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Abstract. Quantum logic generally refers to the logical structure char-
acterized by the class of orthomodular lattices. It originated from certain
postulates advocated in the Hilbert-space formalism of modern quantum
mechanics. In this paper, we investigate issues related to the proof theory
of minimal quantum logic, i.e., quantum logic where the axiom of modu-
larity is not stipulated. Based on a sequent-type calculus introduced by
Nishimura, we will show that a modification of this system will result in
a much more concise system. Moreover, a corresponding tableau system
for minimal quantum logic will be proposed. An example from quantum
mechanics will be used to illustrate how the principle of modularity can
be encoded within our framework.

1 Introduction

Quantum logic has been introduced in the early 1930s by John von Neumann in
his famous treatise on the mathematical foundations of quantum mechanics [15].
In that work, he proposed to regard projection operators over a given Hilbert
space to represent certain propositions of a corresponding quantum-mechanical

system. Later on, in a joint paper with Garrett Birkhoff, this “logic of projec-
tion operators” has been given a more elaborated treatment, characterizing its
algebraic nature [4]. As it turned out, the resulting logical structure can be de-
scribed in terms of non-distributive, orthomodular lattices, significantly different
from classical Boolean algebra.

Although controversial right from the beginning, in the following decades a
huge number of scientific investigations have been devoted to quantum logic.
However, most of these research efforts were either conducted by physicists fo-
cusing purely on the physical meaning of quantum logics, or by mathematicians
interested mainly in its algebraic properties—but there is only a minority of
papers treating quantum logics in a suitable proof-theoretical manner, with, say,
reference to a concrete axiomatic method.

In this paper, we will discuss quantum logic from the perspective of sequent-
type methods. More specifically, we will present a sequent-type calculus, LMQ,
for minimal quantum logic which turns out to be more concise than an earlier
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system proposed by Nishimura [17]. Although Takano [22] noted that one rule
of Nishimura’s calculus is superfluous, instead of eliminating this rule, a slight
modification of it actually yields a large number of other rules redundant.

Based on the system LMQ, we will also present a tableau calculus for min-
imal quantum logic. To the best of our knowledge, this will constitute the first
tableau-based account for any kind of quantum logic. The tableau system will
be constructed in a style resembling the approach taken by Fitting in [9] for
various modal logics—to wit, by exploiting the technique of branch-modification

rules. Furthermore, a formalization of the quantum-mechanical principle known
as Lüders’ Rule will be used to illustrate how the property of modularity can
be handled within the framework of minimal quantum logic. The paper is orga-
nized as follows. In Section 2, we will review the basic facts about quantum logic.
In Section 3, we present our calculi and show that LMQ allows for significantly
fewer rules than Nishimura’s system. Section 4 contains the application of LMQ

to Lüders’ Rule, and Section 5 concludes with some general remarks.

2 Basics of Quantum Logic

From a strictly formal point of view, quantum logic can be characterized as
the logical structure emanating from the algebra of orthomodular lattices. In this
sense, quantum logic has a logical status similar to other non-classical logics like,
say, intuitionistic logic or minimal logic, independent of its physical heritage.

Let us recall that an orthomodular lattice is a Boolean lattice in which the
distributive laws are no longer stipulated, and in which the modular law holds.2

If the modular law is also dispensed, one speaks of an ortholattice. The logic
associated with ortholattices is referred to as minimal quantum logic, or sim-
ply orthologic. This variant of quantum logic has been introduced mainly for
mathematical reasons, because it behaves more natural in certain respects than
modular quantum logic.

In this section, we will review the basic facts about minimal quantum logic. In
particular, we will introduce the sequent calculus GMQL, due to Nishimura [17].
This system traces back to earlier accounts given by Goldblatt [11], Nishimura
[16], Cutland and Gibbins [5], Tamura [23], and others. For a thorough intro-
duction to the subject of quantum logic, we refer the reader to several sources
information: [6] provides a survey of quantum logic with emphasis on its logical
structure; [13] and [19] discuss the logic of orthomodular structures; and [21] is
a recent textbook on quantum logic with respect to physics. A sequent-type ac-
count of orthologic independent from the series of papers mentioned above—but
related to a system described in [13]—is given in [2].

We will use a propositional language with the unary operator ′ (“negation”),
and the two binary operators ∧ (“conjunction”) and ∨ (“disjunction”) as prim-
itive logical connectives. We use P,Q,R, . . . to denote atomic formulae and
A,B,C, . . . to denote composite formulae. The composite formulae are built

2 A lattice (L,t,u) is modular iff for all x, y, z ∈ L, z v x implies xu(ytz) = (xuy)tz

(where, for any two elements a, b ∈ L, the relation a v b holds iff a u b = a).



from the atomic formulae according to the usual formation rules. Uppercase
Greek letters Γ , ∆, Σ, . . . will be used to denote finite sets of formulae. Given
a set Γ of formulae, then Γ ′ denotes the set {A′ | A ∈ Γ}. By a sequent we
understand an ordered pair Γ ` ∆ of finite sets Γ , ∆. We tacitly employ the
usual practice to write sequents like Γ ∪∆ ` Σ or Γ ∪ {A} ` Σ in the form
Γ,∆ ` Σ and Γ,A ` Σ, respectively.

A formula B is called a quasi-subformula of a formula A iff it is either (i) a
subformula of A, (ii) the negation of a subformula of A, or (iii) of the form
(C ◦D)′′, where ◦ ∈ {∧,∨} and C ◦D is a subformula of A.

We say that an inference rule R is admissible in a calculus C iff adjoining R
to C does not change the class of provable formulae.

The sequent calculus GMQL for minimal quantum logic consists of axioms of
the form A ` A (where A is some formula), and the inference rules depicted in
Figure 1.

Semantically, it is convenient to adopt the method introduced by Goldblatt
in [11].

By an O-frame, F , we understand a pair 〈X,⊥〉, where X is a nonempty set
(the carrier of F) and ⊥ is an orthogonality relation on X, i.e., ⊥ is an irreflexive
and symmetric binary relation on X. Given a set Y ⊆ X, the orthocomplement

of Y is the set

Y ⊥ := {x ∈ X | x⊥y, for all y ∈ Y }.

Observe that Y ⊆ Y ⊥⊥, for any set Y ⊆ X. If the converse also holds, i.e., if
Y ⊥⊥ ⊆ Y , then Y is said to be closed. Hence, Y is closed iff Y = Y ⊥⊥.

An O-model, M, is a triple 〈X,⊥, D〉, where 〈X,⊥〉 is an O-frame and D is
a mapping which assigns to each propositional variable p a closed subset D(p)
of X.

For any formula A, the relation ‖A‖ is recursively defined as follows:

1. ‖p‖ = D(p), for any propositional variable p;
2. ‖A′‖ = ‖A‖⊥;
3. ‖A ∧ B‖ = ‖A‖ ∩ ‖B‖;
4. ‖A ∨ B‖ = (‖A‖⊥ ∩ ‖B‖⊥)⊥

For an x ∈ X and a formula A, we write V (A;x) = 1 if x ∈ ‖A‖, and
V (A;x) = 0 otherwise. Informally, V (A;x) = 1 may be read as “A is true at x in
the O-model M”. Furthermore, for a sequent Γ ` ∆, we set V (Γ ` ∆;x) = 0
iff x ∈

⋂

A∈Γ ‖A‖ and x 6∈ (
⋂

B∈∆ ‖B‖⊥)⊥, and V (Γ ` ∆;x) = 1 otherwise.
A sequent Γ ` ∆ is falsifiable iff there is some O-model 〈X,⊥, D〉 and some

x ∈ X such that V (Γ ` ∆;x) = 0.3 A sequent which is not falsifiable is said to
be valid.

Proposition 1 [17]. A sequent is provable in GMQL iff it is valid.

3 Nishimura [17] uses the somewhat misleading term “realizable” instead of “falsifi-
able”.
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Fig. 1. The inference rules of GMQL.

Remark: We mentioned earlier that quantum logics are described in terms of
ortholattices. Indeed, according to some standard results from abstract algebra,
closed subsets of an O-frame form an ortholattice under the partial ordering of
set inclusion (cf. Birkhoff [3] for more details).

An important role in the context of sequent-type calculi plays the well-known
cut-rule. However, as pointed out by Cutland and Gibbins [5] (with reference to
an unpublished paper by M. Dummett [7]), the inclusion of an unrestricted cut
rule in a system like GMQL would imply a collapse to classical logic. So, in order
to remain in the realm of quantum logic, only restricted forms of cut can be
considered. In fact, following Cutland and Gibbins [5], Nishimura [17] considers
the following two cut rules:

Γ ` ∆1, A A ` ∆2

Γ ` ∆1,∆2

cut1
Γ1 ` A A,Γ2 ` ∆

Γ1, Γ2 ` ∆
cut2



The next result states that these forms of cut are indeed appropriate for GMQL.

Proposition 2 [17, 18]. If the sequents Γ1 ` ∆1, A and A,Γ2 ` ∆2 are

provable in GMQL, where ∆1 = ∅ or Γ2 = ∅, then the sequent Γ1, Γ2 ` ∆1,∆2

is provable in GMQL. In other words, cut1 and cut2 are admissible in GMQL.

As remarked by Nishimura in [17], if we remove the rules

(∨ ′ `)i, (` ∧ ′)i, (∧ ′ `), (` ∨ ′), (∨ ` ′), ( ′ ` ∧) (1)

from GMQL (for i = 1, 2), but admit cut1 and cut2, then the system of Cutland
and Gibbins [5] would be obtained. However, in the next section we will present
a calculus in which the rules (1) are still superfluous, but without the need of any

cut-rule.

3 New Calculi for Minimal Quantum Logic

3.1 The Sequent Calculus LMQ

Recently, Takano [22] identified the rule ( ′ ` ′) to be superfluous in GMQL.
However, as we are going to show, an even more compact calculus for minimal
quantum logic exists, if we replace ( ′ ` ′) by a rule which is in effect the converse
of ( ′ ` ′). Thus, the new rule, called alternation rule, has the following form:

Γ ′ ` ∆′

∆ ` Γ
alt

We will see that this rule allows the elimination of the essentially “symmetric”
rules in GMQL, involving negation and the binary connectives ∧ and ∨ , respec-
tively. The new calculus is called LMQ and its inference rules are depicted in
Figure 2.

Some words about the rule alt are in order. One might be puzzled about
the fact that this rule is actually an elimination rule, contrasting the usual
paradigm in sequent-type calculi of employing introduction rules (the notable
exception being of course the cut-rule). However, elimination rules are a handy
device if one is interested in comparing proofs in, e.g., intuitionistic sequent-type
calculi like LJ with proofs in classical sequent-type calculi like LK. More exactly,
one can show that a classically valid formula can be proven in LJ, together with
the cut-rule, if one allows “non-logical axioms” of the form ¬¬A ` A. Now, the
point is that the same result holds if the cut-rule is replaced by double-negation
elimination rules like the ones given in Lemma 5 below. (For more details on
non-logical axioms, see [24].)

We commence with our result on the redundancy of a large number of GMQL-
rules by using the new rule alt. Afterwards, soundness and completeness of the
calculus LMQ will be established. We conclude this subsection with some remarks
how LMQ can be used for a decision procedure of minimal quantum logic.
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Fig. 2. The inference rules of LMQ.

Theorem 3. The GMQL-inferences (` ′), (∨ ′ `)i, (` ∧ ′)i, (∧ ′ `), (` ∨ ′),
(∨ ` ′), and ( ′ ` ∧) are admissible in LMQ (for i = 1, 2).

Proof. We show the assertion of the theorem only for (` ′) and (∧ ′ `); the
remaining cases are similar. The relevant LMQ-deductions are given below.

Rule (` ′): Let Γ be partitioned into Γ1, Γ
′
2, where Γ ′

2 contains all the formulae
of Γ which are of the form A′, for some formula A.

Γ1, Γ
′
2 ` ∆

∆′, Γ1, Γ
′
2 `

( ′ `)

.... ( ′′ `)

∆′, Γ ′′
1 , Γ

′
2 `

` ∆,Γ ′
1, Γ2

` ∆,Γ ′
1, Γ

′′
2

(` ′′)

alt

Rule (∧ ′ `): Let ∆ be similarly partitioned into ∆1,∆
′
2 as in the previous case.

A′ ` ∆1,∆
′
2.... (` ′′)

A′ ` ∆′′
1 ,∆

′
2

∆′
1,∆2 ` A

alt

B′ ` ∆1,∆
′
2.... (` ′′)

B′ ` ∆′′
1 ,∆

′
2

∆′
1,∆2 ` B

alt

∆′
1,∆2 ` A ∧ B

(` ∧)

∆′
1,∆

′′
2 ` (A ∧ B)′′

( ′′ `), (` ′′)

(A ∧ B)′ ` ∆1,∆
′
2

alt

Next, we turn to the soundness and completeness of LMQ. First, let us observe
that the soundness of alt follows readily from Corollary 2.3(a) of Nishimura [17],
which is as follows:



Proposition 4 [17]. If a sequent Γ,Π ′ ` ∆,Σ′ is provable in GMQL, then so

is ∆′, Σ ` Γ ′, Π.

Alternatively, the soundness of alt can also be shown by using the two lemmata
given below.

Lemma5. The following inference rules for the elimination of double negation

are admissible in GMQL.

A′′, Γ ` ∆

A,Γ ` ∆
( ′′E `)

Γ ` ∆,A′′

Γ ` ∆,A
(` ′′E )

Proof. The result follows from the derivations given below and the elimination
of cut due to Proposition 2.

A ` A

A ` A′′
(` ′′)

A′′, Γ ` ∆

A,Γ ` ∆
cut2

Γ ` ∆,A′′

A ` A

A′′ ` A
( ′′ `)

Γ ` ∆,A
cut1

Lemma6. The inference rule alt is admissible in GMQL.

Proof. By Lemma 5 and the following deduction:

Γ ′ ` ∆′

∆′′ ` Γ ′′
( ′ ` ′)

.... ( ′′E `)

∆ ` Γ ′′
.... (` ′′E )

∆ ` Γ

The last result immediately yields the soundness of alt. Since all other rules
of LMQ are also rules of GMQL, by the soundness of the latter system we obtain
the soundness of LMQ.

Theorem 7. If a sequent is provable in LMQ, then it is valid.

Conversely, the completeness of LMQ follows from Theorem 3 and the ob-
servation that ( ′ ` ′) can be simulated by applications of ( ′′ `), (` ′′), and
alt.

Theorem 8. If a sequent is valid, then it is provable in LMQ.

Inspection of the formulae occurring in the simulations in the proof of The-
orem 3 yields the following corollary.

Corollary 9. LMQ is complete without the cut rule. Moreover, for each valid

sequent S, there is a proof in LMQ containing only quasi-subformulae of the

formulae in S.



This corollary provides a decision procedure for minimal quantum logic by
Gentzen’s finite top-down oriented construction of all sequent proofs which use
possibly negated formulae from the formulae of the end sequent.

Furthermore, from the two cut rules given in Nishimura [17], one can be
simulated by the other, together with rules from LMQ.

Theorem 10. The inference rule cut1 can be simulated by cut2, alt, ( ′′ `), and

(` ′′).

Proof. The following derivation provides the simulation.

A ` ∆2.... ( ′′ `), (` ′′)

A′′ ` ∆′′
2

∆′
2 ` A′ alt

Γ ` ∆1, A.... ( ′′ `), (` ′′)

Γ ′′ ` ∆′′
1 , A

′′

A′,∆′
1 ` Γ ′ alt

∆′
1,∆

′
2 ` Γ ′

cut2

Γ ` ∆1,∆2

alt

Let us briefly compare the system LMQ with the calculus ⊥O for orthologic
given in [2]. The main difference between these two systems is that in ⊥O nega-
tion is not a primitive concept, but defined in terms of linear recursion. Hence,
⊥O shifts the treatment of negation from the object level to the meta level. As
a consequence, such a treatment hides certain inferences which should be taken
into account if one is interested in proof-theoretical complexity estimations. In
contrast, all inferences in LMQ are explicitly represented at the object level.

3.2 A Tableau System for Minimal Quantum Logic

By a simple rewriting technique, any sequent calculus can be transformed into a
corresponding tableau calculus—basically by turning the sequent proofs upside-
down and by “identifying” sequents with branches in the tableau. In the follow-
ing, we apply such a procedure to the sequent calculus LMQ, thus obtaining a
tableau calculus for minimal quantum logic in a rather straightforward manner.

As the first step of this procedure, we will introduce an intermediate sequent
calculus LMQt. This system differs from LMQ by using generalized axioms of the
form Γ,A ` ∆,A, and the inference rules given in Figure 3.

It is obvious that this calculus is also sound and complete: completeness fol-
lows from the fact that any LMQ-proof is a fortiori an LMQt-proof, and sound-
ness is an immediate consequence from the following two observations:

(i) Any axiom of LMQt is provable in LMQ (by invoking the rule ext).

(ii) The rules (∨ `)t, (` ∧)t, and ( ′ `)t are admissible in LMQ (also by invoking
the rule ext, and the corresponding LMQ-inference rules (∨ `), (` ∧), and
( ′ `), respectively).
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Fig. 3. The inference rules of LMQt.

It is common practice to specify tableau systems in terms of Smullyan‘s
uniform notation [20], which allows an elegant formulation of the tableau rules
and reduces the number of different cases. Therefore, let us fix some notation.

By a signed formula we understand an expression of the form TA or FA,
where A is a formula. We refer to the symbols T and F as the signature of
the signed formulae TA and FA, respectively. A signed formula is said to be of
positive signature if its signature is T, and of negative signature otherwise.

A signed formula of the form T(A ∧ B), F(A ∨ B), TA′′, or FA′′ is called an
α-formula, and a signed formula of the form F(A ∧ B) or T(A ∨ B) is called a
β-formula. The components, αi and βi (i = 1, 2), of an α- or β-formula are given
according to the following charts:

α α1 α2

T(A ∧ B) TA TB

F(A ∨ B) FA FB

TA′′ TA TA

FA′′ FA FA

β β1 β2

F(A ∧ B) FA FB

T(A ∨ B) TA TB

Given a set S of signed formulae, we define the following operations:

S[ := {TA | TA ∈ S and A 6= B′ for any formula B} ∪ {FA | TA′ ∈ S};

S\ := {TA′ | FA ∈ S} ∪ {FA′ | TA ∈ S};

S
]
X :=

{

{FA | FA ∈ S} if X is a signed formula with positive signature;
{TA | TA ∈ S} if X is a signed formula with negative signature.

Moreover, if S = {TA1, . . . ,TAn,FB1, . . . ,FBm}, then

|S| := A1, . . . , An ` B1, . . . , Bm.



With these notations at hand, the inference rules of LMQt read as follows:

|S\|

|S|

|S, α1|

|S, α|

|S, α2|

|S, α|

|S]
β , β1| |S]

β , β2|

|S, β|

|S[|

|S|

Now is it only a matter of adding a few further ingredients to obtain the desired
tableau calculus.

Let T be a binary tree whose nodes are signed formulae. We define the
following branch modification rules, corresponding to the operations S[, S\, and
S

]
X given above, respectively:

Branch Modification Rule 1 (“BMR 1”): Given a branch b of T , delete all
signed formulae with negative signature, and replace signed formulae of the
form TA′ by FA.

Branch Modification Rule 2 (“BMR 2”): Given a branch b of T , replace
all signed formulae FA by TA′ and all TA by FA′.

Branch Modification Rule 3[X] (“BMR 3[X]”): Given a branch b of T ,
delete all signed formulae with positive signature providing the signed for-
mula X has positive signature, and delete all signed formulae with negative
signature providing X has negative signature.

Definition 11. Let S = {X1, . . . , Xn} be a set of signed formulae. Then T is a
tableau for S iff there exists a finite sequence T 1, . . . , T m such that:

(1) T 1 is a tree consisting of the single branch X1, . . . , Xn;
(2) T m = T ;
(3) for each 1 ≤ i < m, T i+1 is the result of applying one of the following rules

to some branch b of T i:

(i) Branch Modification Rule 1 (BMR 1);
(ii) Branch Modification Rule 2 (BMR 2);
(iii) Rule A: If α occurs on branch b, extend b by either α1 or α2.
(iv) Rule B: If β occurs on branch b, apply Branch Modification Rule 3[β]

to b and extend the resulting branch simultaneously by β1 and β2.
ut

Schematically, applications of Rule A and Rule B can be written as follows:

α
α1

α
α2

β

β1 | β2

, provided that BMR 3[β] has been applied

Definition 12. Let T be a tableau for a set of signed formulae. A branch b is
closed if TA and FA occur on b, for some formula A; otherwise b is open. We
say that T is closed if all branches of T are closed; otherwise T is open. By a
tableau proof of a formula A we understand a closed tableau for {FA}. ut



From the construction given above, it is clear that we have the following
result:

Theorem 13. A formula A has a tableau proof iff the sequent ` A is provable

in LMQ.

4 An Application to Lüders’ Rule

Thus far, we considered a very elementary form of quantum logic, namely min-

imal quantum logic. As already mentioned earlier, minimal quantum logic is
algebraically characterized in terms of ortholattices. For most physical applica-
tions, however, the principle of modularity is required. In this section, we will
describe how modularity can be included within our sequent-type formalism, by
way of an example from quantum mechanics.

Consider the following sequent, taken from Gibbins [10]:

P ` Q → (Q ∧ (P ∨ Q′)). (2)

In quantum logic, there are several possibilities to define an implication. In our
case, “→ ” is defined by

(A → B) := A′ ∨ (A ∧ B),

for any formulae A, B.
Informally, the sequent (2) encodes the so-called Lüders’ Rule [14]. What

does this rule mean? Let P correspond to the state of a quantum-mechanical
system, and let Q correspond to the state of the system after a measurement has
been performed. According to Lüders’ Rule, the measurement has the effect that
the state-vector of the system will be projected onto the state in the new subspace
“most similar” to the original state-vector. Now, the state “most similar” to the
original state lies in the subspace corresponding to Q, but also in the subspace
spanned by P and Q′. In formal terms: given that P is true, if Q were true, then
Q ∧ (P ∨ Q′) would also be true.

As it turns out, the sequent (2) cannot be proved in LMQ, because modularity
is needed in this particular instance. However, by using the technique of non-
logical axioms—as already mentioned in Section 3.1—it is quite straightforward
to include the principle of modularity in our present systems, and to obtain a
proof of sequent (2).

Inspecting an alleged proof of sequent (2), one realizes that what is actually
missing in order to obtain a proof are basically applications of modus ponens and
(restricted forms) of cut. Indeed, given an axiomatization of orthologic which
already contains the cut-rule, one can obtain an axiom system for quantum
logic by adding a suitable rule enforcing applications of modus ponens. For
instance, Goldblatt [11] obtains a system for quantum logic by adjoining to his
axiomatization of orthologic (containing cut) axiom sequents of the form A ∧
(A′ ∨ (A ∧ B)) ` B. Similarly, Dalla Chiara [6] uses the inference rule



A ∧ (A ∧ (A ∧ B)′)′

B

to obtain an axiomatization of quantum logic. Incidentally, at present it is an
open question whether there is a proof system for quantum logic which does not
require some form of cut, i.e., which is cut-free.

Summarizing our discussion, by adding non-logical axioms of the form A ∧
(A → B)) ` B and by allowing applications of restricted forms of cut (like, in
our case, cut1 and cut2), we can effectively enforce modularity and thus obtain
a calculus for quantum logic. Similarly, in tableau systems, the effect of non-
logical axioms (encoding modularity) can be achieved by liberalizing the closure
condition of a branch: in addition to the usual closure rule, call a branch closed
if it contains signed formulae of the form TA ∧ (A′ ∨ (A ∧ B)) and FB. Of
course, corresponding to the situation in sequent-type calculi, tableau systems
for (modular) quantum logic must include some restricted forms of cut as well.
A detailed mathematical proof of this informal discussion can be found in the
full version of this paper [8].

As shown by Nishimura in [16], instead of non-logical axioms one can also
use the following inference rule:

G′ ` F ′ F ′, G `

F ′ ` G′ OM

More precisely, one can always “expand” occurrences of non-logical axioms by
suitable deductions using the rule OM and cut (a deduction of this kind—in the
system LMQ, adjoined by OM and cut1—is given in the appendix of this paper).

In the rest of this section, let us present our proof of Lüders’ Rule by the
technique outlined above. We start with the derivations ϑ and ξ, and %. For
convenience, we use F to denote the formula (Q ∧ (Q ∧ (Q′ ∨ P ))), hence
Lüders’ Rule has the form P ` Q′ ∨ F .

Derivation ϑ

Q′ ` Q′

Q′ ` (Q′ ∨ F )
(` ∨)1

Q′ ` (Q′ ∨ F )′′
(` ′′)

(Q′ ∨ F )′ ` Q
alt

Derivation ξ

Q ` Q

Q,P ′ ` Q
ext

P ′ ` P ′

Q,P ′ ` P ′
ext

Q,P ′ ` (Q ∧ P ′)
(` ∧)

(Q ∧ P ′)′ ` Q′, P
( ′′ `), (` ′′), alt

Q, (Q ∧ P ′)′ ` Q′ ∨ P
(` ∨)1, (` ∨)2



Derivation %

Q ` Q

Q, (Q ∧ P ′)′ ` Q
ext

Q ` Q

Q, (Q ∧ P ′)′ ` Q
ext

ξ
Q, (Q ∧ P ′)′ ` Q′ ∨ P

Q, (Q ∧ P ′)′ ` Q ∧ (Q′ ∨ P )
(` ∧)

Q, (Q ∧ P ′)′ ` F
(` ∧)

Q, (Q ∧ P ′)′ ` (Q′ ∨ F )
(` ∨)2

(Q′ ∨ F )′ ` Q′, (Q ∧ P ′)
( ′′ `), (` ′′), alt

(Q′ ∨ F )′ ` Q′ ∨ (Q ∧ P ′)
(` ∨)1, (` ∨)2

Derivation ψ

ϑ
(Q′ ∨ F )′ ` Q

%
(Q′ ∨ F )′ ` Q′ ∨ (Q ∧ P ′)

(Q′ ∨ F )′ ` Q ∧ (Q′ ∨ (Q ∧ P ′))
(` ∧)

Using these auxiliary derivations, the final proof of Lüders’ Rule is given below.
Notice that the rightmost sequent is a non-logical axiom.

ψ
(Q′ ∨ F )′ ` Q ∧ (Q′ ∨ (Q ∧ P ′)) Q ∧ (Q′ ∨ (Q ∧ P ′)) ` P ′

(Q′ ∨ F )′ ` P ′
cut1

P ` Q′ ∨ F
alt

5 Conclusion and Discussion

We presented a sequent calculus for minimal quantum logic based on Nishimura’s
calculus GMQL. By modifying a rule which Takano identified to be superfluous,
we were able to show that an even greater number of other rules becomes re-
dundant. Moreover, we presented a corresponding tableau system for the new
calculus as well.

Although quantum logics has its roots in physics, investigating its formal
properties proved to be of interest also in other application domains. We like to
mention the research initiated by Heelan showing that quantum logic can also
be used as formalizations of context-dependent logics [12]. Also, quantum logic
is a useful device if one is interested in the relation of different axiom systems
weaker than classical logic (see, e.g., [1, 2]).

We already mentioned the open problem of whether there is a cut-free ax-
iomatization of (modular) quantum logic, or even a (semi-)analytic proof pro-
cedure. Related to this problem is the question of the decidability of quantum
logic, which remains unclear at the time of writing (recall that orthologic, i.e.,
minimal quantum logic, is in fact decidable). Also, proof-theoretical properties
of extensions of the present calculi to the first-order case remain to be explored.
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A Appendix: A Derivation of the Non-Logical Axioms

Let G be an abbreviation for A′ ∨ (A ∧ B). Below, a proof of the sequent
A ∧ G ` B is given.

Derivation φ1

A ` A
A ∧ B ` A

(∧ `)1

(A ∧ B)′′ ` A
( ′′ `)

Derivation φ2

A ∧ B ` A ∧ B

(A ∧ B)′′ ` A ∧ B
( ′′ `)

(A ∧ B)′′ ` G
(` ∨)2

Derivation φ3

A′ ` A′

A′ ` A ∧ B,A′
ext

A ∧ B ` A ∧ B

A ∧ B ` A ∧ B,A′
ext

G ` A ∧ B,A′
(∨ `)

(A ∧ B)′, A′′, G `
( ′ `)

(A ∧ B)′, A′′, G′′ `

` (A ∧ B), A′, G′ alt

( ′′ `)

` (A ∧ B)′′, A′, G′

(A ∧ B)′, A,G `
alt

(` ′′)

(A ∧ B)′, A ∧ G `
(∧ `)1, (∧ `)2

(A ∧ B)′, (A ∧ G)′′ `
( ′′ `)

Derivation φ4

φ1

(A ∧ B)′′ ` A
φ2

(A ∧ B)′′ ` G

(A ∧ B)′′ ` A ∧ G
(` ∧)

(A ∧ B)′′ ` (A ∧ G)′′
(` ′′) φ3

(A ∧ B)′, (A ∧ G)′′ `

(A ∧ G)′′ ` (A ∧ B)′′
OM

A ∧ G ` A ∧ B
alt, alt

Derivation φ5

φ4

A ∧ G ` A ∧ B
B ` B

A ∧ B ` B
(∧ `)1

A ∧ G ` B
cut1
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