunction in general (cf. [12]); syntactic restrictions are known
under which the complexity of deciding consistency stays is 2-EXP-complete [32] and
3-EXP-complete [33], respectively.

6 Answer Set Programming Paradigm

In this section, we now turn to the Answer Set Programming (ASP) paradigm, which
emerged from the nonmonotonic Logic Programming area at the end of the 1990s. There
were, as already mentioned, several texts in which this paradigm was proposed, [50,
3–5]; after the LPNMR 1999 conference, a special issue of the AI Journal was edited [2]
covering the subject, a dedicated ASP workshop series started in 2001 [1]. The textbook
by Baral [6] was then a further step to disseminate this approach.

Let us first start with more motivation by outlining the general idea behind answer
set programming: given an instance of a (search) problem I and its corresponding
representation in form of a logic program P , we may perceive the models of P as
solutions for I . That is, in ASP, we view problem solving tasks as computing the models
of their matching encoded programs. This view gives rise to a general strategy for
implementing any kind of problem solving task, shown graphically in Figure 6:

1. we encode our problem instance I as a (nonmonotonic) logic program P , such that
solutions of I are represented by models of P ; and then

2. compute some model M of P , by using an AS solver of our choice; and finally
3. extract a solution for I from M .

We may vary this strategy by allowing to compute more than one solution, which
intuitively corresponds to obtaining multiple or even all solutions for our problem
instance I .

This method has been successfully applied to numerous problems in a range of areas;
an incomplete list is

– diagnosis
– information integration
– constraint satisfaction
– reasoning about actions (including planning)
– routing, and scheduling
– phylogeny construction
– security analysis
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– configuration
– computer-aided verification
– health care
– biomedicine and biology
– Semantic Web
– knowledge management
– text mining and classification
– question answering

The survey [51] is a source for specific applications, some of which can be viewed
in an online showcase collection.16

We illustrate the ASP approach on the problem of computing legal 3-colorings of a
graph.

Example 32. Let G = (V,E) be a graph with nodes V = {a, b, c, d} and edges E =
{(a, b), (b, c), (c, a), (a, d)}, which constitutes our problem instance I . We can encode
the legal three colorings of G into answer sets of a logic program P as follows. For each
node n, we have atoms bn, rn, and gn which informally mean that node n is colored
blue, red, and green, respectively. Then we set up the following rules. For each node
n ∈ V ,

bn ← not rn,not gn.
rn ← not bn,not gn.
gn ← not rn,not bn.

and for each edge (n, n′) in E, the constraints

← bn, bn′ .
← rn, rn′ .
← gn, gn′ .

Then, the answer sets of P encode 1-1 the legal 3-colorings of G. Informally, the rules
for n ∈ V assign one of the three colors to n, and the constraints for (n, n′) check that
adjacent nodes do not have the same color. Equally well, we can replace the three rules
for n ∈ V by the single (and perhaps more intuitive) rule

bn ∨ rn ∨ gn ← .

This problem solving strategy is closely related to similar approaches like SAT-
solving, where the problem instance is encoded onto the (classical) models of a propo-
sitional formula of clause set. It is because of this that some authors refer to Answer
Set Programming as the more general paradigm in which a problem is encoded into the
models of a logical theory, and consider the usage of nonmonotonic logic programs as
theory as a particular instance of this paradigm. We prefer here, however, to reserve
the term ASP for the setting with nonmonotonic logic programs under the answer set
semantics itself.
16 http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.
html
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Compared to SAT solving, ASP provides features that are not available there. For
example, the transitive closure of a given graph G (and its complement) is expressible
within an answer set, which is cumbersome in classical propositional logic. Here, one can
exploit negation as failure fruitfully. Furthermore, ASP offers many constructs besides
negation as failure, and, importantly, allows also problem descriptions with predicates
and variables. This can be utilized for generic problem solving where the specification
of solutions (the “logic” PS ) is separated from the concrete instance of the problem at
hand (the “data” D, usually given as facts); see Figure 7.

Example 33. In the graph 3-coloring problem, assuming that G = (V,E) is stored using
facts node(n) for each n ∈ V and edge(n, n′) for each (n, n′) ∈ E, which gives the
data D, the generic specification of solutions PS can be given by the following rules:

b(X)← node(X),not r(X),not g(X).
r(X)← node(X),not b(X),not g(X).
g(X)← node(X),not r(X),not b(X).

and the constraints

← b(X), b(Y ), edge(X,Y ).
← r(X), r(Y ), edge(X,Y ).
← g(X), g(Y ), edge(X,Y ).

Similarly as above, we can use the single disjunctive rule

b(X) ∨ r(X) ∨ g(X)← node(X).

instead of the three unstratified rules defining b(X), r(X), and g(X). Then, the answer
sets of PS ∪D correspond to the legal 3-colorings of G.

The efficient evaluation of ASP programs requires the integration of techniques from
the areas of Knowledge Representation, Database, and Search, as language constructs
and features need to be handled (possibly by compiling them away), (larger) input
volumes of data need to be processed, and nondeterminism as it occurs with unstratified
negation has to handled with search.

In the rest of this section, we will briefly discuss some declarative programming
techniques that are used in ASP. There is a variety of “design patterns” which depend on
the type of problem to be solved and the language elements that are used or needed. We
discuss here the use of four techniques: (i) double negation as a technique to compute
maximal elements in a set, which can done using stratified negation; (ii) a general guess
and check methodology which uses unstratified negation or disjunction to generate
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and prune solutions candidates; (iii) an advanced technique called saturation, which
can be used in disjunctive logic programming to test properties of various subsets of a
set within an answer set, and is essential to solve “hard” problems there (cf. [48, 52]);
(iv) in combination with this, iteration over a set to test whether a property holds for all
elements without the use of negation.

6.1 Use of Double Negation

The first technique which we look at is the use of double negation. In classical logic
¬¬A ≡ A, i.e., double negation can be canceled. This can be similarly exploited in
ASP to define a predicate p(X) in terms of its complement −p(x), and is particularly
attractive if −p(x) can be defined easily. For example, one can avoid counting and
arithmetic for determining the maximum in a (finite) set of numbers.

Example 34. Suppose the data about employees of a company and their salaries are
stored as facts empl(N,S) in the data D, where N is the name and S the salary of an
employee. Then the maximum salary, s∗ = max{s | empl(e, s) ∈ D}, is determined
by the following simple ASP program:

% salary S is *not* maximal
−max(S)← empl(N,S), empl(N1, S1), S < S1.

% double negation
max(S)← empl(N,S),not −max(S).

Example 35. For a little more involved example where this technique can be used
successfully, consider the problem of computing the greatest common divisor (gcd) of
two natural numbers n,m > 0; recall that the gcd of n and m is the largest integer
d∗ such that d∗ divides both n and m. This problem is a standard example in logic
programming and elegant solutions for it can be found in textbooks, which basically
implement Euclid’s recursive algorithm for it by rules:

% base case
gcd(X,X,X)← int(X), X > 1.
% subtract smaller from larger number
gcd(D,X, Y )← X < Y, gcd(D,X, Y1), Y = Y1 +X.
gcd(D,X, Y )← X > Y, gcd(D,X1, Y ), X = X1 + Y.

Here, int(X) is a (built in) predicate for natural numbers ≥ 0. While Euclid’s algorithm
is ingenious, the average programmer will approach the problem by trying to cast the
definition into rules. Here, double negation can be used again to single out the maximal
common divisor d∗ in the predicate gcd(X,Y, Z) given that the common divisors are
computed in a predicate cd(X,Y, Z), which in turn can be done easily using a predicate
divisor(X,Y ) that is defined using simple (built-in) arithmetic. A respective program
is the following:

% Declare when D divides a number N .
divisor(D,N)← int(D), int(N), int(M), N = D ∗M.
% Declare common divisors
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cd(T,N1, N2)← divisor(T,N1), divisor(T,N2).
% Single out non-maximal common divisors T
−gcd(T,N1, N2)← cd(T,N1, N2), cd(T1, N1, N2), T < T1.
% Apply double negation: take non non-maximal divisor
gcd(T,N1, N2)← cd(T,N1, N2), not − gcd(T,N1, N2).

For a similar encoding in Prolog, one has to be careful to define and use int(X) properly
in the rules, otherwise the program might not terminate.

Note that the above programs are both stratified and thus have a single answer
set over any input data (provided that some answer set exists). We will next consider
programs that are geared toward multiple answer sets for capturing problems with
multiple solutions.

6.2 The “Guess and Check” Methodology

An important element of ASP is to employ a “Guess and Check” methodology, which is
sometimes also called Generate-and-Test [3]. The idea is here to proceed as follows:

1. use nondeterminism that comes with unstratified negation, or equally well with
disjunction in rule heads, to create candidate solutions to a problem (program part
G), and

2. to check with further rules and/or constraints, whether a solution candidate is proper
(program part C). This part may also involve auxiliary predicates, if needed.

From another perspective, the part G defines the search space, and the part C prunes
illegal branches. A detailed discussion of this paradigm is given in [53, 52], and in [53] it
is extended by a further component to compute optimal solutions (we will deal with this
in Section 7.2 below). We will just briefly illustrate the methodology on a few examples.

Example 36. As a first example, we revisit the 3-colorability problem in Example 33.

g(X) ∨ r(X) ∨ b(X)← node(X)
}

Guess

← b(X), b(Y ), edge(X,Y )
← r(X), r(Y ), edge(X,Y )
← g(X), g(Y ), edge(X,Y )

Check

The first disjunctive rule constitutes the guessing part G, which generates all possible
assignments of one colors to the nodes of the graph, while the three constraints constitute
the checking part C.

The next example shows a checking part which uses auxiliary predicates.

Example 37. Recall that for a directed graph G = (V,E), a path n0 → n1 → · · · → nk
in G from a start node n0 ∈ V is called a Hamiltonian path, if all nodes ni are distinct
and each node in V occurs in the path, i.e., V = {n0, . . . , nk}. Assume that, as above,
the graphG is stored using the predicates node(X) and edge(X,Y ), and that a predicate
start(X) stores the unique node n0. Consider the following program:
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inPath(X,Y ) ∨ outPath(X,Y ) ← edge(X,Y ).
}

Guess

← inPath(X,Y ), inPath(X,Y1), Y 6= Y1.
← inPath(X,Y ), inPath(X1, Y ), X 6= X1.
← node(X), not reached(X).

Check

reached(X)← start(X).
reached(X)← reached(Y ), inPath(Y,X).

}
Auxiliary Predicate

The guessing part G simple states for each edge of the graph whether it belongs to the
path or not. The checking part C tests whether inPath really constitutes a path in G
in which each node occurs only once (which is ensured if there is at most one edge
from/to each node), and that all nodes are on the path. For this, the auxiliary predicate
reached(X) is used, which expresses that the node X is reached from the starting node.
The latter is expressed with two simple recursive rules.

Note that deciding the existence of a Hamiltonian path is, like 3-colorability, NP-
complete; a similar SAT encoding would be, due to the reachability check, more cumber-
some.

As a final example, we consider a scenario where the checking part is interfering with
the guessing part, which shows that the two parts may not always be cleanly separated.
In fact, this happens for the elementary task of choosing an element from a set.

Example 38. Suppose departments of a company are stored in a predicate dept(X), and
the task is to choose a single department; in general, there will be multiple choices (or
none, if dept would be empty). The following program is a simple (yet little elegant)
solution to the problem:

sel(D)∨ −sel(D)← dept(D)
}

Guess

← sel(D1), sel(D2), D1 6= D2

some sel← sel(D)
← dept(D),not some sel

Check

Here, the checking part tests that not more than one department has been chosen, and
that at least one is chosen if there are departments (hence, exactly one is chosen).

A more elegant solution is to let the checking part interfere with the guessing part,
and to exploit the minimality property of answer sets.

sel(D)← dept(D),not −sel(D)
}

Guess
−sel(D1)← dept(D1), sel(D2), D1 6= D2

}
Check

The guessing rules informally states that, by default, a department D is chosen. The
checking rule says that if some department is chosen, then all others can not be chosen;
this is fed back to the guessing part. In combination, since not all departments have to be
excluded from selection, exactly one will be chosen in an answer set (provided some
departments exist, otherwise ∅ is the single answer set). In other words, the only stable
configurations of the above program are those in which one and only one atom of type
sel(v) is present.

Note that we could equally well replace the checking rule with the rule
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−sel(D1) ∨ −sel(D2)← dept(D1), dept(D2), D1 6= D2.

Informally, this rule says that if we have two different departments, then at least one of
them can not be selected.

As a final example for choice, we consider a simple course scheduling scenario.

Example 39. Suppose there is a computer science department cs at a university u. We
have information about members and courses of cs , as well as preferred courses of
members, both encoded as facts F :

member(sam, cs). course(java, cs). course(ai , cs).

member(bob, cs). course(c, cs). course(logic, cs).

member(tom, cs).

likes(sam, java). likes(sam, c).

likes(bob, java). likes(bob, ai).

likes(tom, ai). likes(tom, logic).

Our task is now to assign each member of the department some courses, such that
(i) each member should have at least one course, (ii) nobody should have more than
two courses, and (iii) assign only courses that the course leader likes. We can use the
following program P to encode this problem:

teaches(X,Y )← member(X, cs), course(Y, cs), likes(X,Y ),

not−teaches(X,Y ).

−teaches(X,Y )← member(X, cs), course(Y, cs), teaches(X1, Y ), X1 6= X.

some course(X)← member(X, cs), teaches(X,Y ).

← member(X, cs),not some course(X).

← teaches(X,Y1), teaches(X,Y2), teaches(X,Y3),

Y1 6= Y2, Y1 6= Y3, Y2 6= Y3.

Informally, the first rule says that a CS faculty member gets a CS course she likes
assigned by default. The second rule states that a CS faculty member does not get a CS
course assigned if somebody else teaches it. The third and fourth rules make sure that
each CS faculty gets at least one course assigned. The final rule excludes any assignment
where one person is assigned three (or more) courses.

We obtain the following three answer sets of P ∪ F :

– {teaches(sam, c), teaches(bob, java), teaches(bob, ai), teaches(tom, logic), . . .}
– {teaches(sam, java), teaches(sam, c), teaches(bob, ai), teaches(tom, logic), . . .}
– {teaches(sam, c), teaches(bob, java), teaches(tom, ai), teaches(tom, logic), . . .}

6.3 Saturation Technique

A more advanced technique that is used in disjunctive ASP is the so called saturation
technique, which is used to check whether all possible guesses satisfy a certain property,
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like not being a solution to a problem. Testing such a property, like whether all assign-
ments of three colors to nodes do not legally color a graph G, may be co-NP-hard, and
thus can not be evidently encoded in a normal logic program such that the program has
some answer set precisely if G is not 3-colorable; in fact, the program in Example 33
has no answer set if G is not 3-colorable.

It is, however, possible to express the property of non-3-colorability by a unique
answer set candidate for a program, such that the candidate is the only answer set if the
graph is not 3-colorable, and is not an answer set otherwise. More abstractly, to test a
property we design a program P and an answer set candidate Msat such that Msat is
the single answer set of P if the property holds, and P has other answer sets (excluding
Msat ) otherwise. The construction is such that any answer set of P is a subset of Msat ,
and whenever the property is found to hold, any candidate answer set is “saturated” to
Msat . Intuitively, the property is tested within the answer set.

Example 40. For testing non-3-colorability, the constraints in the checking part of the
program in Example 33 can be replaced, thus obtaining the program Pnon col:

b(X) ∨ r(X) ∨ g(X)← node(X).
non col ← r(X), r(Y ), edge(X,Y ).
non col ← g(X), g(Y ), edge(X,Y ).
non col ← b(X), b(Y ), edge(X,Y ).
χ(X)← non col , node(X).

where χ ∈ {r, g, b}. Informally, this change has the following effect: Whenever an
assignment of colors to the nodes is bad, the assignment is rejected by “saturating” the
candidate model at hand, selecting all ground facts r(n), g(n), and b(n) for any node n.
Importantly, the saturation is the same for all bad assignments. Thus, if all assignments
of colors are bad, there will a be single answer set Msat of the program, which contains,
besides the graph description, non col and r(n), g(n), and b(n) for any node n. On
the other hand, any good assignment of colors will lead to an answer set M such that
M ⊂ Msat , which means that Msat is not an answer set of the program, and that
Pnon col has many answer sets, smaller than Msat corresponding to valid 3-colorings.
Thus, Msat is the single answer set of the program just if the graph is not 3-colorable.
Note also that Pnon col |=c non col iff the graph at hand is not 3-colorable.

We can abstract from the previous example a general design rule: if we desire to
check that a property Pr holds for all guesses defining a search space, we can establish
a guess and saturation check paradigm as follows:

– Define the search space of guesses through a subprogram Pguess , using disjunctive
rules.

– Define a subprogram Pcheck , which checks Pr for a guess Mg .
– If Pr holds for Mg , an appropriate set of saturation rules Psat generates the special

candidate answer set Msat.
– If Pr does not hold for Mg, an answer set results which is a strict subset of Msat

(thus preventing that Msat is an answer set).

It is thus crucial that the program Pcheck , which formalizes Pr , and Psat do not
generate incomparable candidate answer sets. Incomparability might be easily introduced,
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besides subprograms with negation as failure, by improper use of disjunction, or by
ill-designed (positive) saturation rules; we will see an example in the next subsection.

In combination with further guessing rules, which assign values to atoms that are not
involved in saturation, it is possible to express problems that have complexity beyond
NP, like the strategic companies problem [53, 52], or quantified Boolean formulas of
the form ∃X∀Y E(X,Y ), which are Σp

2 -complete.

6.4 Iteration over a Set

As last technique, we consider testing a property for all elements of a set without the use
of negation. This may be needed in some contexts, for instance in combination with the
saturation technique, or when the use of negation could lead to undesired behavior (e.g.,
in case of cyclic negation).

Example 41. Suppose we want to test whether in a directed graph G = (V,E), all nodes
are reachable from a designated start node n0 ∈ V . Using the representation of G and
n0 as in Example 37, we could use the following rules and double negation:

all reached← not −all reached.
−all reached← node(X),not reached(X).
reached(X)← start(X).
reached(X)← reached(Y ), edge(Y,X).

Here, all reached is true in the resulting answer set, exactly if all nodes are reachable
from n0.

Now suppose that we want to test in an answer set whether reachability holds for
each graph G′ that results from G by removing between all nodes n and n′, that are
mutually connected, one of the edges n→ n′, n′ → n at random. The edges of G′ can
be generated using the rules

edge1(X,Y ) ∨ edge1(Y,X)← edge(X,Y ), edge(Y,X).
edge1(X,Y )← edge(X,Y ),not edge(Y,X).

Let us replace edge in the rules for reached with edge1 and add the saturation rule

edge1(X,Y )← all reached, edge(X,Y ).

We thus obtain the program Pg:

all reached← not −all reached.
−all reached← node(X),not reached(X).
reached(X)← start(X).
reached(X)← reached(Y ), edge(Y,X).
edge1(X,Y ) ∨ edge1(Y,X)← edge(X,Y ), edge(Y,X).
edge1(X,Y )← edge(X,Y ),not edge(Y,X).
edge1(X,Y )← all reached, edge(X,Y ).

However Pg does not work as expected, as evidenced, e.g., by the simple graph
G = ({a, b}, {a→ b, b→ a}), where for n0 = a we get that the candidate
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% Guess a subgraph for testing
edge1(X,Y ) ∨ edge1(Y,X)← edge(X,Y ), edge(Y,X).
edge1(X,Y )← edge(X,Y ), not edge(Y,X).
% Compute all reachable nodes
reached(X)← start(X).
reached(X)← reached(Y ), edge1(Y,X).
% iterate to check if all nodes are reached
all reached← last(X), all reached upto(X).
all reached upto(X)← all reached upto(Y ), succ(Y,X), reached(X).
all reached upto(X)← first(X), reached(X).
% Saturation rule
edge1(X,Y )← all reached, edge(X,Y ).

Fig. 8. Program with reachability test for subgraphs in an answer set

Msat = { all reached, edge1(a, b), edge1(b, a), reached(a), reached(b),
edge(a, b), edge(b, a), node(a), node(b), start(a)}

is a “saturated” answer set, while the property fails for G (for a witnessing G′, remove
a → b; we refer to this graph as G−(a→b)). Indeed, P has also an answer set M2 =
{−all reached, edge1(b, a), reached(a), edge(a, b), . . .}, which is not a subset of the
saturation candidate, corresponding to the graph G−(a→b).

This apparently non-obvious behaviour can be explained from several perspectives:
Msat is a proper answer set due to the fact that G−(b→a) reaches all possible nodes from
a, thus making all reached true. Consequently, the saturation rule makes the extension
of edge1 equal to edge, which results in Msat. On the other hand, one might expect
that M2, which corresponds to the deletion of the edge a→ b, should invalidate Msat,
and thus obtain M2 as (the single) answer set. But M2 is not contained in Msat. Indeed,
although M2 is not a saturated answer set, and although the extension of edge1 in M2

is a strict subset of edge, it contains the “spare” atom −all reached, which does not
appear in Msat, making the two answer sets incomparable.

We are thus in a situation in which Msat is an answer set, resulting from some of the
guessed subgraphs G′ of G in which reachability is retained, while we expected Msat as
an answer set if and only if reachability holds for all guessed subgraphs G′ of G.

The problems of program Pg can be remedied by using recursive positive rules—
which check whether each node is reachable—instead of double negation. This will help
in establishing a “proper” containment between candidate answer sets and Msat. To this
end, an ordering of the nodes is taken, and associated successor predicates first(X),
succ(Y,X), and last(X) which express that X is the first node, the successor of Y , and
the last node in this ordering, respectively. The rules for all reached and −all reached
in P are replaced by the following rules:

all reached← last(X), all reached upto(X).
all reached upto(X)← all reached upto(Y ), succ(Y,X), reached(X).
all reached upto(X)← first(X), reached(X).
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if we add then the respective facts for the ordering, the resulting program (see Fig-
ure 8) works as desired. Informally, these rules access the (positive) reachability that is
computed by the rules for reached with respect to varying subgraphs G′ of G.

The use of an ordering and a rule scheme as above can be easily applied in other
contexts. In case the set over which the iteration is made is susceptible to change itself
(e.g., if in the previous example only all nodes that have no outgoing edges need to be
reached), then special rules can be added that skip elements, indicated by out(X):

all reached upto(X)← all reached upto(Y ), succ(Y,X), out(X).
all reached upto(X)← first(X), out(X).

where out is computed using positive rules; the formulation for the continued example
is left as a (simple) exercise.

7 Answer Set Solvers

In this section, we mention some AS solvers and briefly present the DLV system.
Given that deciding whether a given extended logic program has some answer set is

NP-complete, it is clear that efficient computation of answer sets is not easy, and that we
can not expect to have a polynomial time algorithm for this task (even under polynomial
total-time, i.e., if the combined size of the input P and the output in terms of all answer
sets of P is measured). In fact, the problem is yet harder if disjunction in rule heads is
allowed.

A number of different, sophisticated algorithms have been developed over the past
15 years (similar as in the area of SAT solving), and to date a number of AS solvers are
available; a partial list is shown in Table 1. Some of these solvers provide a number of
extensions to the language described here, and have been further developed into families
of solvers (e.g. the DLV system).

A collection of benchmark problems for AS solvers is maintained at the ASPARA-
GUS platform,17 where also information about language formats and the ASP System
Competition (whose first edition was at the LPNMR 2007 conference) can be found.
In the next subsection, we briefly address implementation strategies of AS solvers; an
excellent source on this topic is Ilkka Niemelä’s ICLP’04 tutorial.18

7.1 Architecture of ASP Solvers

Traditional answer set solvers typically have a two level architecture:

1. Grounding Step: Given a program P with variables, a (subset) P ′ of its grounding
is generated which has the same answer sets as P .

2. Model Search: The answer sets of the grounded (propositional) program P ′ are
computed.

17 http://asparagus.cs.uni-potsdam.de/
18 http://www.tcs.hut.fi/˜ini/papers/niemela-iclp04-tutorial.ps.
gz.
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Table 1. Some Answer Set Solvers

DLV http://www.dbai.tuwien.ac.at/proj/dlv/ a

Smodels http://www.tcs.hut.fi/Software/smodels/ b

GnT http://www.tcs.hut.fi/Software/gnt/
Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/
NoMore(++) http://www.cs.uni-potsdam.de/˜linke/nomore/

Platypus http://www.cs.uni-potsdam.de/platypus/
clasp http://www.cs.uni-potsdam.de/clasp/

XASP http://xsb.sourceforge.net, distributed with XSB v2.6
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

a + several extensions, e.g. dlvhex, dlv-db, dlt, OntoDLV
b + Smodels cc

Thus, in analogy with the definition of the semantics, also the computation proceeds
by a reduction to the propositional case. To facilitate finite computations (and answer
sets), many systems do not support function symbols (that is, they handle the so called
Datalog fragment of logic programming), or only in a very limited form; this is because
as already mentioned, function symbols are a well-known source of undecidability, even
in rather plain settings (see [12]); see Section 9 for further discussion.

The efficient realization of both steps requires the use of sophisticated algorithms
and methods; some have been developed from scratch, while others have been borrowed
from related areas, e.g., from SAT Solving. We next look at the two steps.

Grounding Step. Efficient grounding is at the heart of current state-of-the art systems,
and different grounding procedures have been realized, including

– DLV’s grounder (integrated),
– lparse (for Smodels), gringo (for clasp), which can be used separately, and
– XASP, aspps.

In order to make the ground program P ′ small and easy to evaluate, sophisticated
techniques for “intelligent grounding” have been developed, and restrictions are imposed
on the rule syntax, like

– rule safety (DLV): every variable in a rule must occur in some positive body literal
(i.e., not prefixed with not) whose predicate is not ‘=” or any another built-in
comparison predicate. This is a standard condition in the area of deductive databases.

– domain-restriction (Smodels): every variable in a rule must occur in a positive
domain predicate, which are predicates not defined via negative recursion or using
“choice rules” [54].

A problem with even highly efficient grounding procedures is that in the end a
grounding bottleneck may show up: even if a given program P can be evaluated in
polynomial space in principle, the (small) grounding P ′ produced might contain expo-
nentially many rules; this is discussed in detail in [36]. Efficient nonground evaluation of
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b:− not a.

a:− not b.

c:− not c, a.

not aa

c not c

not bbnot b

c not c

b

Fig. 9. Model search for a simple program (solid lines = deterministic propagation)

ASP programs intensified only more recently. Techniques for partial and lazy grounding
(as used e.g. in [35, 55–57]) are proving to be helpful and thus naturally constitute an
important issue for the next generation of AS solvers.

Model search. The second step is model (answer set) search for a propositional program.
This is more complicated than the analog problem in SAT Solving or CSP, as it informally
comprises two subtasks:

– generation of a candidate model (e.g., a classical model), and
– model checking (testing the stability condition); this problem is easily shown to be P-

complete for normal programs and to be co-NP-complete for disjunctive programs,
respectively.

The two tasks can be solved using different approaches:

1. One approach, which is historically the first, employs special model search algo-
rithms. Such algorithms have been developed, e.g., for Smodels, DLV, NoMore,
aspps, and clasp. They take inspiration from the DPLL algorithm for SAT and its
variants and improvements, in which truth values are assigned to atoms, conse-
quences that emerge propagated and, if conflicts are found, backtracking takes place.
However, while a SAT solver may find any classical model, an AS solver has to find
a specific such model which satisfies stability; this makes the task much harder. E.g.,
only atoms can be true that are supported by rules. The result of the model search is
an answer set candidate, whose stability may still need to be checked, as it is the
case for disjunctive programs in DLV, for instance. To this end, the characterization
of stable models in terms of unfounded sets according to Theorem 11 is exploited
(which can be compiled into an instance of UNSAT).
The search for a specific model led in the DLV system, e.g. to four truth values
for an atom in the search: t(rue), f(alse), u(ndefined), and m(ust-be-true). Here
must-be-true means that the atoms has to be true, but its truth still remains to be
supported. Starting with all atoms undefined, possibly true literals are identified,
whose truth value is subsequently determined with trial and error. For a simple
example, consider the program in Figure 9. Initially, all atoms are undefined and
not a and not b would be possibly true literals. Assume that first a is assigned false;
then the right branch is explored. For b, we then can conclude from the first rule
must-be-true (as its body must be false) and true from the second rule (as its body is
false); hence, b is assigned true. For c, we can conclude false (as a is false). Now
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all atoms are either true or false; the candidate M = {b} is indeed an answer set
and output. Coming back to the root, a is alternatively assigned must-be-true. From
the first rule, we would then conclude that b is false, which in turn makes a true;
further, one would conclude that not c is possibly true. However, setting c to false
leads to a conflict (by the third rule c then would have to be true), and also setting c
to must-be-true, as then c has no support and must be false.
Important for these approaches are heuristics (which atom/rule to consider next); for
more details concerning DLV, see [58, 59].

2. Later, another approach was to translate the logic program to SAT Solving, which
has been realized e.g. in ASSAT and Cmodels. To this end, as already mentioned in
Section 5.3 the so called Clark completion of a logic program [46] (which translates
an acyclic program into an equivalent SAT instance) is extended with loop formulas
[43, 44].
Note that for SAT, model checking is easy in terms of complexity, and can be done
in LOGSPACE (in fact, the problem is solvable in ALOGTIME, which is far down
in LOGSPACE).19 An attractive advantage of this approach is that it can benefit
from improvements to SAT solving technology; drawbacks are that to generate all
answer sets, one needs a SAT solver that can compute all models of a clause set (or
one has to tune the transformation for incremental enumeration of answer sets) and
that in general, the SAT instance that is constructed can have exponential size.

7.2 The DLV System

As an example of an AS solver, we briefly consider here the DLV system. 20 DLV is a
state-of-the-art answer set solver which has been developed at the Vienna University of
Technology and the University of Calabria over more than a decade, starting out with a
research project on non-monotonic deductive databases in 1996; it is freely available for
download.

The system has a language that is richer than the extended disjunctive logic programs
considered above, and supports additional constructs (e.g., aggregates, weak constraints)
some of which increase the expressivity (e.g., weak constraints allow to express optimiza-
tion problems with complexity beyond Σp

2 ). DLV supports certain built-in predicates
(e.g. bounded integer arithmetic and comparisons), and offers a range of front-ends for
specific KR tasks (e.g., planning or diagnosis), as well an interface to databases. The
principle reasoning tasks supported by DLV are 1. answer set generation (all or a given
number) and 2. brave and cautious query answering, which is supported for both ground
and non-ground queries.

The DLV system has been described in many publications, of which [53] is the most
comprehensive; the article [60] is recent. As mentioned above, its reasoning engine
implements the two-level architecture outlined in Section 7, using a highly optimized
grounding module for the first level; the model search is by a DPLL style algorithm

19 This also intuitively is a clue why there are so many loop formulas, made more precise in [47]:
if there were few and they could be easily constructed, we could solve a P-complete (resp.
co-NP-complete) problem in LOGSPACE (resp., in polynomial time).

20 http://www.dbai.tuwien.ac.at/proj/dlv/
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that uses the characterization of stable models by unfounded sets in Theorem 11. DLV
also incorporates a lot of deductive database technology in order to handle larger data
volumes (including magic sets, which have been generalized to programs with negation
and disjunction). The DLV engine has been extended in many directions leading to a
family of systems that support different purposes, including dlv-ex, dlvhex, OntoDLV,
dlv-db, and dlt.

DLV syntax. Briefly, the core language of DLV consists of rules of the form

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm.

where n + m > 1, and all ai, bj are atoms or strongly negated atoms (e.g. −a); no
function symbols are allowed; the syntax of terms is like in Prolog. Certain built-in
predicates are supported (cf. Table 2). Note that DLV allows constraints (n = 0); as
mentioned in Section 7.1, DLV requires rule safety. The extended language also allows
that the bj are aggregate atoms, in which the values of aggregate functions over a
conjunction of literals (including # max, # min, #sum, #count, and #times), can
be compared to given bounds; we refer to [61] for details.

Furthermore, the DLV language has weak constraints, which are of the form

:∼ b1, · · · , bk, not bk+1, · · · , not bm. [w : l] (28)

where all bj are as in rules and w (the weight) and l (the level, or layer) are positive
integer constants or variables. For convenience, w and/or l can be omitted and are set to
1 in this case. Informally, the expression (28) is a constraint that can be violated, which
incurs cost w; for an answer set, the costs of all violated (instances of) weak constraints
are added up, grouped by levels of priorities l. Among all answer sets, those whose
cost vector is lexicographically (ordered by priority) smallest are chosen as optimal
answer sets; see [53] for formal details. With the help of weak constraints, the Guess
and Check methodology in Section 6.2 can be extended to a Guess, Check and Optimize
Methodology (an example follows shortly).

Queries are specified in DLV by expressions

b1, · · · , bk, not bk+1, · · · , not bm?

where all bj are atoms or strongly negated atoms; the query mode (brave or cautious) is
selected using a switch (–brave resp. –cautious). Variables in queries are allowed; all
bindings of variables to constants will be shown such that the resulting ground query
evaluates to true; if the query is ground, in case of brave reasoning a witnessing answer
set is shown.21

Example 42. To illustrate the use of weak constraints, we consider the well-known
Traveling Salesperson problem (TSP), where cities are stored as facts city(X) and direct
connections as facts conn(X,Y,C), where C is the cost of traveling from X to Y .
Furthermore, the tour is required to start in a city designated with a fact start(X).

The following DLV program computes optimal tours in its optimal answer sets:
21 Unless magic sets are enabled, which will be the default in future DLV releases.
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Table 2. DLV built-ins (Oct-11-2007 release)

Comparison Predicates (for constants and integers):

<, >, <=, >=, ==, ! =

Arithmetic Predicates (require an upper bound #maxint for integers; see below):

#int(X): X is known integer (1 ≤ X ≤ N).
#succ(X, Y): Y is successor of X, i.e., Y = X+ 1.
+(X, Y, Z): Z = X+ Y.
∗(X, Y, Z): Z = X ∗ Y.

Facts over a fixed integer range

pred(c1..c2). where c1, c2 ≥ 0 are numeric integer constants,
is short for pred(c1). pred(c1+1). · · · pred(c2 − 1). pred(c2).

Built-in constants

#maxint upper integer limit, set with -N switch, or with
#maxint = i. for integer i ≥ 0 in the program

inTour(X, Y, C) v outTour(X, Y, C) :- start(X), conn(X, Y, C).
inTour(X, Y, C) v outTour(X, Y, C) :- reached(X), conn(X, Y, C).
reached(X) :- inTour(Y, X, C). (aux.)

 Guess

:- inTour(X, Y, ), inTour(X, Y1, ), Y <> Y1.
:- inTour(X, Y, ), inTour(X1, Y, ), X <> X1.
:- city(X), not reached(X).

 Check

:∼ inTour(X, Y, C). [C : 1]
}

Optimize

Here, the first three rules guess a tour, which is done in an incremental manner beginning
at the start city for all cities reached. Note that different from Example 37, we want
a complete tour (a cycle) rather than a path and thus the start city must be reached
from some other city. The weak constraint in the optimize part states that including the
connection from X to Y costs C; the total cost of an answer set is the cost of a tour (all
weak constraints have the same priority).

If we add the query

start(X), inTour(X, Y, C)?

to the program, then we obtain under brave reasoning all possible first legs for an optimal
tour, and under cautious reasoning a mandatory first leg (if one exists).

Front-ends. Besides the answer set semantics core, DLV offers various front-ends for
particular KR tasks, including

– diagnosis
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– knowledge-based planning (K language)
– front-end to SQL3
– inheritance reasoning

The first three front-ends can be invoked using command-line switches, while the
inheritance front-end is automatically enabled if the input is an inheritance program [62].
Many other front-ends, created by various authors, are available as separate packages.

Using DLV. The DLV system is primarily command-line oriented, but there is also a
plain GUI and there are web interfaces available.22

The system reads input from files whose names are passed on the command-line. If
the command-line option “--” has been specified, input is also read from standard input
(stdin). Output is printed to standard output (stdout), one line per answer set. Detailed
documentation and an online manual are available at the DLV homepage. 20

8 ASP for the Semantic Web

As mentioned in Section 6, ASP has been deployed to many application areas. We focus
here on the Semantic Web, where different ways to exploit ASP and ASP techniques
have been considered (see [17, 18, 63] for more discussion):

– As a host language for Web/Semantic Web formalisms. For example, mappings
respectively encodings of ontologies in description logics into ASP have been
conceived (see [64] for references), and encoding of web query languages, e.g.
SPARQL [65].

– For diverse problem solving, like Web service composition (e.g. [66, 67]), Web
Service repair [68], or ontology merging [69, 70].

– For combining rules and ontologies into a unifying framework (cf. [64, 71, 73] for
discussion and references).

In the context of the Semantic Web, special needs arise that have to be accommodated:

– dealing with open worlds and domains (cf. [74, 75]),
– access to (semi-)structured and poorly structured data,
– external sources and distributed computation (cf. [76]),
– heterogeneity of sources, and
– web dynamics (cf. [77]).

In the rest of this section, we review some research and development efforts which
have been moving ASP languages in the direction of the Semantic Web. Among them
are extensions of ASP to access ontologies in OWL, the Web Ontology Language, and
extensions which allow to access heterogeneous knowledge sources on the Web. For
more information on ASP for the Semantic Web, we refer to previous Reasoning Web
schools [18, 17] and the tutorial [63].
22 E.g. http://asptut.gibbi.com/
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Fig. 10. Hightraffic network

8.1 DL-Programs

Description logic programs (dl-programs), which had been introduced in [78], are a
form of hybrid knowledge bases combining description logics23 and logic programs
under answer set semantics. They form another contribution to the attempt in finding an
appropriate formalisms for combined rules and ontologies for the Semantic Web.

Roughly speaking, dl-programs consist of a normal logic programP and a description
logic knowledge base (DL-KB) L. In addition to traditional atoms, the logic program
P might contain special devices, called dl-atoms. Those dl-atoms may occur in the
body of a rule and involve queries to L. Moreover, dl-atoms can specify an input to L
before querying it, thus in dl-programs a bidirectional data flow is possible between the
description logic component and the logic program.

The way dl-programs interface DL-KBs enables the possibility of acting as a loosely
coupled formalism between a knowledge base formulated in terms of a logic program
and a knowledge base formulated in terms of description logic axioms. This feature
brings the advantage of reusing existing logic programming and DL systems in order to
build an implementation of dl-programs.

In the following, we provide the syntax of dl-programs and an overview of the
semantics. An in-detail treatise is given in [64].

We will illustrate the main ideas behind the notion of dl-program with the following
example:

Example 43. An existing network must be extended by new nodes (Fig. 10). The knowl-
edge base LN contains information about existing nodes (n1, . . . , n5) and their inter-
connections as well as a definition of “overloaded” nodes (concept HighTrafficNode),

23 The reader is referred to [79] of this volume for a general background on description logics.
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which are nodes with more than three connections:

≥ 1 wired v Node; > v ∀wired .Node; wired = wired−;

≥ 4 wired v HighTrafficNode; n1 6= n2 6= n3 6= n4 6= n5;

Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);

wired(n1, n2); wired(n2, n3); wired(n2, n4);

wired(n2, n5); wired(n3, n4); wired(n3, n5).

In LN , only n2 is an overloaded node, and is highlighted in Fig. 10 with a criss-cross
pattern.

To evaluate possible combinations of connecting the new nodes, the following
program PN is specified:

newnode(x1 ). (29)
newnode(x2 ). (30)

overloaded(X)← DL[wired ] connect ; HighTrafficNode](X). (31)
connect(X,Y )← newnode(X),DL[Node](Y ), (32)

not overloaded(Y ),not excl(X,Y ).

excl(X,Y )← connect(X,Z),DL[Node](Y ), Y 6= Z. (33)
excl(X,Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X. (34)

excl(x1 , n4). (35)

Rules (29)–(30) define the new nodes to be added. Rule (31) imports knowledge about
overloaded nodes in the existing network, taking new connections already into account.
Rule (32) connects a new node to an existing one, provided the latter is not overloaded
and the connection is not to be disallowed, which is specified by Rule (33) (there must
not be more than one connection for each new node) and Rule (34) (two new nodes
cannot be connected to the same existing one). Rule (35) states a specific condition:
Node x1 must not be connected with n4.

Two different semantics have been defined for dl-programs, the (strong) answer-set
semantics [78] and the well-founded semantics [80, 81]. The former extends the notion
of Gelfond-Lifschitz reduct (see Section 4) incorporating the presence of dl-atoms: dl-
programs can have, in general, multiple answer sets. The latter extends the well-founded
semantics of [22] to dl-programs.

Example 44. As specified by the strong answer set semantics of dl-programs, the pro-
gram (LN , PN ) in Example 43 has four strong answer sets (we show only atoms
with predicate connect): M1 = {connect(x1, n1), connect(x2, n4), . . . }, M2 =
{connect(x1, n1), connect(x2, n5), . . . }, M3 = {connect(x1, n5), connect(x2, n1),
. . . }, and M4 = {connect(x1, n5), connect(x2, n4), . . . }. Note that the ground dl-
atom

DL[wired ] connect ; HighTrafficNode](n2)

from rule (31) is true in any partial interpretation of PN . According to the proposed
well-founded semantics for dl-programs in [80], the unique well-founded model of
(LN , PN ) contains thus overloaded(n2 ).
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Features and Properties of DL-Programs. The strong answer set semantics of dl-
programs is nonmonotonic, and generalizes the stable semantics of ordinary logic pro-
grams. In particular, satisfiable positive dl-programs (programs without default negation
and −∩ operator) have a least model semantics, and satisfiable stratified dl-programs have
a unique minimal model which is iteratively described by a finite sequence of least
models.

Applications. The bidirectional flow of knowledge between a description logic base
and a logic program component enables a variety of possibilities. A major application
for dl-programs is nonmonotonic reasoning on top of monotonic systems. It is for
instance possible to take a dl-knowledge base L and coupling it with a properly designed
logic program in order to extend L with defaults [38] and closed world assumption
(CWA) [37]. Both reasoning applications can be implemented in dl-programs to support
nonmonotonic reasoning for description logics, as detailed in [64].

8.2 HEX-Programs

HEX-programs [82] are declarative nonmonotonic logic programs with support for
external knowledge and higher-order disjunctive rules, under answer set semantics. In
spirit of dl-programs, they allow for a loose coupling between general external knowledge
sources and declarative logic programs through the notion of external atoms, which
take input from the logic program and exchange inferences with the external source. In
addition, meta-reasoning tasks may be accomplished by means of higher-order atoms.
HEX-programs are evaluated under a generalized answer-set semantics, thus are in
principle capable of capturing many proposed extensions in answer-set programming.

Syntax of HEX-Programs. Let C, X , and G be mutually disjoint sets whose elements
are called constant names, variable names, and external predicate names, respectively.
Unless explicitly specified, elements from X (resp., C) are denoted with first letter in
upper case (resp., lower case), while elements from G are prefixed with the “&” symbol.
We note that constant names serve both as individual and predicate names.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the atom. Intuitively,
Y0 is the predicate name, and we thus also use the more familiar notation Y0(Y1, . . . , Yn).
The atom is ordinary, if Y0 is a constant.

For example, (x, rdf :type, c), node(X), and D(a, b), are atoms; the first two are
ordinary atoms.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm) , (36)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists,
respectively), and &g ∈ G is an external predicate name. We assume that &g has
fixed lengths in(&g) = n and out(&g) = m for input and output lists, respectively.
Intuitively, an external atom provides a way for deciding the truth value of an output
tuple depending on the extension of a set of input predicates: in this respect, an external
predicate &g is equipped with a function f&g evaluating to true for proper input values.
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subRelation(brotherOf , relativeOf ). (38)

brotherOf (john, al). (39)

relativeOf (john, joe). (40)

brotherOf (al ,mick). (41)

invites(john, X) ∨ skip(X)← X 6= john,&reach[relativeOf , john](X). (42)

R(X,Y )← subRelation(P,R), P (X,Y ). (43)

someInvited ← invites(john, X). (44)

← not someInvited . (45)

← &degs[invites](Min,Max ),Max > 2. (46)

Fig. 11. Example HEX program

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm,notβm+1, . . . ,notβn , (37)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βn are either atoms or external
atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where B+(r) =
{β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}. If H(r) = ∅ and B(r) 6= ∅, then r is a
constraint, and if B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary, if it contains
only ordinary atoms. A HEX-program is a finite set P of rules. It is ordinary, if all rules
are ordinary.

We next give an illustrative example.

Example 45 ([83]). Consider the HEX-program P in Figure 11. Informally, this program
randomly selects a certain number of John’s relatives for invitation. The first line states
that brotherOf is a subrelation of relativeOf , and the next three lines give concrete facts.
The disjunctive rule (42) chooses relatives, employing the external predicate &reach.
This latter predicate takes in input a binary relation e and a node name n, returning the
nodes reachable from n when traversing the graph described by e (see the following
Example 47). Rule (43) axiomatizes subrelation inclusion exploiting higher-order atoms;
that is, for those couples of binary predicates p, r for which it holds subRelation(p, r),
it must be that r(x, y) holds whenever p(x, y) is true.

The constraints (45) and (46) ensure that the number of invitees is between 1 and 2,
using (for illustration) an external predicate &degs from a graph library. Such a predicate
has a valuation function f&degs where f&degs(I, e,min,max ) is true iff min and max
are, respectively, the minimum and maximum vertex degree of the graph induced by the
edges contained in the extension of predicate e in interpretation I .

Semantics of HEX-Programs. In the sequel, let P be a HEX-program. The Herbrand
base of P , denoted HBP , is the set of all possible ground versions of atoms and external
atoms occurring in P obtained by replacing variables with constants from C. The
grounding of a rule r, grnd(r), is defined accordingly, and the grounding of program
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P is given by grnd(P ) =
⋃
r∈P grnd(r). Unless specified otherwise, C, X , and G are

implicitly given by P .

Example 46 ([83]). Given C = {edge, arc, a, b}, ground instances of E(X, b) are
for instance edge(a, b), arc(a, b), a(edge, b), and arc(arc, b). Ground instances of
&reach[edge, N ](X) are all possible combinations where N and X are replaced by
elements from C; some examples are &reach[edge, edge](a), &reach[edge, arc](b),
and &reach[edge, edge](edge).

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We
say that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I .

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary Boolean
function f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n =
in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP is a model of
a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm), denoted I |= a, if and only if
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1.

Example 47 ([83]). Let us associate with the external atom &reach a function f&reach
such that f&reach(I, E,A,B) = 1 iff B is reachable in the graph E from A. Let I =
{e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d) since f&reach(I, e, b, d) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence reduces
to first-order logic as customary (cf. [84]), the semantics of external atoms is in spirit of
second order logic since it involves predicate extensions.

Considering example 45, as John’s relatives are determined to be Al, Joe, and Mick,
P has six answer sets, each of which contains one or two of the facts invites(john, al),
invites(john, joe), and invites(john,mick).

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |=B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and
(iii) I |= r iff I |=H(r) whenever I |=B(r). We say that I is a model of a HEX-program
P , denoted I |= P , iff I |= r for all r ∈ grnd(P ). We call P satisfiable, if it has some
model.

Given a HEX-program P , the FLP-reduct of P with respect to I ⊆ HBP , de-
noted fPI , is the set of all r ∈ grnd(P ) such that I |= B(r). I ⊆ HBP is an answer set
of P iff I is a minimal model of fPI .

In principle, the truth value of an external atom depends on its input and output lists
and on the entire model of the program. In practice, however, we can identify certain
types of input terms that allow to restrict the input interpretation to specific relations. The
Boolean function associated with the external atom &reach[edge, a](X) for instance
will only consider the extension of the predicate edge and the constant value a for
computing its result, and simply ignore everything else of the given input interpretation.

Features and Properties of HEX-Programs. As mentioned above, HEX-programs
are a generalization of dl-programs, consisting indeed in a form of coupling of rules
with arbitrary external computation sources, within a declarative logic-based setting.
The higher-order features are similar to those of HiLog [85], i.e., the semantics of this
high-order extension is still within first-order logic.
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The semantics of HEX-programs conservatively extends ordinary answer-set pro-
grams, and it is easily extendable to support weak constraints [86]. External predicates
can define other ASP features like aggregate functions [61]. Computational complexity
of the language depends on external functions. The former is however not affected if
external functions evaluate in polynomial time.

The dlvhex prototype,24 an implementation of HEX-programs, is based on a flexible
and modular architecture. The evaluation of the external atoms is realized by plugins,
which are loaded at run-time. The pool of available external predicates can be easily
customized by third-party developers.

Applications. HEX-programs have been put to use in many applications in different
contexts. Hoehndorf et al. [70] showed how to combine multiple biomedical upper
ontologies by extending the first-order semantics of terminological knowledge with
default logic. The corresponding prototype implementation of such kind of system is
given by mapping the default rules to HEX-program. Fuzzy extensions of answer-set
programs and their relationship to HEX-programs are given in [87, 88]. The former
maps fuzzy answer set programs to HEX-programs, whereas the latter defines a fuzzy
semantics for HEX-programs and gives a translation to standard HEX-programs. In [89],
the planning language Kc has been introduced which features external function calls in
spirit of HEX-programs.

8.3 Other linguistic extension of ASP in the direction of Semantic Web

We briefly survey here other notable works aiming at integrating the stable model seman-
tics with Semantic Web related formalisms, and remind the reader to other discussions
of related work such as [18, 71].

Research efforts can be categorized in the two main groups of translational ap-
proaches and integration approaches. The latter can be further classified in loose, tight
or full integration.

As for integration approaches, DL+log [90] is the latest in a chain of extensions of
the DL ALC with rules such as AL-log , r- and r+-hybrid knowledge bases. As a tight
semantics approach, DL+log gives meaning to combined knowledge bases in terms
of unique model structures, which aim at satisfying both the description logic base at
hand and the logic program. Hybrid MKNF knowledge bases [91] build on Lifschitz’s
bimodal Logic of Minimal Knowledge and Negation as Failure (MKNF) [93], and aim at
a seamless (which is sometimes referred as full integration) integration of classic and
nonmonotonic semantics beyond tight integration approaches. Besides dl-programs and
hex-programs, it is worth mentioning other loose coupling languages in the direction of
probabilistic [94] and fuzzy hybrid systems [95] under stable semantics; see [73] for an
overview. An extension of RDF(S) with stable models has been proposed in [96].

One might also consider the idea of translating Semantic Web ontologies to semanti-
cally equivalent ASP logic programs. This task is quite challenging, given the profound
semantic differences between the two formalisms. Nonetheless, some success has been
reached, and translation from several flavors of description logics to ASP are known, cf.

24 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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[6, 97, 98, 32]. Notably, the availability of function symbols (or, in any case, of infinite
domains), solves some of the semantic difficulties [32, 99].

8.4 Other Semantic Web enabled systems based on ASP

OntoDLV [100] is a system for ontologies specification and reasoning under answer set
semantics. OntoDLV implements a logic-based ontology representation language, called
OntoDLP (where DLP stands for Disjunctive Logic Programs), which is an extension of
(disjunctive) ASP with all the main ontology constructs including classes, inheritance,
relations, and axioms. OntoDLP is strongly typed, and includes also complex type
constructors, like lists and sets. OntoDLV supports some interoperability mechanism
with OWL, allowing the user to retrieve information from external OWL Ontologies
and to exploit this data in OntoDLP ontologies and queries. OntoDLV facilitates the
development of complex applications in a user-friendly visual environment; it is endowed
with a robust persistency-layer for saving information transparently on a DBMS, and
it seamlessly integrates the DLV system [53] exploiting the power of a stable and
efficient AS solver. Indeed, OntoDLV is already used for the development of real-world
applications including agent-based systems, information extraction and text classification
frameworks.

GiaBATA [101] is a system for storing, aggregating, and querying Semantic Web data,
based on declarative logic programming technology, namely on the dlvhex system,
which allows to implement a fully SPARQL compliant semantics, and on dlv-db,
which extends the DLV system with persistent storage capabilities. Compared with off-
the-shelf RDF stores and SPARQL engines25, GiaBATA offers more flexible support for
rule-based RDFS and other higher entailment regimes by enabling custom reasoning via
rules, and the possibility to choose the reference ontology on a per query basis. Due to the
declarative approach, GiaBATA gains the possibility of applying well-known logic-level
optimization features of logic programming (LP) and deductive database systems. The
architecture of GiaBATA allows for extensions of SPARQL by non-standard features
such as aggregates, custom built-ins, or arbitrary rulesets. The resulting system provides
a flexible toolbox that embeds Semantic Web data and ontologies in a fully declarative
LP environment.

9 Conclusion

Answer Set Programming is a booming paradigm for declarative problem solving, which
emerged from Logic Programming and Nonmonotonic Reasoning and has been deployed
to a range of application areas. A number of answer set solvers are available which
provide a variety of constructs and the features for problem modeling, helping the user
to find formalizations of problems in a more natural and understandable manner. As for
the Semantic Web, extensions of the basic ASP languages and formalisms have been

25 For details of RDF and its query language SPARQL, the reader may refer to [102] in this
volume.
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developed, aiming at different goals. For example, to provide a formalism for combining
rules and ontologies (e.g., dl-programs, DL+log[90] and MKNF knowledge bases [91],
conceptual logic programs [103], hybrid and guarded hybrid knowledge bases [104,
105], and open answer set programming [99]; see [64, 18] and references therein), or
more general formalisms for accessing and interfacing data on the (Semantic) Web like
HEX-programs, and systems like dlvhex, OntoDLV, and GiaBATA.

The interest in Answer Set Programming and significance of the underlying stable
model semantics could be experienced at last year’s edition of the International Logic
Programming conference, which dedicated a (well-attended) special session to discuss
the influence of stable model semantics on the field of logic programming. It witnessed
ASP to be a vibrant area of research in which despite the advances and developments in
the last years still a number of research challenges exist.

While the theory of ASP is well-developed and applications are expanding, the
deployment of ASP to an industrial scale needs further efforts (cf. Nicola Leone’s talk at
LPNMR 2007).26 Next generation answer set solvers must be developed which provide
better support for the needs in practice.

Among these needs are complex data structures including lists, sets, records etc.;
underneath, this calls for function symbols (recall that in Prolog, lists are special syntax
function symbols) and a move beyond the Datalog fragment of logic programming. As
mentioned in Section 7, function symbols have been largely banned because the quickly
lead to undecidability. Only more recently, work on decidable classes of and prototype
implementations of stable models semantics with function symbols has been carried
out, including [34, 106–108, 35, 32, 33], and function symbols also increasingly attract
attention as a modeling construct.

The class of ω-restricted programs [34] has been implemented on top of Smodels, and
the recently presented class of finitely-ground programs in the DLV-Complex system on
top of DLV [109, 35], which aims at providing functions symbols in a decidable setting,
giving support to lists and sets along with libraries for their manipulations. However, both
system, models are always finite, which hinders modeling infinite processes and objects;
classes like finitary programs [106], finitely recursive programs [107], FDNC-programs
[32], and BD-programs [33] do not have this restriction, but lack implementations to
date.

Related to this issue is incremental model building, which is of particular interest for
applications in reasoning about actions and change: a model may describe the evolution
of the world, which happens from one epoch to the next. Here, it is desired to build the
model according to the evolution, step by step; this is, for instance, relevant for planning.
Recent work [55] aims in this direction, giving a formal framework for incremental
model building.

Another issue of relevance for practice is modularity in ASP, and to provide means
for code reuse. While modularity has been recognized as an important aspect more than
a decade ago [110], it has only found more recently increasing attention, cf. [111–115];
the use of macros [116] and templates [117] aims in this direction. Specifically for the
Semantic Web context, a modular formalism with multiple nonmonotonic logic programs
[74] and the MWeb framework [76] have been conceived. The formalism in [74] allows to

26 http://lpnmr2007.googlepages.com/nicola-lpnmr07.pdf
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interlink web-accessible logic programs, i.e., logic programs may refer to logic programs
that may refer to remote knowledge bases distributed on the Web. MWeb attempts to
enhance the Semantic Web with the notions of scope and context for modular web rule
bases, and pays attention to support knowledge hiding and the safe use of strong and
weak negation, as well as to different reasoning modes.

However, most of these approaches reduce a system of modules (polynomially) into
a single global program, or impose constraints regarding the use of recursion, resulting
in limited expressiveness. The recent approach in [111], which improves [110], has no
such constraints but the high expressiveness comes with high worst case complexity in
general. Efficient algorithms and implementations of yet expressive, natural modular
ASP frameworks are an interesting topic of research.

Concerning efficiency, of course also improvements to solvers for ordinary ASP are
desirable. In the recent years, there has been a lot of work on optimizations based on
program equivalence, triggered by the seminal paper [118], which introduced a notion of
strong equivalence between non-monotonic logic programs that takes nonmonotonicity
into account and led to a whole family of notions of equivalence, which may be utilized
to rewrite a program into an equivalent one that can be see e.g. [27, 119–121] for more
on this issue. Another issue is non-ground ASP processing, in order to overcome the
intrinsic grounding bottleneck in the two step architecture of most answer set solvers.
Work on this is underway, and techniques for partial and lazy grounding (as used e.g.
in [35, 55–57]) are helpful; however, the grounding techniques of advanced AS solvers
are highly sophisticated and in most case very effective. Interesting in this regard is
also the work of [122], which defines answer sets for first-order theories that can be
non-Herbrand models, in terms of a formula in second-order logic. While this avoids
grounding, it remains to be seen whether this approach can be effectively implemented
(by reducing, e.g., fragments of the formalisms to standard theorem provers).

Finally, for deployment on a larger scale, more software engineering tools and
methodologies are needed. Compared to other programming languages, there is currently
little support for programmers available, and rich ASP programming environments
are lacking, which include debuggers, visualization, libraries etc. The International
Workshop on Software Engineering for Answer Set Programming (SEA) [123] was
initiated as a forum for researchers interested in these issues.27 Given the work in
progress, we may expect significant advances and improvements here in the near future.

In conclusion, though ASP has developed vigorously, there is still much ado in an
exciting area of research for theory and applications.
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9. Niemelä (ed.), I.: Language Extensions and Software Engineering for ASP. Technical Report
WP3, Working Group on Answer Set Programming (WASP), IST-FET-2001-37004 (Septem-
ber 2005) Available at http://www.tcs.hut.fi/Research/Logic/wasp/wp3/
wasp-wp3-web/.

10. Kowalski, R.: Algorithm = Logic + Control. Commun. ACM 22(7) (1979) 424–436
11. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing 9 (1991) 365–385
12. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic

Programming. ACM Computing Surveys 33(3) (2001) 374–425
13. Asparagus homepage: http://asparagus.cs.uni-potsdam.de/ (Since 2005)
14. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski, M.: The First

Answer Set Programming System Competition. In Baral, C., Brewka, G., Schlipf, J., eds.:
Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07). Volume 4483 of LNCS., Springer (2007) 3–17

15. Bidoit, N.: Negation in rule-based database languages: A survey. Theor. Comput. Sci. 78(1)
(1991) 3–83

16. Apt, K., Bol, N.: Logic programming and negation: A survey. Journal of Logic Programming
19/20 (1994) 9–71

17. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and
ontologies. In Barahona, P., Bry, F., Franconi, E., Sattler, U., Henze, N., eds.: Reasoning
Web 2006. Volume 4126 of LNCS. Springer (September 2006) 93–127

18. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic
Web. In Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M., Polleres, A., Schaffert,
S., eds.: Reasoning Web: 4th International Summer School 2008, Venice Italy, September
7-11, 2008, Tutorial Lectures. Volume 5224 of LNCS. Springer (September 2008) 1–53
Slides available at http://rease.semanticweb.org/.

19. Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties.
Fundam. Inform. 22(3) (1995) 227–255

20. Dix, J.: A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties.
Fundam. Inform. 22(3) (1995) 257–288

21. Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and Logic
Programs. [124] 193–216

64



22. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic
Programs. Journal of the ACM 38(3) (1991) 620–650

23. Apt, K., Blair, H., Walker, A.: Towards a Theory of Declarative Knowledge. [124] 89–148
24. Minker, J.: Logic and Databases: A 20 Year Retrospective. In: Proceedings of the Interna-

tional Workshop on Logic in Databases (LID’96). Volume 1154 of LNCS., Springer (1996)
3–57

25. Lifschitz, V.: Twelve definitions of a stable model. In: ICLP. (2008) 37–51
26. Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming. In: We

Will Show Them! Essays in Honour of Dov Gabbay, Volume One, College Publications
(2005) 615–664

27. Gelfond, M.: Answer sets. In F. van Harmelen, V. Lifschitz, B.P., ed.: Handbook of
Knowledge Representation. Elsevier (2008) 285–316

28. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Information and Computation 135(2) (June 1997) 69–112

29. Lifschitz, V., Turner, H.: Splitting a Logic Program. In Van Hentenryck, P., ed.: Proceedings
of the 11th International Conference on Logic Programming (ICLP’94), Santa Margherita
Ligure, Italy, MIT Press (June 1994) 23–37
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V., eds.: Proceedings 23rd International Conference on Logic Programming (ICLP 2007).
Number 4670 in LNCS, Springer (2007) 23–26 Slides available at http://www.dcc.
fc.up.pt/iclp07/eiter.pdf.

64. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer
Set Programming with Description Logics for the Semantic Web. Artificial Intelligence
172(12-13) (2008) 1495–1539

65. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th International
Conference on World Wide Web (WWW), ACM (2007) 787–796

66. Rainer, A.: Web Service Composition under Answer Set Programming. In: Proc. KI 2005
Workshop ”Planen, Scheduling und Konfigurieren, Entwerfen” (PuK 2005). (2005)

67. Pontelli, E., Son, T.C., Baral, C.: A framework for composition and inter-operation of rules
in the semantic web. In Eiter, T., Franconi, E., Hodgson, R., Stephens, S., eds.: RuleML,
IEEE Computer Society (2006) 39–50

68. Friedrich et al., G.: Model-based repair of web service processes. Technical Report 2008/001,
ISBI research group, University of Klagenfurt (2008) http://test-informations.
info/.

69. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., Wang, K.: Forgetting in managing rules
and ontologies. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI
2006), Hongkong, Dec. 2006, IEEE Computer Society (2006) 411–419 Preliminary version
at ALPSWS 2006.

70. Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomedical
ontologies: Application to the integration of anatomy and phenotype ontologies. BMC
Bioinformatics 8(1) (2007) 377

71. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about combi-
nations of classical theories with nonmonotonic rules. In Lang, J., Lin, F., Wang, J., eds.:
KSEM. Volume 4092 of Lecture Notes in Computer Science., Springer (2006) 1–22

72. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. ACM Transac-
tions on Computational Logic 9(2:14) (2008)

73. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid
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A Appendix: A DLV specification for the Sudoku problem

#maxint=9.

tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9)

:- #int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
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:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,

div(X1,3,W1), div(X2,3,W1),
div(Y1,3,W2), div(Y2,3,W2).

:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,
div(X1,3,W1), div(X2,3,W1),
div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z,
X = XminusDelta + Delta, Delta < Y.

% Table positions X=0..8, Y=0..8
tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).
tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).
tab(2,0,2). tab(2,8,1). tab(3,0,8). tab(3,3,4).
tab(3,5,7). tab(3,8,6).
tab(4,2,6). tab(4,6,3).
tab(5,0,7). tab(5,3,9). tab(5,5,1). tab(5,8,4).
tab(6,0,5). tab(6,8,2).
tab(7,2,7). tab(7,3,2). tab(7,5,6). tab(7,6,9).
tab(8,1,4). tab(8,3,5). tab(8,5,8). tab(8,7,7).

B Appendix: Fixpoint Theorems of Knaster-Tarski and Kleene

Definition 18. A complete lattice is a partially ordered set (V,≤) such that each subset
W ⊆ V has a least upper bound sup(W ) and a greatest lower bound inf(W ).

Example 48. The partially ordered set (V,≤), where V is the set of all Herbrand inter-
pretations of a program P and ≤ is set inclusion (⊆), is a complete lattice.

Definition 19. An operator on a complete lattice (V,≤) is a mapping T : V → V .

Example 49. The TP operator for a program P is an operator on Herbrand interpreta-
tions.

Definition 20. An operator T : V → V on (V,≤) is monotone, if

x ≤ y implies T (x) ≤ T (y) ∀x, y ∈ V .

Monotone operators have nice fixpoint properties.

Theorem 13 (Knaster-Tarski). Any monotone operator T on a complete lattice (V,≤)
has a least fixpoint lfp(T ), and

lfp(T ) = inf({x ∈ V | T (x) ≤ x}) .

71



Example 50. The TP operator for a (positive) program P is monotone.

A stronger theorem holds for continuous operators.

Definition 21. A set W ⊆ V is directed, if for each x, y ∈W there exists some z ∈W
such that x ≤ z and y ≤ z, where (V,≤) is a partial order.

Definition 22. An operator T : V → V on a complete lattice (V,≤) is continuous, if

T (sup(W )) = sup({T (x) | x ∈W})

for every directed set W ⊆ V .

Intuitively, directedness models convergence (one can build a chain x0 < x1 < · · · ).
It is not difficult to see that continuous operators are also monotone.

Example 51. The TP operator is also continuous.

Theorem 14 (Kleene). Any continuous operator T on a complete lattice (V,≤) has a
least fixpoint, and

lfp(T ) = sup({T i | i ≥ 0}) ,

where T 0 = inf(V ) and T i+1 = T (T i), for all integers i ≥ 0.

Let T∞ = sup({T i | i ≥ 0}). Note that if T i = T i−1 for some i, then T∞ = T i

holds; in particular, this is the case for TP if the program P has no function symbols
(given P is finite).

Remark. A weaker form of Kleene’s Theorem holds for all monotone operators (lfp(T )
is constructible by a transfinite sequence Tα, for ordinals α ≥ 0).
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