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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm

ASP Paradigm

General idea: stable models are solutions!
Reduce solving a problem instance I to computing stable models of a LP

Problem 

Instance I ProgramP

Encoding: Model(s)

Solution(s)
ASP Solver

1 Encode I as a (non-monotonic) logic program P, such that solutions
of I are represented by models of P

2 Compute some model M of P, using an ASP solver

3 Extract a solution for I from M.

Variant: Compute multiple models (for multiple / all solutions)
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm

ASP Paradigm (ctd.)

Compared to SAT solving, ASP offers more features:

transitive closure

negation as failure

predicates and variables

Generic problem solving by separating the

specification of solutions (“logic” PS)

concrete instance of the problem (data D)

Program P
PS

Encoding:

Program P
D

Encoding:

ASP Solver
Model(s)

Solution(s)

PSSpec.

Problem 

DData
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.1 Use of Double Negation

Use of Double Negation

Defining a predicate p in terms of its negation −p

Example (Greatest Common Divisor — Euclid-style)

% base case
gcd(X, X, X)← int(X), X > 1.
% subtract smaller from larger number
gcd(D, X, Y)← X < Y, gcd(D, X, Y1), Y = Y1 + X.
gcd(D, X, Y)← X > Y, gcd(D, X1, Y), X = X1 + Y.

This is not easy to come up with and needs more care in Prolog.
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.1 Use of Double Negation

Use of Double Negation

Defining a predicate p in terms of its negation −p

Example (Greatest Common Divisor — ASP-style)

% Declare when D divides a number N.
divisor(D, N)← int(D), int(N), int(M), N = D ∗M.
% Declare common divisors
cd(T, N1, N2)← divisor(T, N1), divisor(T, N2).

% Single out non-maximal common divisors T
−gcd(T, N1, N2)← cd(T, N1, N2), cd(T1, N1, N2), T < T1.
% Apply double negation: take non non-maximal divisor
gcd(T, N1, N2)← cd(T, N1, N2), not − gcd(T, N1, N2).
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.2 The “Guess and Check” Methodology

The “Guess and Check” Methodology

Important element of ASP: Guess and Check methodology (or
Generate-and-Test [Lifschitz, 2002]).

1 Guess: use unstratified negation or disjunctive heads to create
candidate solutions to a problem (program part G), and

2 Check: use further rules and/or constraints to test candidate
solution if it is a proper solution for our problem (program part C).

From another perspective:

G: defines the search space

C: prunes illegal branches.

Further discussion in [Eiter et al., 2000], [Leone et al., 2006] (+ additional
component for computing optimal solutions).
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.2 The “Guess and Check” Methodology

Example: 3-Coloring

Problem specification PS: 3-Colorability condition

Problem specification PPS

g(X) ∨ r(X) ∨ b(X)← node(X)
}

Guess

← b(X), b(Y), edge(X, Y)
← r(X), r(Y), edge(X, Y)
← g(X), g(Y), edge(X, Y)

Check

Data PD: Graph G = (V, E)

PD = {node(v) | v ∈ V} ∪ {edge(v, w) | (v, w) ∈ E}.

Correspondence 3-colorings 
 models:
v ∈ V is colored with c ∈ {r, g, b} iff c(v) is in the model of PPS ∪ PD.
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.2 The “Guess and Check” Methodology

Example: 3-Coloring (ctd.)

•a • b

•
c

PD = {node(a), node(b),
node(c), edge(a, b),
edge(b, c), edge(a, c)}

+ Run example

•a • b

•
c

•a • b

•
c

•a • b

•
c

•a • b

•
c

•a • b

•
c

•a • b

•
c
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.2 The “Guess and Check” Methodology

Example: Hamiltonian Path/Cycle
Input: A directed graph represented by node(_) and edge(_, _)

and a starting node start(_).
Problem: Find a path/cycle beginning at the starting node

which contains all nodes of the graph.

inPath(X, Y) ∨ outPath(X, Y) ← edge(X, Y).
}

Guess

← inPath(X, Y), inPath(X, Y1), Y 6= Y1.
← inPath(X, Y), inPath(X1, Y), X 6= X1.
← node(X), not reached(X).
← not start_reached.

Check

reached(X)← start(X).
reached(X)← reached(Y), inPath(Y, X).
start_reached ← start(Y), inPath(X, Y).

Auxiliary Predicate
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.2 The “Guess and Check” Methodology

Example: Hamiltonian Path/Cycle (ctd.)

•a • b

• c•d

PD = {node(a), node(b),
node(c), node(d),
edge(a, b), edge(a, c)
edge(c, b), edge(b, c)
edge(b, d), edge(d, c)
edge(d, a), edge(a, d)
start(a)}

•a • b

• c•d

•a • b

• c•d

•a • b

• c•d

•a • b

• c•d

+ Run Hamiltonian Path + Run Hamiltonian Cycle
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.2 The “Guess and Check” Methodology

Example: Course Assignment

Information about members and courses of a computer science dept. cs:
member(sam, cs). course(java, cs). course(ai, cs).
member(bob, cs). course(c, cs). course(logic, cs).
member(tom, cs).
likes(sam, java). likes(sam, c). likes(tom, ai).
likes(bob, java). likes(bob, ai). likes(tom, logic).

teach(X, Y)← member(X, cs), course(Y, cs), likes(X, Y), not − teach(X, Y).
−teach(X, Y)← member(X, cs), course(Y, cs), teach(X1, Y), X1 6= X.

has_course(X)← member(X, cs), teach(X, Y).
← member(X, cs), not has_course(X).
← teach(X, Y1), teach(X, Y2), teach(X, Y3),

Y1 6= Y2, Y1 6= Y3, Y2 6= Y3.

+ Run example
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.3 Saturation Technique

Saturation Technique

Saturation technique: check whether all possible guesses satisfy a
certain property Pr, like not being a solution to a problem (e.g.,
3-uncolorability: co-NP-hard)

To test a property Pr we

design a program P and an answer set candidate Msat such that Msat

is the single answer set of P if the property Pr holds, and

P has other answer sets (excluding Msat) otherwise.

The construction is such that

any answer set of P is a subset of Msat, and

whenever the property is found to hold, any candidate answer set is
“saturated” to Msat.
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.3 Saturation Technique

Example: 3-uncolorability

The constraints in the checking part of the 3-colorability program can be
replaced by “saturation rules:”

b(X) ∨ r(X) ∨ g(X)← node(X).
}

Guess

non_col← r(X), r(Y), edge(X, Y).
non_col← g(X), g(Y), edge(X, Y).
non_col← b(X), b(Y), edge(X, Y).

Check

r(X)← non_col, node(X).
g(X)← non_col, node(X).
b(X)← non_col, node(X).

Saturize
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.3 Saturation Technique

Example: 3-uncolorability (ctd.)

•a • b

•
c

•d

PD = {node(a), node(b),
node(c), node(d),
edge(a, b), edge(a, c),
edge(b, c), edge(a, d),
edge(b, d) }

+ Run example

•a • b

•
c

•d

•a • b

•
c

•d

•a • b

•
c

•d

•a • b

•
c

•d

•a • b

•
c

•d

•a • b

•
c

•d
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.3 Saturation Technique

Example: 3-uncolorability (ctd.)

•a • b

•
c

•d

PD = {node(a), node(b),
node(c), node(d),
edge(a, b), edge(a, c),
edge(b, c), edge(a, d),
edge(b, d), edge(c, d)}

+ Run example

•a • b

•
c

•d
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.3 Saturation Technique

“Guess and Saturation Check” Paradigm

General design rule:
if we want to check that a property Pr holds for all guesses, we can

1 define the search space of guesses through a subprogram Pguess,
using disjunctive rules, and

2 define a subprogram Pcheck, which checks Pr for a guess Mg.

3 If Pr holds for Mg, an appropriate set of saturation rules Psat

generates the special candidate answer set Msat, otherwise

4 if Pr does not hold for Mg, an answer set results which is a strict
subset of Msat (thus preventing that Msat is an answer set).

With additional guessing rules that are not involved in the saturation, we
can express Σp

2-hard problems, like the strategic companies
problem [Leone et al., 2006], [Eiter et al., 2000].
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.4 Iteration over a Set

Iteration over a Set

Testing a property for all elements of a set without the use of negation.

This may be needed in some contexts:

in combination with the saturation technique, or

when the use of negation could lead to undesired behavior (e.g., in
case of cyclic negation).
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.4 Iteration over a Set

Example: Reachability for subgraphs

% Guess a subgraph for testing
edge1(X, Y) ∨ edge1(Y, X)← edge(X, Y), edge(Y, X).
edge1(X, Y)← edge(X, Y), not edge(Y, X).
% Compute all reachable nodes
reached(X)← start(X).
reached(X)← reached(Y), edge1(Y, X).
% iterate to check if all nodes are reached
all_reached ← last(X), all_reached_upto(X).
all_reached_upto(X)← all_reached_upto(Y), succ(Y, X), reached(X).
all_reached_upto(X)← first(X), reached(X).
% Saturation rule
edge1(X, Y)← all_reached, edge(X, Y).

succ: (user-) defined predicate
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.4 Iteration over a Set

Example: Reachability for subgraphs (ctd.)

•a • b

•
c

PD = {node(a), node(b),
node(c), edge(a, b),
edge(b, c), edge(b, a),
start(a)}

+ Run example

•a • b

•
c

•a • b

•
c
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Unit 2 – ASP Paradigms and Solvers 1. The Answer Set Programming Paradigm 1.4 Iteration over a Set

Example: Reachability for subgraphs (ctd.)

•a • b

•
c

PD = {node(a), node(b),
node(c), edge(a, b),
edge(b, c), edge(c, a),
start(a)}

+ Run example

•a • b

•
c

Thomas Krennwallner ReasoningWeb’09 21/36



Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers

Answer Set Solvers

NP-/Σp
2-completeness: Efficient answer set computation is not easy!

Need to handle, for applications
1 complex data (large data volumes)
2 search

Efforts to realize tractable fragments

Many ASP solvers are available (function-free programs)

Approach

Logic programming and deductive database techniques (for (1))

SAT/Constraint Programming techniques for (2)

Different sophisticated algorithms have been developed
(like for SAT solving)
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Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers

Answer Set Solvers

DLV1 http://www.dbai.tuwien.ac.at/proj/dlv/
Smodels2 http://www.tcs.hut.fi/Software/smodels/

GnT http://www.tcs.hut.fi/Software/gnt/
Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/
NoMore(++) http://www.cs.uni-potsdam.de/~linke/nomore/

Platypus http://www.cs.uni-potsdam.de/platypus/
clasp http://www.cs.uni-potsdam.de/clasp/

XASP http://xsb.sourceforge.net/, distributed with XSB
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

Several provide a number of extensions to the language described here.

Answer Set Solver Implementation: see [Niemelä, 2004] tutorial

ASP Solver competition

ASPARAGUS Benchmark platform
http://asparagus.cs.uni-potsdam.de/

1+ many extensions, e.g., DLVEX, DLVHEX, DLVDB, DLT, DLV-Complex
2+ Smodels_cc
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Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers 2.1 Answer Set Programming Competition

ASP Competition 2009

ASP competition at the biannual LPNMR conference (started 2007)

This year, the following systems ranked best:
1 Potassco http://potassco.sourceforge.net/

2 Claspfolio (Potassco + best options prediction)

3 DLV http://www.dbai.tuwien.ac.at/proj/dlv/

http://www.cs.kuleuven.be/~dtai/events/ASP-competition/
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Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers 2.1 Answer Set Programming Competition

SAT Competition 2009

SAT competition at the annual SAT conference
http://www.satisfiability.org/

Clasp is an ASP solver from the Potassco suite and performed
surprisingly well! http://www.cs.uni-potsdam.de/clasp/

This year, the following systems ranked best in the crafted instances
category (SAT+UNSAT instances):

1 Clasp
2 SATzilla2009_I
3 SATzilla2009_C

and for the crafted instances category (UNSAT instances):
1 Clasp
2 SATzilla2009_C
3 IUT_BMB_SAT

http://www.satcompetition.org/
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Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers 2.2 Architecture of ASP Solvers

Architecture of ASP Solvers

Typically, a two level architecture

1 Grounding Step
Given a program P with variables, generate a (subset) of its
grounding which has the same models

2 Model Search
More complicated than in SAT/CSP Solving:

• Candidate generation (classical model)

• model checking (stability!)
for SAT, model checking is in ALOGTIME
for normal propositional programs, model checking is P-complete
for disjunctive propositional programs, model checking is
co-NP-complete
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Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers 2.2 Architecture of ASP Solvers

Grounding Step

Efficient grounding is at the heart of current systems

Sophisticated techniques
• DLV’s grounder (built-in);
• lparse (Smodels), gringo (clasp)
• XASP, aspps

Special techniques used:
• “Safe rules” (DLV): every variable in a rule must occur in an

unnegated atom in the body, whose predicate is not “=” or any
another built-in predicate

• domain-restriction (Smodels)

Problem: Grounding bottleneck [Eiter et al., 2007]

Research on nonground evaluation (e.g., [Brüning and Schaub,
1999], [Leone et al., 2006], [Calimeri et al., 2008], [Lin and You,
2008], [Gebser et al., 2008], [Palù et al., 2008]);
XASP (XSB Extensions)
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Unit 2 – ASP Paradigms and Solvers 2. Answer Set Solvers 2.2 Architecture of ASP Solvers

Model search

Applied for ground programs.

Different Techniques:

• Translations to SAT (e.g. Cmodels, ASSAT)
• tailored search procedures (Smodels, DLV, NoMore, aspps, clasp)

b:− not a.

a:− not b.

c:− not c, a.

not aa

c not c

not bbnot b

c not c

b

Backtracking procedures for assigning truth value to atoms
Similar to DPPL algorithm for SAT
Important: Heuristics (which atom/rule to consider next); involved

Stability check: unfounded sets, reductions to UNSAT
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Unit 2 – ASP Paradigms and Solvers 3. The DLV System

The DLV System

http://www.dbai.tuwien.ac.at/proj/dlv/

DLV is a state-of-the-art disjunctive answer set solver

Developed at TU Wien / University of Calabria (since 1996)

Possesses richer syntax than normal logic programs, resulting in
higher expressiveness!

Offers front-ends for specific KR-tasks (diagnosis, planning, etc.).

Thomas Krennwallner ReasoningWeb’09 29/36

http://www.dbai.tuwien.ac.at/proj/dlv/


Unit 2 – ASP Paradigms and Solvers 3. The DLV System

Features of DLV

Language: disjunctive extended logic programs, no function
symbols

Additionally:
• bounded integer arithmetic, and comparison built-ins
• integrity constraints
• weak constraints
• aggregates
• most recently: function symbols (DLV-Complex, r.e.-complete)

Support for
• answer set generation
• brave and cautious reasoning
• many extensions: DLVEX, DLVHEX, DLVDB, DLT, DLV-Complex

Thomas Krennwallner ReasoningWeb’09 30/36



Unit 2 – ASP Paradigms and Solvers 3. The DLV System

DLV Syntax

Rules

a1 v · · · v an :- b1, . . . ,bk, not bk+1, . . . , not bm.

where n ≥ 1, m ≥ 0 and all ai, bj are atoms or strongly negated
atoms (e.g. −a); no function symbols.

Integrity Constraints

:- b1, . . . ,bk, not bk+1, . . . , not bm.

can be regarded as rules with an empty (false) head.

Queries
b1, . . . ,bk, not bk+1, . . . , not bm?
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Unit 2 – ASP Paradigms and Solvers 3. The DLV System

Built-in Predicates

Comparison Predicates:

<, >, <=, >=, ==, !=

Arithmetic Predicates:

#int, #succ, +, ∗

#int(X): X is known integer (1 ≤ X ≤ N).
#succ(X,Y): Y is successor of X, i.e., Y = X + 1.
+(X,Y,Z): Z = X + Y.
∗(X,Y,Z): Z = X ∗ Y.

N.B. An upper bound for integers has to be specified when dlv is invoked.
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Unit 2 – ASP Paradigms and Solvers 3. The DLV System

Safety

Each variable occurring in a rule (resp. constraint) r in either

the head,

a default literal not b, or

a built-in comparsion predicate,

must occur in at least 1 non-comparison not-free literal in the body of r.

Safe rules
a(X) :- not b(X), c(X).
a(X) :- X > Y, node(X), node(Y).

Unsafe rules
a(X) v − a(X).
a(X) :- not b(X).
:- X <= Y, node(X).
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Unit 2 – ASP Paradigms and Solvers 3. The DLV System

Declarative Problem Solving in DLV

Solve problems using disjunction/negation.

Maximum

Input: Employees and their salaries, represented by empl(_ , _).
Problem: Determine maximum salary of employees.

Solve Problem using projection and double negation!

−max(S) :- empl(N,S), empl(N1,S1), S < S1.

max(S) :- empl(N,S), not −max(S).
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Unit 2 – ASP Paradigms and Solvers 3. The DLV System

Front-ends

Besides the answer set semantics core, DLV offers front-ends for
particular KR tasks:

• diagnosis
• inheritance reasoning
• knowledge-based planning (K language)

Also:
• built-in front-end to SQL3

Many external front ends to DLV exist (e.g., updates, preferences,
plan diagnosis, execution monitoring, etc.)
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Unit 2 – ASP Paradigms and Solvers 3. The DLV System

Using DLV

DLV is command-line oriented . . .

. . . but there is also a simple GUI.

Input is read from files whose names are passed on the
command-line.

If the command-line option “--” has been specified, input is also
read from standard input (stdin).

Output is printed to standard output (stdout), one line per model /
answer set.

Detailed documentation is at
http://www.dbai.tuwien.ac.at/proj/dlv/
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