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Multi-Context Systems (MCS)

» MCSen introduced by [Giunchiglia and Serafini, 1994]:
» represent inter-contextual information flow
> express reasoning w.r.t. contextual information
» allow decentralized, pointwise information exchange
» monotonic, homogeneous logic

» Framework extended for integrating
heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]
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Syntax of Multi-Context Systems

» multi-context system

» acollection M = (Cy,...,C,) of contexts
» context C; = (L;, kb;, br;)

» L;: alogic

» kb;: a knowledge base of logic L;

» br;: a set of bridge rules
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Syntax of Multi-Context Systems

» multi-context system

» acollection M = (Cy,...,C,) of contexts

» context C; = (L;, kb;, br;)
» L;: alogic
» kb;: a knowledge base of logic L;

» br;: a set of bridge rules

» logic L = (KB.,BS;,ACC,)
» KB;: set of well-formed knowledge bases
» BS;: is the set of possible belief sets

» ACC;: acceptability function KB, — 2BS:
Which belief sets are accepted by a knowledge base?
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Syntax of Multi-Context Systems (bridge rules)

» multi-context system
M= (Cy,...,Cp)
> context
Ci = (Ll', kb,', br,-)
> logic
L; = (KB;, BS;, ACC))

» Bridge rule r € br; of a context C;

S(-(Cl :pl)a"'v(cj:pj)v

not (Cj+1 :pj—i-l)a ..., hot (Cm pm)

> (cx : pi) looks at belief p, in context C,,
» ris applicable :& positive/negative beliefs are present/absent

» we add the head s to kb; if r is applicable



Semantics of Multi-Context Systems

» multi-context system
M= (Cy,...,Cp)
> context
Ci = (Ll', kb,', br,-)
> logic
L; = (KB;, BS;, ACC))

» knowledge base of a context C;
kb; € KB;
> set of bridge rules br; of a context C; of form
s« (cr:p1),---; (¢ 2 pj)ynot (Cgr < 1) - - - not (Cm < Pm)

» Contexts Cy, ..., C, are knowledge bases
with semantics in terms of accepted belief sets

» S =(S1,...,S,) is a belief state of M with each S; € BS;
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Semantics of Multi-Context Systems

» multi-context system
M= (Cy,...,Cp)
> context
Ci = (Ll', kb,', br,-)
> logic
L; = (KB;, BS;, ACC))

» Equilibrium semantics

» A belief state S = (S, ..., S,) with S; € BS;
... makes certain bridge rules applicable,
...add applicable bridge heads to kb;

= Sis an equilibrium :&
each kb; plus acceptable bridge heads from br; accepts S;

S; € ACC;(kb; U {head(r) | r € app(br;,S)})



The Diamond Example

M = (Cy, C,, C3,Cy), were each L; of C; is an ASP logic

G

kb =
bri={a+ (2:0),3:¢)}
\ Equilibria:
C2 C3 > (®7®7®7{f})

kby =) kb = ced > @7 b}, {e},
[,,,2:{,,%(4:5,)}] [ {ec} ] (0, 15}, (e}, (&)

brs={cVenot(4:f)} > ({a},{b},{c,d},{g})

kby={fvg+}

bry=10 =
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Towards Distributed Equilibria Building for MCS

Obstacles:

v

abstraction of contexts

v

information hiding and security aspects

v

lack of system topology

v

cycles between contexts

We need to capture:
» dependencies between contexts
» representation of partial knowledge

» combination/join of local results

22



Import Neighborhood & Closure

Import neighborhood of Cy

In(k) = {ci | (ci : pi) € B(r),r € br}

/@D\ In(1)
@)
()
() (<)




Import Neighborhood & Closure

Import neighborhood of C;

In(k) = {ci | (¢i : pi) € B(r),r € br}

Import closure IC(k) of Cy is the
smallest set S such that

(i) k € Sand

(i) forall i € S, In(i) C S.
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Partial Belief States and Equilibria

LetM = (Cy,...,C,) be an MCS, and let ¢ ¢ | J_, BS;
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Partial Belief States and Equilibria

LetM = (Cy,...,C,) be an MCS, and let ¢ ¢ | J_, BS;

A partial belief state of M is a sequence S = (S, ...

SiEBS,‘U{E},fOI’lgign

,Sn), where
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Partial Belief States and Equilibria
LetM = (Cy,...,C,) be an MCS, and let ¢ ¢ | J_, BS;

A partial belief state of M is a sequence S = (S, ...,Sy), where
SiGBS,‘U{E},fOI'l <i<n

S=(S1,...,S,) is a partial equilibrium of M w.r.t. a context Cy
iff for 1 <i <n,
» if i € IC(k) then S; € ACC;(kb; U {head(r) | r € app(bri,S)})

» otherwise, S; = ¢

Intuitively, partial equilibria w.r.t. a context C; cover the reachable
contexts of Cy
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Example

Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c,f, g}.

N

kby = 0 k=1 ¢4
[brg{b(—(4:g)}] [ {"‘_C} }
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Example

Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c,f, g}.

N

kby = 0 k=1 ¢4
[brg{b(—(4:g)}] [ {"‘_C} }

(Ea €6 {ﬁfa g})
(57 66 {fv _‘g})




Example

Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c,f, g}.

\ )
G / (e,€,{~c,~d, e}, {~f.g})

kby =0 kb3 = cd € €,1c,d,—e},{—f, g
[brz{be(zt:g)}] [ Lt } O AR

(6, €, €, {ﬁfv g})
(53 €6 {f7 _‘g})
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Example

Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c,f, g}.

\ @0 el 78D
¢ C; (67 {ﬁh}:ev {fa ﬁg})

c d (5167 {_'Cv _‘d7 e}y{_'fa g})
by =0 ] w={ T4} (6,6, {c,d, e}, (. 8})
bry={cVe<«not(4:f)} (e, €, {—c, —d, e}, {f, g})

(Ev €6 {ﬁfv g})
(67 66 {f: _‘g})

kby={fVeg+}
bra =10
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Example

Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c,f, g}.

kb =0 (67{b}7{c}7{_ff"g})
3 ] (€, {b}, {=c}, {=f,8})

7 : (Ea{ﬁb}v{ﬁck{ﬁ ﬁg})
\ (67 {b}767{_'f7g})
¢ C; (67 {ﬁb}:ev {fa ﬁg})

c«d (6,¢,{—c,~d, e}, {f,g})
["”2 =0 ] kbs = { dec } (e,¢,{c,d, ~e}, {f, })
(67 ¢ {_‘Cv —d, _‘e}v {f7 _‘g})

(Ev €6 {ﬁfa g})
(67 66 {f: _‘g})
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Example

Evaluation of an Multi-Context System with the DMCS algorithm
Input: interface variables V = {a, b, c,f, g}.

({_'a}v {b}7 {_‘C}7 {ﬁfv g})

[kbl =0 ] ({a},{b},{c},{—gf,g})
({ﬁa}v {ﬁb}v {ﬁc}f {f7 jg})

\\\N (e 0}, &, (/&)
o C; (57 {ﬁb}v € {fv jg})

c+d (6767 {_‘C7 —d, 6}7{_'f7g})
G“—@ ] M:{dec} (e,¢,{c.d, ~e}, {~f,8})
(67 ) {_‘C’ —d, _'e}v {fv _‘g})

(Ev €6 {ﬁfv g})
(67 ) {f7 _‘g})
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Motivation for MCS Decomposition

Scalability issues with the basic evaluation algorithm DMCS

» unaware of global context dependencies, only know (local) import
neighborhood

» a context C; returns a possibly huge set of partial belief states,
which are the join of neighbor belief states of C; plus local belief sets

We address these issues by
» capturing inter-context dependencies (topology)
» providing a decomposition based on biconnected components
» characterizing minimal interface variables in each component

» develop the DMCSOPT algorithm which operates on query plans

10/22



Scientist Group Example

ONONONO

Ms.1 Mr.2 Mr.3 Ms. 4

> A group of 4 scientists.
» Problem: How to go home?
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Scientist Group Example
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» Problem: How to go home?

» Possible solutions:
» Car
» Train
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Scientist Group Example

ONONONO

Ms.1 Mr.2 Mr.3 Ms. 4

v

A group of 4 scientists.

v

Problem: How to go home?

v

Possible solutions:
» Car: slower than train
» Train: should bring some food

v

Mr. 3 and Ms. 4 have additional information from Mr. 5 and Ms. 6

11/22



Scientist Group Example (ctd.)

» Ms. 4 just got married to Mr. 5.
» Mr. 5 wants his wife to come back as

soon as possible. @
kbsy = {car4 V traing < } @ @
bry = {traing < (5 : want_sooners) }

kbs = {want,sooner5 — s00n5}
brs = {soons < (4 : trainy) }

12/22



Scientist Group Example (ctd.)

» Mr. 3 has a daughter, Ms. 6.

» Mr. 3 is responsible for buying
provisions, if they go by train. @

» If Ms. 6 is sick, then Mr. 3 must attend

to her as fast as possible. @ e

cars V trainz <—

kb — trainz <— urgent,
3= sandwichess V chocolate_peanuts; < trains

cokes V juice; <+ trainz

urgenty < (6 : sicks) | .
br; = . . 5
trainy < (4 : traing)

kbs = {sicke V fitg < } e

br6 = @
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Scientist Group Example (ctd.)

» Ms. 1 is leader of group.
» Ms. 1 is allergic to peanuts.
» Mr. 2 wants to get home somehow and

doesn’t want coke. A

kb — cary < not train;
' L < peanuts,

br — trainy < (2 : trainz), (3 : trainz)
"7 \peanuts, « (3 : chocolate_peanuts.)

kb, = {L <« not cars, not train, } and

cary < (3 : car), (4 : cars)
bry = < trainy <+ (3 : trains), (4 : traing),

not (3 : cokes)
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Scientist Group Example (ctd.)

» Ms. 1 is leader of group.
» Ms. 1 is allergic to peanuts.
» Mr. 2 wants to get home somehow and G

doesn’t want coke. A
by = {carl « not traml} e'e
L < peanuts,
br { trainy < (2 : trainz), (3 : trainz) }
=

| peanuts, < (3 : chocolate_peanuts,)

kb, = {L <« not cars, not train, } and
cary < (3 : car3), (4 : cars)
bry = < trainy < (3 : trains), (4 : traing),

not (3 : cokes)

One equilibrium is S = ({train; }, {train, },
{trains, urgents, juices, sandwichess }, {traina }, {soons, want_sooners},

{sicke})
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Scientist Group Example (ctd.)

» Ms. 1 decides after gathering information.

13/22



Scientist Group Example (ctd.)

» Ms. 1 decides after gathering information.
» Mr. 3 and Ms. 4 do not want to bother the others.
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Scientist Group Example (ctd.)

» A graph is weakly connected if replacing every directed edge by an
undirected edge yields a connected graph.

» A vertex ¢ of a weakly connected graph G is a cut vertex, if G\c is
disconnected (3 and 4 are cut vertices)
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Scientist Group Example (ctd.)

» Based on cut vertices, we can decompose the MCS into a
block tree: provides a “high-level” view of the dependencies
(edge partitioning)
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Scientist Group Example (ctd.)

» Based on cut vertices, we can decompose the MCS into a
block tree: provides a “high-level” view of the dependencies
(edge partitioning)

» The block tree of our example is:

(1)
| p/ 6?9 3
.

B

» B induced by {1,2,3,4}
» B, induced by {4,5}
» Bsinduced by {3, 6}

14/22



Optimization: Creating Acyclic Topologies
cycle breaking by creating a spanning tree of a cyclic MCS
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Optimization: Creating Acyclic Topologies
cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = ( Py, Py, P, Py)
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Optimization: Creating Acyclic Topologies
cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition P = ( Py, Py, P,

cycle breaker edges cb(G, P): remove last edge from each path P; in G

Intuition: for a removed edge (4, t), guess at leaf C; the variables at C;
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Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G~ with the smallest set
of edges whose transitive closure G* equals the one of G

G Gt G~
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Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G~ with the smallest set
of edges whose transitive closure G* equals the one of G

G Gt G~

Intuitively, the transitive reduction of an acyclic graph is unique, and one
can evaluate the contexts using a topological sort of the contexts.
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Scientist Group Example (ctd.)

B

3
B B,
(4)
\
!
(6)
)

» Bj: acyclic — apply transitive reduction

» B,: cyclic — apply ear decomposition, remove last edge from each
ear, then apply transitive reduction (already reduced)

» Bj: acyclic and already reduced

17/22



Optimization: Minimal Interface

B

4 3
By B,
.
/ 0
6

In a pruned block B’, take all variables from
» the minimal interface in B’

>

» removed edges E

Outcome: query plan for the MCS to restrict calls and partial belief states
18/22



Scientist Group Example (ctd.)

B

B

.

S = ({train, }, {trainy }, {trains, urgents, juice,, sandwichess },
{traing}, {soons, want_sooners}, {sicke})

T = ( {train, }, {train, }, {trains, juices, sandwichess },
{trains}, {soons, want_sooners}, {fits})

U = ({cari},{cary},{cars},{cars}, 0, {fit})

19/22



Scientist Group Example (ctd.)

B

3
B, 5,
.
\
li
(6)
)
“S|p,” = ({train, }, {trainy}, {trains, juices, sandwichess }, {trains }, 0, 0)

“Uls,” = ({car1}, {cara}, {cars}, {cars},0,0)

19/22



Experiments

n Ay A Ao Ay (0) # (o) By Bywq Bo By (o) # (o)

D 13| 09 00 00 1.0(0.2) 28(17.6)] 0.8 84 0.0 9.4(55) 3136(31558)
25/11.2 05 00 128(1.3) 17(18.9)| —
31/511 37 00 595(89) 58(49.7)| —

R 10| 0.1 00 00 0.1(0.0) 3.5(34)] 01 00 0.0 02(0.1) 300 (694.5)
13| 01 00 00 02(.1) 6(1.2) 0.1 15 1.9 3.9(53) 5064 (21523.8)
301 41 01 21 102(22) 8(49)| —

Z 13| 0.6 01 00 0.7(0.2) 34(41.8)| 55 42 0.011.5(4.0) 3024 (1286.8)
151| 8.9 223 04 322(7.3) 33(285) —
301/ 21.6 99.5 1.7124.3(20.6) 22 (41.4)| —

H 9] 02 00 00 02(0.0) 28(444)| 11 09 0.0 2.0(1.3) 684 (1308.0)
101 1.8 0.3 0.3 3.8(1.0) 48(76.6) —
301| 7.8 20 24 251(87) 38(342) —

Table: Runtime for DMCSOPT (A,) and DMCS (B,), timeout 180 secs (—)

Random instances with n contexts and topologies:

Diamond @ ,Ringd&),Zig—zag % ,House@

Timings:

clasp (¢), Belief state combination (>

) and transfer (<>

); No. of partial equilibria: #
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Experiments

100

DMCSOPT mmmm #58'

DMCS mmmm Diamond
#17
#3136
10 1
1l #720 #28 |
#28
0.1

10-10-5-5 13-10-5-5 25-10-5-5 31-10-5-5

evaluation time / secs (logscale)

Parameter Pi=(n,s,b,r) # equilibria 21 /90



Experiments

evaluation time / secs (logscale)

100

10

0.1

DMCSOPT mmmm

DMCS mmmm Ring
#8
#5064
#300 #6
#3.5 I
10-10-5-5 13-10-5-5 301-10-5-5

Parameter Pi=(n,s,b,r) # equilibria
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Experiments

1000 ‘ ‘
DMCSOPT mmmm -
DMCS s Zigzag
—~ #22
)
S 100 |
n
g #33
]
8 #3024
2}
~ 10
(]
£
<
S
§ #34
& 1
>
(]
0.1
13-10-5-5 151-10-5-5 301-10-5-5

Parameter Pi=(n,s,b,r) # equilibria




Experiments

evaluation time / secs (logscale)

100

=
o

0.1

DMCSOPT
DMCS mmmm

#684

#28

House

#38
#48
#26
#17

9-10-5-5

13-10-5-5 41-10-5-5 101-10-5-5 301-10-5-5

Parameter Pi=(n,s,b,r) # equilibria
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Experiments

1000 :
DMCSOPT
DMCS mmm
#4
)
§ 100 + E
g Binary Tree
[}
[8]
(]
2 10 - il
g #7
= #9.5
c
2
‘g #8
= 14t i
>
[}
0.1

100-9-4-4 200-9-4-4 400-9-4-4 600-9-4-4

Parameter Pi=(n,s,b,r) # equilibria 21/22



Conclusions

» MCS is a general framework for integrating diverse formalisms
» First attempt for distributed MCS evaluation
» Initial experiments with a prototype implementation

» Decomposition technique is encouraging:
binary tree with n = 600 evaluated in 176secs (# = 4)
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Conclusions

» MCS is a general framework for integrating diverse formalisms
» First attempt for distributed MCS evaluation
» Initial experiments with a prototype implementation

» Decomposition technique is encouraging:
binary tree with n = 600 evaluated in 176secs (# = 4)

Future work:

» improve scalability
» approximation semantics

» syntactic restrictions

» specialized algorithms for some types of topologies
» dynamic multi-context systems
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