Decomposition of Distributed Nonmonotonic Multi-Context Systems

Seif El-Din Bairakdar
Michael Fink Thomas Krennwallner

KBS Group, Institute of Information Systems, Vienna University of Technology

> JELIA 2010
> Sep 15, 2010

Overview

Heterogeneous \& Nonmonotonic Multi-Context Systems

Decomposition of Nonmonotonic Multi-Context Systems

Experiments

Conclusions

Multi-Context Systems (MCS)

- MCSen introduced by [Giunchiglia and Serafini, 1994]:
- represent inter-contextual information flow
- express reasoning w.r.t. contextual information
- allow decentralized, pointwise information exchange
- monotonic, homogeneous logic
- Framework extended for integrating heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]

Syntax of Multi-Context Systems

- multi-context system
- a collection $M=\left(C_{1}, \ldots, C_{n}\right)$ of contexts
- context $C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)$
- L_{i} : a logic
- $k b_{i}$: a knowledge base of logic L_{i}
- $b r_{i}$: a set of bridge rules

Syntax of Multi-Context Systems

- multi-context system
- a collection $M=\left(C_{1}, \ldots, C_{n}\right)$ of contexts
- context $C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)$
- L_{i} : a logic
- $k b_{i}$: a knowledge base of logic L_{i}
- $b r_{i}$: a set of bridge rules
- logic $L=\left(\mathbf{K B}_{L}, \mathbf{B S}_{L}, \mathbf{A C C}_{L}\right)$
- $\mathbf{K B}_{L}$: set of well-formed knowledge bases
- $\mathbf{B S}_{L}$: is the set of possible belief sets
- $\mathbf{A C C}_{L}$: acceptability function $\mathbf{K B}_{L} \mapsto 2^{\mathbf{B S}_{L}}$ Which belief sets are accepted by a knowledge base?

Syntax of Multi-Context Systems (bridge rules)

- multi-context system

$$
M=\left(C_{1}, \ldots, C_{n}\right)
$$

- context

$$
C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)
$$

- logic

$$
L_{i}=\left(\mathbf{K B}_{i}, \mathbf{B S}_{i}, \mathbf{A C C}_{i}\right)
$$

- Bridge rule $r \in b r_{i}$ of a context C_{i}

$$
\begin{aligned}
s \leftarrow & \left(c_{1}: p_{1}\right), \ldots,\left(c_{j}: p_{j}\right), \\
& \operatorname{not}\left(c_{j+1}: p_{j+1}\right), \ldots, \operatorname{not}\left(c_{m}: p_{m}\right)
\end{aligned}
$$

- $\left(c_{k}: p_{k}\right)$ looks at belief p_{k} in context $C_{c_{k}}$
- r is applicable $: \Leftrightarrow$ positive/negative beliefs are present/absent
- we add the head s to $k b_{i}$ if r is applicable

Semantics of Multi-Context Systems

- multi-context system

$$
M=\left(C_{1}, \ldots, C_{n}\right)
$$

- context

$$
C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)
$$

- logic

$$
L_{i}=\left(\mathbf{K B}_{i}, \mathbf{B S}_{i}, \mathbf{A C C}_{i}\right)
$$

- knowledge base of a context C_{i}

$$
k b_{i} \in \mathbf{K B}_{i}
$$

- set of bridge rules $b r_{i}$ of a context C_{i} of form

$$
s \leftarrow\left(c_{1}: p_{1}\right), \ldots,\left(c_{j}: p_{j}\right), \operatorname{not}\left(c_{j+1}: p_{j+1}\right), \ldots, \operatorname{not}\left(c_{m}: p_{m}\right)
$$

- Contexts C_{1}, \ldots, C_{n} are knowledge bases with semantics in terms of accepted belief sets
- $S=\left(S_{1}, \ldots, S_{n}\right)$ is a belief state of M with each $S_{i} \in \mathbf{B S}_{i}$

Semantics of Multi-Context Systems

- multi-context system

$$
M=\left(C_{1}, \ldots, C_{n}\right)
$$

- context

$$
C_{i}=\left(L_{i}, k b_{i}, b r_{i}\right)
$$

- logic

$$
L_{i}=\left(\mathbf{K B}_{i}, \mathbf{B S}_{i}, \mathbf{A C C}_{i}\right)
$$

- Equilibrium semantics
- A belief state $S=\left(S_{1}, \ldots, S_{n}\right)$ with $S_{i} \in \mathbf{B S}_{i}$
... makes certain bridge rules applicable,
... add applicable bridge heads to $k b_{i}$
$\Rightarrow S$ is an equilibrium : \Leftrightarrow each $k b_{i}$ plus acceptable bridge heads from $b r_{i}$ accepts S_{i}

$$
S_{i} \in \mathbf{A C C}_{i}\left(k b_{i} \cup\left\{\operatorname{head}(r) \mid r \in \operatorname{app}\left(b r_{i}, S\right)\right\}\right)
$$

The Diamond Example

$M=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$, were each L_{i} of C_{i} is an ASP logic

Equilibria:

- ($\emptyset, \emptyset, \emptyset,\{f\})$
- ($\emptyset,\{b\},\{e\},\{g\})$
- $(\{a\},\{b\},\{c, d\},\{g\})$

Towards Distributed Equilibria Building for MCS

Obstacles:

- abstraction of contexts
- information hiding and security aspects
- lack of system topology
- cycles between contexts

We need to capture:

- dependencies between contexts
- representation of partial knowledge
- combination/join of local results

Import Neighborhood \& Closure

Import neighborhood of C_{k}

$$
\operatorname{In}(k)=\left\{c_{i} \mid\left(c_{i}: p_{i}\right) \in B(r), r \in b r_{k}\right\}
$$

Import Neighborhood \& Closure

Import neighborhood of C_{k}
$\operatorname{In}(k)=\left\{c_{i} \mid\left(c_{i}: p_{i}\right) \in B(r), r \in b r_{k}\right\}$

Import closure $I C(k)$ of C_{k} is the smallest set S such that
(i) $k \in S$ and
(ii) for all $i \in S, \operatorname{In}(i) \subseteq S$.

Partial Belief States and Equilibria

Let $M=\left(C_{1}, \ldots, C_{n}\right)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \mathbf{B S}_{i}$

Partial Belief States and Equilibria

Let $M=\left(C_{1}, \ldots, C_{n}\right)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \mathbf{B S}_{i}$

A partial belief state of M is a sequence $S=\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \in \mathbf{B S}_{i} \cup\{\epsilon\}$, for $1 \leq i \leq n$

Partial Belief States and Equilibria

Let $M=\left(C_{1}, \ldots, C_{n}\right)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \mathbf{B S}_{i}$

A partial belief state of M is a sequence $S=\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \in \mathbf{B S}_{i} \cup\{\epsilon\}$, for $1 \leq i \leq n$
$S=\left(S_{1}, \ldots, S_{n}\right)$ is a partial equilibrium of M w.r.t. a context C_{k} iff for $1 \leq i \leq n$,

- if $i \in I C(k)$ then $S_{i} \in \mathbf{A C C}_{i}\left(k b_{i} \cup\left\{\operatorname{head}(r) \mid r \in \operatorname{app}\left(b r_{i}, S\right)\right\}\right)$
- otherwise, $S_{i}=\epsilon$

Intuitively, partial equilibria w.r.t. a context C_{k} cover the reachable contexts of C_{k}

Example

Evaluation of an Multi-Context System with the DMCS algorithm Input: interface variables $V=\{a, b, c, f, g\}$.

Example

Evaluation of an Multi-Context System with the DMCS algorithm Input: interface variables $V=\{a, b, c, f, g\}$.

Example

Evaluation of an Multi-Context System with the DMCS algorithm Input: interface variables $V=\{a, b, c, f, g\}$.

Example

Evaluation of an Multi-Context System with the DMCS algorithm Input: interface variables $V=\{a, b, c, f, g\}$.

Example

Evaluation of an Multi-Context System with the DMCS algorithm Input: interface variables $V=\{a, b, c, f, g\}$.

Example

Evaluation of an Multi-Context System with the DMCS algorithm Input: interface variables $V=\{a, b, c, f, g\}$.

Motivation for MCS Decomposition

Scalability issues with the basic evaluation algorithm DMCS

- unaware of global context dependencies, only know (local) import neighborhood
- a context C_{i} returns a possibly huge set of partial belief states, which are the join of neighbor belief states of C_{i} plus local belief sets

We address these issues by

- capturing inter-context dependencies (topology)
- providing a decomposition based on biconnected components
- characterizing minimal interface variables in each component
- develop the DMCSOPT algorithm which operates on query plans

Scientist Group Example

- A group of 4 scientists.
- Problem: How to go home?

Scientist Group Example

- A group of 4 scientists.
- Problem: How to go home?
- Possible solutions:
- Car
- Train

Scientist Group Example

- A group of 4 scientists.
- Problem: How to go home?
- Possible solutions:
- Car: slower than train
- Train: should bring some food
- Mr. 3 and Ms. 4 have additional information from Mr. 5 and Ms. 6

Scientist Group Example (ctd.)

- Ms. 4 just got married to Mr. 5.
- Mr. 5 wants his wife to come back as soon as possible.

$$
\begin{aligned}
& k b_{4}=\left\{\text { car }_{4} \vee \text { train }_{4} \leftarrow\right\} \\
& b r_{4}=\left\{\text { train }_{4} \leftarrow\left(5: \text { want_sooner }_{5}\right)\right\}
\end{aligned}
$$

$$
k b_{5}=\left\{\text { want_sooner }_{5} \leftarrow \text { soon }_{5}\right\}
$$

$$
b r_{5}=\left\{\text { soon }_{5} \leftarrow\left(4: \text { train }_{4}\right)\right\}
$$

Scientist Group Example (ctd.)

- Mr. 3 has a daughter, Ms. 6.
- Mr. 3 is responsible for buying provisions, if they go by train.
- If Ms. 6 is sick, then Mr. 3 must attend to her as fast as possible.

$$
\begin{aligned}
& k b_{3}=\left\{\begin{aligned}
\text { car }_{3} \vee \text { train }_{3} & \leftarrow \\
\text { train }_{3} & \leftarrow \text { urgent }_{3} \\
\text { sandwiches }_{3} \vee \text { chocolate_peanuts }_{3} & \leftarrow \text { train }_{3} \\
\text { coke }_{3} \vee \text { juice }_{3} & \leftarrow \text { train }_{3}
\end{aligned}\right\} \\
& b r_{3}=\left\{\begin{aligned}
\text { urgent }_{3} & \leftarrow\left(6: \text { sick }_{6}\right) \\
\text { train }_{3} & \leftarrow\left(4: \text { train }_{4}\right)
\end{aligned}\right\} ; \\
& k b_{6}=\left\{\text { sick }_{6} \vee \text { fit }_{6} \leftarrow\right\} \\
& b r_{6}=\emptyset \text {. }
\end{aligned}
$$

Scientist Group Example (ctd.)

- Ms. 1 is leader of group.
- Ms. 1 is allergic to peanuts.
- Mr. 2 wants to get home somehow and doesn't want coke.

$$
\begin{aligned}
& k b_{1}=\left\{\begin{array}{c}
\text { car }_{1} \leftarrow \text { not train } \\
\perp \leftarrow \text { peanuts }_{1}
\end{array}\right\} \\
& b r_{1}=\left\{\begin{array}{c}
\text { train }_{1} \leftarrow\left(2: \text { train }_{2}\right),\left(3: \text { train }_{3}\right) \\
\text { peanuts }_{1} \leftarrow\left(3: \text { chocolate_peanuts }_{3}\right)
\end{array}\right\} \\
& k b_{2}=\left\{\perp \leftarrow \text { not car } 2, \text { not train }_{2}\right\} \text { and } \\
& b r_{2}=\left\{\begin{array}{c}
\text { car }_{2} \leftarrow\left(3: \text { car }_{3}\right),\left(4: \text { car }_{4}\right) \\
\text { train }_{2} \leftarrow\left(3: \text { train }_{3}\right),\left(4: \text { train }_{4}\right), \\
\text { not }\left(3: \text { coke }_{3}\right)
\end{array}\right\}
\end{aligned}
$$

Scientist Group Example (ctd.)

- Ms. 1 is leader of group.
- Ms. 1 is allergic to peanuts.
- Mr. 2 wants to get home somehow and doesn't want coke.

$$
\begin{aligned}
& k b_{1}=\left\{\begin{array}{c}
\text { car }_{1} \leftarrow \text { not train } \\
\perp \leftarrow \text { peanuts }_{1}
\end{array}\right\} \\
& \text { r }_{1}=\left\{\begin{array}{c}
\text { train }_{1} \leftarrow\left(2: \text { train }_{2}\right),\left(3: \text { train }_{3}\right) \\
\text { peanuts }_{1} \leftarrow\left(3: \text { chocolate_peanuts }_{3}\right)
\end{array}\right\} \\
& k b_{2}=\{\perp \leftarrow \text { not car } 2, \text { not train } 3 \text { and } \\
& b r_{2}=\left\{\begin{array}{c}
\text { car }_{2} \leftarrow\left(3: \text { car }_{3}\right),\left(4: \text { car }_{4}\right) \\
\text { train }_{2} \leftarrow\left(3: \text { train }_{3}\right),\left(4: \text { train }_{4}\right), \\
\text { not }\left(3: \text { coke }_{3}\right)
\end{array}\right\}
\end{aligned}
$$

One equilibrium is $S=\left(\left\{\right.\right.$ train $\left._{1}\right\},\left\{\right.$ train $\left._{2}\right\}$, $\left\{\right.$ train $_{3}$, urgent $_{3}$, juice $_{3}$, sandwiches $\left._{3}\right\},\left\{\right.$ train $\left._{4}\right\},\left\{\right.$ soon $_{5}$, want_sooner $\left._{5}\right\}$, $\left.\left\{s i c k_{6}\right\}\right)$

Scientist Group Example (ctd.)

- Ms. 1 decides after gathering information.

Scientist Group Example (ctd.)

- Ms. 1 decides after gathering information.
- Mr. 3 and Ms. 4 do not want to bother the others.

Scientist Group Example (ctd.)

- A graph is weakly connected if replacing every directed edge by an undirected edge yields a connected graph.
- A vertex c of a weakly connected graph G is a cut vertex, if $G \backslash c$ is disconnected (3 and 4 are cut vertices)

Scientist Group Example (ctd.)

- Based on cut vertices, we can decompose the MCS into a block tree: provides a "high-level" view of the dependencies (edge partitioning)

Scientist Group Example (ctd.)

- Based on cut vertices, we can decompose the MCS into a block tree: provides a "high-level" view of the dependencies (edge partitioning)
- The block tree of our example is:

- B_{1} induced by $\{1,2,3,4\}$
- B_{2} induced by $\{4,5\}$
- B_{3} induced by $\{3,6\}$

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}\right.$,

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}\right.$,

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}\right.$,

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, \quad\right\rangle$

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\rangle$

Optimization: Creating Acyclic Topologies

cycle breaking by creating a spanning tree of a cyclic MCS

ear decomposition $P=\left\langle P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right\rangle$
cycle breaker edges $\operatorname{cb}(G, P)$: remove last edge from each path P_{i} in G Intuition: for a removed edge (ℓ, t), guess at leaf C_{ℓ} the variables at C_{t}

Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G^{-}with the smallest set of edges whose transitive closure G^{+}equals the one of G

Optimization: Avoiding Unnecessary Calls

transitive reduction of a digraph G is the graph G^{-}with the smallest set of edges whose transitive closure G^{+}equals the one of G

Intuitively, the transitive reduction of an acyclic graph is unique, and one can evaluate the contexts using a topological sort of the contexts.

Scientist Group Example (ctd.)

- B_{1} : acyclic \rightarrow apply transitive reduction
- B_{2} : cyclic \rightarrow apply ear decomposition, remove last edge from each ear, then apply transitive reduction (already reduced)
- B_{3} : acyclic and already reduced

Optimization: Minimal Interface

In a pruned block B^{\prime}, take all variables from

- the minimal interface in B^{\prime}
- child cut vertices c
- removed edges E

Outcome: query plan for the MCS to restrict calls and partial belief states

Scientist Group Example (ctd.)

$S=\left(\left\{\right.\right.$ train $\left._{1}\right\},\left\{\right.$ train $\left._{2}\right\},\left\{\right.$ train $_{3}$, urgent $_{3}$, juice $_{3}$, sandwiches $\left._{3}\right\}$, $\left\{\right.$ train $\left._{4}\right\},\left\{\right.$ soon $_{5}$, want_sooner $\left._{5}\right\},\left\{\right.$ sick $\left._{6}\right\}$)
$T=\left(\left\{\right.\right.$ train $\left._{1}\right\},\left\{\right.$ train $\left._{2}\right\},\left\{\right.$ train $_{3}$, juice $_{3}$, sandwiches $\left._{3}\right\}$, $\left\{\right.$ train $\left._{4}\right\},\left\{\right.$ soon $_{5}$, want_sooner $\left._{5}\right\},\left\{\right.$ fit $\left.\left._{6}\right\}\right)$
$U=\left(\left\{\operatorname{car}_{1}\right\},\left\{c a r_{2}\right\},\left\{\operatorname{car}_{3}\right\},\left\{c a r_{4}\right\}, \emptyset,\left\{\operatorname{fit}_{6}\right\}\right)$

Scientist Group Example (ctd.)

$$
\begin{aligned}
\left." S\right|_{B_{1}} " & =\left(\left\{\text { train }_{1}\right\},\left\{\text { train }_{2}\right\},\left\{\text { train }_{3}, \text { juice }_{3}, \text { sandwiches }_{3}\right\},\left\{\text { train }_{4}\right\}, \emptyset, \emptyset\right) \\
\left." U\right|_{B_{1}} " & =\left(\left\{\text { car }_{1}\right\},\left\{\text { car }_{2}\right\},\left\{\text { car }_{3}\right\},\left\{\text { car }_{4}\right\}, \emptyset, \emptyset\right)
\end{aligned}
$$

Experiments

	n	A_{ϕ}	A_{\bowtie}	A_{\leftrightarrow}	$A_{\Sigma}(\sigma)$	\# (σ)	B_{ϕ}	B_{\bowtie}	B_{\leftrightarrow}	$B_{\Sigma}(\sigma)$	\# (σ)
D	13	0.9	0.0	0.0	1.0 (0.2)	28 (17.6)	0.8	8.4	0.0	9.4 (5.5)	3136 (3155.8)
	25	11.2	0.5	0.0	12.8 (1.3)	17 (18.9)	-				
	31	51.1	3.7	0.0	59.5 (8.9)	58 (49.7)	-				
R	10	0.1	0.0	0.0	0.1 (0.0)	3.5 (3.4)	0.1	0.0	0.0	0.2 (0.1)	300 (694.5)
	13	0.1	0.0	0.0	0.2 (0.1)	6 (1.2)	0.1	1.5	1.9	3.9 (5.3)	5064 (21523.8)
	301	4.1	0.1	2.1	10.2 (2.2)	8 (4.9)	-				
Z	13	0.6	0.1	0.0	0.7 (0.2)	34 (41.8)	5.5	4.2		11.5 (4.0)	3024 (1286.8)
	151	8.9	22.3	0.4	32.2 (7.3)	33 (28.5)	-				
	301	21.6	99.5	1.7	24.3 (20.6)	22 (41.4)	-				
H	9	0.2	0.0	0.0	0.2 (0.0)	28 (44.4)	1.1	0.9	0.0	2.0 (1.3)	684 (1308.0)
	101	1.8	0.3	0.3	3.8 (1.0)	48 (76.6)	-				
	301	7.8	2.0	2.4	25.1 (8.7)	38 (34.2)	-				

Table: Runtime for DMCSOPT $\left(A_{x}\right)$ and DMCS $\left(B_{x}\right)$, timeout 180 secs (一)
Random instances with n contexts and topologies:

Diamond

Timings:
clasp (ϕ), Belief state combination (\bowtie) and transfer (\leftrightarrow); No. of partial equilibria: \#

Experiments

Parameter $\mathrm{Pi}=(\mathrm{n}, \mathrm{s}, \mathrm{b}, \mathrm{r}) \quad$ \# equilibria

Experiments

Parameter $\mathrm{Pi}=(\mathrm{n}, \mathrm{s}, \mathrm{b}, \mathrm{r}) \quad$ \# equilibria

Experiments

Parameter $\mathrm{Pi}=(\mathrm{n}, \mathrm{s}, \mathrm{b}, \mathrm{r}) \quad$ \# equilibria

Experiments

Experiments

Parameter $\mathrm{Pi}=(\mathrm{n}, \mathrm{s}, \mathrm{b}, \mathrm{r}) \quad$ \# equilibria

Conclusions

- MCS is a general framework for integrating diverse formalisms
- First attempt for distributed MCS evaluation
- Initial experiments with a prototype implementation
- Decomposition technique is encouraging: binary tree with $n=600$ evaluated in $176 \operatorname{secs}(\#=4)$

Conclusions

- MCS is a general framework for integrating diverse formalisms
- First attempt for distributed MCS evaluation
- Initial experiments with a prototype implementation
- Decomposition technique is encouraging: binary tree with $n=600$ evaluated in 176secs ($\#=4$)

Future work:

- improve scalability
- approximation semantics
- syntactic restrictions
- specialized algorithms for some types of topologies
- dynamic multi-context systems

References I

© Gerhard Brewka and Thomas Eiter.
Equilibria in heterogeneous nonmonotonic multi-context systems.
In AAAl’07, pages 385-390. AAAI Press, 2007.

* Fausto Giunchiglia and Luciano Serafini.

Multilanguage hierarchical logics or: How we can do without modal logics.
Artificial Intelligence, 65(1):29-70, 1994.

