

The DMCS Solver for **Distributed Nonmonotonic Multi-Context Systems**

JELIA 2010 12th European Conference on Logics in Artificial Intelligence Helsinki, Finland

Seif El-Din Bairakdar Minh Dao-Tran Thomas Eiter Michael Fink Thomas Krennwallner {bairakdar,dao,eiter,fink,tkren}@kr.tuwien.ac.at

Vienna University of Technology Institute of Information Systems Knowledge-Based Systems Group

Multi-Context Systems

Loop Formulas for Multi-Context Systems

A collection of contexts (C_1, \ldots, C_n) , interlinked by bridge rules

• Context $C_k = (kb_k, br_k)$: abstraction for knowledge based systems core notions: knowledge base kb_k , bridge rules br_k , accept. belief set hosts, e.g., default logic, classical logic, ASP, etc.

DMCS system translates ASP contexts to SAT using loop formulas

But: Equilibrium semantics needs special treatment

For each context C_k , we have

completion and support formulas as usual

• for a loop \mathcal{L} that is local to C_k , we add the externally supported rules

• Bridge rule adds information to context C_k

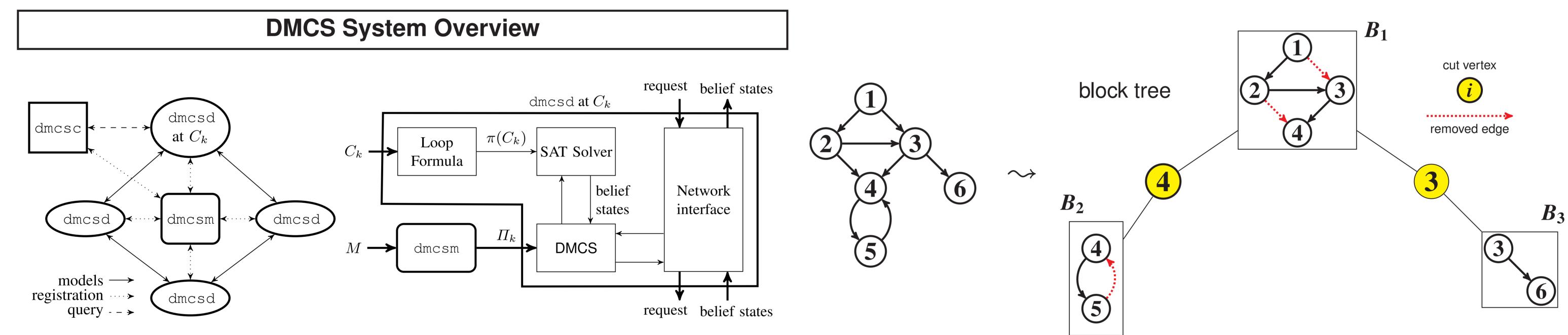
... depending on belief sets at other contexts.

• Example MCS $M = (C_1, C_2, C_3, C_4)$ with • $C_1 = (kb_1, br_1)$: $kb_1 = \emptyset$ and $br_1 = \{a \leftarrow (2:b), (3:c)\}$ • $C_2 = (kb_2, br_2)$: $kb_2 = \emptyset$ and $br_2 = \{b \leftarrow (4:g)\}$ ► $C_3 = (kb_3, br_3)$: $kb_3 = \{c \leftarrow d; d \leftarrow c\}$ and $br_3 = \{c \lor e \leftarrow not (4:f)\}$ $\blacktriangleright C_4 = (kb_4, br_4)$: $kb_4 = \{f \lor g \leftarrow\}$ and $br_4 = \emptyset$

Semantics in terms of equilibria of form (S_1, \ldots, S_n) :

i.e., a belief set S_k for each context C_k which is compliant with applicable bridge rules.

```
\blacktriangleright E.g., we get three equilibria for M
  ▶ (\{a\}, \{b\}, \{c, d, \neg e\}, \{\neg f, g\})
  ► (\{\neg a\}, \{b\}, \{\neg c, \neg d, e\}, \{\neg f, g\})
  ► (\{\neg a\}, \{\neg b\}, \{\neg c, \neg d, e\}, \{f, \neg g\})
```


of kb_k and the supported rules of br_k to the antecedent of the loop formula for \mathcal{L}

Standard SAT solvers can be used at each context to compute the partial equilibria independently

Decomposition of Multi-Context Systems

Optimization of MCS evaluation using a decomposition into the **biconnected components** of the topology:

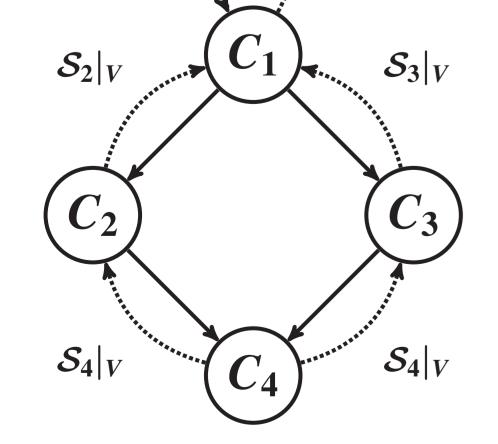
- cut redundant paths in topology: transitive reduction and ear decomposition
- Iocalize projected query variables to the minimum: forget belief sets of contexts below a cut vertex

- Input language for declarative MCS specification
- Support for contexts formalized in ASP and SAT
- Computation of (partial) equilibrium semantics
- Sourcecode and Examples available at:

http://www.kr.tuwien.ac.at/research/systems/dmcs/

Basic Evaluation of Distributed Multi-Context Systems

DMCS algorithm overview:


client dmcsc $|\mathcal{S}_1|_V$

► Bridge rules generate a topology of M • Upon query variables V, a context C_k :

Adapted evaluation strategy using query plans: DMCSOPT

Experimental Results

	n	A_{ϕ}	A_{\bowtie}	A_{\leftrightarrow}	$A_{\Sigma}\left(oldsymbol{\sigma} ight)$	$\#\left(\sigma ight)$	B_{ϕ}	B_{\bowtie}	B_{\leftrightarrow}	$\pmb{B}_{\Sigma}\left(\pmb{\sigma} ight)$	$\#\left(\sigma ight)$
D	13	0.9	0.0	0.0	1.0 (0.2)	28 (17.6)	0.8	8.4	0.0	9.4 (5.5)	3136 (3155.8)
	25	11.2	0.5	0.0	12.8 (1.3)	17 (18.9)					
	31	51.1	3.7	0.0	59.5 (8.9)	58 (49.7)					
R	10	0.1	0.0	0.0	0.1 (0.0)	3.5 (3.4)	0.1	0.0	0.0	0.2 (0.1)	300 (694.5)
	13	0.1	0.0	0.0	0.2 (0.1)	6 (1.2)	0.1	1.5	1.9	3.9 (5.3)	5064 (21523.8)
	301	4.1	0.1	2.1	10.2 (2.2)	8 (4.9)					
Ζ	13	0.6	0.1	0.0	0.7 (0.2)	34 (41.8)	5.5	4.2	0.0	11.5 (4.0)	3024 (1286.8)
	151	8.9	22.3	0.4	32.2 (7.3)	33 (28.5)					
	301	21.6	99.5	1.7	124.3 (20.6)	22 (41.4)					
H	9	0.2	0.0	0.0	0.2 (0.0)	28 (44.4)	1.1	0.9	0.0	2.0 (1.3)	684 (1308.0)
	101	1.8	0.3	0.3	3.8 (1.0)	48 (76.6)					

- \blacktriangleright checks if *M* is cyclic and guesses local beliefs wrt. V, otw. it
- asks neighbors for partial equilibria
- combines local belief sets with neighbor beliefs
- \triangleright returns result \mathcal{S}_k projected to V

301 7.8 2.0 2.4 25.1 (8.7) 38 (34.2) —

Table: Runtime for DMCSOPT (A_x) and DMCS (B_x), timeout 180 secs (—)

Random instances with *n* contexts and topologies Diamond \checkmark , Ring \checkmark , Zig-zag \checkmark , House \checkmark

Timings: SAT solver (ϕ), Belief state combination (\bowtie) and transfer (\leftrightarrow); No. of partial equilibria: #

References

Supported by the projects Austrian Science Fund (FWF) P20841 & Vienna Science and Technology Fund (WWTF) ICT08-020

Der Wissenschaftsfonds.

Wiener Wissenschafts-, Forschungs- und Technologiefonds

- Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Distributed Nonmonotonic Multi-Context Systems. In *KR*, pp. 60–70, 2010.
- Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Decomposition of Distributed Nonmonotonic Multi-Context Systems. In *JELIA*, pp. 24–37, 2010.