
Promoting Modular Nonmonotonic Logic
Programs∗

Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
tkren@kr.tuwien.ac.at

Abstract
Modularity in Logic Programming has gained much attention over the past years. To date, many
formalisms have been proposed that feature various aspects of modularity. In this paper, we
present our current work on Modular Nonmonotonic Logic Programs (MLPs), which are logic
programs under answer set semantics with modules that have contextualized input provided by
other modules. Moreover, they allow for (mutually) recursive module calls. We pinpoint issues
that are present in such cyclic module systems and highlight how MLPs addresses them.

Keywords and phrases Knowledge Representation, Nonmonotonic Reasoning, Modular Logic
Programming, Answer Set Programming

1 Introduction and Problem Description

Answer set programming (ASP) is an approach for declarative problem solving geared towards
search problems. More specifically, problems are represented by nonmonotonic logic programs,
such that the stable models (or answer sets) [19] of the program represent the solutions
to a given problem instance. ASP has many applications in knowledge representation and
problems in artificial intelligence including planning, diagnosis, and configuration.

A natural way to design software for solving problems is to identify easier to handle
subproblems that can be solved independently from each other, and then based on this
analysis to craft corresponding software components that solve the subproblems: the modules.
The combination of these components then gives an implementation for the whole problem.
Most general-purpose programming languages have their own way to introduce modularity,
a key concept that helps developing software artifacts. Techniques like information hiding,
abstraction, and structured programming are well-established principles for breaking down
sub-tasks in an imperative program, and essentially any standard programming language
has amenities that allow to define input/output interfaces to modules for easy code-reuse
in implementations of possibly unrelated problems. Testing software greatly benefits from
structured programs, since it involves defining well-suited interfaces to the components,
which in turn assists writing testcases. When many programmers are working on a project,
the strict component-wise building of software is the only way to success. In contrast, it is
customary to view logic programs as monolithic entities, i.e., one program is tailored to solve
a particular problem without a clear separation of the sub-tasks, albeit the same principle of
creating manageable pieces will help users of logic programming systems building knowledge
bases. Having an explicit way to modularize knowledge in logic programs is thus needed and
adding modularity principles to ASP has several advantages like easy knowledge base reuse
by clean input/output interfaces and helping to model complex problem domains by focusing

∗ This research has been supported by the Austrian Science Fund project P20841, by the Vienna Science
and Technology Fund project ICT 08-020, and by the EC project OntoRule (IST-2009-231875).

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Promoting Modular Nonmonotonic Logic Programs

on smaller parts first. This issue has been identified and various notions for modularizing
logic programs have been proposed to support testing logic programs, reusing and abstracting
components, and maintaining program code.

However, there are obstacles that impede to bring such characteristics to ASP. Traditional
answer set semantics has no module concept and there is no straightforward way that would
allow that. It is not clear how a semantics should be defined that caters for modules, as the
declarative nature of ASP does not distinguish between knowledge stored in different logic
programs (when viewed as modules). Another issue is to allow for cyclic module systems,
i.e., when modules mutually refer to each other. Modules that have such cyclic dependencies
may bring in semantic issues like unfounded models that would not be present when viewing
logic programs as single unit. Both of these problems are related to the declarative nature
of ASP, and any prospective model-theoretic semantics for modular ASP has to deal with
unwanted semantic deficits. Methods that bring modularity aspects closer to ASP have not
yet stood the test of time, and no single semantics has gained general acceptance.

The aim of this paper is to recall existing approaches in modular logic programming and
to present work and results on a novel formalism to modular ASP: Modular Nonmonotonic
Logic Programs (MLPs) [10]. We pinpoint peculiar issues that exist in modular frameworks
for ASP and highlight how the MLP formalism addresses them. We conclude with prospective
future work and open research issues.

2 Background and Overview of Existing Literature

There is a long history of research in investigating modularity principles in logic programming.
A good overview provides [5, 7], which studies modularity in the context of traditional definite
Horn logic programming. In general, they identify two directions for investigating modularity
aspects in logic programming: (i) Programming-in-the-large, which introduce compositional
operators to combine separate and independent modules; and (ii) Programming-in-the-small,
which builds upon abstraction and scoping mechanisms. Early influential work on modularity
in logic programming include [17] and [18], where the former can be seen as an approach
for (ii), while the latter is a prototypical instance of (i).

In the context of answer set semantics, whose focus lies in the treatment of negation-as-
failure and disjunctive rules, several important proposals have been put forward. Representa-
tives for (i) are DLP-functions [21] and modular smodels programs [25], which has recently
been generalized to a module-based framework for multi-language constraint modeling [22],
and to modular P-log programs [9] that combines probabilistic reasoning with logic programs.
Another proponent [28] is concerned with operator splitting similar in the vein of splitting
sets [24]. Exponents in (ii) are modular logic programs with generalized quantifiers [15],
macros [3], templates [8], and web rule bases [1]. On a broader scale, multi-agent scenarios
with logic programs has been studied in social logic programs [6] and communicating ASP [4].

3 Goal of the Research

As described above, several semantics exist that deal with modularity in ASP. Virtually
all semantics are defined such that mutual recursion between modules is disallowed. While
this helps to simplify the definitions of a semantics for modular ASP, in general this may
bring issues when different, possibly independently developed modules are combined. Many
natural problems exist that have an inherent cyclic flavor, and ruling out the chance to model
problems using modules that depend on each other may be too restrictive in practice, or



Thomas Krennwallner 3

P []

Parity [q/1]

P [∅]

Parity [∅]

Parity [{q(1)}]

Parity [{q(2)}]

Parity [{q(1), q(2)}]

p

p

p

p

q̄

q̄

q̄

q̄

q̄

q̄

q̄

q̄

q̄

q̄

Figure 1 Call graph of instantiated modules in Example 1

even force to use unintuitive encodings. We aim at defining a model-theoretic semantics that
caters for this situation, investigate its semantic properties and computational complexity,
and develop novel evaluation algorithms for such modular nonmonotonic logic programs. The
next example illustrates cycles in modular logic programming using Modular Nonmonotonic
Logic Programs (MLP) as defined in [10], a formalism that admits arbitrary non-ground
disjunctive nonmonotonic logic programs as modules. MLPs can be seen as a proponent
of the programming-in-the-small approach to modular programming, as it is using module
atoms as a language construct to access knowledge encoded in other modules. We sketch the
basic building blocks of MLPs and refer to [10] for proper formal definitions.

I Example 1. Consider the following recursive module Parity[q/1] consisting of four rules,
which determines whether a set has an even respectively odd number of elements:

q̄(X) ∨ q̄(Y ) ← q(X), q(Y ), X 6= Y odd ← skip(X), Parity[q̄].even
skip(X) ← q(X), not q̄(X) even ← not odd

Here, q/1 is a (formal) unary input predicate that stores the set. The first two rules on
the left have the effect, by stability of answer sets, that q becomes q̄ with one element
randomly removed (for which skip is true, as defined in the lower left rule). The third rule top
right determines recursively whether q stores an odd number of elements using the module
atom Parity[q̄].even, while the last rule bottom right defines even as the complement of odd.
Intuitively, if we call the module Parity with a predicate p for input, then even is computed
true, which is expressed by Parity[p].even, whenever p stores an even number of elements.
Note that Parity is recursive, and for empty input p it calls itself with the same input.

We demonstrate the use of Parity in an MLP with the (main) module P [] with empty
input, which calls Parity with a set p of two elements:

p(1) ← p(2) ← pev ← Parity[p].even

The combination of both modules gives the cyclic MLP P = (P [], Parity[q/1]). On the
surface, P can be seen as an “uninstantiated” modular program, whose semantics is given by
characterizing models at modules which have been instantiated with a set of input facts: the
value calls. Figure 1 depicts the call graph (the principle dependencies) of P with value calls
as nodes and edges labeled with input predicates; e.g., value call P [∅] calls Parity[{q(1), q(2)}]
on input p. The dotted boxes highlight the modules from which the value calls on the inside
have been generated. Loosely speaking, MLPs encode schematic dependencies between
modules, and instantiated modules then can be used to define a semantics that takes module
input into account which is defined over possibly cyclic modules. Different interpretations



4 Promoting Modular Nonmonotonic Logic Programs

of an MLP select different subgraphs of its call graph, and answer sets are defined based
on the selected subgraphs. For instance, P has two answer sets in which pev is true at the
main instantiation P [∅] and even is true at Parity[{q(1), q(2)}] and Parity[∅], whereas odd is
satisfied at Parity[{q(1)}] and Parity[{q(2)}]. Both answer sets are symmetric on the guess
of q̄ at Parity[{q(1), q(2)}], but otherwise equal.

4 Current Status

We have an advanced understanding of peculiar issues that arise when we allow for module
cycles in MLPs. One key aspect is the use of the FLP-reduct [16] instead of the traditional
GL-reduct [19] to cure semantic issues when dealing with negation-as-failure over potential
nonmonotonic module atoms. Roughly, given an interpretation of a program, the GL-reduct
first removes each rule whose negative body is false in the interpretation, and then cut offs
the negative literals from remaining rules. On the other hand, the FLP-reduct just removes
rules whose body is unsatisfied in a given interpretation, which leaves negative literals in
the result of this translation. Applied to traditional answer set programs, both reducts are
equivalent, but FLP-semantics is beneficial for language extensions of ASP such as logic
programs with aggregates. In the context of MLPs, the FLP-semantics guarantees that
models are minimal, thus we retain groundedness of the semantics and prohibit unfounded
answer sets. Another aspect of MLP is to contextualize module instantiation. Here, relevant
instantiations are a concept to concentrate on the important part of all instantiated modules.
In general, module instantiation plays a key role for the definition of a semantics for MLPs.
Akin to the call semantics of imperative programming languages, the module instantiation
employed in MLPs can be seen as call-by-value mechanism, where module instantiation calls
other instantiations with explicit input facts. This is in contrast to the module framework
of DLP-functions [21], which can be classified as call-by-reference mechanism; input here is
given implicitly by the models of each module.

Further results show that MLPs have an increase in computational complexity compared
to standard ASP: propositional Horn-MLPs with unrestricted cyclic input over modules
are EXP-complete, and non-ground ones are 2EXP-complete. If we restrict propositional
MLPs such that modules have no input predicates, we obtain for instance that checking
satisfiability of normal propositional MLPs is NP-complete, and for disjunctive MLP it
is Σp

2-complete. In general, checking answer set existence of arbitrary normal non-ground
MLPs is 2NEXP-complete, and 2NEXPNP-complete for the disjunctive case.

5 Preliminary Results

The work in [10] devised a novel semantics for MLPs that allows for mutual recursion between
modules. We have studied the semantic properties of MLPs, their computational complexity,
and compared it to DLP-functions [21]; interestingly, DLP-functions can be seen as MLPs
that have no module input parameters. MLPs conservatively extend ordinary logic programs,
and many semantic properties of answer set programs generalize to MLPs. For instance, the
important property that every answer set of an MLP is a minimal model implies that answer
sets in the MLP setting are grounded (see discussion above).

In [13], we investigated the relationships between various semantics for modular logic
programs and other nonmonotonic formalisms. We have provided a more systematic view of
approaches in combining nonmonotonic knowledge bases and classified formalisms based on
the program reduct and on the environment view, i.e., whether their semantics is defined



Thomas Krennwallner 5

in terms of local models for each individual knowledge base that implicitly converge to a
semantics for the combined system, or whether the formalism has a global state using a
collection of explicitly accessible local models.

We developed a novel evaluation algorithm for MLPs in [11]. Here, we concentrated on an
MLP fragment called input- and call-stratified MLPs, whose stratification can be evaluated
in a top-down fashion starting from uninstantiated modules. This way we could generalize
the splitting sets technique to MLPs and develop an evaluation algorithm that traverses the
call graph and instantiates modules on-the-fly. Example 1 above is input-call-stratified, and
the techniques developed in [11] are applicable to it.

We worked on two characterizations of MLPs in terms of classical models by investigating
the notions of loop formulas [23] and ordered completion [2] in MLPs [12]. The results
include (i) modular loop formulas based on loops over module instantiations, and (ii) ordered
completion for MLPs without using explicit loop formulas. We generalized Clark’s completion
and positive dependency graph to MLPs with respect to different module instantiations.
Based on these results, we defined modular loop formulas that capture MLP semantics.
The second contribution was to explore ordered completion in the realm of MLPs. Here,
fresh predicates ensures a derivation order, and program completion is only active for those
predicates that do not participate in a positive loop, possibly involving module instantiations.

6 Open Issues

Future work includes to find further useful fragments of MLPs and characterize their
computational complexity. Based on first results on loop formulas and ordered completion for
MLPs [12] we seek to develop new algorithms that interweave conflict-driven model building
with module instantiation. Related to this is to investigate first-order theorem proving
techniques in the context of MLPs. Another line of research is to improve the understanding
of MLP semantics and give it a logical foundation using (generalized) equilibrium logic [26]
and applying results on FLP-semantics in [27]. Furthermore, we want to relax the restriction
to minimal models in non-relevant instantiations and use semi-equilibrium models [14] instead.
As a prospective application we want to investigate dl-programs with Datalog-rewritable
Description Logics [20]. Intuitively, the Description Logic knowledge base can be rewritten to
a module, and dl-atoms that appear in the logic program of the dl-program can be rewritten
as module atoms that refer to this module. Moreover, we are currently developing a prototype
implementation to evaluate input-call stratified MLPs.

Acknowledgments. I would like to thank my supervisor Prof. Dr. Thomas Eiter and
Dr. Michael Fink for their ongoing support, as well as my fellow co-author Minh Dao-Tran.

References
1 A. Analyti, G. Antoniou, and C. V. Damásio. MWeb: a principled framework for modular

web rule bases and its semantics. ACM Trans. Comput. Logic, 12(2):17:1–17:46, 2011.
2 V. Asuncion, F. Lin, Y. Zhang, and Y. Zhou. Ordered completion for first-order logic

programs on finite structures. In AAAI’10, pp. 249–254. AAAI Press, 2010.
3 C. Baral, J. Dzifcak, and H. Takahashi. Macros, macro calls and use of ensembles in

modular answer set programming. In ICLP’06, pp. 376–390. Springer, 2006.
4 K. Bauters, S. Schockaert, D. Vermeir, and M. De Cock. Communicating ASP and the

polynomial hierarchy. In LPNMR’11, pp. 67–79. Springer, 2011.
5 A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic programming. ACM

Trans. Prog. Lang. Syst., 16(4):1361–1398, 1994.



6 Promoting Modular Nonmonotonic Logic Programs

6 F. Buccafurri and G. Caminiti. Logic programming with social features. Theo. Pract. Logic
Progr., 8(5-6):643–690, 2008.

7 M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. J. Logic Prog.,
19/20:443–502, 1994.

8 F. Calimeri and G. Ianni. Template programs for disjunctive logic programming: An
operational semantics. AI Comm., 19(3):193–206, 2006.

9 C. V. Damásio and J. Moura. Modularity of P-Log programs. In LPNMR’11, pp. 13–25.
Springer, 2011.

10 M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. Modular nonmonotonic logic pro-
gramming revisited. In ICLP’09, pp. 145–159. Springer, 2009.

11 M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. Relevance-driven evaluation of
modular nonmonotonic logic programs. In LPNMR’09, pp. 87–100. Springer, 2009.

12 M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. First-order encodings of modular
nonmonotonic logic programs. In Datalog 2.0. Springer, 2011. http://datalog20.org/,
to appear.

13 T. Eiter, G. Brewka, M. Dao-Tran, M. Fink, G. Ianni, and T. Krennwallner. Combining non-
monotonic knowledge bases with external sources. In FroCos’09, pp. 18–42. Springer, 2009.

14 T. Eiter, M. Fink, and J. Moura. Paracoherent answer set programming. In KR’10, pp. 486–
496. AAAI Press, 2010.

15 T. Eiter, G. Gottlob, and H. Veith. Modular logic programming and generalized quantifiers.
In LPNMR’97, pp. 290–309. Springer, 1997.

16 W. Faber, N. Leone, and G. Pfeifer. Semantics and complexity of recursive aggregates in
answer set programming. Artif. Intell., 175(1):278–298, 2011.

17 M. Fitting. Enumeration operators and modular logic programming. J. Logic Prog., 4(1):11–
21, 1987.

18 H. Gaifman and E. Shapiro. Fully abstract compositional semantics for logic programs. In
POPL’89, pp. 134–142, ACM, 1989.

19 M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive databases.
New Generat. Comput., 9:365–385, 1991.

20 S. Heymans, T. Eiter, and G. Xiao. Tractable reasoning with dl-programs over datalog-
rewritable description logics. In ECAI’10, pp. 35–40. IOS Press, 2010.

21 T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran. Modularity aspects of disjunctive
stable models. J. Artif. Intell. Res., 35:813–857, 2009.

22 M. Järvisalo, E. Oikarinen, T. Janhunen, and I. Niemelä. A module-based framework for
multi-language constraint modeling. In LPNMR’09, pp. 155–168. Springer, 2009.

23 F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT solvers.
Artif. Intell., 157(1-2):115–137, 2004.

24 V. Lifschitz and H. Turner. Splitting a logic program. In ICLP’94, pp. 23–37. MIT, 1994.
25 E. Oikarinen and T. Janhunen. Achieving compositionality of the stable model semantics

for smodels programs. Theo. Pract. Logic Prog., 8(5–6):717–761, 2008.
26 D. Pearce. A new logical characterisation of stable models and answer sets. In Non-

Monotonic Extensions of Logic Programming, pp. 57–70. Springer, 1997.
27 M. Truszczynski. Reducts of propositional theories, satisfiability relations, and generaliza-

tions of semantics of logic programs. Artif. Intell., 174(16–17):1285–1306, 2010.
28 J. Vennekens, D. Gilis, and M. Denecker. Splitting an operator: algebraic modularity

results for logics with fixpoint semantics. ACM Trans. Comput. Logic, 7(4):765–802, 2006.

http://datalog20.org/

	Introduction and Problem Description
	Background and Overview of Existing Literature
	Goal of the Research
	Current Status
	Preliminary Results
	Open Issues

