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Multi-Context Systems (MCS)

I MCSen introduced by [Giunchiglia and Serafini, 1994]:

I represent inter-contextual information flow

I express reasoning w.r.t. contextual information

I allow decentralized, pointwise information exchange

I monotonic, homogeneous logic

I Framework extended for integrating
heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]
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Syntax of Multi-Context Systems

I multi-context system

I a collection M = (C1, . . . ,Cn) of contexts

I context Ci = (Li, kbi, bri)

I Li: a logic

I kbi: a knowledge base of logic Li

I bri: a set of bridge rules

I logic L = (KBL,BSL,ACCL)

I KBL: set of well-formed knowledge bases

I BSL: is the set of possible belief sets

I ACCL: acceptability function KBL 7→ 2BSL

Which belief sets are accepted by a knowledge base?
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Syntax of Multi-Context Systems (bridge rules)
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I Bridge rule r ∈ bri of a context Ci

s← (c1 : p1), . . . , (cj : pj),

not (cj+1 : pj+1), . . . , not (cm : pm)

I (ck : pk) looks at belief pk in context Cck

I r is applicable :⇔ positive/negative beliefs are present/absent

I we add the head s to kbi if r is applicable
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Semantics of Multi-Context Systems
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I knowledge base of a context Ci

kbi ∈ KBi

I set of bridge rules bri of a context Ci of form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm)

I Contexts C1, . . . ,Cn are knowledge bases
with semantics in terms of accepted belief sets

I S = (S1, . . . , Sn) is a belief state of M with each Si ∈ BSi
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Semantics of Multi-Context Systems
I multi-context system

M = (C1, . . . ,Cn)
I context

Ci = (Li, kbi, bri)
I logic

Li = (KBi,BSi,ACCi)

I Equilibrium semantics
I A belief state S = (S1, . . . , Sn) with Si ∈ BSi

. . . makes certain bridge rules applicable,

. . . add applicable bridge heads to kbi

⇒ S is an equilibrium :⇔
each kbi plus acceptable bridge heads from bri accepts Si

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})
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The Diamond Example

M = (C1,C2,C3,C4), were each Li of Ci is an ASP logic

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f ) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

Equilibria:
I (∅, ∅, ∅, {f})
I (∅, {b}, {e}, {g})
I ({a}, {b}, {c, d}, {g})
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Towards Distributed Equilibria Building for MCS

Obstacles:

I abstraction of contexts

I information hiding and security aspects

I lack of system topology

I cycles between contexts

We need to capture:

I dependencies between contexts

I representation of partial knowledge

I combination/join of local results
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Import Neighborhood & Closure

Import neighborhood of Ck

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}

Import closure IC(k) of Ck is the
smallest set S such that
(i) k ∈ S and
(ii) for all i ∈ S, In(i) ⊆ S.

In(1)

C1

C2

C4

C3

C5 C6

C7
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Partial Belief States and Equilibria

Let M = (C1, . . . ,Cn) be an MCS, and let ε /∈
⋃n

i=1 BSi

A partial belief state of M is a sequence S = (S1, . . . , Sn), where
Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n

S = (S1, . . . , Sn) is a partial equilibrium of M w.r.t. a context Ck
iff for 1 ≤ i ≤ n,

I if i ∈ IC(k) then Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)})

I otherwise, Si = ε

Intuitively, partial equilibria w.r.t. a context Ck cover the reachable
contexts of Ck
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Example
Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c, f , g}.

kb1 = ∅
br1 = { a← (2 : b), (3 : c) }

V

C1

kb2 = ∅
br2 = { b← (4 : g) }

C2

kb3 =

{
c← d
d ← c

}
br3 = { c ∨ e← not (4 : f ) }

C3

kb4 = { f ∨ g← }
br4 = ∅ C4

(ε, {b}, {c}, {¬f , g})
(ε, {b}, {¬c}, {¬f , g})
(ε, {¬b}, {¬c}, {f ,¬g})

(ε, {b}, ε, {¬f , g})
(ε, {¬b}, ε, {f ,¬g})

(ε, ε, {¬c,¬d, e}, {¬f , g})
(ε, ε, {c, d,¬e}, {¬f , g})

(ε, ε, {¬c,¬d,¬e}, {f ,¬g})
(ε, ε, ε, {¬f , g})
(ε, ε, ε, {f ,¬g})
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Motivation for MCS Decomposition

Scalability issues with the basic evaluation algorithm DMCS
I unaware of global context dependencies, only know (local) import

neighborhood

I a context Ci returns a possibly huge set of partial belief states,
which are the join of neighbor belief states of Ci plus local belief sets

We address these issues by
I capturing inter-context dependencies (topology)

I providing a decomposition based on biconnected components

I characterizing minimal interface variables in each component

I develop the DMCSOPT algorithm which operates on query plans
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Scientist Group Example

1

Ms. 1

2

Mr. 2

3

Mr. 3

4

Ms. 4

I A group of 4 scientists.
I Problem: How to go home?

I Possible solutions:
I Car

: slower than train

I Train

: should bring some food

I Mr. 3 and Ms. 4 have additional information from Mr. 5 and Ms. 6
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Scientist Group Example (ctd.)

I Ms. 4 just got married to Mr. 5.
I Mr. 5 wants his wife to come back as

soon as possible.

kb4 =
{

car4 ∨ train4 ←
}

br4 =
{

train4 ← (5 : want sooner5)
}

kb5 =
{

want sooner5 ← soon5
}

br5 =
{

soon5 ← (4 : train4)
}

1

2 3

4 6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want sooner5},
{sick6})
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Scientist Group Example (ctd.)

I Mr. 3 has a daughter, Ms. 6.
I Mr. 3 is responsible for buying

provisions, if they go by train.
I If Ms. 6 is sick, then Mr. 3 must attend

to her as fast as possible.

kb3 =


car3 ∨ train3 ←

train3 ← urgent3
sandwiches3 ∨ chocolate peanuts3 ← train3

coke3 ∨ juice3 ← train3


br3 =

{
urgent3 ← (6 : sick6)

train3 ← (4 : train4)

}
;

kb6 =
{

sick6 ∨ fit6 ←
}

br6 = ∅.

1

2 3

4 6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want sooner5},
{sick6})
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Scientist Group Example (ctd.)

I Ms. 1 is leader of group.
I Ms. 1 is allergic to peanuts.
I Mr. 2 wants to get home somehow and

doesn’t want coke.

kb1 =

{
car1 ← not train1

⊥← peanuts1

}
br1 =

{
train1 ← (2 : train2), (3 : train3)

peanuts1 ← (3 : chocolate peanuts3)

}
kb2 = {⊥ ← not car2, not train2} and

br2 =


car2 ← (3 : car3), (4 : car4)

train2 ← (3 : train3), (4 : train4),
not (3 : coke3)



1

2 3

4 6

5

One equilibrium is S = ({train1}, {train2},
{train3, urgent3, juice3, sandwiches3}, {train4}, {soon5,want sooner5},
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Scientist Group Example (ctd.)

1

2 3

4 6

5

I Ms. 1 decides after gathering information.

I Mr. 3 and Ms. 4 do not want to bother the others.
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Scientist Group Example (ctd.)

1

2 3

4 6

5

I A graph is weakly connected if replacing every directed edge by an
undirected edge yields a connected graph.

I A vertex c of a weakly connected graph G is a cut vertex, if G\c is
disconnected (3 and 4 are cut vertices)
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Scientist Group Example (ctd.)
I Based on cut vertices, we can decompose the MCS into a

block tree: provides a “high-level” view of the dependencies
(edge partitioning)

I The block tree of our example is:

B1

B2 B3

1

2 3

3

3

4
4

4

5
6

I B1 induced by {1, 2, 3, 4}
I B2 induced by {4, 5}
I B3 induced by {3, 6}
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Optimization: Creating Acyclic Topologies
cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = 〈

P0, P1, P2, P3, P4

〉

cycle breaker edges cb(G,P): remove last edge from each path Pi in G

Intuition: for a removed edge (`, t), guess at leaf C` the variables at Ct
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Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G− with the smallest set
of edges whose transitive closure G+ equals the one of G

G G+ G−

Intuitively, the transitive reduction of an acyclic graph is unique, and one
can evaluate the contexts using a topological sort of the contexts.
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Scientist Group Example (ctd.)

B1

B2 B3

1

2 3

3

3

4

4

4

5
6

I B1: acyclic→ apply transitive reduction
I B2: cyclic→ apply ear decomposition, remove last edge from each

ear, then apply transitive reduction (already reduced)
I B3: acyclic and already reduced
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Optimization: Minimal Interface
B1

B2 B3

1

2 3

3

3

4

4

4

5
6

In a pruned block B′, take all variables from
I the minimal interface in B′
I child cut vertices c
I removed edges E

Outcome: query plan for the MCS to restrict calls and partial belief states
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Scientist Group Example (ctd.)
B1

B2 B3

1

2 3

3

3

4

4

4

5
6

S = ( {train1}, {train2}, {train3, urgent3, juice3, sandwiches3},
{train4}, {soon5,want sooner5}, {sick6})

T = ( {train1}, {train2}, {train3, juice3, sandwiches3},
{train4}, {soon5,want sooner5}, {fit6})

U = ( {car1}, {car2}, {car3}, {car4}, ∅, {fit6})
19 / 22



Scientist Group Example (ctd.)
B1

B2 B3

1

2 3

3

3

4

4

4

5
6

“S|B1” = ({train1}, {train2}, {train3, juice3, sandwiches3}, {train4}, ∅, ∅)

“U|B1” = ({car1}, {car2}, {car3}, {car4}, ∅, ∅)
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Experiments
n Aφ A./ A↔ AΣ (σ) # (σ) Bφ B./ B↔ BΣ (σ) # (σ)

D 13 0.9 0.0 0.0 1.0 (0.2) 28 (17.6) 0.8 8.4 0.0 9.4 (5.5) 3136 (3155.8)
25 11.2 0.5 0.0 12.8 (1.3) 17 (18.9) —
31 51.1 3.7 0.0 59.5 (8.9) 58 (49.7) —

R 10 0.1 0.0 0.0 0.1 (0.0) 3.5 (3.4) 0.1 0.0 0.0 0.2 (0.1) 300 (694.5)
13 0.1 0.0 0.0 0.2 (0.1) 6 (1.2) 0.1 1.5 1.9 3.9 (5.3) 5064 (21523.8)

301 4.1 0.1 2.1 10.2 (2.2) 8 (4.9) —

Z 13 0.6 0.1 0.0 0.7 (0.2) 34 (41.8) 5.5 4.2 0.0 11.5 (4.0) 3024 (1286.8)
151 8.9 22.3 0.4 32.2 (7.3) 33 (28.5) —
301 21.6 99.5 1.7 124.3 (20.6) 22 (41.4) —

H 9 0.2 0.0 0.0 0.2 (0.0) 28 (44.4) 1.1 0.9 0.0 2.0 (1.3) 684 (1308.0)
101 1.8 0.3 0.3 3.8 (1.0) 48 (76.6) —
301 7.8 2.0 2.4 25.1 (8.7) 38 (34.2) —

Table: Runtime for DMCSOPT (Ax) and DMCS (Bx), timeout 180 secs (—)

Random instances with n contexts and topologies:

Diamond , Ring , Zig-zag , House
Timings:

clasp (φ), Belief state combination (./) and transfer (↔); No. of partial equilibria: #
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Conclusions

I MCS is a general framework for integrating diverse formalisms

I First attempt for distributed MCS evaluation

I Initial experiments with a prototype implementation

I Decomposition technique is encouraging:
binary tree with n = 600 evaluated in 176secs (# = 4)

Future work:

I improve scalability
I approximation semantics

I syntactic restrictions

I specialized algorithms for some types of topologies

I dynamic multi-context systems
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