
Dynamic Distributed Nonmonotonic
Multi-Context Systems∗

Minh Dao-Tran Thomas Eiter Michael Fink
Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract

Nonmonotonic multi-context systems (MCS) provide a formalism to represent
knowledge exchange between heterogeneous and possibly nonmonotonic knowl-
edge bases (contexts). Recent advancements to evaluate MCS semantics (given
in terms of so-called equilibria) enable their application to realistic and fully dis-
tributed scenarios of knowledge exchange. However, the current MCS formal-
ism cannot handle open environments, i.e., when knowledge sources and their
contents may change over time and are not known a priori. To improve on this
aspect, we develop Dynamic Nonmonotonic Multi-Context Systems, which con-
sist of schematic contexts that allow to leave part of the information interlinkage
open at design time. A concrete interlinking is established by a configuration step
at run time, where concrete contexts and information imports between them are
fixed. We formally develop a corresponding extension and provide semantics by
instantiation to ordinary MCS. Furthermore, we develop a basic distributed con-
figuration algorithm and discuss several refinements that affect the resulting con-
figurations, in particular by means of optimizations according to different quality
criteria. This discussion is complemented with experimental results obtained with
a corresponding prototype implementation.

1 Introduction
Developing modern knowledge-based information systems increasingly requires soft-
ware engineers to handle knowledge integration tasks for accessing and aligning rel-
evant information for particular application domains. As a result of recent develop-
ments of the World Wide Web, this information is in general distributed and comes
with heterogeneous representation formalisms. Moreover, access to larger bodies of
acquired knowledge is often organized via suitable interfaces, rather than providing
direct access to the respective knowledge base.

∗This research has been supported by the Austrian Science Fund (FWF) project P20841 and the Vienna
Science and Technology Fund (WWTF) project ICT08-020.

1

Nonmonotonic multi-context systems (MCS) of Brewka and Eiter [2007] provide
a formalism to address such knowledge integration tasks in a principled way. They
generalize seminal work by Giunchiglia and Serafini [1994] and Roelofsen and Ser-
afini [2005] that served the purpose to integrate different monotonic inference systems,
into a heterogeneous MCS. Intuitively, individual knowledge bases—for historic rea-
sons called contexts—are represented in a logic formalism with associated belief sets
as a high-level representation of the associated semantics. By reference to such be-
liefs, so-called bridge rules allow to model an information flow between contexts.
Semantics is given to an MCS in terms of equilibria, i.e., belief sets—one for each
context—such that each belief set is acceptable for the respective local knowledge
base and the information flow is in equilibrium.

The initial MCS approach has been gradually extended, in particular allowing for
nonmonotonicity, both at the level of bridge rules as well as in knowledge bases of
homogeneous contexts Roelofsen and Serafini [2005], Brewka, Roelofsen, and Ser-
afini [2007], and more recently to accommodate heterogeneity of context logics also
in the nonmonotonic case [Brewka and Eiter, 2007]. Furthermore, the practical im-
portance of distributed settings has been perceived; they play e.g. an important role in
ambient computing, where Antoniou, Papatheodorou, and Bikakis [2010] and Bikakis
and Antoniou [2010] propose multi-context systems to integrate different entities, and
develops a semantics for conflict resolution based on defeasible reasoning. In our
work, the importance of distributed settings is reflected in the development of fully dis-
tributed evaluation algorithms for computing equilibria of nonmonotonic MCS [Dao-
Tran, Eiter, Fink, and Krennwallner, 2010].

However, a characteristic that comes with many distributed application scenarios
is that the environment is open, at least to some extent, meaning that participating
knowledge sources and their contents may change over time and are not known a
priori. This is in contrast with the static nature of current MCS in the sense that
participating contexts and the corresponding information exchange need to be fixed
completely at design time. Thus, atoms in bridge rules always point to a particular
belief from a concrete context. This is prohibitive to formalizing systems where part
of the behavior is instantiated at run-time only, as motivated by the following example.

Example 1 At the beginning of each semester, students in a group (including Alice,
Bob, and Carol) need to choose courses from their curriculum. For each possible
course, the students have three possible decisions, namely select, hesitate, and elim-
inate (in decreasing order). Intuitively, there is a potential for selecting a course if
one finds it interesting. However, if the lecturer is known to be hard to please, they
fear that it might be tough (or impossible) to get good marks and potentially eliminate
the course. If there are reasons for both selecting and eliminating—or none—they are
then in the state of hesitation, which dominates the other two potential decisions.

Moreover, the final decision of each student is supported by the decisions of their
friends. If some friend gives a positive (resp., negative) opinion about a particular
course, and no other friend shares an opposite opinion, then the group will adjust their
final decision accordingly.

According to this strategy, the students do not specify in advance for a course
which friends they will consult. This depends on the friends they will meet at the
course orientation meeting. While attending the orientation meeting and exchang-
ing opinions, every student in the group finally comes up with a list of courses that

2

conforms with the choices of their colleagues.
For example, Alice may believe that if Bob hesitates or selects a course, then

this is a positive sign, because he is very cautious; on the other hand, if Bob elim-
inates a course, then this is a negative sign. But she has a different opinion about
Carol’s choice, namely she is encouraged only when Carol selects the course and is
discouraged otherwise. Carol, who is a bit more careful, might only accept that Bob’s
selection (resp., elimination) of the course as a positive (resp., negative) hint, i.e., she
has no bias when Bob is hesitating. Finally, Bob may interpret the opinions of the two
girls in the same way as Carol does with his, i.e., mapping selections to be positive,
elimination to be negative, and having no preference w.r.t. hesitance.

When the three of them talk about the course on Answer Set Programming, which
Bob finds interesting, but Alice has the impression that the professor is very demand-
ing, they ask Carol, who has no additional opinion about it. One of the outcomes of
the discussion is that Bob and Carol will select the course while Alice hesitates.

The current MCS setting is sufficient to formalize the last part of the discussion
between Alice, Bob, and Carol (see also Example 3), but lacks dynamicity to formalize
the general setting of Example 1.

In this work, we address the above shortcoming of the MCS formalism concerning
open environments of information exchange, that is when at design time the concrete
knowledge sources participating in an information exchange are not known. Intu-
itively, what is needed to cope with such scenarios is a formalism for information ex-
change which is closer towards a peer-to-peer (P2P) approach, where so-called peers
can at any time join or leave the system dynamically [Aberer, Punceva, Hauswirth,
and Schmidt, 2002]. To this end, we present Dynamic Nonmonotonic Multi-Context
Systems, which consist of schematic contexts that may leave some information inter-
linkage open at design time; this linkage is established by a configuration step at run
time, in which concrete contexts and information imports between them are wired.

More specifically, our contributions are the following:

• We formalize dynamic multi-context systems, which extend the MCS formal-
ism with so-called schematic bridge rules. Intuitively, schematic bridge rules
may contain place holders that can range over both context identifiers and be-
liefs. Their semantics is defined via suitable notions of substitution and binding,
where a context substitution maps context holders to concrete contexts and a
binding maps schematic belief atoms to adequate concrete beliefs. To take into
account that a perfectly matching belief might not exist, we use (unless exact
substitution is forced) a ‘similar’-based binding beliefs in which schematic be-
liefs are bound to ‘similar’ beliefs, which is assessed by a similarity function.
To determine such beliefs, we foresee a matchmaking component as an oracle
which returns on a call a list with similar beliefs. More precisely, it provides
simple term substitutions according to an underlying similarity measure.

• We consider the problem of finding an instantiation of a dynamic multi-context
system, starting from a specific context, i.e., a concrete “configuration” of the
(open) system. To solve it, we first present a basic algorithm for computing
configurations of dynamic MCS. As the number of configurations can be very
large in general, we then consider different heuristics to generate ‘good’ ones,

3

which take topological structure and/or different criteria of qualities of individ-
ual matches (bindings) into account. The algorithm is fully distributed, i.e.,
instances run at different contexts, and the configurations are found by local
computations plus communication.

• Finally, we present some results of an experimental prototype implementation
of the configuration algorithm under different heuristics for the configuration.
The results show that the latter behave on a few considered topologies of po-
tential interconnections as expected, and may also lead in particular cases to
configurations which corresponds to natural social information interlinkage.

Using dynamic MCS, a broader range of application scenarios can be modeled
which require the flexibility of taking changing context into account. In particular,
group formation to satisfy information needs of heterogeneous components, with pos-
sible selection among different alternatives, can be readily expressed.

The remainder of this paper is structured as follows. The next section recalls basic
concepts of answer set programming (ASP, the context logic of choice in our exam-
ples) and nonmonotonic MCS which are the starting point of this work. Dynamic
MCS are subsequently introduced in Section 3, where we provide their formal defini-
tion and semantics in terms of instantiation to ordinary MCS. Section 4 contains then
the description of our basic distributed configuration algorithm and discussions of re-
finements such as, e.g., different heuristics to drive the configuration. Furthermore,
in Section 5 we report on a prototype implementation of the algorithm and some ex-
perimental results. Conclusions and issues for further work are eventually given in
Section 6.

2 Preliminaries
We recall some basic notions of disjunctive logic programs under the answer set se-
mantics [Gelfond and Lifschitz, 1991] and heterogeneous nonmonotonic multi-context
systems [Brewka and Eiter, 2007].
Answer Set Programs. LetA be a finite alphabet of atomic propositions. A disjunc-
tive rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

k + n > 0, where all ai and bj are atoms from A.1 We let H(r) = {a1, . . . , ak},
andB(r) =B+(r)∪B−(r), whereB+(r) = {b1, . . . , bm} andB−(r) = {bm+1, . . . ,
bn}. An answer set program P is a finite set of rules r of form (1).

An interpretation for P is any subset I ⊆A. It satisfies a rule r, if H(r) ∩ I 6= ∅
whenever B+(r)⊆ I and B−(r)∩ I = ∅. I is a model of P , if it satisfies each r ∈ P .

The GL-reduct [Gelfond and Lifschitz, 1991] P I of P relative to I is the program
obtained from P by deleting (i) every rule r ∈ P such that B−(r)∩ I 6= ∅, and (ii) all
not bj , where bj ∈ B−(r), from every remaining rule r.

1Gelfond and Lifschitz [1991] used classical literals as basic constituents rather than atoms. For sim-
plicity, we disregard classical (also called strong) negation here; this does not affect the expressiveness of
the formalism.

4

An interpretation I of a programP is called an answer set ofP iff I is a⊆-minimal
model of P I .

Example 2 We will now model Example 1 as an answer set program. Let Ri be a set
of the following rules:

si ← psi,not hi,not ei ei← pei,nothi,not inci
si ← phi,not psi,not hi,not ei, inci ei← phi, deci
hi ← psi,not ei, deci psi← inter i
hi ← phi,not inci,not deci pei← hprof i
hi ← pei,not phi, inci phi← psi, pei

phi← not psi,not pei

The atoms have the following meaning: si, hi, and ei stand for the three decisions:
select, hesitate, and eliminate, resp. Similarly, psi, phi, and pei stand for the potential
to select, hesitate, and eliminate a course, resp. A course is interesting if inter i is true,
and a professor is hard to please if hprof i is true. The atoms inci and deci mean that
a student inclines and declines to select a course, resp.

The program P1 = R1 ∪ {hprof 1} has one answer set {e1, pe1, hprof 1}, P2 =
R2 ∪ {inter2} has the answer set {s2, ps2, inter2}, while P3 = R3 has the answer
set {h3, ph3}.

Intuitively, P1 represents Alice’s mind. She thinks that the professor is hard to
please (hprof 1), hence she potentially eliminates (pe1) the course and will eliminate
it (e1) if no more support information is provided. On the other hand, P2 represents
Bob’s mind. He is really interested in the course (inter2) and selects it (s2) based on
his potential of selecting the course (ps2). Carol, modeled by P3, adds no personal
view about the course. She is currently hesitating (h3, ph3) in taking the course; her
final decision can change depending on decisions of other friends.

Multi-Context Systems. A logic is, viewed abstractly, a tuple L = (KBL, BSL,
ACCL), where
• KBL is a set of well-formed knowledge bases, each being a set (of formulas),
• BSL is a set of possible belief sets, each being a set (of formulas), and
• ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of acceptable belief

sets.
This covers many (non-)monotonic KR formalisms like description logics, default

logic, answer set programs, etc.
For example, a (propositional) ASP logic L may be such that KBL is the set

of answer set programs over a (propositional) alphabet A, BSL = 2A contains all
subsets of atoms, and ACCL assigns each kb ∈ KBL the set of all its answer sets.

Definition 1 A multi-context system (MCS) is a setM = (C1, . . . , Cn), consisting of
contexts Ci = (Li, kbi, bri), such that 1≤ i≤n, Li = (KBi,BSi,ACCi) is a logic,
kbi ∈ KBi is a knowledge base, and bri is a set of Li-bridge rules of the form

s← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm) (2)

where 1 ≤ ck ≤ n and pk is an element of some belief set ofLck (i.e., pk ∈
⋃
BSLck

),
1 ≤ k ≤ m, and kb ∪ {s} ∈ KBi for each kb ∈ KBi.

5

Informally, bridge rules allow to modify the knowledge base by adding s, depend-
ing on the beliefs in other contexts.

The semantics of an MCS M is defined in terms of particular belief states, which
are sequences S = (S1, . . . , Sn) of belief sets Si ∈ BSi. Intuitively, Si should be
a belief set of the knowledge base kbi; however, also the bridge rules bri must be
respected. To this end, kbi is augmented with the conclusions of all r ∈ brci that are
applicable.

Formally, r of form (2) is applicable in S, if pi ∈ Si, for 1 ≤ i ≤ j, and pk 6∈ Sk,
for j + 1 ≤ k ≤ m. Let app(R,S) denote the set of all bridge rules r ∈ R that are
applicable in S, and head(r) the part s of any r of form (2).

Definition 2 A belief state S = (S1, . . . , Sn) of a multi-context system M is an equi-
librium iff for all 1 ≤ i ≤ n, Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).

Example 3 Let M ′ = (C1, C2, C3) be an MCS such that all Li are ASP logics,
with alphabets Ai = {si, hi, ei, psi, phi, pei, inter i, hprof i, inci, deci}. Suppose
kbi = Pi, with Pi taken from Example 2, and

br1 =

 inc1 ← (2 : s2),not (3 : h3),not (3 : e3),not (1 : dec1)
inc1 ← (2 : h2),not (3 : h3),not (3 : e3),not (1 : dec1)
dec1 ← (2 : e2),not (3 : s3),not (1 : inc1)

,

br2 =

{
inc2 ← (1 : s1),not (3 : e3),not (2 : dec2)
dec2 ← (3 : e3),not (1 : s1),not (2 : inc2)

}
, and

br3 =

{
inc3 ← (2 : s2),not (1 : e1),not (3 : dec3)
dec3 ← (1 : e1),not (2 : s2),not (3 : inc3)

}
One can check that S = ({h1, pe1, hprof 1, inc1}, {s2, ps2, inter2}, {s3, ph3,

inc3}) is an equilibrium of M ′. Intuitively, M ′ models the discussion between Alice
(C1), Bob (C2), and Carol (C3). Comparing this to Example 2, the decision of Bob
influences those of Alice and Carol, as Alice now hesitates about the course even
though having the potential of eliminating it, while Carol decided to select the course
although she was hesitating about it before.

3 Dynamic Nonmonotonic MCS
In the following section, we will develop a framework that caters for dynamics in
Multi-Context Systems using placeholders for contexts and beliefs in schematic bridge
rules. The open parts of such rules can be made concrete by linking them to ordinary
MCS.

3.1 Basic Notions
Let Vctx be a vocabulary of context holders,2 and let Σ =

⋃
Σi a set of (possibly

shared) signatures. Unless stated otherwise, elements from Vctx (resp., Σ) are de-
noted with first letter in upper case (resp., lower case). Furthermore, we define the set

2We use the term ‘holder’ rather than ‘variable’ to avoid confusion with variables as introduced for
relational MCS [Fink, Ghionna, and Weinzierl, 2011].

6

Σ@ (resp., Σ∼) of exact (resp., similar) schematic beliefs as the set of symbols @[p]
(resp., [p]) for all p in Σ. Let bel(@[p]) = bel([p]) = p be a function for extracting
the belief symbol from a schematic belief.

Definition 3 A dynamic multi-context systemM = {C1, . . . , Cn} is a set of schematic
contexts Ci = (Li, kbi, sbr i), where

• Li = (KBi,BSi,ACCi) is a logic based on a signature Σi,

• kbi ∈ KBi is a knowledge base, and

• sbr i is a set of Li schematic-bridge rules (s-bridge rules for short) of the form

s← B(r), χ(r) (3)

with B(r) = (X1 : P1), . . . , (Xj : Pj),not (Xj+1 : Pj+1), . . . ,not (Xm :
Pm), where each sb` = (X`, P`), 1 ≤ ` ≤ m, is a schematic bridge atom (s-
bridge atom for short) in which X` ∈M ∪ Vctx either refers to a context in M
or is a context holder, and P` ∈ Σ∪Σ@∪Σ∼ is either a belief (i.e., P` ∈ Σ) or
a schematic belief (P` ∈ Σ@ ∪ Σ∼); and χ(r) = Y11 6= Y12 , . . . Yk1 6= Yk2 is a
(possibly empty) list of inequality atoms Yi1 6= Yi2 (1 ≤ i ≤ k) where Yi1 , Yi2
are two different context holders from X1, . . . , Xm.

For simplicity, we assume that context holders in rules are standardized apart, i.e.,
there exist no two context holders with the same name in two different rules, as they
can be bound to different contexts.

Example 4 A group of n students in Example 1 can be modeled as a dynamic MCS
M = {C1, . . . , Cn}, where, for eachCi = (Li, kbi, sbr i) ∈M , kbi = R∪Fi, withR
from Example 2 and Fi ⊆ {inter , hprof }, and the following set of schematic bridge
rules

sbr i =

{
inci ← (Xi : [posi]),not (Yi : [negi]),not (i : deci), Xi 6= Yi
deci ← (Zi : [negi]),not (Ti : [posi]),not (i : inci), Zi 6= Ti

}
.

The first rule expresses that student i should be inclined to take a course, if some
student in the group has a positive opinion and some student does not have a negative
opinion, and student i herself is not declining to take the course. The second rule is
similar, but for declining the course.

Here, the context holders set is Vctx = {Xi, Yi, Zi, Ti}, the local signature at each
context Ci is Σi = Ai ∪ {posi,neg i} with Ai taken from Example 3. We use here
only similar schematic beliefs, namely [posi] and [negi].

Dynamic MCS differ from original MCS in the sense that s-bridge atoms in gen-
eral are not specifically bound to some beliefs of other dynamic contexts in the system,
but rather represent a collection of possibilities to point to different beliefs in other
contexts. From a topological point of view, such a high-level representation incurs nu-
merous dependencies between dynamic contexts in general. However, most of these
dependencies are not reflected in intended instantiations, which provides evidencen
not to aim at defining equilibria of dynamic MCS in a direct way. Hence, for defining
semantics one rather considers how to bind them to original MCS. We consider such

7

bindings next, starting with the notion of binding a schematic bridge atom to ordinary
bridge atoms based on potential matches.

A context substitution is a map σ : (M ∪Vctx)→M such that for every inequality
atom Yi1 6= Yi2 occurring in bridge rules of a context C ∈ M , σ(Yi1) 6= σ(Yi2). For
a context Ck, we denote by σ|Ck

the restriction of σ to Ck, i.e., the subset of σ
containing only maps from a context holder appearing in an s-bridge rule in Ck. Due
to the assumption of standardization of context holders, the set of restrictions of σ to
all individual contexts in M is a partitioning of σ.

The application of a context substitution σ to an s-bridge atom sb = (X : P)
is σ(sb) = (Cj : P) where P ∈ Σ@ ∪ Σ∼ ∪ Σj , and either X = Cj or X ∈ Vctx
satisfying (X 7→ Cj) ∈ σ. Intuitively, the application of a context substitution is
responsible for instantiating a potential context holder of an s-bridge atom.

Example 5 Let σ = {X1 7→ C2, Y1 7→ C3} be a context substitution, then the
applications of σ to sb1 = (X1 : [pos1]) and sb2 = (Y1 : [neg1]) are sb′1 = σ(sb1) =
(C2 : [pos1]) and sb′2 = σ(sb2) = (C3 : [neg1]).

Let fM : Σ × Σ → [0, 1] be a function measuring the similarity between beliefs
in an MCS M , where higher similarity of beliefs p and q is reflected by a larger value
of fM (p, q). In particular, fM (p, q) = 1 means that p and q are considered to have
highest similarity (especially, if they are identical) and fM (p, q) = 0 that p and q are
completely dissimilar. We do not commit to a particular function fM here, which may
depend on the application; in what follows, we just assume that some such function
fM has been fixed and is available, for instance consider similarity of terms as defined
by WordNet [Miller, 1995] or different types of matches on Larks [Sycara, Widoff,
Klusch, and Lu, 2002] specifications.

Definition 4 Given an MCS M , a similarity function fM , and a threshold t, a term
substitution from Ci to Cj in M w.r.t. fM and t, denoted by ηtM (Ci, Cj), is a relation
ηtM (Ci, Cj) = {(a, b) | a ∈ Σi, b ∈ Σj , fM (a, b) > t}.

By ηtM we denote the collection of all pairwise term substitutions in M . The
density of M w.r.t. ηtM is dηtM = |{(Ci, Cj) | ηtM (Ci, Cj) 6= ∅}|. In the sequel, we
pick a default value t = 0; furthermore, we use η instead of η0M when M is clear from
the context.

The application of a term substitution η to an s-bridge atom sb = (Cj : P) in
context Ci, denoted by η(sb), is defined by (i) if P = a, then η(sb) = {(Cj : a)}
if a ∈ Σj , and ∅ otherwise; (ii) if P ∈ Σ@, then η(sb) = {(Cj : b) | (bel(P), b) ∈
η(Ci, Cj), fM (bel(P), b) = 1}; (ii) ifP ∈ Σ∼, then η(sb) = {(Cj : b) | (bel(P), b) ∈
η(Ci, Cj)}. Intuitively, the application of a term substitution to an s-bridge atom only
applies to s-bridge atoms with instantiated context holders, and then collects all pos-
sible substitutions for the schematic belief P .

Example 6 Continue with Example 5, suppose that we have a similarity function fM
whose interesting part is described in Table 1; and for the rest, fM takes value 1 if the
two parameters are identical and 0 otherwise.

The values of fM are taken in conformity with the scenario in Example 1, e.g.,
Alice trusts the select and hesitate decisions of Bob as a positive sign at a measurement
of 0.9 and 0.6, respectively. She considers Bob eliminating the course as a negative

8

Table 1: Interesting part of similarity function

fM s1 h1 e1 s2 h2 e2 s3 h3 e3

pos1 0.0 0.0 0.0 0.9 0.6 0.0 0.7 0.0 0.0
neg1 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.5 0.7
pos2 0.7 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0
neg2 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.6
pos3 0.6 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
neg3 0.0 0.0 0.7 0.0 0.0 0.8 0.0 0.0 0.0

sign of 0.8. Hence, fM (pos1, s2) = 0.9, fM (pos1, h2) = 0.6, and fM (neg1, e2) =
0.8. On the other hand, Alice is encouraged only when Carol selects the course, but
with less confidence as fM (pos1, s3) = 0.7; and she interprets other choices from
Carol as discouragement with fM (neg1, h3) = 0.5, and fM (neg1, e3) = 0.7. The
next rows in Table 1 show the opinions of Bob and Carol about the decisions of the
others. Note that they do not take hesitance into account.

The term substitutions fromC1 toC2 andC3 w.r.t. fM are η(C1, C2) = {(pos1, s2),
(pos1, h2), (neg1, e2)}, and η(C1, C3) = {(pos1, s3), (neg1, h3), (neg1, e3)}, respec-
tively. The applications of these substitution to sb′1 and sb′2 are η(sb′1) = {(C2 :
s2), (C2 : h2)} and η(sb′2) = {(C3 : e3)}.

Based on σ and η, the notion of a bridge substitution is simply defined by their
composition.

Definition 5 Let σ be a context substitution of M . The bridge substitution θ for an
s-bridge atom sb w.r.t. σ is θ(sb) = η(σ(sb)).

Thus, intuitively, the bridge substitution of an s-bridge atom is done in two steps.
First, one uses σ to instantiate the context holders, and then η takes effect to instantiate
the schematic beliefs.

Example 7 The bridge substitution of the s-bridge atom sb1 from Example 5 w.r.t.
σ from the same example and η from Example 6 is θ(sb1) = η(σ(sb1)) = {(C2 :
s2), (C2 : h2)}. Similarly, we have θ(sb2) = {(C3 : e3)}.

Let us now turn to bridge rules. Given a schematic bridge rule r of form (3) in a
context Ci, a context substitution σ is called a substitution of r iff there exist bridge
substitutions θ` w.r.t. σ for all schematic bridge atoms sb` inB(r), i.e., for 1 ≤ ` ≤ m,
such that θ`(sb`) 6= ∅. The bindings of r w.r.t. σ are defined as the set of bound rules
rσ where each bound rule is obtained by replacing sb` = (X : P) in B(r) with

(i) some bridge atom (Ci : b) such that (Ci : b) ∈ θ`(sb`), if sb` ∈ B+(r); and

(ii) the sequence of negated bridge atoms not (Ci : b1), . . . ,not (Ci : bk) such that
{(Ci : b1), . . . , (Ci : bk)} = θ`(sb`); if sb` ∈ B−(r).

The size m of rσ is determined by m = Πsb`∈B+(r)|θ`(sb`)|.

9

Example 8 Continuing our example, pick r as the first s-bridge rule from Example 4
and consider it in context C1 representing Alice’s mind. Furthermore, regard the
context substitution σ from Example 5. Taking the term substitutions of Example 6
into account, rσ consists of two bound rules, namely the first two rules from br1 in
Example 3.

Given a set of s-bridge rules R of a context C and a context substitution σ, the
binding of R w.r.t. σ is defined as Rσ =

⋃
r∈R rσ. Then, the binding of a context C

w.r.t. a context substitution σ is given by Cσ = (kb, sbrσ).

Definition 6 Given a dynamic MCS M and a context substitution σ, the set Mσ =
{C1σ, . . . , C`σ}, is a binding of M w.r.t. a context Ck iff

1. Ck ∈ {C1, . . . , C`}

2. {C1, . . . , C`} ⊆M

3. σ is a substitution for all s-bridge rules in all contexts C1, . . . , C`, and

4. {C1, . . . , C`} =
⋃
Cj∈{C1...C`}{C | r ∈ sbr jσ ∧ (C : a) ∈ B(r)} ∪ {Ck}.

A belief state ofMσ is a sequence of belief sets S = (S1, . . . , S`), one Si for each
Ciσ. Such a belief state is an equilibrium of M w.r.t. Ck and σ iff for all 1 ≤ i ≤ `, it
holds that Si ∈ ACCi(kbi ∪ head(r) | r ∈ app(sbr iσ, S)).

The quality of a binding is

1

|U|
·
∑

(a,b)∈U

fM (a, b)

where U is the set of matches used in the binding, i.e., U = {(a, b) | a = bel(P)∧sb =
(X : P) ∈ Ci, 1 ≤ i ≤ ` ∧ (Cj : b) ∈ θ(sb), 1 ≤ j ≤ `}.

Intuitively, a binding of M w.r.t. a substitution σ and a context Ck consists of a
subset of the contexts ofM , which must contain Ck (hence conditions 1 and 2), which
is properly instantiated by θ (condition 3) and, moreover, closed in the sense that every
selected context, except for Ck, is used for instantiating bridge rules of other chosen
contexts (condition 4). The notions of belief state and equilibrium are then inherited
from ordinary MCS. The quality of a binding is simply the average of the similarities
of all matches used in the binding.

3.2 From Dynamic to Ordinary Multi-Context Systems
Recapturing the idea of binding a dynamic MCS M to an original one, starting from
a context Croot , one needs

1. to know all potential neighbors Cj for a context Ci and the term substitu-
tions η(Ci, Cj) between them;

2. a strategy to start from Croot and to expand the system by: first determining a
context substitution σ for each context term in the s-bridge rules of Croot , and
then to continue the process at each neighbor, until a closed system is obtained;

10

3. some decision criteria to guide the process to come up with a most suitable
substitution to bind M .

Task (1) is in fact matching beliefs from different contexts. This problem shares
similarities with the matchmaking problem in Multi-Agent Systems (MAS), which
has been widely considered [Sycara et al., 2002, Ogston and Vassiliadis, 2001]. Our
work in this paper is not doing matchmaking but rather using the matchmaker as a
building block to configure the inter-linkage between contexts in a dynamic MCS to
form ordinary ones. As such, we assume that there exists a matchmaker MatchMaker
which, upon a call MatchMaker(P,Ci) from a context Ci, returns a set of potential
neighbors such that

• if P is a schematic variable in Σ@, then N is the set of context names Cj
where the term substitution η(Ci, Cj) contains at least one pair (bel(P), a) with
fM (bel(P), a) = 1;

• if P is a schematic variable in Σ∼, then N is the set of context names Cj where
the term substitution η(Ci, Cj) is nonempty;

• if P = p is an atom from Σ, then N is the set of all contexts Cj such that
p ∈ Σj .

Further queries to the matchmaker such as MatchMaker(Ci, Cj) can give back
η(Ci, Cj) and/or the value of fM for the pairs of atoms from this term substitution.
This information is used for calculating the quality of the system after instantiating.

The main problems that we solve in this paper are those in (2) and (3). Con-
cerning (2), we present a backtracking algorithm to enumerate all possible context
substitutions σ, in a distributed, peer-to-peer like setting. This means that each con-
text, knowing only its potential neighbors by asking the matchmaker, can only locally
choose the matches for its own s-bridge atoms, which consequently decides its real
neighbors in the resulting MCS, and then has to ask these neighbors to continue the
configuration (hence our algorithm is called lconfig).

The process starts at Croot and continues in a Depth-First Search (DFS) manner,
carrying along the context substitution σ built up so far, until for all chosen contexts
their s-bridge atoms are bound.

Regarding (3), we propose general methods to compare the outcome of different
substitutions on two main aspects, namely (Q1) the matching quality of the bound
rules and (Q2) the topological quality of the resulting MCS. These methods can be
seen as heuristics that can be plugged into the basic version of lconfig to get the context
substitutions returned ordered by quality.

For clarity and simplicity, in the sequel, we first present the very basic version of
lconfig with generic possibilities for optimization. We then briefly go through such
possibilities, where we choose some interesting ones to discuss in more detail and
suggest potential realizations of them.

4 Multi-Context System Configuration
The question is now how one can actually compute substitutions as sketched above.
We present a basic configuration algorithm which computes concrete bindings for a

11

Algorithm 1: lconfig(Croot , R, σ) at Ck
Input: Croot : root context, R: set of s-bridge rules, σ: context substitution
Output: context susbstitution for Ck
Data: obuf r for every r ∈ R: substitutions for r
if R = ∅ then

(a) Cnew := get contexts(σ|Ck
) \ (get contexts(σ \ σ|Ck

) ∪ {Croot})
if Cnew 6= ∅ then return invoke neighbors(Croot , Cnew , σ)
else return {σ}

(b) else
(c) pick r from R, and obuf r := bind rule(χ(r), B(r), σ)

ctx sub := ∅
while obuf r 6= ∅ do

(d) pick σ′ from obuf r and obuf r := obuf r \ {σ′}
ctx sub := ctx sub ∪ lconfig(Croot , R \ {r}, σ′)

return ctx sub

dynamic MCS. We start with a particular context in the system and gradually invoke
some neighbors to get further solutions.3

4.1 Basic Algorithm
Given a dynamic MCSM and a starting contextCroot , the algorithm lconfig presented
in this section aims at enumerating all possible context substitutions that can lead to a
binding for M , in a distributed way. It mutually calls an algorithm invoke neighbors
and makes use of the following primitives:

• a function get contexts(σ), which takes a context substitution σ (containing
substitutions of form X 7→ C) as input and returns the set of contexts C used
in σ.

• a DFS subroutine bind rule, which given an s-bridge rule r as input consults
the matchmaker MatchMaker and returns all context substitutions for the non-
ordinary s-bridge atoms of r.

The algorithm lconfig has several parameters: the context Croot where the config-
uration started, the setR of s-bridge rules left to be bound, and the context substitution
σ built up so far.

Intuitively, in a context Ck, lconfig first utilizes bind rule in a DFS manner to
enumerate all possible context substitutions for the s-bridge atoms in sbrk (Step (b)).
When this is done, in Step (a) it only refers to newly chosen contexts via a set Cnew
and calls invoke neighbors to get the context substitutions of all members in Cnew .

The algorithm invoke neighbors has the same parameters Croot and σ as lconfig,
and carries in addition a set N of newly chosen neighbors of Ck where local config-
uration needs to be done. The algorithm first picks a neighbor Cj and calls lconfig at

3In centralized settings, one might instead compute substitutions by making use of more standard declar-
ative solvers, e.g., such as ASP solvers with external information access.

12

Algorithm 2: invoke neighbors(Croot , N, σ) at Ck
Input: Croot : root context, N : set of neighbors, σ: context substitution
Output: context substitutions for all neighbors of Ck

(e) if N = ∅ then return {σ}
else

(f) pick Cj from N , and obuf Cj
:= Cj .lconfig(Croot , sbr j , σ)

ctx sub := ∅
while obuf Cj

6= ∅ do
(g) pick σ′ from obuf Cj

and obuf Cj
:= obuf Cj

\ {σ′}
(h) N ′ := N \ (get contexts(σ′) ∪ {Cj})

ctx sub := ctx sub ∪ invoke neighbors(Croot , N
′, σ′)

return ctx sub

this context (Step (f)) to get all context substitutions updated with local substitutions
for Cj , stored in obuf Cj

. Then, in Step (g), it picks each substitution from obuf Cj

and continues invoking the remaining contexts in N . Note that in Step (h), the set
of remaining neighbors to invoke is recomputed in N ′, as some of the contexts in N
might already be chosen by the call to Cj and thus they are already invoked.

When all invocations of neighbors have finished, the substitution computed at this
point is returned and is treated by lconfig either as an intermediate result for the context
that invoked it, or as the final result for the user.

Example 9 Take the setting from Example 8 and run bind rule over the rule body
with a starting empty substitution. The call is bind rule(B, ∅) in which B = {(X1 :
[pos1]), (Y1 : [neg1])}. Assume that the first s-bridge atom chosen at Step (i) is
sb = (X1 : [pos]). A call MatchMaker([pos1], C1) to the matchmaker returns N =
{C2, C3}. The routine then tries all possibilities to bind sb and works recursively to
bind the rest of the body. For example, if it chooses to bindX1 toC2, then the next call
will be bind rule({(Y1 : [neg1])}, {X1 7→ C2}) which returns {{X1 7→ C2, Y1 7→
C3}} as the set of all context substitutions in which X1 is mapped to C2. The binding
continues with X1 7→ C3 and in the end, we get two context substitutions, namely
{X1 7→ C2, Y1 7→ C3} and {X1 7→ C3, Y1 7→ C2}.

Example 10 This example illustrates the run of lconfig and invoke neighbors on a
dynamic MCS from Example 4 with poolsize of contexts n = 3. Starting from C1 we
can pick one s-bridge rule from the non-empty set of s-bridge rules at (c), say the first
one from Example 4. According to Example 9, the subroutine bind rule returns a set
of 2 possible context substitutions. Let us pick σ = {X1 7→ C2, Y1 7→ C3} from this
set and continue calling lconfig for the last rule. This gives 2 possible extensions of σ,
one of which extends σ to {X1 7→ C2, Y1 7→ C3, Z1 7→ C2, T1 7→ C3}.

Having this context substitution carried to the next recursive call of lconfig, we
reach the point where R = ∅, get Cnew = {C2, C3}, and continue calling lconfig at
C2 orC3. The algorithm proceeds and in the end, we get a number of context substitu-
tions, one is {X1 7→ C2, Y1 7→ C3, Z1 7→ C2, T1 7→ C3, X2 7→ C1, Y2 7→ C3, Z2 7→
C3, T2 7→ C1, X3 7→ C2, Y3 7→ C1, Z3 7→ C1, T3 7→ C2}. This substitution yields
the MCS system in Example 3.

13

Algorithm 3: bind rule(I,B, σ) at Ck
Input: I: set of inequality atoms, B: set of s-bridge atoms, σ: context

substitution
Output: substitutions for B

(i) if ∃a = (X : P) non-ordinary in B then
N := MatchMaker(P,Ck) // N : set of potential neighbors
if @(X 7→ C) in σ then

dup := {Ci ∈ N | (Y 7→ Ci) ∈ σ ∧ (X 6= Y) ∈ I}
N := N \ dup
ctx sub := ∅
while N 6= ∅ do

(j) choose a context Cj from N , and N := N \ {Cj}
ctx sub := ctx sub ∪ bind rule(I,B \ {a}, σ ∪ {X 7→ Cj})

return ctx sub

else if σ(X) ∈ N then return bind rule(I,B \ {a}, σ)
else return ∅

else return {σ}

When the pool size gets large, enumerating all bindings for each bridge rule and
all bridge substitutions becomes infeasible. A practical approach would be to compute
only a small number of bindings for each rule, and also just a few substitutions at each
context. For the remainder of this section, let us use b and n to denote corresponding
limits.

We have presented the basic algorithm for enumerating all possible context sub-
stitutions of a dynamic MCS M w.r.t. a context Ck in M with which M can be bound
to original MCS. To keep it simple, in steps (c), (d), (f), (g), (i), and (j), we nonde-
terministically pick either a rule, a context substitution, or a context as no supporting
information is provided. This leaves a lot of room for optimization. Furthermore, we
did not mention how to deal with irregular cases such as when the matchmaker re-
turns no potential neighbor, or the size of the partial MCS has passed some boundary;
furthermore, no caching has been foreseen.

In the following subsection, we discuss different heuristics to enhance the search
process when more support information is available, so that the context substitutions
will be returned in some quality driven order. After that, we briefly describe a strategy
for cutting off when reaching a size boundary, hence a possibility to tolerate partial
bindings.

4.2 Quality-Driven Local Configuration

Quality for the topology (QT). Our experimental results reveal that evaluating equi-
libria of MCS in general does not scale up to very large systems, and Dao-Tran et al.
[2010] and Bairakdar, Dao-Tran, Eiter, Fink, and Krennwallner [2010] showed that
limitations on some specific topologies such as the diamond topology exist. Hence,
one of the purposes for configuration is to restrain the size/topology of the resulting
system to some boundary, e.g., by trying to reuse as many contexts from the local

14

configuration of the parent as possible; or by trying to avoid troublesome topologi-
cal properties, such as ones having join contexts, i.e., contexts Ci which are accessed
from different contexts Cj and Cj′ which in turn are accessed (possibly by intermedi-
ate contexts) from a single context Ck, or cycles.

For this purpose, the selection of neighbors (Step (j)) is crucial. To support a
context Ck with more information for this task, we do a one-step look-ahead at all of
its potential neighbors. In general, looking ahead into a potential neighbor Ci can give
back any information that Ci is able to infer from its own knowledge and information
provided by the matchmaker. In this paper, our setting allows the look-ahead to return
the number of s-bridge atoms in Ci, denoted by nbai.

We define in the following different heuristic possibilities of the topological qual-
ity function to reflect attempts to have the resulting MCS in some restricted shape (the
smaller the value of the function, the better is the quality).

Assume that having started the configuration from contextCroot , we are now doing
local configuration at context Ck, choosing a binding for a schematic bridge belief [p],
considering the possible match (p, q) to a context Ci. As the context substitution σ is
carried along, one can easily extract the set of chosen contexts so far, which is denoted
here by C. Consider the following topological quality functions:

(H1) quality i,k = nbai: with this function, we prefer potential neighbors with fewer
s-bridge atoms.

(H2) quality i,k =

{
0 if Ci ∈ C
1 otherwise.

This function gives priority to contexts which are already chosen, hence to keep
the size of the resulting system small. On the other hand, this tends to introduce
cycles.

One can imagine more complicated quality functions; for instance, to take the
topology of the system built up so far into account in order to avoid cycles or join
contexts. To this end, one must transfer not only the substitution σ between contexts,
but also the system topology (i.e., the respective graph).

Along the same lines, for Step (c) (resp., (i)) one can define quality functions, for
instance based on some syntactic criteria combined with some history information, to
provide an heuristic ranking for choosing the next rule (resp., the next non-ordinary
s-bridge atom).
Quality for bindings of a schematic rule (QS). This type of quality measures
the closeness between the bindings and the intended meaning of the schematic rule
based on the matching quality of each single s-bridge atom. Notice that after getting
the schematic substitution η from the matchmaker, θ is determined by the context
substitution σ. Each realization of σ gives us a possibility to bind the schematic rules.
What we need is a means to compare these possibilities. To make it generic, we define
the quality function ρ of a bound rule r′ ∈ rσ of a schematic rule r of form (3) as
follows:

ρ(r′) = op

 α | sb = (X : P) ∈ B(r)∧
(Cj : b) ∈ θ(sb) ∧ (bel(P), b) ∈ η(Ci, Cj)∧
(Cj : b) ∈ B(r′) ∧ fM (bel(P), b) = α

 .

15

Basically, we take the measure of similarity of all bindings used to construct r′ and
apply an operator op on top. Here, op is generic and can be instantiated to any operator
for a specific use. For example, two plausible options are (i) op = min, and (ii) op =
avg.

Roughly, in case (i), following an overly cautious approach, the quality of the
whole binding is determined as the minimal quality of all matches of the s-bridge
atoms in its body. In a different approach, case (ii) takes all matches into account and
respects a contribution of each match in the overall quality of the rule. Depending
on different philosophies to establish the overall quality of a binding that is based on
bindings of each single schematic bridge atom, one can provide more complicated
operators and plug them into this scheme.

To benefit from this quality, one can sort the output buffer obuf r (resp., obuf Cj
)

according to QS in Step (d) (resp., (g)), and then pick the best context substitution up
to this point to continue with.
Combined quality (QC). The two types of quality functions above look into two
aspects of the resulting system, namely the (QT) topology and the (QS) similarity in
meaning of the bindings. To exploit the latter, one needs to enumerate all possible
bindings for a rule.

When we have a limit on the number of solutions (see discussion above), it is
very important to approximate QT when choosing a binding, since then one cannot
compute all bindings of a rule, and then sort them.

To this end, we modify QT in a way that it also takes care of the quality of the
match. Intuitively, when two potential contexts are equally ranked by QT , one looks
at the quality of the match, i.e., approximating QS , to rank them. More specifically,
the heuristic functions H1 and H2 are changed to:

(H3) quality i,k = nbai − α, and

(H4) quality i,k =

{
−α if Ci ∈ C
2− α otherwise,

where α is the quality of the match being considered to bind the current s-bridge atom.

4.3 Dealing with Irregular Cases
In practice, it is convenient for the user to have the possibility to specify an upper
bound for the size of the resulting system. However, a full substitution respecting the
given limit may not always exist. A flexible approach to deal with such a situation,
rather than to increase the bound, is to cut off when reaching the boundary and to
tolerate partial answers.

By cutting off, more precisely we mean to remove all unbound negative s-bridge
atoms from s-bridge rules, and remove all s-bridge rules with unbound positive bridge
atoms. Intuitively, this amounts to consider a system where any further contexts that
would exist for binding are considered to return empty belief sets (and thus the respec-
tive bridge atoms are pre-evaluated accordingly). Note that one also needs to undo the
on-going substitutions for such s-bridge rules, and this might trigger the cancellation
of substitutions in a backward manner: since once a context is not used anymore for

16

1

2 3

45

(a) Random

1

2

3

4

(b) Rake

1 2 3

4 5 6

7 8 9

(c) 3× 3 Grid

Figure 1: Benchmark topologies and possible configurations (emphasized)

instantiating other contexts, it is not needed and the part of the substitution w.r.t. this
context should be removed from the final result.

Another case in which cutting off might be used is when substitutions do not exist
due to non-existent matchings, i.e., when the matchmaker does not return any match
for a schematic constant. We can apply the same strategy as above, i.e., remove the
corresponding s-bridge atom if it appears in the negative body of an s-bridge rule, or
remove the whole s-bridge rule if the s-bridge atom is in its positive body.

The cutoff is in fact easy to implement. One can create a dummy contextC0 which
has only a single belief dumb with the unique acceptable belief set ∅ (i.e., intuitively
dumb is false , and all beliefs in every other context are matchable to dumb. Then
cutting off as discussed above is simply achieved by matching unbound s-bridge atoms
to (C0 : dumb).

5 Implementation and Experimental Results
In this section, we report on some initial experiments with a prototype implementa-
tion of our MCS configuration algorithm. Full details of the implementation and the
experiments are available on the web.4

Our implementation is written in C++ and uses a simple realization of MatchMaker,
in which matchmaking results are statically given rather than dynamically computed.
The respective matching information is stored in a text file, which is loaded into each
context at start up time. During configuration, a call to the matchmaker is then simply
performed by posing a query to the respective storage in the context.

For our experiments, we used a host system having an Intel Core 2 Duo 2.4GHz
processor with 4GB RAM, running Mac OS X. We have tested three types of topolo-
gies, called random, rake, and grid, respectively, which model different interlinkage
patterns (see Fig. 1 for exemplary instances). The random topology is generated by
deciding whether there exist potential matches from context Ci to context Cj with a
probability of 0.5; this leads to a rather dense system as random topologies have ap-
proximately half of the edges of a complete graph. Fig. 1a shows an example with five
contexts, for which C1, C3, and C4 has been chosen in the configuration. The rake
topology requires that every context Ci has potential matches to all contexts Cj where
j > i; furthermore, for each context Ci with i > 1, we randomly pick di/3e distinct

4http://www.kr.tuwien.ac.at/research/systems/dmcs/.

17

context(s)Ck where k < i, and with a probability of 0.7, place potential matches from
Ci to Ck. The example instance in Fig. 1b has a configuration using all contexts C1 to
C4, which forms a system with two cycles. And finally, in instances of the grid topol-
ogy having size m × n, each context has potential matches to its adjacent contexts
on the next row/column, a diagonally adjacent context on the next row and next col-
umn; and for contexts on the last row/column, diagonally adjacent backward/forward
contexts (see Fig. 1c).

For each topology, we experimented with dynamic MCS having a pool of 100 or
200 contexts. Each context contains a local knowledge base as in Example 2 and a
set of bridge rules which is a subset of sbr i ∪ {ri} where sbr i is from Example 4 and
ri = inci ∨ deci ← (Xi : [pos]), (Xi : [neg]), in order to have a varying number of
s-bridge atoms in contexts. Furthermore, the limits on the number of substitutions and
bindings were set to n = 3 and b = 8, respectively.

The results of running our basic algorithm (no heuristics) and the four heuris-
tics H1–H4 are shown in Tables 2–4. There, the test names are of the form Name(ps, d)
with poolsize ps and density d is the number of possible connections between contexts
of the dynamic MCS instance. The measurements of the output include the running
time of the algorithm, the size and the density (i.e., the number of connections be-
tween contexts) of the resulting MCS, and the average similarity of all matches used
for instantiation.

As a general observation, we can see that most of the time the heuristics improved
the result in different aspects, either the size respectively density, or the average qual-
ity, or both. The heuristics H1 and H2 concentrate on minimizing the size of the
system, which was strongly confirmed in case of the rake topology. Here, the basic
algorithm yielded large configurations: the default ordering for the next neighbor does
not take advantage of back edges, because it always picks first a context with a higher
index. Hence, for some first results, the configuration has to wait until the last context
is bound; only then it can close the system.

The same behavior of the basic algorithm could be observed in the case of the grid
topology: it always took the whole set of contexts for instantiation. On the other hand,
when a heuristics was applied, the system size was often reduced by almost 50%,
except for H2; this is because in this restricted structure, there are no backward edges
at intermediate contexts, hence the effort to close the system can only take effect when
contexts at the last row or column are involved in the instantiation.

However, since the random topology has no structure, the heuristics H1 and H2
behave similarly to running the algorithm without heuristics. The former even returned
a slightly bigger system and many times one of worse quality.

On the other hand, the heuristics H3 and H4 combine the topology and quality
criteria in order to intuitively gain an improvement; this indeed shows up in the ex-
perimental results. For the random topology, H3 dominated the result in quality; this
was achieved by a considerably larger configuration, which is explained by the fact
that heuristics H3 branches out to promising contexts for quality improvements, rather
than looking at already chosen neighbors. In the other cases, either H3 or H4 gave
the best quality in all the tests.

Moreover, the trade-off between the number of contexts and the quality of the
configuration can be seen in comparing heuristics H3 and H4. While the former ap-
proximates the system size based on the number of bridge atoms, the latter has a more

18

Table 2: Experimental results for random topology

Test name Heuristics Running time (secs) Size Density Quality

Random (100, 4974)

None 0.22 5 10 0.604
H1 6.16 9 18 0.450
H2 0.18 4 8 0.605
H3 2.39 26 54 0.975
H4 1.42 8 16 0.859

Random (100, 4886)

None 0.18 7 14 0.643
H1 1.01 9 18 0.603
H2 0.19 6 12 0.584
H3 6.65 17 34 0.975
H4 0.36 8 16 0.703

Random (200, 19953)

None 0.62 6 12 0.584
H1 2.23 7 14 0.480
H2 0.40 6 12 0.588
H3 8.92 44 91 0.996
H4 0.82 7 14 0.852

Random (200, 19896)

None 1.02 6 12 0.510
H1 0.84 6 12 0.605
H2 1.12 6 12 0.510
H3 18.88 37 76 0.999
H4 1.29 7 14 0.794

Table 3: Experimental results for rake topology

Test name Heuristics Running time (secs) Size Density Quality

Rake (100, 5575)

None 10.61 99 198 0.529
H1 1.00 35 70 0.530
H2 1.01 10 20 0.500
H3 7.65 28 57 0.983
H4 0.48 10 20 0.908

Rake (100, 5597)

None 22.76 100 200 0.557
H1 1.01 26 52 0.514
H2 1.29 10 20 0.498
H3 0.96 22 45 0.937
H4 1.51 9 18 0.867

Rake (200, 22579)

None 170.10 197 394 0.541
H1 17.11 73 146 0.507
H2 0.82 9 18 0.518
H3 64.24 59 119 0.999
H4 0.88 5 11 0.790

Rake (200, 22510)

None 277.04 199 398 0.550
H1 4.84 54 108 0.579
H2 1.65 9 18 0.520
H3 4.40 36 72 0.994
H4 0.74 9 18 0.746

19

Table 4: Experimental results for grid topology

Test name Heuristics Running time (secs) Size Density Quality

Grid (10×10, 279)

None 1.82 100 198 0.540
H1 1.60 66 130 0.568
H2 4.02 100 198 0.545
H3 2.87 74 154 0.630
H4 2.02 64 128 0.736

Grid (20×5, 274)

None 2.52 100 198 0.562
H1 1.84 57 112 0.565
H2 5.05 82 162 0.557
H3 2.38 67 134 0.623
H4 2.04 52 104 0.724

Grid (25×4, 270)

None 3.44 100 198 0.519
H1 1.81 50 98 0.534
H2 8.64 100 198 0.527
H3 1.46 50 98 0.591
H4 1.94 55 109 0.623

Grid (20×10, 569)

None 5.32 200 398 0.544
H1 6.90 130 258 0.541
H2 25.62 200 398 0.551
H3 9.10 152 323 0.631
H4 9.86 104 206 0.677

Grid (25×8, 566)

None 6.78 200 398 0.563
H1 10.60 142 282 0.563
H2 31.54 200 398 0.567
H3 2.61 87 178 0.623
H4 10.15 83 164 0.705

Grid (40×5, 554)

None 8.44 200 398 0.557
H1 5.10 102 202 0.577
H2 29.46 162 322 0.570
H3 5.35 103 215 0.629
H4 5.88 91 184 0.686

direct approach by looking at the chosen contexts. Hence H4 usually ended up with a
smaller system, but not always with one of better quality. On the other hand, H3 al-
ways returned a bigger system compared to standard results, but interestingly it could
not beat H4 in the case of grid topology, because this rigid structure gives H3 no
chance to trade system size for quality.

On average, H4 appeared to have the best balance of all result aspects together: it
has fast running time, almost the best quality, and acceptable system size/density.

To see the effects of inequality atoms in s-bridge rules, we have also run our algo-
rithm on the same test cases with these special atoms removed. In general, the trends
and the relationships between the basic algorithm and its heuristic extensions do not
change (see Appendix A). The only difference now is that the size/density of the
resulting systems gets smaller, as a single context can be used to bind two different
context holders in one rule, and the algorithm tries to exploit this property to come to
the answers as soon as possible.

We have carried out further experiments with a social-groups topology that are not
reported here. This topology forms groups of contexts with full potential connections,

20

and there exist some rare potential connections from one group to another; in some
sense this models loosely interconnected communities. The outcome of our config-
uration resembled typical human behavior of group formation in such a setting quite
well, as the resulting MCS tended to contain contexts from a single group only.

6 Related Work and Conclusion
We have presented the framework of dynamic multi-context systems, which extend
ordinary multi-context systems (MCS) with so-called schematic bridge rules in order
to allow for open environments, in which concrete contexts are taken at run time to
form an ordinary MCS by instantiating the schematic bridge rules. We have devel-
oped a distributed algorithm for instantiating such dynamic MCS to ordinary MCS,
implemented this algorithm in a prototype system, and have shown some benchmark
results that compare different heuristics for configuring dynamic MCS.

6.1 Related Work
The problem that we considered in this paper shares some similarities with configura-
tion in Multi-Agent Systems using matchmaking. In this setting [Sycara et al., 2002],
provider agents advertise their capabilities to middle agents; requester agents do not
directly go to a provider but first ask some middle agent whether it knows of providers
with desired capabilities; the middle agent matches the request against the stored ad-
vertisements and returns the information about appropriate providers to the requester.
In our setting, the matchmaker plays the role of the middle agent. A context has both
roles, it is seen as a requester when being instantiated, and as a provider when being
used to instantiate s-bridge atoms from other contexts.

A configuration problem for multi-agent system that is in a sense orthogonal re-
spectively complementary to matchmaking is coalition formation. Here, the problem
is the assembly of a group of agents for cooperation in order to get some task down (as-
suming that the agents already know that cooperation is possible) [Sandholm, 1999].
However, this problem is only remotely related to our configuration problem. Agents
have goals and intentions, and decide their participation in a coalition based on utility
and reward in a rational manner. This leads in interaction with other agents to complex
behaviors, which may be studied using game-theoretic methods and tools. Contexts
instead lack such goal and reward orientation, and offer in an altruistic manner infor-
mation exchange in order to enable the assembly of an MCS. Thus, from a coalition
formation point of view, the MCS configuration problem is trivial. The problems gets
more complicated if constraints are imposed (e.g., on the solution size or quality), but
there is still a difference: at no point, some context may decide not to participate in an
MCS as it concludes its payoff is insufficient, or it is being cheated.

Naturally related to dynamic MCS are peer-to-peer (P2P) systems. However, in
typical models such as the Peer-Grid [Aberer et al., 2002], a global system semantics
does not play a role: peers are strictly localized and can join/leave the system at any-
time. Our approach, on the other hand, aims at global model building for an ordinary
MCS that is dynamically constructed, where the first step is instantiation, and then the
(distributed) evaluation kicks in [Dao-Tran et al., 2010]; this tacitly assumes that no

21

relevant contexts disappear during configuration and evaluation of the configured sys-
tem. We note that also [Calvanese, Giacomo, Lenzerini, and Rosati, 2004] proposed
a global model semantics for P2P systems, which is based on epistemic logic, and
presented a distributed algorithm for query answering. This algorithm evaluates P2P
mappings dynamically, but no system configuration like in our approach is performed.
Similarly, [Bikakis and Antoniou, 2010] considered distributed query answering in a
given P2P system of contexts, but under preferences using an argumentation based
approach; however, no dynamic configuration in a potentially open environment is
performed.

6.2 Issues for future research
While we have introduced in this paper dynamic MCS to accommodate open environ-
ments and we provided an algorithm for run time configuration, several issues remain
for future work.

On the foundational side, a study of the computational complexity of dynamic
MCS, and in particular of the configuration problem, could reveal important insight
into computational resources needed to solve this problem, and may help to iden-
tify classes of systems for which it is efficiently solvable; here, the distribution and
possible parallelism are interesting aspects. Furthermore, an improvement of the con-
figuration algorithm, and in particular a deep investigation into heuristics would be an
interesting task. Another aspect related to this is linkage cost. The size of a configura-
tion is a crude measure of such cost, which clearly can be refined, taking, e.g., besides
the topology also the cost (or value) of accessing particular beliefs into account.

On the implementation side, an obvious task is the implementation of a full-
fledged configuration system that includes rich matchmaking, e.g., as in LARKS
[Sycara et al., 2002] instead of just hard-coded matches. Finally, another issue are
applications of dynamic MCS. The student example in the Introduction suggests to
consider possible applications in social group formation, complementing e.g., recent
work in social Answer Set Programming [Buccafurri, Caminiti, and Laurendi, 2008,
Buccafurri and Caminiti, 2008]. Another, less mundane area is configuration of small
heterogeneous information systems, in which generic components (e.g., some domain
ontologies, some decision component, and some fact base) must be suitably instanti-
ated, given various possibilities. Here matchmaking may play an important role, e.g.,
if aspects like different levels of abstraction in the context knowledge bases should be
handled. The usage of logic-based matchmaking approaches (cf. the work of Noia,
Sciascio, and Donini [2007]), in combination with other techniques, might here be
worthwhile to consider. In particular, configuration of small systems in mobile envi-
ronments, where openness is a natural requirement, to further the use of multi-context
systems in ambient intelligence [Antoniou et al., 2010, Bikakis and Antoniou, 2010]
would be interesting.

References
Karl Aberer, Magdalena Punceva, Manfred Hauswirth, and Roman Schmidt. Improv-

ing Data Access in P2P Systems. IEEE Internet Computing, 6(1):58–67, 2002. doi:
10.1109/4236.978370.

22

Grigoris Antoniou, Constantinos Papatheodorou, and Antonis Bikakis. Reasoning
about Context in Ambient Intelligence Environments: A Report from the Field.
In Lin and Sattler [2010], pages 557–559. URL http://aaai.org/ocs/
index.php/KR/KR2010/paper/view/1209.

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. Decomposition of Distributed Nonmonotonic Multi-Context Sys-
tems. In Tomi Janhunen and Ilkka Niemelä, editors, 12th European Conference
on Logics in Artificial Intelligence (JELIA 2010), Helsinki, Finland, September
13-15, 2010, volume 6341 of LNAI, pages 24–37. Springer, September 2010.
doi: 10.1007/978-3-642-15675-5 5. URL http://www.kr.tuwien.ac.at/
staff/tkren/pub/2010/jelia2010-decompmcs.pdf.

Antonis Bikakis and Grigoris Antoniou. Defeasible Contextual Reasoning with Ar-
guments in Ambient Intelligence. IEEE Transactions on Knowledge and Data En-
gineering, 22(11):1492–1506, 2010. doi: 10.1109/TKDE.2010.37.

Gerhard Brewka and Thomas Eiter. Equilibria in Heterogeneous Nonmonotonic
Multi-Context Systems. In Robert C. Holte and Adele Howe, editors, 22nd AAAI
Conference on Artificial Intelligence (AAAI’07), pages 385–390. AAAI Press, 2007.
URL http://www.aaai.org/Papers/AAAI/2007/AAAI07-060.pdf.

Gerhard Brewka, Floris Roelofsen, and Luciano Serafini. Contextual default reason-
ing. In Manuela M. Veloso, editor, International Joint Conference on Artificial In-
telligence (IJCAI’07), pages 268–273. AAAI Press, 2007. URL http://ijcai.
org/Past%20Proceedings/IJCAI-2007/PDF/IJCAI07-041.pdf.

Francesco Buccafurri and Gianluca Caminiti. Logic programming with social fea-
tures. Theory and Practice of Logic Programming, 8(5-6):643–690, 2008. doi:
10.1017/S1471068408003463.

Francesco Buccafurri, Gianluca Caminiti, and Rosario Laurendi. A logic language
with stable model semantics for social reasoning. In M. Garcia de la Banda
and E. Pontelli, editors, 24th International Conference on Logic Programming
(ICLP’08), Udine, Italy, December 9-13 2008, volume 5366 of LNCS, pages 718–
723. Springer, 2008. doi: 10.1007/978-3-540-89982-2 64.

Diego Calvanese, Guiseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati.
Logical Foundations of Peer-To-Peer Data Integration. In 23rd ACM Symposium
on Principles of Database Systems (PODS’04), pages 241–251. ACM, 2004. doi:
10.1145/1055558.1055593.

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Dis-
tributed Nonmonotonic Multi-Context Systems. In Lin and Sattler [2010], pages
60–70. URL http://aaai.org/ocs/index.php/KR/KR2010/paper/
view/1249.

Michael Fink, Lucantonio Ghionna, and Antonius Weinzierl. Relational Informa-
tion Exchange and Aggregation in Multi-Context Systems. In James Delgrande

23

and Wolfgang Faber, editors, 11th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR 2011), Vancouver, BC, Canada, 16-
19 May, 2011), volume 6645 of LNCS, pages 120–133. Springer, 2011. doi:
10.1007/978-3-642-20895-9 12.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3–4):365–385, 1991. doi:
10.1007/BF03037169.

Fausto Giunchiglia and Luciano Serafini. Multilanguage Hierarchical Logics or: How
we can do Without Modal Logics. Artificial Intelligence, 65(1):29–70, 1994. doi:
10.1016/0004-3702(94)90037-X.

Fangzhen Lin and Ulrike Sattler, editors. 12th International Conference on the Prin-
ciples of Knowledge Representation and Reasoning (KR 2010), Toronto, Canada,
May 9-13, 2010, May 2010. AAAI Press. URL http://www.aaai.org/
Library/KR/kr10contents.php.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):
39–41, 1995.

Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini. Semantic Match-
making as Non-Monotonic Reasoning: A Description Logic Approach. J. Artif.
Intell. Res., 29:269–307, 2007. doi: 10.1613/jair.2153.

Elth Ogston and Stamatis Vassiliadis. Local Distributed Agent Matchmaking. In Carlo
Batini, Fausto Giunchiglia, Paolo Giorgini, and Massimo Mecella, editors, 9th In-
ternational Conference on Cooperative Information Systems (CoopIS’01), volume
2172 of LNCS, pages 67–79. Springer, 2001. doi: 10.1007/3-540-44751-2 7.

F. Roelofsen and L. Serafini. Minimal and Absent Information in Contexts. In L. Pack
Kaelbling and A. Saffiotti, editors, 19th International Joint Conference on Artificial
Intelligence (IJCAI’05), pages 558–563. Morgan Kaufmann, 2005. URL http:
//www.ijcai.org/papers/1045.pdf.

Tuomas Sandholm. Distributed rational decision making. In Gerhard Weiss, edi-
tor, Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence,
chapter 5, pages 201 – 258. MIT Press, 1999.

Katia P. Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu. Larks: Dy-
namic Matchmaking Among Heterogeneous Software Agents in Cyberspace. Au-
tonomous Agents and Multi-Agent Systems, 5(2):173–203, 2002. doi: 10.1023/A:
1014897210525.

24

A Appendix: Experimental results (no inequalities)

Table 5: Experimental results for grid topology, without inequalities

Test name Heuristics Running time (secs) Size Density Quality

Grid (10×10, 279)

None 0.13 19 18 0.558
H1 0.13 16 16 0.553
H2 0.12 19 18 0.558
H3 0.73 20 25 0.589
H4 0.10 17 17 0.592

Grid (20×5, 274)

None 0.17 24 23 0.597
H1 0.19 28 28 0.547
H2 0.16 24 23 0.597
H3 1.10 30 37 0.598
H4 0.16 24 23 0.658

Grid (25×4, 270)

None 0.22 28 27 0.529
H1 0.22 31 31 0.579
H2 0.20 28 27 0.529
H3 1.42 37 50 0.623
H4 0.25 34 34 0.616

Grid (20×10, 569)

None 0.20 29 28 0.480
H1 0.21 30 30 0.459
H2 0.20 29 28 0.480
H3 1.54 49 61 0.605
H4 0.20 26 25 0.712

Grid (25×8, 566)

None 0.25 32 31 0.566
H1 0.26 32 32 0.592
H2 0.25 32 31 0.566
H3 1.73 35 41 0.638
H4 0.91 28 28 0.617

Grid (40×5, 554)

None 0.49 44 43 0.538
H1 0.85 46 46 0.535
H2 0.37 44 43 0.538
H3 2.02 53 65 0.628
H4 0.53 53 52 0.630

25

Table 6: Experimental results for random topology, without inequalities

Test name Heuristics Running time (secs) Size Density Quality

Random (100, 4974)

None 0.39 2 2 0.567
H1 0.46 3 3 0.638
H2 0.37 2 2 0.567
H3 2.61 23 44 0.981
H4 0.37 4 4 0.764

Random (100, 4886)

None 0.43 3 3 0.573
H1 0.47 3 3 0.573
H2 0.15 3 3 0.573
H3 9.74 17 33 0.977
H4 0.46 4 4 0.833

Random (200, 19953)

None 0.38 2 2 0.711
H1 0.78 5 5 0.415
H2 0.10 2 2 0.711
H3 8.13 42 80 0.996
H4 0.13 3 3 0.631

Random (200, 19896)

None 0.39 2 2 0.483
H1 0.46 2 2 0.467
H2 0.43 2 2 0.483
H3 36.58 36 70 0.999
H4 0.20 3 3 0.686

Table 7: Experimental results for rake topology, without inequalities

Test name Heuristics Running time (secs) Size Density Quality

Rake (100, 5575)

None 3.08 91 91 0.521
H1 0.52 32 32 0.533
H2 0.34 6 6 0.367
H3 8.46 27 49 0.983
H4 0.08 5 5 0.744

Rake (100, 5597)

None 3.15 90 90 0.568
H1 0.25 22 22 0.508
H2 0.69 5 5 0.445
H3 0.82 20 38 0.951
H4 0.16 3 3 0.682

Rake (200, 22579)

None 11.70 174 174 0.551
H1 1.09 66 66 0.491
H2 0.42 4 4 0.494
H3 39.95 57 111 0.999
H4 0.64 4 4 0.815

Rake (200, 22510)

None 6.04 173 173 0.541
H1 0.81 48 48 0.593
H2 2.91 4 4 0.481
H3 4.47 36 72 0.993
H4 0.55 3 3 0.667

26

