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Unit 1 – Basic Concepts & Properties 1. Introduction

Introduction

Answer Set Programming (ASP) is a recent problem solving
approach

The term was coined by Vladimir Lifschitz [1999,2002]

Proposed by other people at about the same time, e.g. [Marek and
Truszczyński, 1999],[Niemelä, 1999]

It has roots in KR, logic programming, and nonmonotonic reasoning

At an abstract level, relates to SAT solving and CSP.

Book: [Baral, 2003]
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Unit 1 – Basic Concepts & Properties 1. Introduction

French Phrases, Italian Soda (Dell Logic Puzzles)

Six people sit at a round table

Each drinks a different kind of soda

Each plans to visit a different French-speaking country

The person who is planning a trip to Quebec, who drank either
blueberry or lemon soda, didn’t sit in seat number one.

Jeanne didn’t sit next to the person who enjoyed the kiwi soda.

The person who has a plane ticket to Belgium, who sat in seat four
or seat five, didn’t order the tangelo soda.

. . .

Question:

What is each of them drinking, and where is each of them going ?
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Unit 1 – Basic Concepts & Properties 1. Introduction

Sudoku

6 1 4 5
8 3 5 6

2 1
8 4 7 6

6 3
7 9 1 4
5 2

7 2 6 9
4 5 8 7

Task:

Fill in the grid so that every row, every column, and every 3x3 box
contains the digits 1 through 9.
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Wanted!

A general-purpose approach for modeling and solving these and many
other problems.

Issues:

Diverse domains

Spatial and temporal reasoning

Constraints

Incomplete information

Preferences and priority

Proposal:

Answer Set Programming (ASP) paradigm!
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Unit 1 – Basic Concepts & Properties 1. Introduction 1.1 Roots

Roots of ASP – Knowledge Representation (KR)

How to model

An agent’s belief sets

Commonsense reasoning

Defeasible inferences

Preferences and priority

Approach

use a logic-based formalism

Inherent feature: nonmonotonicity

Many logic-based KR formalisms have been developed.
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Unit 1 – Basic Concepts & Properties 1. Introduction 1.2 Prolog

Logic Programming – Prolog revisited

1960s/70s: Logic as a Programming Language (?)

Breakthrough in Computational Logic by Robinson’s discovery of the
Resolution Principle (1965)

Kowalski (1979):

ALGORITHM = LOGIC + CONTROL

Knowledge for problem solving (LOGIC)

“Processing” of the knowledge (CONTROL)

Thomas Eiter ReasoningWeb’09 9/70



Unit 1 – Basic Concepts & Properties 1. Introduction 1.2 Prolog

Prolog

Prolog = “Programming in Logic”

Basic data structures: terms

Programs: rules and facts
Computing: Queries (goals)
• Proofs provide answers
• SLD-resolution
• unification - basic mechanism to manipulate data structures

Extensive use of recursion

Thomas Eiter ReasoningWeb’09 10/70



Unit 1 – Basic Concepts & Properties 1. Introduction 1.2 Prolog

Example (Recursion)
append([],X,X) .
append([X|Y],Z,[X|T]) :- append(Y,Z,T) .

reverse([],[]).
reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

Both relations are defined recursively.

Terms represent complex objects: lists, sets, ...

Problem:
Reverse the list [a,b,c]

Ask query: ?- reverse([a,b,c],X).

A proof of the query yields a substitution: X=[c,b,a]

The substitution constitutes an answer
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Unit 1 – Basic Concepts & Properties 1. Introduction 1.2 Prolog

The key: Techniques to search for proofs

Understanding of the resolution mechanism is important

It may make a difference which logically equivalent form is used
(e.g., termination).

Example
reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

vs
reverse([X|Y],Z) :- reverse(Y,U), append(U,[X],Z) .

Query: ?- reverse([a|X],[b,c,d,b])

Is this truly declarative programming?

Thomas Eiter ReasoningWeb’09 12/70
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Unit 1 – Basic Concepts & Properties 1. Introduction 1.2 Prolog

Desiderata

Relieve the programmer from several concerns.

It is desirable that

the order of program rules does not matter;

the order of subgoals in a rule does not matter;

termination is not subject to such order.

“Pure” declarative programming

Prolog does not satisfy these desiderata

Satisfied e.g. by the answer set semantics of logic programs

Thomas Eiter ReasoningWeb’09 13/70
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.1 Positive Logic Programs

Positive Logic Programs

Definition (Positive Logic Program)

A positive logic program P is a finite set of clauses (rules) in the form

a← b1, . . . , bm , (1)

where a, b1, . . . , bm are atoms of a first-order language L.

a is the head of the rule

b1, . . . , bm is the body of the rule.

If m = 0, the rule is a fact (written shortly a)

Roughly, (1) can be seen as material implication b1 ∧ · · · ∧ bm ⊃ a.

Example
connected(cagliari)← hub(rome), link(rome, cagliari)

connected(X)← hub(Y), link(Y,X)
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Herbrand Semantics

Definition (Herbrand Universe, Base, Interpretation)

Given a logic program P, the Herbrand universe of P, HU(P) , is the set
of all terms which can be formed from constants and functions symbols
in P (resp. the vocabulary, if explicitly known).

The Herbrand base of P, HB(P), is the set of all ground atoms which can
be formed from predicates and terms t ∈ HU(P).

A (Herbrand) interpretation is a first-order interpretation I = (D, ·I) of
the vocabulary with domain D = HU(P) where each term t ∈ HU(P) is
interpreted by itself, i.e., tI = t.

I is identified with the set { p(t1, . . . , tn) ∈ HB(P) | 〈tI
1, . . . , t

I
n〉 ∈ pI }.

Informally, a (Herbrand) interpretation can be seen as a set denoting
which ground atoms are true in a given scenario.

Thomas Eiter ReasoningWeb’09 15/70
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Example (Program P1)

h(0, 0).
t(a, b, r).

p(0, 0, b).
p(f (X),Y,Z)← p(X,Y,Z′), h(X,Y), t(Z,Z′, r).
h(f (X), f (Y))← p(X,Y,Z′), h(X,Y), t(Z,Z′, r).

Constant symbols: 0, a, b, r; Function symbols: f .

HU(P1): { 0, a, b, r, f (0), f (f (0)), ... f i(0)), .... f (a), f (f (a)), ... }

HB(P1): {p(0, 0, 0), p(a, a, a), ... h(0, 0, ), h(0, a), ... t(0, 0, 0), t(a, a, a) }

Some Herbrand interpretations:

I1 = ∅; I2 = HB(P1); I3 = {h(0, 0), t(a, b, r), p(0, 0, b)}; . . .
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Grounding

The semantics of positive logic programs is defined in terms of
grounding.

Definition (ground instance, grounding)

A ground instance of a clause C of the form (1) is any clause C′ obtained
from C by applying a substitution

θ : Var(C)→ HU(P)

to the variables in C, denoted as Var(C).
grnd(C) denotes the set of all possible ground instances of C

for any program P, the grounding of P is grnd(P) =
⋃

C∈P grnd(C).

Roughly speaking, C is a shortcut denoting grnd(C), and each variable
appearing in C ranges over the Herbrand universe.
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.1 Positive Logic Programs

Example (Program P2)

p(f (X),Y,Z)← p(X,Y,Z′), h(X,Y), t(Z,Z′, r).
h(0, 0).

The ground instances of the first rule are

p(f (0), 0, 0)← p(0, 0, 0), h(0, 0), t(0, 0, r). X = Y = Z = Z′ = 0
. . .

p(f (0), r, 0)← p(0, r, 0), h(0, r), t(0, 0, r). X = Z = Z′ = 0,Y = r

. . .

p(f (r), r, r)← p(r, r, r), h(r, r), t(r, r, r). X = Y = Z = Z′ = r

. . .

p(f (f (0)), 0, 0)← p(f (0), 0, 0), h(f (0), 0), t(0, 0, r). X = Y = Z = Z′ = 0
. . .

The single ground instance of the second rule is

h(0, 0).

Thomas Eiter ReasoningWeb’09 18/70



Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.1 Positive Logic Programs

Example (Program P2)

p(f (X),Y,Z)← p(X,Y,Z′), h(X,Y), t(Z,Z′, r).
h(0, 0).

The ground instances of the first rule are

p(f (0), 0, 0)← p(0, 0, 0), h(0, 0), t(0, 0, r). X = Y = Z = Z′ = 0
. . .

p(f (0), r, 0)← p(0, r, 0), h(0, r), t(0, 0, r). X = Z = Z′ = 0,Y = r

. . .

p(f (r), r, r)← p(r, r, r), h(r, r), t(r, r, r). X = Y = Z = Z′ = r

. . .

p(f (f (0)), 0, 0)← p(f (0), 0, 0), h(f (0), 0), t(0, 0, r). X = Y = Z = Z′ = 0
. . .

The single ground instance of the second rule is

h(0, 0).

Thomas Eiter ReasoningWeb’09 18/70



Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.1 Positive Logic Programs

Example (Program P2)

p(f (X),Y,Z)← p(X,Y,Z′), h(X,Y), t(Z,Z′, r).
h(0, 0).

The ground instances of the first rule are

p(f (0), 0, 0)← p(0, 0, 0), h(0, 0), t(0, 0, r). X = Y = Z = Z′ = 0
. . .

p(f (0), r, 0)← p(0, r, 0), h(0, r), t(0, 0, r). X = Z = Z′ = 0,Y = r

. . .

p(f (r), r, r)← p(r, r, r), h(r, r), t(r, r, r). X = Y = Z = Z′ = r

. . .

p(f (f (0)), 0, 0)← p(f (0), 0, 0), h(f (0), 0), t(0, 0, r). X = Y = Z = Z′ = 0
. . .

The single ground instance of the second rule is

h(0, 0).

Thomas Eiter ReasoningWeb’09 18/70



Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.1 Positive Logic Programs

Herbrand Models

Definition (Model, satisfaction)

An interpretation I is a (Herbrand) model of a

a ground (variable-free) clause C = a← b1, . . . , bm, if either
{b1, . . . , bm} * I or a ∈ I; (I |= C)

a clause C, if I |= C′ for every C′ ∈ grnd(C); (I |= C)

a program P, if I |= C for every clause C in P. (I |= C)

Thomas Eiter ReasoningWeb’09 19/70



Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.1 Positive Logic Programs

Example (Program P2 cont’d)

p(f (X),Y,Z)← p(X,Y,Z′), h(X,Y), t(Z,Z′, r).
h(0, 0).

Which of the following interpretations are models of P2?

I1 = ∅

no

I2 = HB(P2)

yes

I3 = {h(0, 0), t(a, b, r), p(0, 0, b)}

no

Which of the above interpretations are models of P1?

Note:

Proposition

For every positive logic program P, HB(P) is a model of P.
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.2 Minimal Model Semantics

Minimal Model Semantics

A logic program has multiple models in general.

Select one of these models as the canonical model.

Commonly accepted: truth of an atom in model I should be
“founded” by clauses.

Example

Given
P3 = {a← b. b← c. c},

truth of a in the model I = {a, b, c} is “founded.”

Given
P4 = {a← b. b← a. c},

truth of a in the model I = {a, b, c} is not founded.

Thomas Eiter ReasoningWeb’09 21/70
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.2 Minimal Model Semantics

Minimal Model Semantics (cont’d)

Semantics: Prefer models with true-part as small as possible.

Definition

A model I of P is minimal, if there exists no model J of P such that J ⊂ I.

Theorem

Every logic program P has a single minimal model (called the least
model), denoted LM(P).

This is entailed by the following property:

Proposition (Intersection closure)

If I and J are models of P, then also I ∩ J is a model of P.
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.2 Minimal Model Semantics

Example

For P3 = { a← b. b← c. c }, we have LM(P3) = {a, b, c}.

For P4 = { a← b. b← a. c }, we have LM(P4) = {c}.

For P2 = { p(f (X),Y,Z)← p(X,Y,Z′), h(X,Y), t(Z,Z′, r). h(0, 0)},
we have LM(P2) = {h(0, 0) }.

For P1 above, we have

LM(P1) = {h(0, 0), t(a, b, r), p(0, 0, b), p(f (0), 0, a), h(f (0), f (0))}.
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.2 Minimal Model Semantics

Computation

The minimal model can be computed via fixpoint iteration.

Definition (TP Operator)

Let TP : 2HB(P) → 2HB(P) be defined as

TP(I) =
{

a
∣∣∣∣ there exists some a← b1, . . . , bm

in grnd(P) such that {b1, . . . , bm} ⊆ I

}
.

We let denote T0
P = ∅, T i+1

P = TP(T i
P), i ≥ 0.

Fundamental result:

Theorem

TP has a least fixpoint, lfp(TP), and the sequence 〈T i
P〉, i ≥ 0,

converges to lfp(TP).

Proof: Use the fixpoint theorems of Knaster-Tarski and Kleene.
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.2 Minimal Model Semantics

Example

For P3 = { a← b. b← c. c }, we have

T0
P3

= {},

T1
P3

= {c}, T2
P3

= {c, b}, T3
P3

= {c, b, a}, T4
P3

= T3
P3

Hence lfp(TP3) = {c, b, a}

For P4 = { a← b. b← a. c }, we have

T0
P4

= {}, T1
P4

= {c}, T2
P4

= T1
P4

Hence lfp(TP4) = {c}

For program P2 above, we have

T0
P2

= ∅, T1
P2

= {h(0, 0)}, T2
P2

= T1
P2
.

Hence lfp(TP2) = {h(0, 0)}.
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Unit 1 – Basic Concepts & Properties 2. Horn Logic Programming 2.2 Minimal Model Semantics

Example (cont’d)

For program P1 above, we have

T0
P1

= ∅,
T1

P1
= {h(0, 0), t(a, b, r), p(0, 0, b)},

T2
P1

= {h(0, 0), t(a, b, r), p(0, 0, b), p(f (0), 0, b), h(f (0), f (0))},
T2

P1
= T3

P1
.

Hence
lfp(TP1) = {h(0, 0), t(a, b, r), p(0, 0, b), p(f (0), 0, b), h(f (0), f (0))}.

For program P = {p(0). p(f (X))← p(X)}, we have

T0
P = ∅, T1

P = {p(0)}, . . . ,T i
P = {p(0), . . . p(f i−1(0))}, i ≥ 0;

hence lfp(TP) = {p(f i(0)) | i ≥ 0} is infinite.
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Example (cont’d)

For program P1 above, we have

T0
P1

= ∅,
T1

P1
= {h(0, 0), t(a, b, r), p(0, 0, b)},

T2
P1

= {h(0, 0), t(a, b, r), p(0, 0, b), p(f (0), 0, b), h(f (0), f (0))},
T2

P1
= T3

P1
.

Hence
lfp(TP1) = {h(0, 0), t(a, b, r), p(0, 0, b), p(f (0), 0, b), h(f (0), f (0))}.

For program P = {p(0). p(f (X))← p(X)}, we have

T0
P = ∅, T1

P = {p(0)}, . . . ,T i
P = {p(0), . . . p(f i−1(0))}, i ≥ 0;

hence lfp(TP) = {p(f i(0)) | i ≥ 0} is infinite.

Thomas Eiter ReasoningWeb’09 26/70



Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs

Negation in Logic Programs

Why negation?

Natural linguistic concept

Facilitates convenient, declarative descriptions (definitions)

E.g., "Men who are not husbands are singles.”

Definition

A normal logic program is a set of rules of the form

a← b1, . . . , bm, not c1, . . . , not cn (n,m ≥ 0) (2)

where a and all bi, cj are atoms in a first-order language L.

not is called “negation as failure”, “default negation”, or “weak negation”

Things get more complex!
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs

Programs with Negation

Prolog: “not 〈X〉” means “Negation as Failure (to prove to 〈X〉)”

Different from negation in classical logic!

Example (Program P5)

man(dilbert).
single(X)← man(X), not husband(X).

husband(X)← fail. % fail = "false" in Prolog

Query:
?− single(X).

Answer:
X = dilbert .
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs

Example (cont’d)

Modifying the last rule of P5, we get P6:

man(dilbert).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Result in Prolog ????

Problem: not a single intuitive model!

Two intuitive Herbrand models:

M1 = {man(dilbert), single(dilbert)}, and

M2 = {man(dilbert), husband(dilbert)} .

Which one to choose?
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs

Semantics of Logic Programs With Negation

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:
• Well-Founded Semantics [Van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

Agreement for so-called “stratified programs”

Different selection principles for non-stratified programs
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Stratified Negation
Intuition: To evaluate a rule r: a← · · · , not p(~t), · · · , the value of p(~t)

should be known.

1 Evaluate first p(~t).

2 if p(~t) is
{

false, then not p(~t) is true,
true, then not p(~t) is false and r is not applicable.

Example

P = { boring(chess)← not interesting(chess) }

interesting(chess) is false⇒ not interesting(chess) is true.

hence, r is applied and boring(chess) is true.

This leads to the Herbrand model H = {boring(chess)} of P.

Note: this introduces procedurality (violates declarativity)!

Thomas Eiter ReasoningWeb’09 31/70



Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Stratified Negation
Intuition: To evaluate a rule r: a← · · · , not p(~t), · · · , the value of p(~t)

should be known.

1 Evaluate first p(~t).

2 if p(~t) is
{

false, then not p(~t) is true,
true, then not p(~t) is false and r is not applicable.

Example

P = { boring(chess)← not interesting(chess) }

interesting(chess) is false⇒ not interesting(chess) is true.

hence, r is applied and boring(chess) is true.

This leads to the Herbrand model H = {boring(chess)} of P.

Note: this introduces procedurality (violates declarativity)!

Thomas Eiter ReasoningWeb’09 31/70



Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Stratified Negation
Intuition: To evaluate a rule r: a← · · · , not p(~t), · · · , the value of p(~t)

should be known.

1 Evaluate first p(~t).

2 if p(~t) is
{

false, then not p(~t) is true,
true, then not p(~t) is false and r is not applicable.

Example

P = { boring(chess)← not interesting(chess) }

interesting(chess) is false⇒ not interesting(chess) is true.

hence, r is applied and boring(chess) is true.

This leads to the Herbrand model H = {boring(chess)} of P.

Note: this introduces procedurality (violates declarativity)!
Thomas Eiter ReasoningWeb’09 31/70



Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Dependency Graph

Restriction:

The method works if there is no cyclic negation.

Need a syntactic criterion to ensure this property.

Definition (Dependency graph)

The dependency graph of a set P of rules, is a directed graph
dep(P) = 〈N,E〉 where

N = { predicate p | p occurs in P, p is not a built-in } (=: pred(S))

E contains p→ q, iff P contains some rule a← · · · , `, · · · with
a = p(· · · ) and ` = q(· · · ) or ` = not q(· · · )

Label p→ q with “*”, if ` = not q(· · · )
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Example (Program P7)

man(dilbert).
husband(X)← man(X), married(X).

single(X)← man(X), not husband(X).

dep(P7):

husband //

&&LLLLLLLLLLL married

single //

?

OO

man
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Stratification

Definition (Stratification)

A stratification of a set P of rules is a partitioning

Σ = {S1 . . . , Sn}
of pred(P) into n nonempty, pairwise disjoint sets such that

(a) if p ∈ Si, q ∈ Sj, and p→ q is in dep(P), then i ≥ j; and

(b) if p ∈ Si, q ∈ Sj, and p→? q is in dep(P) then i > j.

The sets S1, . . . , Sn are the strata of P w.r.t. Σ.

P is stratified, if it has some stratification Σ.

Informally, Σ specifies an order of evaluation for the predicates in P
The sequential evaluation of S1, S2,. . . ,Sn can be done by computing
a series of iterative least models.
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Semantics

Definition (iterative least model)

Suppose P is a logic program with stratification Σ = {S1, . . . , Sk}, k ≥ 1.
Then

PSi = {a← b1, . . . , bn ∈ P | a = p(· · · ), p ∈ Si}, and

HB?(PSi) =
⋃

j≤i{p(t) ∈ HB(P) | p ∈ Sj}.

The iterative least models Mi ⊆ HB(P), 1 ≤ i ≤ k, are such that

(i) M1 is the least model of PS1 ;
(ii) if i > 1, then Mi is the least subset M of HB(P) such that

• M is a model of PSi , and
• M ∩ HB?(PSi−1) = Mi−1 ∩ HB?(PSi−1).

The iterative least model of P is MP,Σ = Mk.
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Example (P7 cont’d)

man(dilbert).
husband(X)← man(X), married(X).

single(X)← man(X), not husband(X).

Stratification: Σ = {S1 = {man,married}, S2 = {husband}, S3 = {single}}

PS1 = {man(dilbert)} and M1 = LM(PS1) = {man(dilbert)}.

PS2 = {husband(X)← man(X),married(X)}.
HB?(PS1) = {man(dilbert), married(dilbert)}.

Then, M2 = {man(dilbert)} is a model of PS2 and
M2 ∩ HB?(PS1) = M1 ∩ HB?(PS1) (no smaller such model exists)

PS3 = {single(X)← man(X), not husband(X)}.
Thus M3 = {single(dilbert)} ∪M2 is the least model of PS3 such that
M3 ∩ HB?(PS2) = M2 ∩ HB?(PS2).
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Unit 1 – Basic Concepts & Properties 3. Negation in Logic Programs 3.1 Stratified Negation

Stratification Theorem

Note: stratifications are not unique.

Example (P7 cont’d)

Other stratification: Σ′ = {S′1 = {man,married, husband}, S′2 = {single}}.

Evaluation with Σ′ yields same result!

This is not accidental:

Theorem (Apt et al. [1988])
Let P be a stratified program. Then for every stratifications Σ and Σ′ of P,
it holds that MP,Σ = MP,Σ′ .

Hence, we can simplify MP,Σ to MP = MP,Σ (for arbitrary Σ of choice)

Corollary

Stratified programs have a canonical model, also called perfect model.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Stable model semantics

First, for variable-free (ground) programs P
Treat “not ” specially
Intuitively, literals not a are a source of “contradiction” or “unstability”.

Example (P6 cont’d)

man(dilbert). (f1)

single(dilbert)← man(dilbert), not husband(dilbert). (r1)

husband(dilbert)← man(dilbert), not single(dilbert). (r2)

Consider M′ = {man(dilbert)}.
If as in M′, man(dilbert) were true and husband(dilbert) false, by r1 also
single(dilbert) should be true. This is not coherent.

Consider M′′ = {man(dilbert), single(dilbert), husband(dilbert)}.
The bodies of r2 and R2 are not true wrt M′′, hence there is no evidence for
single(dilbert) and husband(dilbert) being true.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Stable Models

Definition (Gelfond-Lifschitz Reduct PM 1988)
The GL-reduct (simply reduct) of a ground program P w.r.t. an
interpretation M, denoted PM, is the program obtained from P by

1 removing rules with not a in the body for each a ∈ M; and

2 removing literals not a from all other rules.

Intuition:

M makes an assumption about what is true and what is false.

The reduct PM incorporates this assumptions.

As a “not ”-free program, PM derives positive facts, given by LM(PM).
If this coincides with M, then the assumption of M is “stable”.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Stable Models (cont’d)

Definition (stable model)

An interpretation M of P is a stable model of P, if

M = LM(PM).

Observe:

PM = P for any “not ”-free program P.

Thus, for any positive program LM(P) (=LM(PM)) is its single stable
model.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Stable Models (cont’d)

Definition (stable model)

An interpretation M of P is a stable model of P, if
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Example (P6 cont’d)

man(dilbert). (f1)

single(dilbert)← man(dilbert), not husband(dilbert). (r1)

husband(dilbert)← man(dilbert), not single(dilbert). (r2)

Candidate interpretations:

M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)},
M3 = {man(dilbert), single(dilbert), husband(dilbert)}
M4 = {man(dilbert)},

M1 and M2 are stable models.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Example (P6 cont’d)

man(dilbert). (f1)

single(dilbert)← man(dilbert), not husband(dilbert). (r1)

husband(dilbert)← man(dilbert), not single(dilbert). (r2)

M1 = {man(dilbert), single(dilbert)}:

reduct PM1
6 :

man(dilbert).
single(dilbert)← man(dilbert).

The least model of PM1
6 is {man(dilbert), single(dilbert)} = M1.

M2 = {man(dilbert), husband(dilbert)}: by symmetry of husband and
single, also M2 is stable.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Example (P6 cont’d)

man(dilbert). (f1)

single(dilbert)← man(dilbert), not husband(dilbert). (r1)

husband(dilbert)← man(dilbert), not single(dilbert). (r2)

M3 = {man(dilbert), single(dilbert), husband(dilbert)}:

PM3
6 is

man(dilbert).

LM(PM3
6 ) = {man(dilbert)} 6= M3.

M4 = {man(dilbert)}:

PM4
6 is

man(dilbert).
single(dilbert)← man(dilbert).

husband(dilbert)← man(dilbert).

LM(PM4
6 ) = {man(dilbert), single(dilbert), husband(dilbert)} 6= M4.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Inconsistent Programs

Each normal logic program has some Herbrand model.

However, it may have no stable model.

Example (P⊥)

p← not p

Candidate interpretations: M1 = {}, M2 = {p}.
M1: PM1

⊥ = {p}, and LM(P⊥) = {p} 6= M1.

M2: PM2
⊥ = {}, and LM(P⊥) = {} 6= M2.

Note:

If p does not occur in P, then P ∪ {p← not p} has no stable model.

Adding p← not p to P “kills” all stable models of P !
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Programs with Variables

Consider, like in Prolog, only Herbrand interpretations.

As for positive programs, view a program clause as a shorthand for
all its ground instances.

Recall: grnd(P) is the grounding of program P.

Definition (stable model, general case)

An interpretation M of P is a stable model of P, if M is a stable model of
grnd(P).

Alternative way: Perform grounding in the GL-reduct, i.e., require
M = LM(PM) where PM =def grnd(P)M for non-ground P.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Example (Variant P′6 of P6)

man(dilbert). (r1)

woman(alice). (r2)

single(X)← man(X), not husband(X). (r3)

husband(X)← man(X), not single(X). (r4)

We have that, for instance,

grnd(r3) = { single(dilbert)← man(dilbert), not husband(dilbert).
single(alice)← man(alice), not husband(alice). };

grnd(P′6) = { man(dilbert).
woman(alice).
single(dilbert)← man(dilbert), not husband(dilbert).
single(alice)← man(alice), not husband(alice).
husband(dilbert)← man(dilbert), not single(dilbert).
husband(alice)← man(alice), not single(alice). }.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming

Example (P′6 cont’d)

The program grnd(P′6), and thus P′6, has the following stable models:

M1 = {man(dilbert),woman(alice), single(dilbert)}
M2 = {man(dilbert),woman(alice), husband(dilbert)}

Indeed,

the rule instances of r3 and r4 for dilbert generate two possible
scenarios;

the rule instances of r3 and r4 for alice are inapplicable.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Properties of Stable Models

Stable model semantics has a strong theoretical basis, many
properties are known.

We consider here some elementary ones.

See e.g.
• [Lifschitz, 2008]
• [Ferraris and Lifschitz, 2005]
• [Gelfond, 2008]

for other insights, alternative definitions and properties of stable
models.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Relationship to Classical Models

How do stable models of P relate to classical models of P?

Definition (classical model of normal logic program)

An interpretation I is a model of

a ground clause C : a← b1, . . . , bm, not c1, . . . , not cn, if either
{b1, . . . , bm} * I or {a, c1, . . . , cn} ∩ I 6= ∅ (I |= C);

a clause C, if I |= C′ for every C′ ∈ grnd(C) (I |= C);

a set P of rules, if I |= C for every clause C in P (I |= P).

This complies with Herbrand models satisfying the clause

a ∨ not b1 ∨ . . . ∨ not bm ∨ c1 ∨ . . . ∨ cn,

where not is interpreted as classical negation (“¬”).
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Relationship to Classical Models (cont’d)

The following holds:

Theorem

1 Every stable model M of P is a model of P.

2 A stable model M does not contain any model M′ of P properly
(M′ 6⊂ M), i.e., is a minimal model of P (w.r.t. ⊆).

Corollary

Stable models are incomparable w.r.t. ⊆, i.e., if M1 and M2 are different
stable models of P, then M1 6⊆ M2 and M2 6⊆ M1.

Thus, stable models adhere to minimality of positive information.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Supportedness

Note: each atom a in a stable model M must be derived from some
rule of P.

Extend the immediate consequence operator TP to not .

Definition (TP for normal P)

Given a normal program P and an interpretation I, let

TP(I) =
{

a
∣∣∣∣ there is some r = a← b1, . . . , bm, not c1, . . . , not cn ∈ grnd(P)

such that {b1, . . . , bm} ⊆ I, {c1, . . . cm} ∩ I = ∅

}
.

An interpretation I of P is a supported model of P, if TP(I) = I.

Theorem

Every stable model M of P is a supported model of P.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Supportedness (cont’d)

In fact, by minimality of stable models, every stable model is a
minimal (w.r.t. ⊆) supported model of P.
The converse is not true.

Example (Program Ps)

a← not b.

b← c.

c← b.

Note that M1 = {a} and M2 = {b, c} are both minimal such that
TPs(M1) = M1 and TPs(M2) = M2.

The single stable model of Ps is M1.

Problem with M2: Self-supportedness of b (via c)
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Unfounded sets

Stable models amount to supported models with no (cyclic) self-support

Definition (cf. [Van Gelder et al., 1991],[Leone et al., 1997])
A set U ⊆ HBP is an unfounded set of P relative to interpretation I, if for every
a ∈ U and r : a← b1, . . . , bm, not c1, . . . , not cn in ∈ grnd(P), either

1 for some i ∈ {1, . . . ,m}, either bi 6∈ I or bi ∈ U, or

2 for some j ∈ {1, . . . , n}, cj ∈ I.

Every P has a greatest unfounded set relative to I, denoted UP(I).

Intuitively, if I is compatible with P, all atoms in UP(I) can be safely
switched to false while maintaining compatibilty.

Definition (unfounded-freeness)

I is called unfounded-free, if I ∩ U = ∅ for each unfounded set U of P rel. to I.

Note: I is unfounded-free iff I ∩ UP(I) = {}.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Unfounded sets (cont’d)

Theorem (implicit in [Leone et al., 1997])
Given a program P, a model M of P is stable iff M is unfounded-free.

Example (Ps cont’d)

a← not b.

b← c.

c← b.

M2 = {b, c}: UPs(M2) = {b, c}, thus M2 ∩ UPs(M2) 6= ∅.

M1 = {a}: UPs(M1) = ∅, thus M1 ∩ UPs(M1) = ∅.

Unfounded-freeness is exploited for computing stable models (DLV)
It corresponds to loop formulas [Lin and Zhao, 2002], [Lee, 2005].
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Stratified Programs

Stable model semantics gracefully generalizes stratified semantics:

Theorem

If a program P is stratified, then P has a single stable model, which
coincides with the perfect (i.e., the iterative least) model model of P.

Notes:

A stratified P may have several minimal models; only one is stable

E.g., P = {boring(chess)← not interesting(chess)}
has two minimal models:

M1 = {boring(chess)} and M2 = {interesting(chess)}.
The perfect model is MP = M1.

Stratified programs can only express deterministic scenarios, no
“alternatives” are possible!
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.1 Semantic Properties

Non-Cumulativity

In classical logic, adding consequences of a theory T to T preserves its
semantics.

This property is known as cumulativity (or lemma support).

For stable model semantics, this property does not hold.

Proposition

Suppose P and atom a fulfill M |= a, for each stable model M of P. Then P and
P ∪ { a } need not have the same stable models (even if P is consistent).

Example

b← not c. c← not b.

a← b. a← not a.

P has the stable model M = {a, b}; P ∪ {a} has in addition N = {a, c}.

Note: the property holds for stratified programs.
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P has the stable model M = {a, b}; P ∪ {a} has in addition N = {a, c}.

Note: the property holds for stratified programs.
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.2 Computational Properties

Computational Properties

How difficult is it to compute some stable model?

Decision problem CONS:

Given a program P, does P have some stable model?

Theorem

For normal logic programs P, problem CONS is

NP-complete in the propositional and ground case;

NEXPTIME-complete in the datalog (function-free) case;

Σ1
1-complete in the general first-order case.

Recall: NP (NEXPTIME) = class of problems solvable in polynomial (exponential)
time on a non-deterministic Turing machine.

Σ1
1 is a class in the Analytic Hierarchy
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Unit 1 – Basic Concepts & Properties 4. Stable Logic Programming 4.2 Computational Properties

Computational Properties (cont’d)

Lower complexity holds for fragments:

For positive and stratified propositional programs, CONS is
polynomial (in fact, trivial).

• Still solvable in linear time if constraints and strong negation are
allowed (P-complete).

• For datalog programs, complexity increases to EXPTIME.

For programs with function symbols, several decidable program
classes are known (up to 3-EXPTIME).

More on basic complexity: [Dantsin et al., 2001].
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Unit 1 – Basic Concepts & Properties 5. Extensions

Extensions

Many extensions exist, partly motivated by applications
Some are syntactic sugar, other strictly add expressiveness
Incomplete list:
• constraints
• strong negation
• disjunction
• nested expressions
• cardinality constraints (Smodels)
• optimization: weight constraints, minimize (Smodels);

weak constraints (DLV)
• aggregates (Smodels, DLV)
• templates (for macros), external functions (DLVHEX)
• Frame Logic syntax (for Semantic Web)
• preferences: e.g., PLP
• KR frontends (diagnosis, inheritance, planning,...) in DLV

Comprehensive survey: [Niemelä (ed.), 2005]
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.1 Constraints

Constraints

Adding
p← q1, . . . , qm, not r1, . . . , not rn, not p.

to P “kills” all stable models of P that
• contain q1, . . . , qm, and

• do not contain r1, . . . , rn

This is convenient to eliminate scenarios which does not satisfy
integrity constraints.

Short:

Constraint

← q1, . . . , qm, not r1, . . . , not rn.
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.1 Constraints

Example (Dilbert P6 cont’d)

man(dilbert). (f1)

single(dilbert)← man(dilbert), not husband(dilbert). (r1)

husband(dilbert)← man(dilbert), not single(dilbert). (r2)

← husband(X), not wedding_ring(X). (c1)

The constraint c1 eliminates models in which there is no evidence for
a husband having a wedding ring.

Single stable model: M1 = {man(dilbert), single(dilbert)}
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.2 Strong Negation

Strong Negation

Weak negation “not a” means “a can not be proved (derived) using
rules,” and that a is false by default (believed to be false).
This is different from knowing (provably) that a is false; this is
expressed by −a (sometimes ¬a).
This is called strong negation and may make an important
difference.

Example (due to John McCarthy)

Consider an agent A with the following task:

“At a railroad crossing, cross the rails if no train approaches.”

We may encode this scenario using one of the following two rules:

walk ← at(A,L), crossing(L), not train_approaches(L). (r1)

walk ← at(A,L), crossing(L),−train_approaches(L). (r2)
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.2 Strong Negation

Extended Logic Programs

Definition

An extended logic program (ELP) is a finite set of rules

a← b1, . . . , bm, not c1, . . . , not cn (n,m ≥ 0) (3)

where a, bi, cj are atoms or strongly negated atoms in a f.o. language L.

The semantics of ELPs can be defined by program transformation:

view literals “−p(~X)” as atoms with fresh predicate symbols “−p”;

add clauses falsity← not falsity, p(~X),−p(~X)
to P (p(~X) and −p(~X) are not simultaneously true); and

select the stable models of the resulting program (called answer sets of P).

Answer sets M: three-valued view

Atom a may be true (a ∈ M), false (−a ∈ M), or unknown (a,−a /∈ M).
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.2 Strong Negation

Strong negation (combined with weak negation) is e.g. helpful to express
default rules.

Example (French speaking)

french(luc). (f1)

speaks(X, french)← french(X), not − speaks(X, french). (r1)

−speaks(X, french)← thumb(X). (r2)

r1 expresses that by default, French can speak French.

Single answer set M = {french(luc), speaks(luc, french)}.

Note:

ELPs are closely related to Default Logic [Reiter, 1980]

The answer sets of P correspond 1-1 to the extensions of the default
theory T = (∅, {d(C) | C∈P}) (d(C) casts C into a default rule).
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.3 Disjunction

Disjunction

The use of disjunction is natural to express indefinite knowledge.

Example

female(X) ∨ male(X)← person(X).

broken(left_hand, tom) ∨ broken(right_hand, tom).

Disjunction is natural for expressing a “guess” and to create
non-determinism

Example

ok(C) ∨ −ok(C)← component(C).
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.3 Disjunction

Minimality

Semantics: disjunction is minimal (different from classical logic):

a ∨ b ∨ c.

Minimal models: {a}, {b}, and {c}.

actually subset minimal:

a ∨ b. a ∨ c.

Minimal models: {a} and {b, c}.

a ∨ b. a← b

Models {a} and {a, b}, but only {a} is minimal.

but minimality is not necessarily exclusive:

a ∨ b. b ∨ c. a ∨ c.

Minimal models: {a, b}, {a, c}, and {b, c}.
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.3 Disjunction

Disjunction vs. Unstratified Negation

Reconsider the Dilbert Program P6:

man(dilbert).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

is under stable semantics equivalent to the program Pdd:

man(dilbert).
single(X) ∨ husband(X)← man(X).

The use of disjunction is more intuitive!
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.3 Disjunction

Extended Logic Programs with Disjunctions

Definition

A extended disjunctive logic program (EDLP) is a finite set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn (k,m, n ≥ 0) (4)

where all ai, bj, cl are atoms or strongly negated atoms in f.o. language L.

Semantics:

Answer sets of P are defined similarly as for an ELP

Differences:

• I is a model of ground (4), if either {b1, . . . , bm} * I or
{a1, . . . , ak, c1, . . . , cn} ∩ I 6= ∅

• “M is the least model of PM” ; “M is a minimal model of PM”

(PM may have multiple minimal models).
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.3 Disjunction

Example (Disjunctive Dilbert Pdd, cont’d)

man(dilbert).
single(X) ∨ husband(X)← man(X).

As Pdd is “not ”-free, grnd(Pdd)M = grnd(Pdd) for every M.

Answer sets:

M1 = {man(dilbert), single(dilbert)}, and

M2 = {man(dilbert), husband(dilbert)}.
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Unit 1 – Basic Concepts & Properties 5. Extensions 5.3 Disjunction

Some Properties of EDLPs

Every answer set of an EDLP P is a minimal model of P (models
analogous as for ELPs)

Different answer sets of an EDLP P are incomparable

An EDLP may have no, a single or multiple answer sets

For EDLPs without strong negation, answer sets are models that are
unfounded-free [Leone et al., 1997]

Deciding whether a propositional EDLP P has some answer set is
Σp

2-complete. (Σp
2 = NPNP)

Disjunction adds higher problem solving capacity, it is not just
syntactic sugar!

But: EDLPs can not be regarded as a fragment of Reiter’s Default
Logic.
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