
Decomposition of Distributed Nonmonotonic Multi-Context Systems∗

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink and Thomas Krennwallner
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9–11, A-1040 Vienna, Austria
{bairakdar,dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract

Multi-Context Systems (MCS) are formalisms that enable the
interlinkage of single knowledge bases, called contexts, via
bridge rules. Recently, the evaluation of heterogeneous, non-
monotonic MCS was considered in Dao-Tran et al. (2010),
where a fully distributed algorithm was described. In this pa-
per, we continue this line of work and present a decomposition
technique for MCS which analyzes the topology of an MCS.
It applies pruning techniques to get economically small rep-
resentations of context dependencies. Orthogonal to this, we
characterize minimal interfaces for information exchange be-
tween contexts, such that data transmissions can be minimized.
We then present a novel evaluation algorithm that operates on
a query plan which is compiled with topology pruning and
interface minimization. The effectiveness of the optimization
techniques is demonstrated by a prototype implementation,
which uses an off-the-shelf SAT solver and shows encouraging
experimental results.

Introduction
In the last years, there has been increasing interest in systems
comprising multiple knowledge bases. The rise of distributed
systems and the World Wide Web fostered this development,
and to date, several formalisms are available that accommo-
date multiple, possibly distributed knowledge bases. One
formalism are Multi-Context Systems (MCS), which consist
of several theories (the contexts) that are interlinked with
bridge rules which allow to add knowledge to a context de-
pending on knowledge in other contexts. For instance, the
bridge rule a← (2 : b) of a context C1 means that C1 should
conclude a if context C2 believes b. MCS have applications
in various areas, such as argumentation, data integration, or
multi-agent systems. There, each context may model the
beliefs of an agent while the bridge rules model an agent’s
perception of the environment, i.e., other contexts.

Among the various MCS proposals (e.g., McCarthy, 1993,
Giunchiglia and Serafini, 1994, and Ghidini and Giun-
chiglia, 2001), the general MCS framework of Brewka and
Eiter (2007) is of special interest, as it generalizes previous
approaches in contextual reasoning and allows for heteroge-
neous and nonmonotonic MCS, i.e., with different, possibly
∗This research has been supported by the Austrian Science Fund

(FWF) project P20841 and by the Vienna Science and Technology
Fund (WWTF) project ICT 08-020.

nonmonotonic logics in its contexts (thus furthering hetero-
geneity), and bridge rules may use default negation (to deal,
e.g., with incomplete information). Hence, nonmonotonic
MCS interlinking monotonic context logics are possible. This
MCS framework can conveniently capture the following sce-
nario, which we use as a running example.

Example 1 A group of four scientists, Ms. 1, Mr. 2, Mr. 3,
and Ms. 4, just finished their conference visit and are now
arranging a trip back home. They can choose between going
by train or by car (which is usually slower than the train);
and if they use the train, they should bring along some food.
Moreover, Mr. 3 and Ms. 4 have additional information from
home that might affect their decision.

Mr. 3 has a daughter, Ms. 6. He is fine with either trans-
portation option, but if Ms. 6 is sick then he wants to use the
fastest vehicle to get home. Ms. 4 just got married, and her
husband, Mr. 5, wants her to come back as soon as possible.
He urges her to to try to come home even sooner, while Ms. 4
tries to yield to her husband’s plea.

If they go by train, Mr. 3 is responsible for buying pro-
visions. He might choose either sandwiches or chocolate
peanuts. The options for beverages are coke or juice. Mr. 2
is a modest person as long as he gets home. He agrees to any
choice that Mr. 3 and Ms. 4 select for vehicle but he dislikes
coke. Ms. 1 is the leader of the group and prefers to go by
car, but if Mr. 2 and 3 want to go by train then she would not
object. The only problem is that Ms. 1 is allergic to peanuts.

Mr. 3 and Ms. 4 do not want to bother the others with their
personal situation and communicate just their preferences,
which is sufficient for reaching an agreement. Ultimately,
Ms. 1 decides which option to take based on the information
she gets from Mr. 2 and Mr. 3. 2

Similar scenarios have already been investigated in the
realm of multi-agent systems (see, e.g., Buccafurri and
Caminiti (2008) on social answer set programming). We
do not aim at introducing a new semantics for such scenarios;
our example is meant to be a plain showcase application of
MCS. We stress that MCS have potential as a host for KR
formalisms, just like answer set programs have; however, in
this paper we concentrate on efficient MCS evaluation.

Dao-Tran et al. (2010) introduced a distributed algorithm,
called DMCS, to compute the semantics of an MCS, which
is given in terms of equilibria. Roughly, an equilibrium is a

collection of local models (belief sets) for the individual con-
texts that is compatible with the bridge rules. The principle
of the algorithm is, starting from context Ck (the root), that
models will be processed at each context. The belief import
relationship of the MCS given by the bridge rules is used to
navigate the system; models returned from invoked neighbors
are combined with the local beliefs and passed back to the
invoking contexts. DMCS uses a parameter for projecting
models to relevant variables to reduce data payload.

Experiments for an instantiation of DMCS with answer
set programming contexts revealed some scalability issues
which can be tracked down to the following problems:
1. contexts are unaware of context dependencies in the sys-

tem beyond their neighbors, and thus treat each neighbor
in a generic way. Specifically, cyclic dependencies remain
undetected until a context, seeing the invocation chain,
requests models from a context in the chain. Furthermore,
a context Ck does not know whether a neighbor Ci al-
ready requests models from another neighbor Cj which
then would be passed to Ck; hence, Ck makes possibly a
superfluous request to Cj .

2. a context Ci returns the combination of its local models
with the models received from all neighboring contexts.
As contexts may have multiple models, the number of
models can become huge as the size of the system respec-
tively neighbors increases. In fact, this is one of the main
performance obstacles.
In this work, we address the issue of optimization; there

is an urgent need for this in order to increase the scalability
of distributed MCS evaluation. Resorting to methods from
graph theory, we aim at decomposing, pruning, and improved
cycle breaking for dependencies in multi-context systems.

Focusing on 1, we describe a decomposition method us-
ing biconnected components of inter-context dependencies.
Based on this we can break cycles and prune acyclic parts
before evaluating the system and create an acyclic query plan.
To address 2, we foster a partial view of the system, which is
often sufficient to reach a satisfactory answer. In Example 1,
for instance, we could mask out the beliefs of Mr. 5 and Ms. 6
to compute a partial equilibrium within the scientist group.
In this way, we have the possibility of a trade-off between
partial information and performance. Concretely, we define
a set of variables for each import dependency in the system
that is used to project the models of each context to the bare
minimum for performing a meaningful computation. In this
manner, we can omit needless information and circumvent
excessive model combinations.

Based on these ideas, we have designed a new evalua-
tion algorithm DMCSOPT, which intertwines decomposi-
tion and pruning with variable projection. For evaluation,
we adapted our prototype implementation of DMCS and ran
some experiments. The results show a major improvement
compared to DMCS; here we can handle systems with up
to 700 contexts. This demonstrates that our optimization tech-
niques are effective and bring MCS closer to applications.

Preliminaries
We recall some basic notions of heterogeneous nonmonotonic
multi-context systems (Brewka and Eiter 2007).

A logic is, viewed abstractly, a tuple L = (KBL, BSL,
ACCL), where
• KBL is a set of well-formed knowledge bases, each being

a set (of formulas),
• BSL is a set of possible belief sets, each being a set (of

formulas), and
• ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of

acceptable belief sets.
This covers many (non-)monotonic KR formalisms like

description logics, default logic, answer set programs, etc.
For example, a (propositional) ASP logic L may be such

that KBL is the set of answer set programs over a (proposi-
tional) alphabet A, BSL = 2A contains all subsets of atoms,
and ACCL assigns each kb ∈ KBL the set of all its answer
sets (see Gelfond and Lifschitz, 1991, for details).

Definition 1 A multi-context system (MCS) M = (C1, . . . ,
Cn) consists of contextsCi = (Li, kbi, bri), 1≤ i≤n, where
Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a knowl-
edge base, and bri is a set of Li-bridge rules of the form

s← (c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . ,not (cm : pm)

(1)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck ,
1 ≤ k ≤ m, and kb ∪ {s} ∈ KBi for each kb ∈ KBi.

Informally, bridge rules allow to modify the knowledge
base by adding s, depending on the beliefs in other contexts.

The semantics of an MCS M is defined in terms of partic-
ular belief states, which are sequences S = (S1, . . . , Sn) of
belief sets Si ∈ BSi. Intuitively, Si should be a belief set of
the knowledge base kbi; however, also the bridge rules bri
must be respected. To this end, kbi is augmented with the
conclusions of all r ∈ bri that are applicable.

Formally, r of form (1) is applicable in S, if pi ∈ Sci ,
for 1 ≤ i ≤ j, and pk 6∈ Sck , for j + 1 ≤ k ≤ m.
Let app(R,S) denote the set of all bridge rules r ∈ R that
are applicable in S. Furthermore, head(r) denotes the part s,
and B(r) = {(ck : pk) | 1 ≤ k ≤ m}, for any r of form (1).

Definition 2 A belief state S = (S1, . . . , Sn) of a multi-
context system M is an equilibrium iff for all 1 ≤ i ≤ n,
Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).

In the rest of this paper, we assume that contexts Ci have
finite belief sets Si that are represented by truth assign-
ments vSi

: Σi → {0, 1} to a finite set Σi of propositional
atoms such that p ∈ Si iff vSi

(p) = 1 (as in Brewka and
Eiter, 2007, such Si may serve as kernels that correspond 1-1
to infinite belief sets). Furthermore, we assume that the Σi

are pairwise disjoint and that Σ =
⋃

i Σi.

Example 2 The scenario in Example 1 can be encoded as an
MCS M = (C1, . . . , C6), where all Li are ASP logics and
kb1 = {car1 ← not train1; ⊥ ← peanuts1} and

br1 =

{
train1← (2 : train2), (3 : train3)

peanuts1← (3 : chocolate peanuts3)

}
;

kb2 = {⊥ ← not car2,not train2} and

br2 =

{
car2← (3 : car3), (4 : car4)

train2← (3 : train3), (4 : train4),not (3 : coke3)

}
;

1

2 3

(ε, ε, S3)

(ε
, S

2
, S

3
) (ε, ε, S

3)

(a) Triangle topology

1

2

4

3

5

6

(b) Diamond-ring topology

B1

B2 B3

1

2 3

3

3

4

4

4

5
6

(c) Diamond-ring block tree

Figure 1: Topologies and Decomposition of Scientist Group Example

kb3 =

{
car3 ∨ train3 ←; train3← urgent3

sandwiches3 ∨ chocolate peanuts3← train3

coke3 ∨ juice3← train3

}
and br3 = {urgent3 ← (6 : sick6); train3 ← (4 : train4)};
kb4 = {car4 ∨ train4← } and
br4 = {train4← (5 : want sooner5)};
kb5 = {want sooner5← soon5} and
br5 = {soon5← (4 : train4)};
kb6 = {sick6 ∨ fit6← } and br6 = ∅.

The dependencies between contexts in M are shown in
Figure 1(b). M has three equilibria, namely:

S= ({train1}, {train2}, {train3, urgent3, juice3, sandwi−
ches3}, {train4}, {soon5,want sooner5}, {sick6});

T = ({train1}, {train2}, {train3, juice3, sandwiches3},
{train4}, {soon5,want sooner5}, {fit6});

U = ({car1}, {car2}, {car3}, {car4}, ∅, {fit6}).

Partial Equilibria. We recall partial equilibria, which infor-
mally are equilibria of a sub-MCS generated by a context Ck.

Definition 3 (Import Closure) Let M = (C1, . . . , Cn) be
an MCS. The import neighborhood of a context Ck is the set

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}.
Moreover, the import closure IC (k) of Ck is the smallest
set S such that (i) k ∈ S and (ii) for all i ∈ S, In(k) ⊆ S.

Based on the import closure, we then define:

Definition 4 (Partial Belief States and Equilibria)
Let M = (C1, . . . , Cn) be an MCS, and let ε /∈

⋃n
i=1 BSi.

A partial belief state of M is a sequence S = (S1, . . . , Sn),
such that Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n.

A partial belief state S = (S1, . . . , Sn) of M is a par-
tial equilibrium of M w.r.t. a context Ck iff i ∈ IC (k) im-
plies Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and
if i 6∈ IC (k), then Si = ε, for all 1 ≤ i ≤ n.

Example 3 In our example, (ε, ε, {car3, coke3, chocolate
peanuts3}, {train4}, {soon5,want sooner5}, {fit6}) is a
partial equilibrium w.r.t. context C3. 2

For combining partial belief states S = (S1, . . . , Sn) and
T = (T1, . . . , Tn), we define their join S ./ T as the partial
belief state (U1, . . . , Un) with (i)Ui = Si, if Ti = ε∨Si =Ti,
and (ii) Ui = Ti, if Ti 6= ε ∧ Si = ε, for all 1 ≤ i ≤ n. Note
that S ./ T is void, if some Si, Ti are from BSi but different.

The join of two sets S and T of partial belief states is then
naturally defined as S ./ T = {S ./ T | S ∈ S, T ∈ T }.

Given a (partial) belief state S and set V ⊆ Σ of vari-
ables, the restriction of S to V , denoted S|V , is given by
S = (S1|V , . . . , Sn|V), where Si|V = Si ∩ V if Si 6= ε,
and ε|V = ε; for a set of (partial) belief states S, we let
S|V = {S|V | S ∈S}.
Definition 5 The import interface of context Ck in M is
V (k) = {pi | (ci : pi)∈B(r), r∈ brk}, and its recursive im-
port interface is V∗(k) = V (k) ∪ {p ∈ V (j) | j ∈ IC (k)}.

There are two extremal cases: 1. V = V∗(k). Then, par-
tial equilibria projected to V can be basically used for
consistency-checking on the import closure of Ck. 2. V = Σ.
Here, the projection to V yields partial equilibria w.r.t. Ck.
By providing a fixed interface V such that V∗(k) ⊆ V ⊆ Σ,
problem-specific knowledge (e.g. query variables) and infras-
tructure information can be exploited to focus computations
to relevant projections.

Example 4 (cont’d) The recursive import interface of C1

in M is V∗(1) = {car3, car4, chocolate peanuts3, coke3,
sick6, train2, train3, train4, want sooner5}. 2

Decomposition of Nonmonotonic MCS
Reconsider our running example, with all contexts Ci and
atoms referring to them removed, for i > 3. Then, C1 has
bridge rules with atoms of form (2 : p2) and (3 : p3) in the
body, and C2 with atoms (3 : p3). That is, C1 depends on
both C2 and C3, while C2 depends on C3 (see Figure 1(a)).
A straightforward approach to evaluate this modified MCS is
to ask in C1 for the belief sets of C2 and C3. But as C2 also
depends on C3, we would need another query from C2 to C3

to evaluate C2 w.r.t. the belief sets of C3. This shows that
there is some evident redundancy in this approach, as C3 will
need to compute its belief sets twice. Simple caching strate-
gies could mellow out the second belief state building in C3;
nonetheless, when C1 asks C3, the context will transmit back
its belief states, thus consuming network resources.

Moreover, when C2 asks for the partial equilibria of C3, it
will receive a set of partial equilibria that covers the belief sets
ofC3 and in addition all contexts in the import closure IC (3).
This is excessive from the view of C1, as it only needs to
know the truth of (2 : p2) and (3 : p3). However, C1 needs
the belief states of both C2 and C3 in reply of C2: if C2 only
reports its own belief sets (which are consistent w.r.t. C3),

then C1 has no chance to align the belief sets received from
C2 with those received from C3. Realizing that C2 also
reports the belief sets of C3, no call to C3 must be made.

In the following, we present an optimization strategy which
hinges on this observation. It pursues two orthogonal goals:
(i) to prune dependencies in an MCS and cut superfluous
transmissions, belief state building, and joining of belief
states; and (ii) to minimize information in transmissions.

Graph-Theoretic Concepts
We start with defining the topology of an MCS.

Definition 6 The topology of an MCS M = (C1, . . . , Cn)
is the digraph GM = (V,E), where V = {1, . . . , n} and
(i, j) ∈ E iff some rule in br i has an atom (j:p) in the body.

The first optimization technique is built up by three opera-
tions on graphs. To get a coarse view on the MCS, we will
decompose the topology into its biconnected components.
The latter form a tree representation of the MCS, and we can
apply edge removal techniques in each component.

In the following, we will use standard terminology from
graph theory (see, e.g., Bondy and Murty, 2008) and assume
that graphs are directed by default. For any graph G and
set S ⊆ E(G) of edges, we denote by G\S the subgraph
of G that has no edges from S. For a vertex v ∈ V (G), we
denote by G\v the subgraph of G induced by V (G)\{v}. A
graph is weakly connected if replacing every directed edge
by an undirected edge yields a connected graph. A vertex c
of a weakly connected graph G is a cut vertex, if G\c is
disconnected. A biconnected graph is a weakly connected
graph without cut vertices. A block in a graphG is a maximal
biconnected subgraph of G. Let T (G) = (B ∪ C, E) denote
the undirected bipartite graph, called block tree of graph G,
where B is the set of blocks of G, C is the set of cut vertices
of G, and (B, c) ∈ E with B ∈ B and c ∈ C iff c ∈ V (B).
Note that T (G) is a rooted tree for any weakly connected
graph G; for arbitrary graphs, it is a forest.

Example 5 The topology GM of M in Example 2 is shown
in Figure 1(b). It has two cut vertices, viz. 3 and 4;
thus T (GM) contains the blocks B1, B2, and B3, which are
subgraphs of GM induced by {1, 2, 3, 4}, {4, 5}, and {3, 6},
respectively. The block tree T (GM) is shown in Figure 1(c).

Optimization
Pruning. In acyclic topologies, like the triangle presented in
the previous section, we can exploit a minimal graph represen-
tation to avoid unnecessary calls between contexts. Namely,
the transitive reduction of the graph GM ; recall that the tran-
sitive reduction of a digraph G is the graph G− with the
smallest set of edges whose transitive closure equals the one
of G. Note that G− is unique if G is acyclic.

Another essential part of our optimization strategy is to
break cycles by removing edges from topologies. To this end,
we use ear decompositions of cyclic graphs. A block may
have multiple cycles which are not necessarily strongly con-
nected, thus we first decompose cyclic blocks to its strongly
connected components. The topological sort of these com-
ponents yield a sequence of nodes r1, . . . , rs that are used as

entry points to each component. The next step is to break cy-
cles. An ear decomposition of a strongly connected graph G
rooted at a node r is a sequence P = 〈P0, . . . , Pm〉 of sub-
graphs ofG such that (i)G = P0∪· · ·∪Pm, (ii) P0 is a simple
cycle (i.e., has no repeated edges or vertices) with r ∈ V (P0),
and (iii) each Pi (i > 0) is a non-trivial path (without cycles)
whose endpoints are in P0 ∪ · · · ∪ Pi−1, but the other nodes
are not. Let cb(G,P) be the set of edges containing (l, r)
from P0, and from each Pi, i > 0, the last edge (l, t) in Pi.
Example 6 Block B1 of T (GM) is acyclic; hence, we apply
a transitive reduction to obtain B−1 with edges E(B−1) =
{(1, 2), (2, 3), (3, 4)}. The block B2 is cyclic, and 〈B2〉 is
the only ear decomposition rooted at 4; removing cb(B2,
〈B2〉) = {(5, 4)}, we obtain B′2 with edges E(B′2) =
{(4, 5)}. The block B3 is acyclic and already reduced. Fig-
ure 1(c) shows the final result (dashed edges are removed).

The graph-theoretic concepts introduced here, in particular
the transitive reduction of acyclic blocks and the ear decom-
position of cyclic blocks, are used to implement the first
optimization of MCS evaluation outlined above. Intuitively,
given the transitive reduction B− of an acyclic block B ∈ B,
and a total order on V (B−) that extends B−, one can eval-
uate the respective contexts in reverse order for computing
partial equilibria at some context Ck: the first context simply
computes its local belief sets which—represented as a set of
partial belief states S0—constitutes an initial set of partial
belief states T0. In any iterative Step i, Ti−1 is updated by
joining it with the local belief sets Si of the context under
consideration. Given Tk (after updating with Sk) for con-
text Ck, it holds that Tk|V∗(k) is the set of partial equilibria
at Ck (restricted to contexts in V (B−)).

For cyclic blocks, one can in principle proceed as above;
however, any context Ck accessing beliefs from a context Ci

that precedes it in the given total order, has to temporarily
consider all possible belief sets for Ci in Sk. As a conse-
quence, the above relation to partial equilibria can only be
established after visiting all contexts that have been temporar-
ily considered in previous steps.
Refined recursive import. Next, we define the second part
of our optimization strategy which handles minimization of
information needed for transmission between two neighbor-
ing contextsCi andCj . For this purpose, we refine the notion
of recursive import interface in a context w.r.t. a particular
neighbor, and a given (sub-)graph.
Definition 7 Given an MCS M = (C1, . . . , Cn) and a sub-
graph G of GM , for an edge (i, j) ∈ E(G), the recursive
import interface of Ci to Cj w.r.t. G is V∗(i, j)G = {p ∈
V ∗(i) | p ∈ Σ`, j reaches ` in G}.

Intuitively, if a context is a cut vertex c in GM , one can
drop all entries Si (i 6= c) from the partial belief states
computed at c, and pass this result to the parent block of c
in T (GM), without compromising the computation of com-
patible (restricted) belief sets at the parent. Recursive import
interfaces w.r.t. blocks in GM reflect this property, which can
be exploited for minimizing the information transmitted.

Algorithms. Algorithms 1 and 2 combine the optimization
techniques outlined above. Intuitively, OptimizeTree takes

Algorithm 1: OptimizeTree(T, cp, cr)

Input: T = (B ∪ C, E): block tree, cp, cr: context ids
Output: F : removed edges from

⋃
B, v: labels for

⋃
B

B′ := ∅, F := ∅, v := ∅
if cp = cr then B′ := {B ∈ B | cr ∈ V (B)}
else B′ := {B ∈ B | (B, cp) ∈ E}
foreach B ∈ B′ do // sibling blocks B of parent cp

F := OptimizeBlock(B, cp) // prune block
C′ := {c ∈ C | (B, c) ∈ E ∧ c 6= cp} // children of B
B′ := B\F
foreach (i, j) ∈ E(B′) do // setup interface of B′

v(i, j) := V∗(i, j)B′ ∪
⋃

c∈C′ V
∗(cr)|Σc

∪⋃
(l,m)∈F V∗(cp)|Σm

foreach c ∈ C′ do // accumulate children
(F ′, v′) := OptimizeTree(T\B, c, cp)
F := F ∪ F ′, v := v ∪ v′

return (F, v)

Algorithm 2: OptimizeBlock(G : graph, r : context id)

if G is cyclic then // ear decomp. of strong components
F := CycleBreaker(G, r)

else F := ∅
Let G− be the transitive reduction of G\F
return E(G) \ E(G−) // removed edges from G

a block tree T as input together with parent cut vertex cp
and root cut vertex cr. It traverses T in a DFS-way and calls
OptimizeBlock on every block. The result of the latter calls
are removed edges F ; after all blocks have been processed,
the final result of OptimizeTree is a pair of all edges re-
moved from blocks in T , and a labelling v for the remaining
edges. OptimizeBlock takes a graph G and calls subroutine
CycleBreaker for cyclic G, which decomposes G into its
strongly connected components, creates an ear decomposition
P for each component Gc, and breakes cycles by removing
edges cb(Gc, P). For the resulting acyclic subgraph of G (or
if G was already acyclic), OptimizeBlock computes the tran-
sitive reduction G−. All edges removed from G are returned.
OptimizeTree continues computing the labelling v for the
remaining edges, building on the refined notion of recursive
import interface, but keeping relevant interface variables of
child cut vertices and removed edges. It can be shown that:
Proposition 1 For any context Ck in an MCS M , the al-
gorithm OptimizeTree(T (GM), k, k) returns a pair (E, v)
such that (i) the subgraph G of GM\E induced by IC (k) is
acyclic, and (ii) for all (i, j) ∈ E(G), v(i, j) = V∗(i, j)G.

Given GM , the block tree graph T (GM) can be con-
structed in linear time; transitive reductions thereof can be
computed in quadratic time. Since no other operation of the
algorithm exceeds this bound, the following holds.
Proposition 2 For any context Ck in an MCS M , the algo-
rithm OptimizeTree(T (GM), k, k) runs in time polynomial
(quadratic) in the size of T (GM) resp. GM .

Given the topology of an MCS, we need to represent a
stripped version of it which contains both the minimal depen-

dencies between contexts and interface variables that need
to be transferred between contexts. This representation will
be a query plan that can be used for execution processing.
Syntactically, query plans have the following form.

Definition 8 (Query Plan) A query plan of an MCS M
w.r.t. context Ck is any labeled subgraph Π of GM in-
duced by IC (k) with E(Π) ⊆ E(GM), and edge labels
v : E(G)→ 2Σ.

In particular, for any MCS M and context Ck of M , the
graph Πk = (V (G), E(G)\E, v) is a query plan of M
w.r.t. Ck, where G is the subgraph of GM induced by IC (k)
and (E, v) = OptimizeTree(T (GM), k, k). This query plan
is in fact effective; we show how to use it for MCS evaluation.

MCS Evaluation with Query Plans
Given an MCSM and a starting contextCk, we aim at finding
all projected partial equilibria of M w.r.t. Ck in a distributed
way. To this end, we design an algorithm DMCSOPT that is
based on the algorithm DMCS in (Dao-Tran et al. 2010), but
exploits properties of the optimization techniques described
above. As a by-product, we obtain a simplification, because
explicit cycle breaking is not needed. At each context node,
an instance of DMCSOPT runs independently and communi-
cates with other instances for exchanging sets of partial belief
states. This provides a method for distributed model building,
such that DMCSOPT can be deployed to any MCS where
appropriate solvers for the respective context logics are avail-
able. The main feature of DMCSOPT is that it computes
projected partial equilibria based on a query plan. This can be
exploited for specific tasks like, e.g., local query answering
or consistency checking. When computing projected partial
equilibria, the information communicated between contexts
is minimized, keeping communication cost low.

In the sequel, we present a basic version of the algorithm,
abstracting from low-level implementation issues. The idea
is as follows: we start with context Ck and traverse a given
query plan by expanding the outgoing edges of that plan at
each context, like in a depth-first search, until a leaf context
is reached. A leaf context Ci simply computes its local belief
sets, transforms all belief sets into partial belief states, and
returns this result to its parent. If the leaf Ci contains (j : p)
in bodies of bridge rules such that there is no context Cj

to visit in the query plan—this means we broke a cycle by
removing the last edge toCj—, all possible truth assignments
to the import interface to Cj are considered.

The result of any context Ci is a set of partial belief states,
which amounts to the join, i.e., the consistent combination,
of its local belief sets with the results of its neighbors; the
final result is obtained from Ck. To keep re-computation
and recombination of belief states with local belief sets at a
minimum, partial belief states are cached in every context.

Algorithm 3 shows our distributed algorithm, DMCSOPT,
with its instance at context Ck that runs in a background pro-
cess (or daemon in Unix). On input of the id c of a predeces-
sor context (which the process awaits), it proceeds based on
an (acyclic) query plan Πk. The algorithm maintains a cache
cache(k) at Ck, which is kept persistent by the background
process. It uses the following primitives:

Algorithm 3: DMCSOPT(c) at Ck = (Lk, kbk, brk)

Input: c: context identifier of a direct predecessor
Data: Πk: query plan with label v, cache(k): cache
Output: set of accumulated partial belief states

(a) if cache(k) is not empty then S := cache(k)
else
T := {(ε, . . . , ε)}

(b) foreach (k, i) ∈ E(Πk) do
T := T ./ Ci.DMCSOPT(k)

(c) if there is (i : p) in brk s.t. (k, i) /∈ E(Πk) and
Ti ∈ T s.t. Ti = ε then T := guess(v(c, k)) ./ T

(d) foreach T ∈ T do S := S ∪ lsolve(T)
cache(k) := S

(e) if (c, k) ∈ E(Πk) then S := S|v(c,k) // Ck is non-root
return S

Algorithm 4: lsolve(S) at Ck = (Lk, kbk, brk)

Input: S: partial belief state
Output: set of locally acceptable partial belief states
T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)})
return {(S1, , . . . , Sk−1, Tk, Sk+1, . . . , Sn) | Tk ∈ T}

• function Ci.DMCSOPT(c): send context id c to the pro-
cess at context Ci and wait for its return result.

• function guess(V): guess all possible truth assignments
for the interface variables V .

• function lsolve(S) (Algorithm 4): given a partial belief
state S, augment kbk with the heads of all bridge rules
in brk that are applicable w.r.t. S (=: kb′k), compute the
local belief sets by ACC(kb′k), and combine them with
S; return the resulting set of partial belief states.

The steps of Algorithm 3 are explained as follows:
(a) check the cache for an appropriate partial belief state;
(b) get neighbor contexts from the query plan, request partial

belief states from all neighbors and join them;
(c) if there are (i:p) in the bridge rules brk such that (k, i) /∈
E(Πk), and no neighbor delivered the belief sets for Ci

in step (b) (i.e., Ti = ε), we have to call guess on the
interface v(c, k) and join the result with T : intuitively, this
happens when edges had been removed from cycles.

(d) compute local belief states given the imported partial
belief states collected from neighbors;

(e) project to the variables in v(c, k) for non-root contexts.
The following proposition shows that DMCSOPT is

sound and complete.
Proposition 3 Let Ck be a context of an MCS M , let Πk be
the query plan as defined above and let V = {p ∈ v(k, j) |
(k, j) ∈ E(Πk)}. Then,

(i) for each S′ ∈ Ck.DMCSOPT(k), there exists a partial
equilibrium S of M w.r.t. Ck such that S′ = S|V ;

(ii) for each partial equilibrium S of M w.r.t. Ck, there
exists an S′ ∈ Ck.DMCSOPT(k) such that S′ = S|V .

Implementation and Experimental Results
We present initial results for a SAT-solver based prototype im-
plementation of DMCSOPT under Ubuntu Linux 9.10, writ-

topology / parameter DMCSOPT # DMCS #

D1 / (13, 9, 4, 4) 1.365 16 1.909 2048
D2 / (13, 9, 4, 4) 2.310 42 5.485 4256
D3 / (25, 9, 4, 4) 38.622 6 — —
D4 / (25, 9, 4, 4) 14.763 17 — —
D5 / (28, 9, 4, 4) 130.900 16 — —
D6 / (28, 9, 4, 4) 99.102 16 — —

R2 / (10, 9, 4, 4) 0.246 2 3.262 43008
R3 / (13, 9, 4, 4) 0.253 6 1.833 31488
R4 / (13, 9, 4, 4) 0.447 6 3.148 25056
R5 / (301, 9, 4, 4) 12.380 4 — —
R6 / (301, 9, 4, 4) 12.718 20 — —

Z1 / (13, 9, 4, 4) 2.296 6 33.549 1152
Z2 / (13, 9, 4, 4) 4.844 30 66.557 5160
Z3 / (151, 9, 4, 4) 36.071 96 — —
Z4 / (151, 9, 4, 4) 29.529 8 — —
Z5 / (301, 9, 4, 4) 96.887 40 — —
Z6 / (301, 9, 4, 4) 116.060 8 — —

Table 1: Runtime in secs, timeout 180 secs (—)

ten in C++ (available at http://www.kr.tuwien.ac.at/
research/systems/dmcs/). The host system was using a
Pentium Core2 Duo 2.53GHz processor with 4GB RAM. We
compare response times of DMCSOPT to DMCS.

We used the development version of clasp (2010-01-31) as
a SAT solver, which accepts DIMACS CNF input (Gebser et
al. 2007). Specifically, all generated instantiations of multi-
context systems have contexts with ASP logics. We use the
translation defined in (Dao-Tran et al. 2010) to create SAT
instances at contexts Ck and clasp to compute all models.

For initial experimentation, we created random MCS in-
stances of ordinary and zig-zag diamond stack, ring, and
binary tree topologies. A diamond stack combines multiple
diamonds in a row (stackingm diamonds in a tower of 3m+1
contexts). Ordinary diamonds have, in contrast to zig-zag di-
amonds like block B1 in Figure 1(c), no connection between
the two middle contexts. Other topologies are currently under
consideration, including variants of those presented here.

A parameter setting (n, s, b, r) specifies (i) the number n
of contexts, (ii) the local alphabet size |Σi| = s (each Ci

has a random ASP program on s atoms with 2k answer sets,
0 ≤ k ≤ s/2), (iii) the maximum interface size b (number of
atoms exported), (iv) and the maximum number r of bridge
rules per context, each having ≤ 2 body literals.

Table 1 shows some experimental results for parameter set-
tings (n, 9, 4, 4), where n varies between 10 and 301. Each
row Xi (X ∈ {D,R,Z}) displays pure computation time
(no output) for ordinary diamond stacks (D), zig-zag dia-
mond stacks (Z), and rings (R), where the # columns show
the numbers of projected partial equilibria computed at C1

(initiated by sending the request 1 toC1 for DMCSOPT with
a fixed query plan Π1, respectively V∗(1) to C1 for DMCS).

The optimizations that can be applied in the topologies
are quite diverse. In ordinary diamond stacks and in binary
trees, we cannot remove edges, as the topologies are equal
to their transitive reductions. But we can refine the import
interface at each sub-diamond (every fourth context is a cut

vertex), thus the partial belief states eventually computed just
contain entries for the first four contexts. The refinement of
the import interface in binary trees is even more drastic, as
every non-leaf context is a cut vertex, and we can restrict
to import interfaces between two neighboring contexts. In
the ring topology, we can remove the last edge closing the
cycle to context C1. As the resulting topology is a spanning
tree, the refinement of the import interface is restricted to
neighboring contexts including the import interface of the
removed edge. In zig-zag diamond stacks, we remove in each
block two edges to obtain the transitive reduction and update
the recursive import interface accordingly.

Evaluating the MCS instances with DMCSOPT compared
to DMCS yields a drastic improvement in response time.
Stacking multiple diamonds in a tower models hard instances
with many joins. This is reflected in the ratio of running
time to result size in DMCS. Still, DMCSOPT could handle
much larger instances. The ring topology shows a similar
increase in scalability. Thanks to the refined interface, the sys-
tem size can be increased dramatically; the runs for n=301
took only a few seconds. Also for zig-zag diamond stacks,
the optimizations effect that DMCSOPT can run substan-
tially larger systems, with hundreds of contexts; DMCS
has an early breakdown at n=16. Comparing ordinary dia-
monds (Di) to zig-zag diamonds (Zi), one can notice a large
gap in the size n of the MCS that can be handled. This is
explained by the transitive reduction that can be applied to
zig-zag diamonds, essentially resulting in a chain of contexts
such that each context can take the partial belief states of
its single neighbor and simply add its local beliefs. Dia-
monds Di cannot be further optimized and additionally need
to join the results from their neighbors. We omit detailed
outcomes for binary tree topology tests here. However, we
noticeably could evaluate an instance with even n=700 con-
texts in 68.061 seconds (#=48) with our parameter setting;
setting the timeout to 12 minutes, DMCS runs out of memory
for instances with n=22 during belief state joining.

Related Work and Conclusion
Roelofsen, Serafini, and Cimatti (2004) described evaluation
of monotone MCS with classical theories using SAT solvers
for the contexts in parallel. They used a (co-inductive) fix-
point strategy to check MCS satisfiability, where a centralized
process iteratively combines results of the SAT solvers. Apart
from being not truly distributed, an extension to nonmono-
tonic MCS is non-obvious; also, no caching was used.

Serafini and Tamilin (2005) and Serafini, Borgida, and
Tamilin (2005) defined distributed tableaux algorithms for
reasoning in distributed ontologies. They can be used to
decide consistency of distributed description logic knowledge
bases, provided that the distributed TBox is acyclic. The
DRAGO system is an implementation of this approach.

Adjiman et al. (2006) presented a framework of peer-to-
peer inference systems. Local theories of propositional clause
sets share atoms, and a special algorithm can be used for con-
sequence finding. As we pursue the dual problem of model
building, application for our needs is not straightforward.

Similar to this, Bikakis and Antoniou (2008) developed a
distributed algorithm for query evaluation in a multi-context

system framework based on defeasible logic. Contexts in
this setup are built using defeasible rules, and the query
evaluation procedure can determine for a given literal l three
values: whether l is (not) a logical conclusion of the MCS,
or whether it cannot be proved that l is a logical conclusion.
Again, applying this approach to model building is not easy.

Baget and Tognetti (2001) use biconnected components to
decompose constraint satisfaction problems. The decomposi-
tion is used to localize the computation of a single solution in
the components of undirected constraint graphs. Likened to
our approach, we are based on directed dependencies, which
gives us the chance to use a query plan for MCS evaluation.

We have presented techniques and algorithms for decom-
posing, pruning, and cycle breaking of dependencies in non-
monotonic multi-context systems. Based on this, we have
devised an algorithm, which uses a query plan to compute
all partial equilibria of such a system. A prototypical imple-
mentation of this approach shows promising experimental
results. They are a substantial improvement and encourage
to research further algorithms and methods for evaluation of
distributed MCS, such that efficient platforms for distributed
nonmonotonic reasoning applications will become available.

References
Adjiman, P.; Chatalic, P.; Goasdoué, F.; Rousset, M.-C.; and
Simon, L. 2006. Distributed Reasoning in a Peer-to-Peer Setting:
Application to the Semantic Web. J. Artif. Intell. Res. 25:269–314.
Baget, J.-F., and Tognetti, Y. 2001. Backtracking through bicon-
nected components of a constraint graph. In IJCAI’01, 291–296.
Bondy, A., and Murty, U. S. R. 2008. Graph Theory. Springer.
Bikakis, A., and Antoniou, G. 2008. Distributed Defeasible
Reasoning in Multi-Context Systems. In NMR’08, 200–206.
Brewka, G., and Eiter, T. 2007. Equilibria in heterogeneous
nonmonotonic multi-context systems. In AAAI’07, 385–390.
Buccafurri, F., and Caminiti, G. 2008. Logic programming with
social features. Theory Pract. Log. Program. 8(5–6):643–690.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T. 2010.
Distributed nonmonotonic multi-context systems. In KR’10.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T. 2007.
Conflict-driven answer set solving. In IJCAI’07, 386–392.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic pro-
grams and disjunctive databases. New Gener. Comput. 9:365–385.
Ghidini, C., and Giunchiglia, F. 2001. Local models seman-
tics, or contextual reasoning=locality+compatibility. Artif. Intell.
127(2):221–259.
Giunchiglia, F., and Serafini, L. 1994. Multilanguage hierarchical
logics or: how we can do without modal logics. Artif. Intell.
65(1):29–70.
McCarthy, J. 1993. Notes on formalizing context. In IJCAI’93.
Roelofsen, F.; Serafini, L.; and Cimatti, A. 2004. Many hands
make light work: localized satisfiability for multi-context systems.
In ECAI’04, 58–62.
Serafini, L., and Tamilin, A. 2005. Drago: Distributed reasoning
architecture for the semantic web. In ESWC’05, 361–376.
Serafini, L.; Borgida, A.; and Tamilin, A. 2005. Aspects of dis-
tributed and modular ontology reasoning. In IJCAI’05, 570–575.

