Decomposition of Distributed Nonmonotonic Multi-Context Systems

Seif El-Din Bairakdar Minh Dao-Tran Thomas Eiter Michael Fink <u>Thomas Krennwallner</u>

KBS Group, Institute of Information Systems, Vienna University of Technology

JELIA 2010 Sep 15, 2010

Overview

Heterogeneous & Nonmonotonic Multi-Context Systems

Decomposition of Nonmonotonic Multi-Context Systems

Experiments

Conclusions

Multi-Context Systems (MCS)

MCSen introduced by [Giunchiglia and Serafini, 1994]:

- represent inter-contextual information flow
- express reasoning w.r.t. contextual information
- allow decentralized, pointwise information exchange
- monotonic, homogeneous logic
- Framework extended for integrating heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]

Syntax of Multi-Context Systems

- multi-context system
 - a collection $M = (C_1, \ldots, C_n)$ of contexts
- context $C_i = (L_i, kb_i, br_i)$
 - L_i: a logic
 - *kb_i*: a knowledge base of logic *L_i*
 - *br_i*: a set of bridge rules

Syntax of Multi-Context Systems

- multi-context system
 - a collection $M = (C_1, \ldots, C_n)$ of contexts
- context $C_i = (L_i, kb_i, br_i)$
 - L_i: a logic
 - *kb_i*: a knowledge base of logic *L_i*
 - *br_i*: a set of bridge rules
- logic $L = (\mathbf{KB}_L, \mathbf{BS}_L, \mathbf{ACC}_L)$
 - ► **KB**_L: set of well-formed knowledge bases
 - ► **BS**_L: is the set of possible belief sets
 - ► ACC_L: acceptability function KB_L → 2^{BS_L} Which belief sets are accepted by a knowledge base?

Syntax of Multi-Context Systems (bridge rules)

multi-context system

$$M=(C_1,\ldots,C_n)$$

context

$$C_i = (L_i, kb_i, br_i)$$

Iogic

$$L_i = (\mathbf{KB}_i, \mathbf{BS}_i, \mathbf{ACC}_i)$$

• Bridge rule $r \in br_i$ of a context C_i

$$s \leftarrow (c_1:p_1), \dots, (c_j:p_j),$$

 $not(c_{j+1}:p_{j+1}), \dots, not(c_m:p_m)$

- $(c_k : p_k)$ looks at belief p_k in context C_{c_k}
- r is applicable :⇔ positive/negative beliefs are present/absent
- we add the head s to kb_i if r is applicable

Semantics of Multi-Context Systems

multi-context system

$$M=(C_1,\ldots,C_n)$$

context

$$C_i = (L_i, kb_i, br_i)$$

Iogic

$$L_i = (\mathbf{KB}_i, \mathbf{BS}_i, \mathbf{ACC}_i)$$

knowledge base of a context C_i

 $kb_i \in \mathbf{KB}_i$

set of bridge rules br_i of a context C_i of form

$$s \leftarrow (c_1:p_1), \ldots, (c_j:p_j), not (c_{j+1}:p_{j+1}), \ldots, not (c_m:p_m)$$

- Contexts C₁,..., C_n are knowledge bases with semantics in terms of accepted belief sets
- ► $S = (S_1, ..., S_n)$ is a belief state of M with each $S_i \in \mathbf{BS}_i$

Semantics of Multi-Context Systems

multi-context system

$$M=(C_1,\ldots,C_n)$$

context

$$C_i = (L_i, kb_i, br_i)$$

Iogic

$$L_i = (\mathbf{KB}_i, \mathbf{BS}_i, \mathbf{ACC}_i)$$

- Equilibrium semantics
 - A belief state $S = (S_1, \ldots, S_n)$ with $S_i \in \mathbf{BS}_i$
 - ... makes certain bridge rules applicable,
 - \ldots add applicable bridge heads to kb_i
 - \Rightarrow S is an equilibrium : \Leftrightarrow

each kb_i plus acceptable bridge heads from br_i accepts S_i

$$S_i \in \mathbf{ACC}_i(kb_i \cup \{head(r) \mid r \in app(br_i, S)\})$$

The Diamond Example

 $M = (C_1, C_2, C_3, C_4)$, were each L_i of C_i is an ASP logic

Equilibria:

- $\blacktriangleright (\emptyset, \emptyset, \emptyset, \{f\})$
- ▶ $(\emptyset, \{b\}, \{e\}, \{g\})$
 - $\blacktriangleright \ (\{a\}, \{b\}, \{c, d\}, \{g\})$

Towards Distributed Equilibria Building for MCS

Obstacles:

- abstraction of contexts
- information hiding and security aspects
- lack of system topology
- cycles between contexts

We need to capture:

- dependencies between contexts
- representation of partial knowledge
- combination/join of local results

Import Neighborhood & Closure

Import neighborhood of C_k

$$In(k) = \{c_i \mid (c_i : p_i) \in B(r), r \in br_k\}$$

Import Neighborhood & Closure

Import neighborhood of C_k

$$In(k) = \{c_i \mid (c_i : p_i) \in B(r), r \in br_k\}$$

Import closure IC(k) of C_k is the smallest set *S* such that (i) $k \in S$ and (ii) for all $i \in S$, $In(i) \subseteq S$.

Partial Belief States and Equilibria

Let $M = (C_1, \ldots, C_n)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^n \mathbf{BS}_i$

Partial Belief States and Equilibria

Let $M = (C_1, \ldots, C_n)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^n \mathbf{BS}_i$

A partial belief state of *M* is a sequence $S = (S_1, \ldots, S_n)$, where $S_i \in \mathbf{BS}_i \cup \{\epsilon\}$, for $1 \le i \le n$

Partial Belief States and Equilibria

Let $M = (C_1, \ldots, C_n)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^n \mathbf{BS}_i$

A partial belief state of *M* is a sequence $S = (S_1, ..., S_n)$, where $S_i \in \mathbf{BS}_i \cup \{\epsilon\}$, for $1 \le i \le n$

 $S = (S_1, \ldots, S_n)$ is a partial equilibrium of M w.r.t. a context C_k iff for $1 \le i \le n$,

- if $i \in IC(k)$ then $S_i \in ACC_i(kb_i \cup \{head(r) \mid r \in app(br_i, S)\})$
- otherwise, $S_i = \epsilon$

Intuitively, partial equilibria w.r.t. a context C_k cover the reachable contexts of C_k

Motivation for MCS Decomposition

Scalability issues with the basic evaluation algorithm DMCS

- unaware of global context dependencies, only know (local) import neighborhood
- a context C_i returns a possibly huge set of partial belief states, which are the join of neighbor belief states of C_i plus local belief sets

We address these issues by

- capturing inter-context dependencies (topology)
- providing a decomposition based on biconnected components
- characterizing minimal interface variables in each component
- develop the DMCSOPT algorithm which operates on query plans

Scientist Group Example

- A group of 4 scientists.
- Problem: How to go home?

Scientist Group Example

- A group of 4 scientists.
- Problem: How to go home?
- Possible solutions:
 - Car
 - Train

Scientist Group Example

- A group of 4 scientists.
- Problem: How to go home?
- Possible solutions:
 - Car: slower than train
 - Train: should bring some food
- Mr. 3 and Ms. 4 have additional information from Mr. 5 and Ms. 6

- Ms. 4 just got married to Mr. 5.
- Mr. 5 wants his wife to come back as soon as possible.

 $kb_4 = \{car_4 \lor train_4 \leftarrow \}$ $br_4 = \{train_4 \leftarrow (5 : want_sooner_5)\}$

$$kb_{5} = \{want_sooner_{5} \leftarrow soon_{5}\}$$

$$br_{5} = \{soon_{5} \leftarrow (4 : train_{4})\}$$

- Mr. 3 has a daughter, Ms. 6.
- Mr. 3 is responsible for buying provisions, if they go by train.
- If Ms. 6 is sick, then Mr. 3 must attend to her as fast as possible.

$$kb_{3} = \begin{cases} car_{3} \lor train_{3} \leftarrow \\ train_{3} \leftarrow urgent_{3} \\ sandwiches_{3} \lor chocolate_peanuts_{3} \leftarrow train_{3} \\ coke_{3} \lor juice_{3} \leftarrow train_{3} \end{cases}$$
$$br_{3} = \begin{cases} urgent_{3} \leftarrow (6:sick_{6}) \\ train_{3} \leftarrow (4:train_{4}) \end{cases};$$
$$kb_{6} = \{sick_{6} \lor fit_{6} \leftarrow \}$$

$$br_6 = \emptyset.$$

- Ms. 1 is leader of group.
- ▶ Ms. 1 is allergic to peanuts.
- Mr. 2 wants to get home somehow and doesn't want coke.

$$kb_{1} = \begin{cases} car_{1} \leftarrow not \ train_{1} \\ \perp \leftarrow peanuts_{1} \end{cases}$$
$$br_{1} = \begin{cases} train_{1} \leftarrow (2 : train_{2}), (3 : train_{3}) \\ peanuts_{1} \leftarrow (3 : chocolate_peanuts_{3}) \end{cases}$$

$$kb_{2} = \{ \perp \leftarrow not \, car_{2}, not \, train_{2} \} \text{ and} \\ br_{2} = \begin{cases} car_{2} \leftarrow (3 : car_{3}), (4 : car_{4}) \\ train_{2} \leftarrow (3 : train_{3}), (4 : train_{4}), \\ not \ (3 : coke_{3}) \end{cases} \end{cases}$$

- Ms. 1 is leader of group.
- Ms. 1 is allergic to peanuts.
- Mr. 2 wants to get home somehow and doesn't want coke.

$$kb_{1} = \begin{cases} car_{1} \leftarrow not \ train_{1} \\ \perp \leftarrow peanuts_{1} \end{cases}$$
$$br_{1} = \begin{cases} train_{1} \leftarrow (2 : train_{2}), (3 : train_{3}) \\ peanuts_{1} \leftarrow (3 : chocolate_{peanuts_{3}}) \end{cases}$$

$$kb_{2} = \{ \perp \leftarrow not \, car_{2}, not \, train_{2} \} \text{ and} \\ br_{2} = \begin{cases} car_{2} \leftarrow (3 : car_{3}), (4 : car_{4}) \\ train_{2} \leftarrow (3 : train_{3}), (4 : train_{4}), \\ not \ (3 : coke_{3}) \end{cases} \end{cases}$$

One equilibrium is $S = ({train_1}, {train_2}, {train_3, urgent_3, juice_3, sandwiches_3}, {train_4}, {soon_5, want_sooner_5}, {sick_6})$

▶ Ms. 1 decides after gathering information.

- ► Ms. 1 decides after gathering information.
- Mr. 3 and Ms. 4 do not want to bother the others.

- A graph is weakly connected if replacing every directed edge by an undirected edge yields a connected graph.
- ► A vertex *c* of a weakly connected graph *G* is a *cut vertex*, if *G**c* is disconnected (3 and 4 are cut vertices)

 Based on cut vertices, we can decompose the MCS into a block tree: provides a "high-level" view of the dependencies (edge partitioning)

- Based on cut vertices, we can decompose the MCS into a block tree: provides a "high-level" view of the dependencies (edge partitioning)
- The block tree of our example is:

- B_1 induced by $\{1, 2, 3, 4\}$
- ▶ *B*² induced by {4,5}
- ▶ *B*₃ induced by {3,6}

cycle breaking by creating a spanning tree of a cyclic MCS

cycle breaking by creating a spanning tree of a cyclic MCS

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P = \langle P_0, \rangle$

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P = \langle P_0, P_1, \rangle$

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P = \langle P_0, P_1, P_2, \rangle$

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P = \langle P_0, P_1, P_2, P_3, \rangle$

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P = \langle P_0, P_1, P_2, P_3, P_4 \rangle$

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P = \langle P_0, P_1, P_2, P_3, P_4 \rangle$

cycle breaker edges cb(G, P): remove last edge from each path P_i in G

Intuition: for a removed edge (ℓ, t) , guess at leaf C_{ℓ} the variables at C_{t}

Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G^- with the smallest set of edges whose transitive closure G^+ equals the one of G

Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G^- with the smallest set of edges whose transitive closure G^+ equals the one of G

Intuitively, the transitive reduction of an acyclic graph is unique, and one can evaluate the contexts using a topological sort of the contexts.

- B_1 : acyclic \rightarrow apply transitive reduction
- B₂: cyclic → apply ear decomposition, remove last edge from each ear, then apply transitive reduction (already reduced)
- B₃: acyclic and already reduced

Optimization: Minimal Interface

In a pruned block B', take all variables from

- the minimal interface in B'
- child cut vertices c
- removed edges E

Outcome: query plan for the MCS to restrict calls and partial belief states

- $S = (\{ train_1 \}, \{ train_2 \}, \{ train_3, urgent_3, juice_3, sandwiches_3 \}, \\ \{ train_4 \}, \{ soon_5, want_sooner_5 \}, \{ sick_6 \})$
- $T = (\{ train_1 \}, \{ train_2 \}, \{ train_3, juice_3, sandwiches_3 \}, \\ \{ train_4 \}, \{ soon_5, want_sooner_5 \}, \{ fit_6 \})$
- $U = (\{ car_1 \}, \{ car_2 \}, \{ car_3 \}, \{ car_4 \}, \emptyset, \{ fit_6 \})$

 $S|_{B_1} = (\{train_1\}, \{train_2\}, \{train_3, juice_3, sandwiches_3\}, \{train_4\}, \emptyset, \emptyset)$ $U|_{B_1} = (\{car_1\}, \{car_2\}, \{car_3\}, \{car_4\}, \emptyset, \emptyset)$

Experiments

	п	A_{ϕ}	A_{\bowtie}	A_{\leftrightarrow}	$A_{\Sigma}(\sigma)$	# (σ)	B_{ϕ}	B_{\bowtie}	B_{\leftrightarrow}	$B_{\Sigma}(\sigma)$	$\#(\sigma)$
D	13	0.9	0.0	0.0	1.0 (0.2)	28 (17.6)	0.8	8.4	0.0	9.4 (5.5)	3136 (3155.8)
	25	11.2	0.5	0.0	12.8 (1.3)	17 (18.9)	_				
	31	51.1	3.7	0.0	59.5 (8.9)	58 (49.7)	—				
R	10	0.1	0.0	0.0	0.1 (0.0)	3.5 (3.4)	0.1	0.0	0.0	0.2 (0.1)	300 (694.5)
	13	0.1	0.0	0.0	0.2 (0.1)	6 (1.2)	0.1	1.5	1.9	3.9 (5.3)	5064 (21523.8)
	301	4.1	0.1	2.1	10.2 (2.2)	8 (4.9)	—				
Ζ	13	0.6	0.1	0.0	0.7 (0.2)	34 (41.8)	5.5	4.2	0.0	11.5 (4.0)	3024 (1286.8)
	151	8.9	22.3	0.4	32.2 (7.3)	33 (28.5)	—				
	301	21.6	99.5	1.7	124.3 (20.6)	22 (41.4)	—				
Η	9	0.2	0.0	0.0	0.2 (0.0)	28 (44.4)	1.1	0.9	0.0	2.0 (1.3)	684 (1308.0)
	101	1.8	0.3	0.3	3.8 (1.0)	48 (76.6)	—				
	301	7.8	2.0	2.4	25.1 (8.7)	38 (34.2)	_				

Table: Runtime for DMCSOPT (A_x) and DMCS (B_x) , timeout 180 secs (—) Random instances with *n* contexts and topologies:

Ring $\xrightarrow{\leftarrow}$, Zig-zag Diamono . House Timings:

clasp (ϕ), Belief state combination (\bowtie) and transfer (\leftrightarrow); No. of partial equilibria: #

Conclusions

- MCS is a general framework for integrating diverse formalisms
- First attempt for distributed MCS evaluation
- Initial experiments with a prototype implementation
- Decomposition technique is encouraging: binary tree with n = 600 evaluated in 176secs (# = 4)

Conclusions

- MCS is a general framework for integrating diverse formalisms
- First attempt for distributed MCS evaluation
- Initial experiments with a prototype implementation
- Decomposition technique is encouraging: binary tree with n = 600 evaluated in 176secs (# = 4)

Future work:

- improve scalability
 - approximation semantics
 - syntactic restrictions
 - specialized algorithms for some types of topologies
- dynamic multi-context systems

References I

Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics or: How we can do without modal logics.

Artificial Intelligence, 65(1):29–70, 1994.