
First-Order Encodings for
Modular Nonmonotonic Datalog Programs?

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9–11, A-1040 Vienna, Austria

{dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Recently Modular Nonmonotonic Logic Programs (MLP) have been
introduced which incorporate a call-by-value mechanism and allow for unrestricted
calls between modules, including mutual and self recursion, as an approach to
provide module constructs akin to those in conventional programming in Non-
monotonic Logic Programming under Answer Set Semantics. This paper considers
MLPs in a Datalog setting and provides characterizations of their answers sets
in terms of classical (Herbrand) models of a first-order formula, extending a line
of research for ordinary logic programs. To this end, we lift the well-known loop
formulas method to MLPs, and we also consider the recent ordered completion ap-
proach that avoids explicit construction of loop formulas using auxiliary predicates.
Independent of computational perspectives, the novel characterizations widen our
understanding of MLPs and they may prove useful for semantic investigations.

1 Introduction

Since the early days of Datalog, modularity aspects have been recognized as an important
issue, and already the seminal notion of stratification [1] builds on an evaluation of
subprograms in an ordered way. This has been later largely elaborated to notions like
modular stratification [20] and XY-stratification incorporated in the LDL++ system [2],
and has been generalized to a syntactic notions of modularity for disjunctive Datalog
programs [7, 9] that, in the context of non-monotonic logic programming, has been
independently found as Splitting Sets [18]. More recently, research on modularity where
in contrast subprograms may mutually depend on each other has been intensified, with
DLP-functions [15] being the most prominent example to provide a Gaifman-Shapiro-
style module architecture [13].

However the above concepts do not cater a module concept as familiar in conventional
imperative and object-oriented languages, where procedures come with parameters that
are passed on during the evaluation. To provide support for this, [8] developed modular
logic programs, based on an extension of logic programs with genuine generalized
quantifiers, where modules can receive input that is passed on in a call-by-value mode, in
addition to the usual call-by-reference access to atoms in other modules. Limitations of
this seminal approach have been recently overcome with an generalized and semantically

? This research has been supported by the Austrian Science Fund (FWF) project P20841 and the
Vienna Science and Technology Fund (WWTF) project ICT-08 20.

refined notion of Modular Nonmonotonic Logic Programs (MLPs) in [6] under the
answer set semantics [14].

Roughly, an MLP is a system P = (m1, . . . ,mn), of modules, where each module
mi = (Pi[qi], Ri) has a module name Pi with an associated list qi of formal input
atoms, and an associated set of rules Ri (the “implementation”). A module mi can
access another module mj using module atoms (in the body of a rule in Ri) of the form
Pj [p].o. Intuitively, the module atom evaluates to true if, on input of the atoms in p to
the module Pj , the atom o will be true in Pj . Such programs allow unrestricted cyclic
calls between modules; they can be seen as a generalization of DLP-functions from
propositional to Datalog programs that allow for positive cyclic calls between modules
(including recursion), and provide a call-by-value mechanism.

For example, the following MLP P = (m1,m2,m3) recursively checks whether the
number of facts over predicate q in the main modulem1, which has no input (q1 is empty)
and implementation R1 = {q(a). q(b). ok ← P2[q].even.}, is even. Intuitively, m1

calls m2 with a rule for the check, and assigns the result to ok . The module m2 is
mutual recursive with module m3. They have the formal inputs q2 = q2 and q3 = q3,
respectively, and the implementations

R2 =


q′2(X)← q2(X), q2(Y),

not q′2(Y), X 6= Y.

skip2 ← q2(X), not q′2(X).

even ← not skip2.

even ← skip2, P3[q
′
2].odd .

 , R3 =


q′3(X)← q3(X), q3(Y),

not q′3(Y), X 6= Y.

skip3 ← q3(X),not q′3(X).

odd ← skip3, P2[q
′
3].even.

 .

A call to m2 ‘returns’ even , if either the input q2 to m2 is empty (as then skip2 is
false), or the call of m3 with q′2 resulting from q2 by randomly removing one element
(then skip2 is true) returns odd . Module m3 returns odd for input q3, if a call to m2

with q′3 analogously constructed from q3 returns even . In any answer set of P, ok is true.
In this paper, we further the work on MLPs and turn to characterizing of answer sets

in terms of classical models, in line with recent research in Answer Set Programming.
To this end, we first explore the notion of loop formulas to MLPs. Lin and Zhao [19]
first used loop formulas to characterize the answer sets of normal, i.e., disjunction-free,
propositional logic programs by the models of a propositional formula built of the Clark
completion [5] and of additional formulas for each positive loop in the dependency
graph of the program. They built on this result developing the ASP solver ASSAT, which
uses a SAT solver for answer sets computation [19]. The loop formula characterization
has subsequently been extended to disjunctive logic programs [16], and to general
propositional theories under a generalized notion of answer set [12]. In the latter work,
the notion of a loop has been adapted to include trivial loops (singletons) in order to recast
Clark’s completion as loop formulas. Besides their impact on ASP solver development,
loop formulas are a viable means for the study of semantic properties of ASP programs,
as they allow to resort to classical logic for characterization. For instance, in the realm
of modular logic programming, loop formulas have recently been fruitfully extended to
DLP-functions [15], simplifying some major proofs.

The expedient properties of MLPs, however, render a generalization of loop formulas
more involved. Due to the module input mechanism, it is necessary to keep track of
different module instantiations. Furthermore, because of unlimited recursion in addition

to loops that occur inside a module, loops across module boundaries, i.e., when modules
refer to each other by module atoms, have to be captured properly. To cope with this
requirements,

– we adapt Clark’s completion for module atoms w.r.t. different module instantiations;
– we provide a refined version of the positive dependency graph for an MLP, the

modular dependency graph, and cyclic instantiation signature: the combination then
relates module instantiations with the atoms of a module;

– based on it, we define modular loops and their external support formulas; and
– eventually, we define modular loop formulas, and show that the conjunction of

all modular loop formulas for an MLP characterizes the answer sets of P in its
(Herbrand) models.
Furthermore, the definition of the MLP semantics in terms of the FLP-reduct [11]

and the underlying principal idea of loop formulas requires us to restrict module atoms
under negation to be monotonic. This is often not a limitation, since negated module
atoms may be easily replaced by unnegated ones using a simple rewriting technique
(e.g., for stratified program parts). Intuitively, the restriction seems to be the trade off
for the benign property that under the FLP-reduct, answer sets of a MLP – even with
nonmonotonic module atoms – are always minimal models of the program. The latter
would not be the case if they were defined under the traditional GL-reduct [14], for
which loop formulas have been developed.

Second, we explore the recent approach of [3] to modify the Clark completion in
order to characterize answer set semantics of non-monotonic logic programs with finite
Herbrand universes but without using loop formulas explicitly. The idea is to introduce
predicates of the form Tqp(y,x) which intuitively holds when q(y) is used to derive
p(x), and to respect a derivation order; the completion is allowed to take effect only if
no positive loop is present, which is ensured by adding Tqp(y,x) ∧ ¬Tpq(x,y) in the
completion of rules with head p(x) and q(y) in the positive body; for this to work, it
must be ensured that Tqp respects transitive derivations, i.e., the composition of Tqr and
Trp must be contained in Tqp. The resulting translation is called ordered completion.

An advantage of this approach is that, at the cost of fresh (existential) predicates,
constructing the (possible exponentially) many loop formulas can be avoided, while
answer sets may be extracted from the (Herbrand) models of a first-order sentence,
which may be fed into a suitable theorem prover. This similarly applies to MLPs, where
unrestricted call-by-value however leads to an unavoidable blowup, which may be
avoided by resorting to higher-order logic. Independent of computational perspectives,
the novel characterizations widen our understanding of MLPs and they may prove,
similarly as those in [15], useful for semantic investigations.

2 Preliminaries

We first recall syntax and semantics of modular nonmonotonic logic programs [6].
Syntax. Let V be a vocabulary C, P ,X , andM of mutually disjoint sets whose elements
are called of constants, predicate, variable, and module names, respectively, where each
p ∈ P has a fixed associated arity n ≥ 0, and each module name in M has a fixed
associated list q = q1, . . . , qk (k ≥ 0) of predicate names qi ∈ P (the formal input

parameters). Unless stated otherwise, elements from X (resp., C ∪ P) are denoted with
first letter in upper case (resp., lower case).

Elements from C ∪ X are called terms. An ordinary atom (simply atom) has the
form p(t1, . . . , tn), where p ∈ P and t1, . . . , tn are terms; n ≥ 0 is its arity. A module
atom has the form P [p1, . . . , pk].o(t1, . . . , tn), where P ∈ M is a module name with
associated q, p1, . . . , pk is a list of predicate names pi ∈ P , called module input list,
such that pi has the arity of qi in q, and o ∈ P is a predicate name with arity n such that
for the list of terms t1, . . . , tn, o(t1, . . . , tn) is an ordinary atom. Intuitively, a module
atom provides a way for deciding the truth value of a ground atom o(c) in a program P
depending on the truth of a set of input atoms.

A normal rule r (or rule for short) is of the form

α← β1, . . . , βm,notβm+1, . . . ,notβn (m,n ≥ 0), (1)

where α is an atom and each βj is an ordinary or a module atom. We define H(r) =
{α} and B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βm} and B−(r) =
{βm+1, . . . , βn}. For ? ∈ {+,−} we let B?m(r) and B?o(r) be the set of module and
ordinary atoms that appear in B?(r), respectively. If B(r) = ∅ and H(r) 6= ∅, then r is
a fact; r is ordinary, if it does not contain module atoms.

We now formally define the syntax of modules and normal MLPs. A module is
a pair m = (P [q], R), where P ∈ M with associated input q, and R is a finite set
of normal rules. It is either a main module (then |q| = 0) or a library module, and
is ordinary iff all rules in R are ordinary. We omit empty [] from (main) modules if
unambiguous.

A normal modular logic program (MLP) is a tuple P = (m1, . . . ,mn), n ≥ 1,
where all mi are modules and at least one is a main module, whereM = {P1, . . . , Pn}.
Example 1. Let m1 = (P1[], R1) with R1 = {p ← P2[p].r} and m2 = (P2[q], R2)
with R2 = {r ← q}. Then P = (m1,m2) is a normal MLP with the main module m1.

Example 2. Let m1 = (P1[], R1) with R1 = {p1 ← P2.p2} and m2 = (P2[], R2)
with R2 = {p2 ← P1.p1}. Putting both modules together, we get the MLP P =
(m1,m2) with the main modules m1,m2.

W.l.o.g, in the rest of this paper, we assume that for all i 6= j, the atoms inmi andmj

are distinct; thus, P =
⋃n
i=1 Pi where all Pi are disjoint.

Semantics. The semantics of MLPs is defined in terms of Herbrand interpretations and
grounding as customary in traditional logic programming and ASP. The Herbrand base
w.r.t. vocabulary V , HBV , is the set of all ground ordinary and module atoms that can
be built using C, P andM; if V is implicit from an MLP P, it is the Herbrand base
of P and denoted by HBP. The grounding of a rule r is the set gr(r) of all ground
instances of r w.r.t. C; the grounding of rule set R is gr(R) =

⋃
r∈R gr(r), and the one

of a module m, gr(m), is defined by replacing the rules in R(m) by gr(R(m)); the
grounding of an MLP P is gr(P), which is formed by grounding each module mi of P.
The semantics of an arbitrary MLP P is given in terms of gr(P).

Let S ⊆ HBP be any set of atoms. For any list of predicates p = p1, . . . , pk
and q = q1, . . . , qk, we use the notation S|p = {pi(c) ∈ S | 1 ≤ i ≤ k} and S|qp =
{qi(c) | pi(c) ∈ S, 1 ≤ i ≤ k}.

For a module name P ∈M with associated formal input q and S ⊆ HBP|q, we say
that P [S] is a value call with input S; we denote by VC (P) the set of all such P [S] for P.
Intuitively, VC (P) names all instances of modules in P, which we thus also use as an
index set. A rule base is an (indexed) tuple R = (RP [S] | P [S] ∈ VC (P)) of setsRP [S]

of rules. For a module mi = (Pi[qi], Ri) from P, its instantiation with S ⊆ HBP|qi
,

is IP(Pi[S]) = Ri ∪ S. For an MLP P, its instantiation is the rule base I(P) =
(IP(Pi[S]) | Pi[S] ∈ VC (P)).

We next define (Herbrand) interpretations and models of MLPs.

Definition 1 (model). An interpretation M of an MLP P is an (indexed) tuple (MPi[S] |
Pi[S] ∈ VC (P)), where all MPi[S] ⊆ HBP contain only ordinary atoms. To ease
notation, we also write Mi/S for MPi[S]. We say that M is a model of

– an atom α at Pi[S], denoted M, Pi[S] |= α, iff (i) α ∈ Mi/S when α is ordinary,
and (ii) o(c) ∈Mk/((Mi/S)|qk

p), when α = Pk[p].o(c) is a module atom;
– a rule r at Pi[S] (M, Pi[S] |= r), iff M, Pi[S] |= H(r) or M, Pi[S] 6|= B(r), where

(i) M, Pi[S] |= H(r), iff M, Pi[S] |= α for H(r) = {α}, and (ii) M, Pi[S] |=
B(r), iff M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] 6|= α for all α ∈ B−(r);

– a set of rules R at Pi[S] (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R;
– a rule base R (M |= R) iff M, Pi[S] |= RPi[S] for all Pi[S] ∈ VC (P).

Finally, M is a model of P, denoted M |= P, iff M |= I(P) in case P is ground resp.
M |= gr(P), if P is nonground. An MLP P is satisfiable, iff it has a model.

For any interpretations M and M′ of P, we define M ≤M′, iff Mi/S ⊆M ′i/S for
every Pi[S] ∈ VC (P), and M < M′, iff M 6= M′ and M ≤ M′. A model M of P
(resp., a rule base R) is minimal, if P (resp., R) has no model M′ such that M′ <M.

We next recall answer sets for MLPs. To focus on relevant modules, we use a call
graph, which intuitively captures the relationship between module instances and potential
module calls. The nodes correspond to module instances and edges to presumptive calls
from one instance to others; edge labels distinguish different syntactical calls. Given an
interpretation M, one can determine the actual calls, starting from the main modules,
following the edges whose labels match with the atoms in M. This leads then to the
relevant call graph with respect to M.

Definition 2 (call graph). The call graph of an MLP P is a labeled digraph CGP =
(V,E, l) with vertex set V = VC (P) and an edge e from Pi[S] to Pk[T] in E iff
Pk[p].o(t) occurs in Ri, and e has the input list p in its label, i.e., p ∈ l(e). Given an
interpretation M of P, the relevant call graph CGP(M) = (V ′, E′) of P w.r.t. M is the
smallest subgraph of CGP such that E′ contains all edges from Pi[S] to Pk[T] of CGP

where (Mi/S)|qk

l(e) = T and V ′ contains all Pi[S] that are main module instantiations
or induced by E′; any such Pi[S] is called relevant w.r.t. M.

For instance, the call graphs of the MLPs in Example 1 and 2 are shown in Fig. 1a
and 1b, respectively.

For answer sets of an MLP P, we use a reduct of the instantiated program as
customary in ASP; for reasons discussed in [6], we use the FLP reduct [11] rather than
the traditional Gelfond-Lifschitz reduct [14]. As P might have inconsistent module
instantiations, which compromises the existence of an answer set of P, we contextualize

P1[∅]P2[∅] P2[{q}]
p

p

(a) Example 1

P1[∅] P2[∅]

()

()

(b) Example 2

Fig. 1: Call graphs

reducts and answer sets. Let V (G) and E(G) denote the vertex and edge set of a graph
G, respectively.

Definition 3 (context-based reduct). A context for an interpretation M of an MLP P
is any set C ⊆ VC (P) such that V (CGP(M)) ⊆ C. The reduct of P at P [S] w.r.t. M
and C, denoted fP(P [S])M,C , is the rule set Igr(P)(P [S]) from which, if P [S] ∈ C,
all rules r such that M, P [S] 6|= B(r) are removed. The reduct of P w.r.t. M and C
is fPM,C = (fP(P [S])M,C | P [S] ∈ VC (P)).

That is, outside C the module instantiations of P remain untouched, while inside C
the FLP-reduct [11] is applied.

Definition 4 (answer set). Let M be an interpretation of a ground MLP P. Then M is
an answer set of P w.r.t. a context C for M, iff M is a minimal model of fPM,C .

In particular, if P = (m1) consists of a single module m1 with no calls to itself, the
answer sets of P coincide with the answer sets of R1.

Note that C is a parameter that allows to select a degree of overall-stability for
answer sets of P. The minimal context C = V (CGP(M)) is the relevant call graph
of P. For the rest of this paper, we assume that C = VC (P), i.e., all module instances
have answer sets (see Section 7 for further discussion).

Example 3. The program in Example 1 has the single answer set (M1/∅ := ∅,M2/∅ :=
∅,M2/{q} := {r, q}) while the program in Example 2 has the single answer set
(M1/∅ := ∅,M2/∅ := ∅).

A module atom β = Pk[p].o(c) that appears in a rule in mi = (Pi[qi], Ri) in
an MLP P is monotonic, if for all interpretations M,N of P such that M ≤ N and
M 6= N, and all Pi[S] ∈ VC (P), we have that M, Pi[S] |= β implies N, Pi[S] |= β.

In the sequel, we will characterize the answer sets of MLPs via loop formulas and
program completion where all module atoms under negation are monotonic. Such char-
acterizations consist of two parts: (1) the completion, which singles out classical models,
which is studied in Section 3; (2) the loop formulas, which take care of minimality
(foundedness) aspects; this will be considered in Section 4. Alternatively, the completion
can be made ordered, which we do in Section 5.

3 Program Completion for MLPs

We start with adapting the classical Clark completion [5] with module atoms. The
intuition behind this adaption is to replace every module atom β = Pk[p].o(c) in mi

by a formula µ(mi, β, S) which selects, based on the value of the input atoms p in the
value call Pi[S], the “right” instance Pk[T] of Pk and retrieves the value of o(c) in it.

Given a set S ⊆ HBP of ordinary atoms, we assume that S is enumerated, i.e.,
S = {a1, . . . , an} where n = |S|. We identify subsets B of S with their characteristic
function χB : S → {0, 1} such that χB(a) = 1 iff a ∈ B.

For any ordinary atom a ∈ HBP and any set of ordinary atoms A, let aA denote a
fresh atom, and for any set B ⊆ HBP of ordinary atoms, let BA = {aA | a ∈ B}. Next,
we define support rules. Intuitively, support rules are used to define the completion of an
atom. The support rules of a set of rules R w.r.t. an ordinary atom α ∈ HBP is

SR(α,R) = {r ∈ R | H(r) = {α}} .

Let ¬.A = {¬a | a ∈ A} and, as usual,
∨
F =

∨
f∈F f and

∧
F =

∧
f∈F f (note

that
∨
∅ = ⊥ and

∧
∅ = >).

Then, for every module atom β = Pk[p].o(c) ∈ HBP from some module mi =
(Pi[qi], Ri) (where Pk has formal input qk = qk,1, . . . , qk,nk

) and S ⊆ HBP|qi
, let

βmi,S,T =
∧

χT (qk,j(c))=1

pSj (c) ∧
∧

χT (qk,j(c))=0

¬pSj (c)

and

µ(mi, β, S) =
∨

T⊆HBP|qk

(
βmi,S,T ∧ oT (c)

)
,

µ̄(mi, β, S) =
∨

T⊆HBP|qk

(
βmi,S,T ∧ ¬oT (c)

)
.

We can now define the modular completion, which relates instantiations of the rules
in modules to propositional formulas.

Definition 5 (Modular Completion). Let r be a rule from module mi = (Pi[qi], Ri),
and let S ⊆ HBP|qi

. Then

γ(mi, r, S) =
∧
B+
o (r)S ∧

∧
β∈B+

m(r)

µ(mi, β, S) ∧ (2)

∧
¬.B−o (r)S ∧

∧
β∈B−

m(r)

µ̄(mi, β, S) ⊃ H(r)S ,

and

σ(mi, r, S) =
∧
B+
o (r)S ∧

∧
β∈B+

m(r)

µ(mi, β, S) ∧ (3)

∧
¬.B−o (r)S ∧

∧
β∈B−

m(r)

µ̄(mi, β, S) ,

For a set of rules R, we let σ(mi, R, S) =
∨
r∈R σ(mi, r, S) and γ(mi, R, S) =∧

r∈R γ(mi, r, S).

For any value call Pi[S] of module mi = (Pi[qi], Ri), qi = qi,1, . . . , qi,ni , in P, let

γ(P, Pi[S]) = γ(mi, Ri, S) ∧
∧

χS(qi,j(c))=1

qSi,j(c) , (4)

σ(P, Pi[S]) =
∧

r∈Ri,a∈H(r)

aS ⊃ σ(mi,SR(a,Ri), S) (5)

and

γ(P) =
∧

Pi[S]∈VC (P)

γ(P, Pi[S]) ,

σ(P) =
∧

Pi[S]∈VC (P)

σ(P, Pi[S]) .

Example 4. Continuing with P of Example 1, we get the following formulas (here,
S1 = ∅, S0

2 = ∅ and S1
2 = {q}):

– γ(P, P1[∅]) = (¬pS1 ∧ rS0
2) ∨ (pS1 ∧ rS1

2) ⊃ pS1 ,
– γ(P, P2[∅]) = qS

0
2 ⊃ rS0

2 ,
– γ(P, P2[{q}]) =

(
qS

1
2 ⊃ rS1

2

)
∧ qS1

2 ,

– σ(P, P1[∅]) = pS1 ⊃ (¬pS1 ∧ rS0
2) ∨ (pS1 ∧ rS1

2),
– σ(P, P2[∅]) = rS

0
2 ⊃ qS0

2 ,
– σ(P, P2[{q}]) = rS

1
2 ⊃ qS1

2 .
The conjunction of the first three formulas yields γ(P), and the last three give us σ(P).

Example 5. For the MLP P in Example 2, we get the following formulas (S = ∅):
– γ(P) = pS2 ⊃ pS1 ∧ pS1 ⊃ pS2
– σ(P) = pS1 ⊃ pS2 ∧ pS2 ⊃ pS1

The formula γ(P) now captures the (classical) models of P.

Lemma 1. The models of γ(P) correspond 1-1 to the models of P. That is, (i) if
M |= γ(P), then M |= P, where Mi/S = {p(c) ∈ HBP | pS(c) ∈M ∧ p ∈ Pi}, for
all Pi[S], and (ii) if M |= P, then M |= γ(P), where M =

⋃
Pi[S]

(Mi/S)S .

Proof (sketch). (i) Suppose M |= γ(P), and let M as described. We need to show
that M, Pi[S] |= r for each r ∈ IP(Pi[S]) = Ri ∪ S and Pi[S] ∈ VC (P). If r is a
fact qj(c) for a formal input parameter qj of Pi[q], then qj(c) ∈ S and, by formula (4),
M |= qSj (c); hence, qj(c) ∈ Mi/S, and thus M, Pi[S] |= r. Otherwise, r ∈ Ri.
As M |= γ(mi, Ri, S), we have that M satisfies the formula (2). By construction,
for each ordinary atom β in r, we have M |= βS iff M, Pi[S] |= β; furthermore,
M |= µ(mi, β, S) for Pk[p].o(c) iff M |= oT (c), where T ⊆ HBP|qk

is the unique set
T such that M |=

∧
j(p

S
j (c) ≡ qTi,j(c)). That is, M |= µ(mi, β, S) iff M, Pi[S] |= β.

Hence, it follows that M, Pi[S] |= r.
(ii) Suppose M |= P, and let M =

⋃
Pi[S]

(Mi/S)S . To show that M |= γ(P), we
must show that M |= γ(P, Pi[S]) for all Pi[S]. As S ⊆ IP(Pi[S]) and M, Pi[S] |=

IP(Pi[S]), all conjuncts qSj (representing the formal input) in γ(P, Pi[S]) are satisfied
by M ; thus it remains to show M |= γ(mi, Ri, S), i.e., M |= γ(mi, r, S) for each r ∈
Ri. For each ordinary atom β in r, we have by construction of M that M |= βS

iff M, Pi[S] |= β; furthermore, for each module atom β = Pk[p].o(c) in r, we have
that M |= µ(mi, β, S) iff M |= oT (c), i.e., o(c) ∈ Mk/T , where T ⊆ HBP|qk

contains qk,j(c) iffM |= pSj (c), i.e., pj(c) ∈Mi/S. Thus,M |= µ(mi, β, S) iff o(c) ∈
Mk/(Mi/S)|qk

p ; in other words, iff M, Pi[S] |= o(c). As M, Pi[S] |= r, it follows
that M |= γ(mi, r, S).

Call a model M of P supported, if for every atom α ∈ Mi/S, Pi[S] ∈ VC (P),
there is some rule r ∈ SR(α, IP(Pi[S])) such that M, Pi[S] |= B(r). Then, based on
Lemma 1 the following can be shown.

Lemma 2. The models of γ(P) ∧ σ(P) correspond 1-1 to the supported models of P.

In particular, if P is acyclic (no atom depends recursively on itself), then it has a single
supported model, which gives rise to an answer set of P.

Example 6. Continuing with Example 4, we get for γ(P) the classical models M1 =

{rS1
2 , qS

1
2}, M2 = {pS1 , rS

0
2 , rS

1
2 , qS

1
2}, M3 = {pS1 , rS

1
2 , qS

1
2}, and M4 = {pS1 , rS

0
2 ,

rS
1
2 , qS

0
2 , qS

1
2}. They correspond to the classical models M1 = (M1/∅ := ∅,M2/∅ :=

∅,M2/{q} := {r, q}), M2 = (M1/∅ := {p},M2/∅ := {r},M2/{q} := {r, q}),
M3 = (M1/∅ := {p},M2/∅ := ∅,M2/{q} := {r, q}), and M4 = (M1/∅ :=
{p},M2/∅ := {r, q},M2/{q} := {r, q}) of P. The formula γ(P) ∧ σ(P) has only the
classical models M1,M3, and M4, which will give us the supported models M1, M2,
and M4 of P.

Example 7. In Example 5, the models of γ(P) are M1 = ∅ and M2 = {pS1 , pS2 }, which
are also the models of γ(P) ∧ σ(P). Both of them correspond to the classical as well as
supported models of P, namely M1 = (M1/∅ := ∅,M2/∅ := ∅) and M2 = (M1/∅ :=
{p1},M2/∅ := {p2}).

4 Loop Formulas for MLPs

In this section, we develop modular loop formulas that instantiate each program module
with possible input to create the classical theory of the program, and then add loop
formulas similar as in [16]. However, we have to respect loops not only inside a module,
but also across modules due to module atoms. The latter will be captured by a modular
dependency graph, which records positive dependencies that relates module instantia-
tions with the atoms in a module. The instantiation of the modules makes it necessary
to create fresh propositional atoms very similar to grounding of logic programs; com-
plexity results in [6] suggest that there is no way to circumvent this: with arbitrary input,
already propositional Horn MLPs are EXP-complete and normal propositional MLPs
are NEXP-complete (considering brave inference of a ground atom, i.e., membership
in some answer set). In the non-ground case, Horn MLPs are 2EXP-complete, while
normal non-ground MLPs are 2NEXP-complete. In the rest of this section, we assume
that all negated module atoms in a MLP are monotonic and that P is ground.

p P2[p].r

r q

(a) Example 1

p1 P2.p2

p2 P1.p1

(b) Example 2

Fig. 2: Module dependency graphs

We define now the modular dependency graph to keep track of dependencies between
modules and rules. It is a ground dependency graph with two additional types of edges.

Definition 6 (Modular Dependency Graph). Let P = (m1, . . . , mn) be an MLP. The
dependency graph of P is the digraph MGP = (V,E) with vertex set V = HBP and
edge set E containing the following edges:

– p(c1)→ q(c2), for each r ∈ Ri with H(r) = {p(c1)} and q(c2) ∈ B+(r).
– a→ b, if one of (i)–(ii) holds, where α is of the form Pj [p].o(c) in Ri and Pj has

the associated input list qj:
(i) a = α and b = o(c) ∈ HBP;

(ii) a = q`(c) ∈ HBP|qj
and b = p`(c) ∈ HBP|p for 1 ≤ ` ≤ |qj|.

Intuitively, the module graph is “uninstantiated”, i.e., all module atoms are purely syn-
tactic. This also means that loops that show up in the module graph must be “instantiated”
in the formulas.

Example 8. The module dependency graphs of the programs in Examples 1 and 2 are
shown in Fig. 2a and 2b, resp. In both figures, the two upper nodes are from m2, while
the nodes below stem from m1. Note that the dashed edges stem from condition (i) in
Definition 6, while dotted edges are from condition (ii). Straight edges are standard
head-body dependencies.

We define now modular loops based on the modular dependency graph.

Definition 7 (Modular Loops). A set of atoms L ⊆ V (MGP) is called a modular loop
for P iff the subgraph of MGP induced by L is strongly connected.

Note that L may contain module atoms, and single-atom loops are allowed.
Modular loop formulas have then the same shape as standard loop formulas [19, 16],

with the important distinction that external support formulas may take the input S from
the value call Pi[S]. For that, we define first the external support rules of rule set R
w.r.t. a set L ⊆ HBP as

ER(L, R) = {r ∈ R | H(r) ∩ L 6= ∅, B+(r) ∩ L = ∅} .

Note that L may contain module atoms.
Modular loops may go through the atoms of multiple modules, but do not take care

of “instantiated loops” that stem from the input. Given a modular loop, the instantiated

loop may be exponentially longer in the propositional case, whereas it could have double-
exponential length in the non-ground case. To keep record of these loops, we next define
cyclic instantiation signatures that are used to instantiate modular loops.

Definition 8 (Cyclic instantiation signature). Let L be a modular loop for P =
(m1, . . . ,mn). A cyclic instantiation signature for L is a tuple S = (S1, . . . ,Sn) such
that for all i ∈ {1, . . . , n}, (i) Si ⊆ 2HBP|qi with Si 6= ∅ and all S ∈ Si have S∩L = ∅,
if L has some ground atoms with predicates from Pi, and (ii) Si = ∅ otherwise.

Intuitively, we use a modular loop as template to create loops that go over instantiations.

Example 9. The MLP P in Example 1 has the loop L = {p, P2[p].r, r, q} for which we
get one cyclic instantiation signature S1 = ({∅}, {∅}); ({∅}, {{q}}) and ({∅}, {∅, {q}})
are not cyclic instantiation signatures as they share atoms with L, thus always get support
from input S. Intuitively, this captures those module instantiations that cycle over module
input, but have no support from the formal input, viz., P1[∅]↔ P2[∅].

Example 10. In Example 2, we have a loop L = {p1, P2.p2, p2, P1.p1}. We get one
cyclic instantiation signatures: S1 = ({∅}, {∅}). Here, S1 builds a cycle over module
instantiations from the mutual calls in m1 and m2.

Definition 9 (Modular Loop Formulas). Let S = (S1, . . . ,Sn) be an instantiation
signature for the modular loop L in MLP P. The loop formula for L w.r.t. S in P is

λ(S,L,P) =

n∨
i=1

∨
T∈Si

(∨
(L|Pi

)T
)
⊃

n∨
i=1

∨
S∈Si

σ(mi,ER(L, Ri), S) .

Given P, the loop formula for a modular loop L in P is the conjunction λ(L,P) =∧
S λ(S,L,P) for all cyclic instantiation signatures S of L, and the loop formula for P

is the conjunction λ(P) =
∧
L λ(L,P) for all modular loops L in P.

Intuitively, the formal input in a value call Pi[S] always adds external support for
the input atoms in S as we add S to the instantiation IP(Pi[S]). Since we obtain all
supported models with γ(P) ∧ σ(P), thus also have S there, we can restrict to those
instantiation signatures S for a modular loop L that have no support from formal input.
Putting things together, let us define

Λ(P) = γ(P) ∧ σ(P) ∧ λ(P) .

Example 11. Continuing with Example 4, we get the following modular loop formulas
based on the loop L and instantiation signature S1 for L shown in Example 9 (here,
S1 = ∅, S0

2 = ∅): λ(S1,L,P) = (pS1 ∨rS0
2 ∨qS0

2) ⊃ ⊥. This formula and γ(P)∧σ(P)

yields Λ(P), whose model is M1 = {rS1
2 , qS

1
2}, which coincides with the answer

set M1 = (∅, ∅, {r, q}) of P.

Example 12. Based on Example 5 and 10 we get the following modular loop formulas
using the loopL and instantiation signature S1 (S = ∅): λ(S1,L,P) = pS1 ∨pS2 ⊃ ⊥∨⊥.
The classical model of the conjunction of γ(P) ∧ σ(P) and above formula (= Λ(P)) is
thus M1 = ∅, which coincides with the answer set M1 = (∅, ∅) of P.

We have the following result.

Theorem 1. Given an MLP P in which all negated module atoms are monotonic, the
answer sets of P and the classical models of Λ(P) correspond, such that (i) if M |=
Λ(P), then there is some answer set M of P such that Mi/S = {p(c) ∈ HBP |
pS(c) ∈M ∧ p ∈ Pi} for all Pi[S] ∈ VC (P), and (ii) if M is an answer set of P, then
M |= Λ(P), where M =

⋃
Pi[S]

(Mi/S)S .

5 Ordered Completion for MLPs

In this section, we follow the idea in [3] to provide an ordered completion for non-ground
MLPs. We consider MLPs in the Datalog setting, i.e., an MLP P can be viewed as a
modular nonmonotonic Datalog program which has an infinite set of constants C and
is independent from the domains (this is ensured by forcing safety conditions to rules
in P). Grounding of P is done with respect to a finite relational structure M (extended
to MLPs), having a finite universe UM accessible by constants; it is the active domain
we are restricted to. We also need to adapt the notion of answer set for this setting. Like
above, we assume that all negated module atoms in a MLP are monotonic. Moreover,
we assume that MLPs do not contain facts, i.e., rules of form (1) have non-empty body.1

Finite Structures for MLPs. Given an MLP P, we call a predicate in P intensional if
it occurs in the head of a rule in P or in the formal input parameters qi of a modulemi =
(Pi[qi], Ri), and extensional otherwise. Intuitively, intensional predicates are defined
by the rules in P and the input given to a module instantiation, whereas extensional
predicates stem from the extension given by a relational structure. The signature of
an MLP P contains all intensional predicates, extensional predicates, and constants
occurring in P. The set of intensional (resp., extensional) predicates in a module m is
denoted by Int(m) (resp., Ext(m)).

A finite (Herbrand) relational structure for P (H-structure) can be defined as a
pair M = (UM, ·M), where the finite universe UM consists of constants in P and ·M is a
mapping associating (i) each constant in P with itself, i.e., cM = c, (ii) each extensional
predicate q in P with a relation qM over M, where qM has the same arity as q, (iii) each
intensional predicate p in a module mi = (Pi[qi], Ri), together with each input S from
the value calls Pi[S] ∈ VC (P), with a relation pM,S whose arity is the same as p.

The grounding process is gradually defined as follows. The grounding of a rule r
under M is the set gr(r,M) of all ground instances of r by replacing all variables
in the rules by some domain objects in M. The grounding of a rule set R w.r.t. M
is gr(R,M) =

⋃
r∈R gr(r,M) ∪ {q(c) | q ∈ Ext(R) ∧ c ∈ qM}; intuitively, it means

that rules are grounded wrt. M and facts are taken from the finite structure as a database.
The grounding of a module m wrt. M, denoted by gr(m,M), is defined by replacing
the rules in R(m) by gr(R(m),M). Finally, the grounding of P wrt. M is gr(P,M),
which is formed by grounding each module mi of P wrt. M.

1 This is w.l.o.g., since we can remove facts from an MLP and map them to extensional relations
in a finite relational structure.

We say that M is an answer set of P iff the interpretation M = (Mi/S | Pi[S] ∈
VC (P)), where

Mi/S = {q(c) | q ∈ Ext(mi) ∧ c ∈ qM} ∪ {p(c) | p ∈ Int(mi) ∧ c ∈ pM,S} ,

is an answer set of gr(P,M) according to Definition 4.
Ordered Completion. Given an MLP P, our goal now is to give a translation of P to a
first-order formula such that the models of the latter correspond to the answer sets of the
former.

Suppose that we are in a value call Pi[S] of the module mi = (Pi[qi], Ri) and
consider a module atom β = Pj [p].o(y) from a module mj = (Pj [qj], Rj). For-
mula βmi,S,T , as defined in Section 3, can then match the interpretation of p to an
input T of β.

Once this is done, we can “guess” the right T by ranging over all possible subsets
of the restricted Herbrand base HBP|qj

of the called module mj with formal input
parameters qj. For each guess, we translate the module atom β to its output predicate
labeled with the corresponding input T . Depending on whether β appears in the positive
(resp. negative) part of the body of a rule, one uses the translation µ′ (resp., µ′):

µ′(mi, β, S) =
∨

T⊆HBP|qj

βmi,S,T ∧ oT (y)

µ′(mi, β, S) =
∨

T⊆HBP|qj

βmi,S,T ∧ ¬oT (y) .

Compared to µ and µ, the primed version here deals with non-ground output of β.
Now we can build the left direction of the completion, which intuitively says that

if there is some ground body which holds, then the respective head is concluded. We
assume that rules are standardized apart, i.e., a predicate a appearing in the head of
a rule always has the form a(x). Suppose that free variables in the body of a rule r
are y1, . . . ,yn, the left hand side of the completion γ′(mi, a(x), S) is a lifted version
of γ(mi, r, S) to the non-ground case which merges all supporting rules for a(x). We
define

γ′(mi, a(x), S) =

∀x

 ∨
r∈SR(a(x),Ri)

∃y1, . . . ,yn

 ∧
pl(yl)∈B+

o (r)

pSl (yl) ∧
∧

pl(yl)∈B−
o (r)

¬pSl (yl)∧

∧
β∈B+

m(r)

µ′(mi, β, S) ∧
∧

β∈B−
m(r)

µ′(mi, β, S)

 ⊃ aS(x)

 .

Example 13. Take P from Example 1 and the labels S1, S0
2 , and S1

2 from Example 11.
We have γ′(m1, p, ∅) = (¬pS1 ∧ rS0

2) ∨ (pS1 ∧ rS1
2) ⊃ pS1 .

We next turn to build the right hand side of the completion, with a modification con-
cerning the order between predicates. Similar to [3], we use a predicate D to keep

track of the derivation/dependency ordering between labeled predicates. Basically, D
is labeled with subscripts describing the two related predicates (the former is used in
deriving the latter, in a transitive way), and superscripts referring to the respective inputs.
For example, DTS

oa (y,x) means that o(y) in a value call Pj [T] is used to derive a(x)
in Pi[S]; hence, DTS

oa (y,x) ∧ ¬DST
ao (x,y) means that there is no loop between the two.

Using this, the ordinary predicates in a rule r can be ordered as follows:

δ(mi, r, S) =
∧

a(x)∈H(r)

∧
b∈Int(mi)

∧
b(z)∈B+

o (r)

DSS
ba (z,x) ∧ ¬DSS

ab (x, z) .

Concerning module atoms, we upgrade the translation for module atoms µ′ to µ?

with atom a(x) as an additional argument. This new translation not only takes care of
matching labels but also prevents loops between the output atom of β and a(x), as well
as loops between input predicates and formal arguments of the respective module call. In
the following formula, pk and qj,k come correspondingly from the input predicate list p
of β and the formal arguments qj of module mj :

µ?(mi, β, S, a(x)) =
∨

T⊆HBP|qj

βmi,S,T ∧ oT (y) ∧DTS
oa (y,x) ∧ ¬DST

ao (x,y)∧

∀z

(∧
DST
pkqj,k

(z, z) ∧ ¬DTS
qj,kpk

(z, z)

)
.

The right hand side of the completion applies to every intensional predicate. Intu-
itively, this formula makes sure that whenever a head is true, then there must be some
rule with the body satisfied, plus there is no loop involving the head and any atom in
the body (both ordinary and module atoms), or between the input predicates and the
corresponding formal input parameters of the called module; this is encoded in δ and µ?,
respectively:

ρ(mi, a(x), S) =

∀x

aS(x) ⊃
∨

r∈SR(a(x),Ri)

∃y1, . . . ,yn

 ∧
pl(yl)∈B+

o (r)

pSl (yl) ∧
∧

pl(yl)∈B−
o (r)

¬pSl (yl) ∧

δ(mi, r, S) ∧
∧

β∈B+
m(r)

µ?(mi, β, S, a(x)) ∧
∧

β∈B−
m(r)

µ′(mi, β, S)

 .
Example 14. Continuing with Example 13, we get

ρ(m1, p, ∅) = pS1 ⊃ (¬pS1 ∧ rS
0
2 ∧DS0

2S1
rp ∧ ¬DS1S

0
2

pr ∧DS1S
0
2

pq ∧ ¬DS0
2S1
qp)

∨ (pS1 ∧ rS
1
2 ∧DS1

2S1
rp ∧ ¬DS1S

1
2

pr ∧DS1S
1
2

pq ∧ ¬DS1
2S1
qp).

Then, the ordered completion for an intensional predicate a is simply the conjunction
of γ′ and ρ:

ψ(mi, a(x), S) = γ′(mi, a(x), S) ∧ ρ(mi, a(x), S).

The ordered completion for a value call Pi[S] is the collection of ordered completions of
all intensional predicates and the realization of the input via predicates in qi, all labeled
with S:

ψ(P, Pi[S]) =
∧

a∈Int(mi)

ψ(mi, a(x), S) ∧
∧

χS(qi,j(c))=1

qSi,j(c) .

The only thing left is to capture the closure condition of the dependencies DST
qp , not

only inside but also across module instances. In the formula below, we consider triples
of value calls Pi[S], Pj [T], and Pk[U] (not necessarily distinct) coming from the call
graph VC (P). Then,

τ(Pi[S], Pj [T], Pk[U]) =∧
p∈Int(mi)

∧
q∈Int(mj)

∧
r∈Int(mk)

∀xyz(DST
pq (x,y) ∧DTU

qr (y, z) ⊃ DSU
pr (x, z)).

Finally, the ordered completion of the whole MLP P is given by collecting the
completions for all value calls in the call graph VC (P) and the closure axiom of the
dependency ordering between labeled predicates,

τ(P) =
∧

Pi[S],Pj [T],Pk[U]∈VC (P)

τ(Pi[S], Pj [T], Pk[U]) ,

i.e.,
Ω(P) = τ(P) ∧

∧
Pi[S]∈VC (P)

ψ(P, Pi[S]) ,

Example 15. The formulas in Examples 13 and 14 give us the encoding ψ(P, P1[]) =
γ′(m1, p, ∅)∧ρ(m1, p, ∅) for module m1 of the MLP P in Example 1. For m2, we have:

– ψ(P, P2[∅]) = (qS
0
2 ⊃ rS0

2) ∧ (rS
0
2 ⊃ qS0

2 ∧DS0
2S

0
2

qr ∧ ¬DS0
2S

0
2

rq),

– ψ(P, P2[{q}]) = qS
1
2 ∧ (qS

1
2 ⊃ rS1

2) ∧ (rS
1
2 ⊃ qS1

2 ∧DS1
2S

1
2

qr ∧ ¬DS1
2S

1
2

rq),

– τ(P) =
∧
DT1T2
p1p2 ∧D

T2T3
p2p3 ⊃ DT1T3

p1p3 , where pi ∈ {p, q, r}; Ti = S1 if pi = p and
Ti ∈ {S0

2 , S
1
2} otherwise.

The ordered completion Ω(P) = τ(P)∧ψ(P, P1[])∧ψ(P, P2[∅])∧ψ(P, P2[{q}]) has
a single model whose projection to labeled atoms is {rS1

2 , qS
1
2}. This model corresponds

to the answer set mentioned in Example 1.

The following theorem shows the correctness of our translation. For this, given an
MLP P and an H-structure M, we define the derivation ordering of P wrt. M as the
set DM(P) of all facts DTS

qp (c2, c1) such that (i) there exists a path from p(c1) to q(c2)

in the modular dependency graph MGP, (ii) c1 ∈ pM,S as p is an intensional predicate,
and (iii) c2 ∈ qM,T if q is an intensional predicate or c2 ∈ qM if q is an extensional
predicate, where T ∈ VC (P).

Theorem 2. Let P = (m1, . . . ,mn) be an MLP in which all negated module atoms
are monotonic. Then, (i) if an H-structure M for P is an answer set of gr(P,M), then
M ∪D(P) is a model of Ω(P), where

M =
⋃

Pi[S]∈VC (P)

{qS(c) | q ∈ Ext(mi)∧c ∈ qM}∪{pS(c) | p ∈ Int(mi)∧c ∈ pM,S};

(ii) if M is a finite model of Ω(P), then the H-structure M for P where (a) for each
extensional predicate q, qM = {c | Pi[S] ∈ VC (P) ∧ qS(c) ∈ M}, and (b) for each
intensional predicate p in module mi with input S, pM,S = {c | Pi[S] ∈ VC (P) ∧
pS(c) ∈M}, is an answer set of gr(P,M).

6 Discussion

The translations Λ(P) and Ω(P) from above allow us to express the existence of answer
sets of an MLP P as a satisfiability problem in propositional respectively predicate
logic that is decidable; however, for arbitrary call-by-value, the resulting formulas
are huge in general, given that there are double exponential many value calls Pi[S]
for an input q in general. Furthermore, loops can be very long; in the general case,
they can have double exponential length. However, the intrinsic complexity of MLPs
already mentioned in Section 4 suggests that even in the propositional case (where the
number of different inputs S is at most exponential) we can not expect a polynomially
computable transformation of brave inference P |= a into a propositional SAT instance,
as the problem is EXP-complete for propositional Horn MLPs and NEXP-complete for
propositional normal MLPs.

The ordered completion formula Ω(P), which can be seen as a Σ1
1 formula over a

finite structure and is thus evaluable in nondeterministic exponential time. Here, in the
propositional case the input values S and T may be encoded using (polynomially many)
predicate arguments (e.g., oT (y) becomes o(x,y) where x = x1, . . . , xk encodes T)
and disjunction/conjunction over S and T expressed by (first-order) quantification. In this
way, it is possible to obtain a Σ1

1 formula of polynomial size over a finite structure, such
that this modified transformation is worst-case optimal with respect to the complexity of
propositional normal MLPs. Similar encoding techniques can be applied for non-ground
MLPs if the predicate arities of formal input predicates are bounded by a constant.

In the general non-ground case, such polynomial encoding techniques are not ev-
ident; already in the Horn case deciding P |= a is 2EXP-complete, and for normal
MLPs brave inference is 2NEXP-complete. One may resort to predicate variables for
encoding S and T , and naturally arrive at a formula in higher-order logic (e.g., oT (y)
becomes o(T,y) where T = T1, . . . , Tk is a list of predicate variables for the formal
input predicates q = q1, . . . , qk). It remains to be seen, however, whether the structure
of the resulting (polynomial-size) formula would readily permit worst-case optimal
evaluation with respect to the complexity of MLPs.

Noticeably, however, we do not get a blowup if no call-by-value is made, i.e., if all
inputs lists are empty (which means all S and T have the single value ∅). This setting
is still useful for structured programming, and amounts in the propositional case to the

DLP-functions of [15] (but in contrast permits unlimited recursion through modules, in
particular positive recursion). Our results thus also provide ordered completion formulas
for DLP-functions over normal programs.

7 Conclusion

In this paper, we have studied encodings of answer sets of Modular Nonmonotonic Logic
Programs (MLPs) into first-order formulas, in the line of recent work in Answer Set
Programming.

As for future work, refinement of the results and exploitation of the results for answer
sets computation using SAT and QBF solvers, as well as theorem provers remains to
be investigated; here, fragments of MLPs that allow for reasonable encodings might be
considered, and the suitability of higher-order theorem provers evaluated.

For this paper, we have considered as context C the set VC (P) of all value calls,
which thus can be omitted. Intuitively, a given contextC may be incorporated by ensuring
that loop formulas are built only for relevant instantiation signatures (S1, . . . ,Sn); for
modular loops, which are those that contain some value call Si inside C; furthermore,
either none or all value calls Si must be in C. Relative to an interpretation M, the
minimal context C = V (CGP(M)) may be defined using suitable predicates respective
propositions. The technical elaboration of these ideas is beyond this paper.

Another assumption that we have made was that module atoms under negation are
monotonic, in order to readily apply loop formula techniques despite the semantics of
MLPs based on the FLP-reduct. It would be interesting to look into the full case of
MLPs with arbitrary module atoms. Recently, unfounded sets for logic programs with
arbitrary aggregates have been defined in [10]. Given that for ordinary logic programs
unfounded sets are a semantic counterpart of loop formulas, this may inspire a similar
notion of unfounded set for MLPs and help developing a syntactic counterpart in terms
of loop formulas. The papers [17, 21], which inspect the FLP-semantics on a more
principled level, may also be useful in this respect. Different from answer semantics
under the GL-reduct, not only positive atoms need to be considered for derivability, but
also negated non-montonic module atoms.

A further issue are encodings for disjunctive MLPs, i.e., MLPs where the head
of a rule may be a disjunction α1 ∨ · · · ∨ αk of atoms. Loop formulas for ordinary
disjunctive logic programs have been developed in [16], and for general propositional
theories under Answer Set Semantics in [12]. There is no principal obstacle to extend
the loop formula encoding of this paper to disjunctive MLPs, and doing this is routine.
In contrast, ordered completion formulas for disjunctive MLPs and already ordinary LPs
needs further work; they may require a blowup given that ordinary disjunctive Datalog
programs have NEXPNP complexity.

Finally, relationships to other semantics of logic programming is an interesting issue.
Chen et al. [4] showed that loops with at most one external support rule in the program
have a close connection to (disjunctive) well-founded semantics. Studying MLPs under
similar restrictions could provide similar results, yet well-founded semantics for MLPs
remains to be formalized.

References

1. Apt, K., Blair, H., Walker, A.: Towards a Theory of Declarative Knowledge. In: Foundations
of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufman (1988)

2. Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The deductive database system LDL++.
Theor. Pract. Log. Prog. 3(1), 61–94 (2003)

3. Asuncion, V., Lin, F., Zhang, Y., Zhou, Y.: Ordered completion for first-order logic programs
on finite structures. In: AAAI’10. pp. 249–254. AAAI Press (2010)

4. Chen, X., Ji, J., Lin, F.: Computing loops with at most one external support rule for disjunctive
logic programs. In: ICLP’09. pp. 130–144. Springer (2009)

5. Clark, K.L.: Negation as failure. In: Logic and Data Bases. pp. 293–322 (1978)
6. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Program-

ming Revisited. In: ICLP’09. pp. 145–159. Springer (2009)
7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM T. Database Syst. 22(3),

364–417 (1997)
8. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.

In: LPNMR’97. pp. 290–309. Springer (1997), extended paper CD-TR 97/108, Institut f.
Informationssysteme, TU Wien 1997

9. Eiter, T., Leone, N., Saccà, D.: On the Partial Semantics for Disjunctive Deductive Databases.
Ann. Math. Artif. Intell. 19(1/2), 59–96 (1997)

10. Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates. In:
LPNMR’05. pp. 40–52. Springer (2005)

11. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

12. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math. Artif.
Intell. 47(1-2), 79–101 (2006)

13. Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic programs. In:
POPL’89. pp. 134–142. ACM (1989)

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generat. Comput. 9(3–4), 365–385 (1991)

15. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive
Stable Models. J. Artif. Intell. Res. 35, 813–857 (2009)

16. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: ICLP’03. pp. 451–465.
Springer (2003)

17. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In:
LPNMR’09. pp. 182–195. Springer (2009)

18. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP’94. pp. 23–38. MIT-Press (1994)
19. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif.

Intell. 157(1-2), 115–137 (2004)
20. Ross, K.: Modular Stratification and Magic Sets for Datalog Programs with Negation. J. ACM

41(6), 1216–1267 (1994)
21. Truszczyński, M.: Reducts of propositional theories, satisfiability relations, and generaliza-

tions of semantics of logic programs. Artif. Intell. 174(16–17), 1285–1306 (2010)

