
Long-Distance Resolution: Proof Generation
and Strategy Extraction in Search-Based QBF Solving ?

Uwe Egly, Florian Lonsing, and Magdalena Widl

Institute of Information Systems, Vienna University of Technology, Austria
http://www.kr.tuwien.ac.at/staff/{egly,lonsing,widl}

Abstract. Strategies (and certificates) for quantified Boolean formulas (QBFs) are
of high practical relevance as they facilitate the verification of results returned by
QBF solvers and the generation of solutions to problems formulated as QBFs. State
of the art approaches to obtain strategies require traversing a Q-resolution proof of
a QBF, which for many real-life instances is too large to handle. In this work, we
consider the long-distance Q-resolution (LDQ) calculus, which allows particular
tautological resolvents. We show that for a family of QBFs using the LDQ-resolution
allows for exponentially shorter proofs compared to Q-resolution. We further show
that an approach to strategy extraction originally presented for Q-resolution proofs
can also be applied to LDQ-resolution proofs. As a practical application, we con-
sider search-based QBF solvers which are able to learn tautological clauses based
on resolution and the conflict-driven clause learning method. We prove that the res-
olution proofs produced by these solvers correspond to proofs in the LDQ calculus
and can therefore be used as input for strategy extraction algorithms. Experimental
results illustrate the potential of the LDQ calculus in search-based QBF solving.

1 Introduction

The development of decision procedures for quantified Boolean formulas (QBFs) has
recently resulted in considerable performance gains. A common approach is search-based
QBF solving with conflict-driven clause learning (CDCL) [2,11], which is related to
propositional logic (SAT solving) in that it extends the DPLL algorithm [3]. In addition
to solving the QBF decision problem, QBF solvers with clause learning are able to pro-
duce Q-resolution proofs [7] to certify their answer. These proofs can be used to obtain
solutions to problems encoded as QBFs. For instance, if the QBF describes a synthesis
problem, then the system to be synthesized can be generated by inspecting the proof [12].
Such solutions can be represented as control strategies [6] expressed by an algorithm
that computes assignments to universal variables rendering the QBF false, or as control
circuits [1] expressed by Herbrand or Skolem functions. Both approaches can be used for
true QBFs as well as false QBFs. In this work, we focus on false QBFs.

Strategies can be extracted from Q-resolution proofs of false QBFs based on a game-
theoretic view [6]. A strategy is an assignment to each universal (∀) variable that depends
on assignments to existential (∃) variables with a lower quantification level and maintains

? This work was supported by the Austrian Science Fund (FWF) under grant S11409-N23 and
by the Vienna Science and Technology Fund (WWTF) through project ICT10-018.

http://www.kr.tuwien.ac.at/staff/{egly,lonsing,widl}

the falsity of the QBF. The extraction algorithm is executed for each quantifier block from
the left to the right. Certificate extraction [1] constructs solutions in terms of a Herbrand
function for each ∀ variable from a Q-resolution proof of a false QBF. Replacing each ∀
variable by its Herbrand function in the formula and removing the quantifiers yields an un-
satisfiable propositional formula. The run time of both extraction algorithms is polynomi-
ally related to the size of the proof. It is therefore beneficial to have short proofs in practice.
Calculi more powerful than traditional Q-resolution possibly allow for shorter proofs.

A way to strengthen Q-resolution is to admit tautological resolvents under certain
conditions. In search-based QBF solving, this approach called long-distance resolution is
applied to learn tautological clauses in CDCL [15,16]. The idea of generating tautological
resolvents is formalized in the long-distance Q-resolution calculus (LDQ) [1].

We consider long-distance resolution in search-based QBF solving. First, we show that
formulas of a certain family of QBFs [7] have LDQ-resolution proofs of polynomial size
in the length of the formula. According to [7], any Q-resolution proof of these formulas
is exponential.

Second, we prove that long-distance resolution for clause learning in QBF solvers
as presented in [15,16] corresponds to proof steps in the formal LDQ-resolution calcu-
lus.This observation is complementary to the correctness proof of learning tautological
clauses (i.e. the theorem in [15]) in that we embed this practical clause learning procedure
in the formal framework of the LDQ-resolution calculus. Thereby we obtain a generalized
view on the practical side and the theoretical side of long-distance resolution in terms of
the clause learning procedure and the formal calculus, respectively.

Third, we prove that strategy extraction [6] is applicable to LDQ-resolution proofs
in the same way as it is to Q-resolution proofs, which have been its original application.

Our results show that the complete workflow from generating proofs in search-based
QBF solving to extracting strategies from these proofs can be based on the LDQ-resolution
calculus. We modified the search-based QBF solver DepQBF [9] to learn tautological
clauses in CDCL.We report preliminary experimental results which illustrate the potential
of the LDQ-resolution calculus in terms of a lower effort in the search process. Since
LDQ-resolution proofs can be significantly shorter than Q-resolution proofs, strategy
extraction will also benefit from applying LDQ-resolution proofs in practice.

2 Preliminaries

Given a set V of Boolean variables, the set L :=V∪{v |v∈V} of literals contains each
variable in its positive and negative polarity. We write v for the opposite polarity of v
regardless of whether v is positive or negative. A quantified Boolean formula (QBF) in
prenex conjunctive normal form (PCNF) over a set V of variables and the two quantifiers
∃ and ∀ is of the form P.φ where (1) P :=Q1v1 ...Qnvn is the prefix with Qi ∈ {∃,∀},
vi ∈ V and all vi are pairwise distinct for 1≤ i≤ n, and (2) φ⊆ 2L is a set of clauses
called the matrix. We write 2 for the empty clause and occasionally represent a clause
as disjunction of literals. A quantifier block of the form QV combines all subsequent
variables with the same quantifier Q in set V . A prefix can be alternatively written as
sequenceQ1V1...QmVm of quantifier blocks whereQi 6=Qi+1 for 1≤ i≤m−1.

2

We use var(l) to refer to the variable of literal l and vars(φ) to refer to the set of
variables used in the matrix. A QBF is closed if vars(φ) = {vi | 1≤ i≤ n}, i.e., if all
variables used in the matrix are quantified and vice versa. In the following, by QBF we
refer to a closed QBF in PCNF. Function lev :L→{1,...,m} refers to the quantification
level of a literal and quant :L→{∃,∀} refers to the quantifier type of a literal such that
for 1≤ i≤m and any l∈L, if var(l)∈Vi then lev(l) := i and quant(l) :=Qi. A literal l
is existential if quant(l)=∃ and universal if quant(l)=∀. We use the same terms for the
variable var(l) of l. We write e for an existential variable and x for a universal variable.

Given a QBF ψ=P.φ, an assignment is a mapping of variables in vars(φ) to the truth
values true (>) and false (⊥). We denote an assignment as a set σ of literals such that if
var(l) is assigned to> then l∈σ, and if var(l) is assigned to⊥ then l∈σ. An assignment
is total if for each v∈vars(φ) either v∈σ or v∈σ, and partial otherwise.

A clause C under an assignment σ is denoted by Cdσ and is defined as follows:
Cdσ=> ifC∩σ 6=∅,Cdσ=⊥ ifC\{v |v∈σ}=∅, andCdσ=C\{v |v∈σ} otherwise.
A QBF ψ = P.φ under an assignment σ is denoted by ψdσ and is obtained from ψ by
replacing each C ∈φ by Cdσ, eliminating truth constants> and⊥ by standard rewrite
rules from Boolean algebra, removing for each literal in σ its variable from the prefix, and
removing each quantifier block that does no longer contain any variable.

The QBF ∀v.φ is true if and only if φd{v}=> and φd{v}=>. The QBF ∃v.φ is true
if and only if φd{v}=> or φd{v}=>. The QBF ∀vP.φ is true if and only ifP.φd{v} and
P.φd{v} are true . The QBF ∃vP.φ is true if and only ifP.φd{v} orP.φd{v} is true.

Given a QBF ψ=P.φ and a clauseC∈φ, universal reduction [7] produces the clause
C ′ := reduce(C) :=C\{l |quant(l)=∀ and ∀e∈C :quant(e)=∃→ lev(e)< lev(l)} by
removing all universal literals from C which have a maximal quantification level. Uni-
versal reduction on ψ produces the QBF resulting from ψ by the application of universal
reduction to each clause in φ.

A clause C is satisfied under an assignment σ if Cdσ=> and falsified under σ and
universal reduction if reduce(Cdσ)=2.

Clause learning (Section 4) is based on restricted variants of resolution, which is
defined as follows. Given two clausesCl andCr and a pivot variable pwith p∈Cl and
p∈Cr, resolution produces the resolvent C := resolve(Cl,p,Cr) :=(Cl\{p}∪Cr\{p}).

Long-distance (LD) resolution [15] is an application of resolution where the resolvent
C = resolve(Cl,p,Cr) is tautological, i.e. {v,v} ⊆ C for some variable v. In contrast
to [15], our definition of LD-resolution allows for unrestricted LD-resolution steps. LD-
resolution in the context of [15] is restricted and hence sound, whereas its unrestricted
variant is unsound, as pointed out in the following example.

Example 1. For the true QBF ∀x∃e.(x∨e)∧(x∨e), an erroneous LD-refutation is given
byC1 := resolve((x∨e),e,(x∨e))=(x∨x) andC2 := reduce(C1)=2.

Q-resolution [7] is a restriction of resolution. Given two non-tautological clauses
Cl andCr and an existential pivot variable p, the Q-resolvent is defined as follows. Let
C ′ := resolve(reduce(Cl),p,reduce(Cr)) be the resolvent of the two universally reduced
clausesCl andCr. IfC ′ is non-tautological thenC := reduce(C ′) is the Q-resolvent of
Cl andCr. Otherwise no Q-resolvent exists.

The long-distance Q-resolution (LDQ) calculus [1] extends Q-resolution by allowing
certain tautological resolvents. The rules of this calculus amount to a restricted application

3

of LD-resolution. In the following we reproduce the formal rules (LDQ-rules) of the
LDQ-calculus [1] using our notation and definitions. We write p for an existential pivot
variable, x for a universal variable, and x∗ as shorthand for x∨x. We call x∗ a merged
literal. Further,X l andXr are sets of universal literals (merged or unmerged), such that
for each x∈X l it holds that if x is not a merged literal then either x∈Xr or x∗ ∈Xr,
and otherwise either of x∈Xr or x∈Xr or x∗∈Xr.Xr does not contain any additional
literals.X∗ contains the merged literal of each literal inX l. Symmetric rules are omitted.

Cl∨p Cr∨p
[p]

Cl∨Cr
for all v∈Cl it holds that v 6∈Cr (r1)

Cl∨p∨X l Cr∨p∨Xr

[p]
Cl∨Cr∨X∗

for all x∈Xr it holds that lev(p)< lev(x)
for all v∈Cl it holds that v 6∈Cr

(r2)

C∨x′[x]
C

for x′∈{x,x,x∗} and
for all existential e∈C it holds that lev(e)< lev(x′)

(u1)

Rule r2 is a restricted application of resolve(Cl,p,Cr) in that a tautological clause
can be derived only if literals occurring in both polarities are universal and have a higher
quantification level than p. Rule u1 extends universal reduction by removing x∗.

Given a QBF ψ, a derivation of a clause C is a sequence of applications of resolu-
tion and universal reduction to the clauses in ψ and to derived clauses resulting in C.
If either only Q-resolution, only LD-resolution or only the LDQ-calculus is applied,
then the derivation is a (Q,LD,LDQ)-derivation. A (Q,LD,LDQ)-derivation of the empty
clause 2 is a (Q,LD,LDQ)-refutation or (Q,LD,LDQ)-proof. Both Q-resolution and the
LDQ-calculus are sound and refutationally complete proof systems for QBFs that do not
contain tautological clauses [1,7]. Figure 1 shows an LDQ-refutation.

3 Short LDQ-Proofs for Hard Formulas

We argue that LDQ-resolution has the potential to shorten proofs of false QBFs by showing
that the application of LDQ-resolution on QBFs of a particular family [7] results in proofs
of polynomial size.

A formula ϕt in this family (ϕt)t≥1 of QBFs has the quantifier prefix

∃d0d1e1∀x1∃d2e2∀x2∃d3e3...∀xt−1∃dtet∀xt∃f1...ft

and a matrix consisting of the following clauses:

C0 = d0 C1 = d0∨d1∨e1
C2j = dj∨xj∨dj+1∨ej+1 C2j+1 = ej∨xj∨dj+1∨ej+1 for j=1,...,t−1
C2t = dt∨xt∨f1∨...∨f t C2t+1 = et∨xt∨f1∨...∨f t
B2j−1 = xj∨fj B2j = xj∨fj for j=1,...,t

4

(e1)C1 (e2,e3)C2 (e2,e3)C3 (e4,x6,e1,e3)C4 (e5,x6,e1,e3)C5 (e4,e5)C6,R0,R4

∃e2,e4,e5 ∀x6 ∃e1,e3

(e4,x6,e1,e3)R1,R5

(x∗6,e1,e3)R2,R6

(e2,x
∗
6,e1)R7(e2,x

∗
6,e1)R3

(x∗6,e1)R8

(x∗6)R9

2

Fig. 1. The LDQ-refutation as a running example. Labels C1 to C6, R1 to R9 denote the original
clauses and the resolvents, respectively. E.g. “R2,R6” is shorthand for “R2=R6”, meaning that the
clauses R2 and R6 are equal. The derivation and the labels are explained in Examples 2 and 3.

By Theorem 3.2 in [7], any Q-refutation of ϕt for t ≥ 1 is exponential in t. The
formula ϕt has a polynomial size Q-resolution refutation if universal pivot variables are
allowed [14]. In the following, we show how to obtain polynomial size LDQ-refutations
in the form of a directed acyclic graph (DAG). A straightforward translation of this DAG
to a tree results in an exponential blow-up.

Proposition 1. Any ϕt has an LDQ-refutation of polynomial size in t for t≥1.

Proof. An LDQ-refutation withO(t) clauses for (ϕt)t≥1 can be constructed as follows:

1. Derive dt∨xt∨
∨t−1
i=1f i fromB2t andC2t. Derive et∨xt∨

∨t−1
i=1f i similarly.

2. Use both clauses from Step 1 together with C2(t−1) and derive the clause dt−1 ∨
xt−1∨

∨t−1
i=1f i∨x∗t . Observe that the quantification level of dt and et is smaller than

the level of xt. Use B2(t−1) to get dt−1 ∨ xt−1 ∨
∨t−2
i=1 f i ∨ x∗t . Derive the clause

et−1∨xt−1∨
∨t−2
i=1f i∨x∗t in a similar way.

3. Iterate the procedure to derive d2 ∨ x2 ∨
∨1
i=1 f i ∨

∨t
i=3x

∗
i as well as e2 ∨ x2 ∨∨1

i=1f i∨
∨t
i=3x

∗
i .

4. With C2, derive d1∨x1∨f1∨
∨t
i=2x

∗
i . UseB2 to obtain d1∨x1∨

∨t
i=2x

∗
i . Derive

e1∨x1∨
∨t
i=2x

∗
i in a similar fashion.

5. Use the two derived clauses together with C0 and C1 to obtain
∨t
i=1x

∗
i , which can

be reduced to the empty clause by universal reduction. ut

This result leads to the assumption that QBF solving algorithms can benefit from employ-
ing the LDQ-calculus. Next, we discuss how it is integrated in search-based QBF solvers.

4 LDQ-Proof Generation in Search-Based QBF Solving

As an application of LDQ-resolution, we consider search-based QBF solving with conflict-
driven clause learning (QCDCL). Search-based QBF solving is an extension of the DPLL

5

State ld-qcdcl()
while (true)
State s = qbcp();
if (s == UNDET)
assign_dec_var();

else
if (s == UNSAT)
a = analyze_conflict();

else if (s == SAT)
a = analyze_solution();

if (a == INVALID)
return s;

else
backtrack(a);

Assignment analyze_conflict()
i = 0;
Ri = find_confl_clause();
while (!stop_res(Ri))
pi = get_pivot(Ri);
R′
i = get_antecedent(pi);

Ri+1 = resolve(Ri,pi,R
′
i);

Ri+1 = reduce(Ri+1);
i++;

add_to_formula(Ri);
return get_retraction(Ri);

Fig. 2. Search-based QBF solving with LD-QCDCL [15,16] using long-distance resolution.

algorithm [2,3]. Given a QBF ψ=P.φ, the idea of QCDCL [4,8,15,16] is to dynamically
generate and add derived clauses to the matrix φ. If ψ is false, then the empty clause 2
will finally be generated. In this case, the sequence of clauses involved in the generation
of all the learned clauses forms a Q-refutation of ψ.

We focus on the generation of tautological learned clauses in QCDCL based on long-
distance (LD) resolution [15,16]. We call the application of this method in search-based
QBF solving LD-QCDCL. The soundness proof of LD-QCDCL (Lemma 2 and the theorem
in [15]) shows that the learned clauses have certain properties in the context of LD-QCDCL.
Due to these properties of the learned clauses, LD-resolution is applied in a restricted
fashion in LD-QCDCL, which ensures soundness. In general, unrestricted LD-resolution
relying on the definition in Section 2 is unsound, as pointed out in Example 1.

We prove that the generation of a (tautological) learned clause by LD-resolution in
LD-QCDCL corresponds to a derivation in the LDQ-resolution calculus [1] from Section 2.
Hence learning tautological clauses in LD-QCDCL produces LDQ-refutations. With our
observation we embed the LD-QCDCL procedure [15,16] in the formal framework of the
LDQ-resolution calculus, the soundness of which was proved in [1].

In order to make the presentation of our results self-contained and to emphasize the rel-
evance of long-distance resolution in search-based QBF solving, we describe LD-QCDCL
in the following. Figure 2 shows a pseudo code.

In our presentation of LD-QCDCL we use the following terminology. Given a QBFψ=
P.φ, a clauseC∈φ is unit if and only ifC=(l) and quant(l)=∃, where l is a unit literal.
The operation of unit literal detection UL(C) :={l} collects the assignment {l} from the
unit clauseC=(l). In this case, clauseC=ante(l) is the antecedent clause of the assign-
ment{l}. Otherwise, ifC is not unit thenUL(C) :={} is the empty assignment. Unit literal
detection is extended from clauses to sets of clauses inψ:UL(ψ) :=

⋃
C∈φUL(C). Resolu-

tion (function resolve) and universal reduction (function reduce) are defined as in Section 2.

The operation of quantified boolean constraint propagation (QBCP) extends an as-
signment σ to σ′ ⊇ σ by iterative applications of unit literal detection and universal

6

reduction until fixpoint1 and computes ψ under σ′, such that for ψ′ := reduce(ψdσ′),
QBCP(ψdσ) :=ψ′dσ′ .

LD-QCDCL successively generates partial assignments to the variables in a given
QBF ψ. This process amounts to splitting the goal of proving falsity or truth of a QBF into
subgoals by case distinction based on QBF semantics. Similar to [15,16], we assume that all
clauses in the original ψ are non-tautological. Initially, the current assignment σ is empty.
First, QBCP is applied to ψdσ (function qbcp). If QBCP(ψdσ) 6=> and QBCP(ψdσ) 6=
⊥, then the QBF is undetermined under σ (s == UNDET). A variable from the leftmost
quantifier block, called decision variable or assumption, is selected heuristically and
assigned a value (function assign dec var). Assigning the decision variable extends
σ to a new assignment σ′ and QBCP is applied again to ψdσ with respect to σ :=σ′.

IfQBCP(ψdσ)=⊥ (QBCP(ψdσ)=>), then the QBF is false (true) under the current
assignment σ and the result of the subcase corresponding to σ has been determined (s
== SAT or s == UNSAT). The case QBCP(ψdσ) = ⊥ is called a conflict because σ
does not satisfy all the clauses in φ. Analogously, the case QBCP(ψdσ)=> is called a
solution because σ satisfies all clauses in φ. Depending on the cases, σ is analyzed. In
the following, we focus on the generation of a learned clause from a conflict by function
analyze conflict. Dually to clause learning, LD-QCDCL learns cubes, i.e. conjunc-
tions of literals, from solutions by function analyze solution. We refer to related
literature on cube learning [4,5,8,10,16].

Consider the case QBCP(ψdσ) =⊥. Function analyze conflict generates a
learned clause as follows. Since QBCP(ψdσ) = ⊥, there is at least one clause C ∈ φ
which is falsified, i.e. reduce(Cdσ)=2. Function find confl clause finds such a
clauseC and initially setsRi :=C for i=0, whereRi denotes the current resolvent in the
derivation of the clause to be learned (while-loop).

In the derivation of the learned clause, the current resolventRi is resolved with the
antecedent clause R′i := ante(l) of an existential variable pi = var(l), where l ∈ Ri
(functions get antecedent and resolve). Variable pi has been assigned by unit literal
detection during QBCP and it is the pivot variable of the current resolution step (function
get pivot). According to [16], function get pivot selects the unique variable pi as
pivot which has been assigned most recently by unit literal detection among the variables
inRi. Hence in the derivation variables are resolved on in reverse assignment ordering.
Universal reduction is applied to the resolvent (function reduce).

If the current resolventRi satisfies a particular stop criterion (stop res) then the
derivation terminates and Ri is the clause to be learned. The stop criterion according
to [16] makes sure thatRi is an asserting clause, which amounts to the following property:
Ri is unit under a new assignment σ′⊂σ obtained by retracting certain assignments from
the current assignment σ. Function get retraction computes the assignments to be
retracted from σ by backtracking (function backtrack). The learned clauseRi is added
to φ. QBCP with respect to the new assignment σ :=σ′ detects thatRi is unit.

LD-QCDCL determines that ψ is false if and only if the empty clause 2 is derived
by function analyze conflict. This case (and similarly for true QBFs and cube
learning) is indicated by r == INVALID, meaning that all subcases have been explored
and the truth of ψ has been determined.

1 For simplicity, we omit monotone (pure) literal detection [2], which is typically part of QBCP.

7

Example 2. We illustrate LD-QCDCL by the QBF from Fig. 1. In the following,Ci and
Ri, respectively, denote clauses and resolvents as shown in Fig. 1. Equal, multiply derived
resolvents are depicted as single resolvents with multiple labels, e.g. “R2,R6”.

Given the empty assignment σ :={}, QBCP detects the unit clause C1, records the
antecedent clause ante(e1) :=C1, and collects the assignment {e1}: σ :=σ∪{e1}={e1}.
No clause is unit under σ at this point. Assume that variable e2 is selected as decision
variable and assigned to true, i.e., σ :=σ∪{e2}={e1,e2}. ClauseC2 is unit under σ and
σ :=σ∪{e3}={e1,e2,e3}with ante(e3) :=C2. Further, clausesC4 andC5 are unit under
σ and universal reduction, and σ :=σ∪{e4}∪{e5}={e1,e2,e3,e4,e5}with ante(e4) :=
C4 and ante(e5) :=C5. Now, clauseC6 is falsified under σ, which constitutes a conflict.

The derivation of the learned clause starts withR0 :=C6. Variable e5 has been assigned
most recently among the variables inR0 assigned by unit literal detection. HenceR0 is
resolved with ante(e5)=C5, which givesR1. The following pivot variables are selected
in similar fashion. Further,R1 is resolved with ante(e4)=C4, which givesR2. Finally,R2

is resolved with ante(e3)=C2, which givesR3 to be learned and added to the clause set.
The clauseR3 is unit underσ′⊂σ and universal reduction, whereσ={e1,e2,e3,e4,e5}

and σ′={e1}. Hence the assignments in σ\σ′={e2,e3,e4,e5} are retracted to obtain the
new current assignment σ :=σ′={e1}. Now, QBCP detects the unit clausesR3 andC3,
and σ :=σ∪{e2,e3}={e1,e2,e3}. Like above, the clausesC4 andC5 are unit andC6 is
falsified. The assignment obtained finally is σ={e1,e2,e3,e4,e5}.

At this point, the empty clause is derived as follows (for readability we continue the
numbering of the resolventsRi at the previously learned clauseR3): like above, starting
fromR4 :=C6=R0,R4 is resolved with ante(e5)=C5 and ante(e4)=C4, which gives
R5 :=R1 andR6 :=R2, respectively. Further,R6 is resolved with ante(e3)=C3, which
givesR7. Two further resolution steps on ante(e2)=R3 and ante(e1)=C1 giveR8 and
R9, respectively. Finally 2 is obtained fromR9 by universal reduction.

With Proposition 4 below, we prove that every application of universal reduction
and resolution (functions resolve and reduce in Fig. 2) corresponds to a rule of the LDQ-
resolution calculus [1] from Section 2. We use the following notation. Every resolution
stepSi by function resolve in the derivation of a learned clause has the form of a quadruple
Si=(Ri,pi,R

′
i,Ri+1), where i≥0,Ri is the previous resolvent, pi is the existential pivot

variable,R′i=ante(l) is the antecedent clause of a literal l∈Ri with var(l)=pi, andRi+1

is the resolvent ofRi andR′i. Proposition 2 and Proposition 3 hold due to the definition of
unit literal detection, because the derivation of a learned clause starts at a falsified clause,
and because existential variables assigned as unit literals are selected as pivots.

Proposition 2. Every clauseRi in function analyze conflict in Fig. 2 is falsified
under the current assignment σ and universal reduction.

Proof. For resolvents returned by function resolve, we argue by induction. Consider the
first step S0 and the clauseR0, which by definition of function find confl clause
is falsified under σ and universal reduction. IfR0 is tautological by x∗∈R0 then variable
xmust be unassigned. If it were assigned then either x∈σ or x∈σ and henceR0 would
be satisfied but not falsified under σ and thus R0 would not be returned by function
find confl clause. Therefore, the property holds forR0.

8

Consider an arbitrary step Si with i>0 and assume that the property holds forRi. The
clauseRi is resolved with an antecedent clauseR′i of a unit literal. That is, the clauseR′i
has been unit under σ and universal reduction, and hence contains exactly one existential
literal l such that l ∈ σ. If R′i is tautological by x∗ ∈R′i then x must be unassigned by
similar arguments as above. Otherwise,Ri would have been satisfied and not unit. The
variable pi=var(l) has been assigned by unit literal detection and it is selected as pivot
of the resolution step Si. Hence no literal of pi occurs in the resolventRi+1. IfRi+1 is
tautological by x∗∈Ri+1 then xmust be unassigned. Otherwise, eitherRi orR′i would
be satisfied, which either contradicts the assumption that the property holds forRi or the
fact thatR′i was unit, respectively. Therefore, the property holds for the resolventRi+1.

The property also holds for clauses returned by function reduce since this function
is applied to clauses which have the property and universal reduction only removes literals
from clauses. ut

Proposition 3. A tautological clauseRi in function analyze conflict in Fig. 2 is
never due to an existential variable ewith e∈Ri and e∈Ri.

Proof. We argue by induction. Similar to [15,16], we assume that all clauses in the orig-
inal QBF ψ are non-tautological. Consider the first step S0 and the clauseR0, which by
definition of functionfind confl clause is falsified under σ and universal reduction.
By contradiction, assume that e ∈ R0 and e ∈ R0, hence R0 is tautological due to an
existential variable e. Since R0 is falsified, either e ∈ σ or e ∈ σ. In either case R0 is
satisfied but not falsified since both e∈R0 and e∈R0. Hence, the property holds forR0.

Consider an arbitrary step Si with i > 0 and assume that the property holds for Ri.
By contradiction, assume that the resolventRi+1 ofRi andR′i is tautological due to an
existential variable e with e ∈Ri+1 and e ∈Ri+1. We distinguish three cases how the
literals e and e have been introduced inRi+1: (1) e∈Ri and e∈Ri, (2) e∈R′i and e∈R′i,
and (3) e∈Ri and e∈R′i (the symmetric case e∈Ri and e∈R′i can be handled similarly).
By assumption that the property holds for Ri, case (1) cannot occur. In case (2), R′i is
the antecedent clause of a unit literal l∈R′i. Therefore, either e 6∈R′i or e 6∈R′i because
otherwiseR′i would not have been found as unit: if e is assigned thenR′i would be satisfied
and if e is unassigned then R′i is not unit by definition of unit literal detection. Hence
case (2) cannot occur. For case (3),R′i is the antecedent clause of a unit literal. Since e∈R′i,
variable e must be assigned with e ∈ σ because R′i has been unit. Then Ri is satisfied
because e∈Ri, which contradicts Proposition 2. Since none of the three cases can occur,
the property holds for the resolventRi+1. ut

Proposition 4. Every application of universal reduction and resolution in the deriva-
tion of a learned clause in function analyze conflict in Fig. 2 corresponds to an
application of a rule of the LDQ-resolution calculus [1] introduced in Section 2.

Proof. The following facts about functionanalyze conflict conform to the rules of
the LDQ-resolution calculus. By assumption, all clauses in the original QBFψ (i.e. not con-
taining learned clauses) are non-tautological. The original LD-QCDCL procedure [15,16]
relies on the same assumption. By Proposition 3, all tautological resolventsRi+1 by func-
tion resolve are due to universal variables inRi+1. Only existential pivot variables are se-
lected by functionget antecedent because universal literals cannot be unit in clauses.

9

The LDQ-rule u1 of universal reduction is defined for tautological clauses as well.
Therefore, universal reduction by function reduce corresponds to the LDQ-rule u1.

Consider an arbitrary resolution step Si = (Ri,pi,R
′
i,Ri+1) in the derivation of a

learned clause. IfRi+1 is non-tautological then Si corresponds to the LDQ-rule r1.
IfRi+1 is tautological by x∗∈Ri+1 such that x∗∈Ri or x∗∈R′i and (1) if x∗∈Ri

then x 6∈R′i and x 6∈R′i, and (2) if x∗ ∈R′i then x 6∈Ri and x 6∈Ri, then Si corresponds
to the LDQ-rule r1.

IfRi+1 is tautological by x∗∈Ri+1 with lev(pi)< lev(x) then Si corresponds to the
LDQ-rule r2 because the condition on the levels of the pivot variable pi and the variable
x, which causes the tautology, holds.

In the following, we show that the problematic case where the resolventRi+1 is tauto-
logical byx∗∈Ri+1 with lev(x)< lev(pi), thus violating the level condition, cannot occur.

By contradiction, assume thatRi+1 is tautological by x∗∈Ri+1 with lev(x)< lev(pi).
Assume that x∈Ri and x∈R′i. By Proposition 2,Ri is falsified under the current assign-
ment σ and universal reduction. Hence variable x is unassigned. If it were assigned then
we would have x∈σ because x∈Ri, but then the antecedent clauseR′i would be satisfied
since x∈R′i. HenceR′i would not have been unit and would not be selected by function
get antecedent. Since lev(x)< lev(pi) andx is unassigned, the antecedent clauseR′i
could not have been unit. In this case, a literal l∈R′i of the pivot variable pi=var(l)would
prevent universal reduction from reducing the literal x∈R′i, which is a contradiction. The
same reasoning as above applies to the other cases where x∈Ri and x∈R′i, x∗∈Ri and
x∈R′i, x∈Ri and x∗∈R′i, and to x∗∈Ri and x∗∈R′i. Hence Proposition 4 holds. ut

In the following example, we illustrate Proposition 4 by relating the steps in the
LDQ-refutation shown in Fig. 1 to rules in the LDQ-calculus.

Example 3. Referring to the resolvents Ri in Example 2 and to clause labels in Fig. 1,
clause “R1,R5” is obtained by Rule r1, clause “R2,R6” by r2 where x6∈X l and x6∈Xr,
clause R7 by r1, clause R3 by r1, clause R8 by r2 where x∗6∈X l and x∗6∈Xr, clause R9

by r1, and clause 2 by u1.

We have modified the search-based QBF solver DepQBF [9] to generate tautological
learned clauses by LD-QCDCL as in Fig. 2. This is the variant DepQBF-LDQ implement-
ing the LDQ-resolution calculus, which follows from Proposition 4. Instead of dependency
schemes, both DepQBF and DepQBF-LDQ applied the variable ordering by the quantifica-
tion levels in the prefix of a QBF. We considered the solver yQuaffle [15,16] as a reference
implementation of LD-QCDCL2. The left part of Table 1 shows the number of instances
solved in the benchmark set from the QBF evaluation 2012 (QBFEVAL’12-pre),3 which
was preprocessed by Bloqqer.4 Compared to DepQBF-LDQ, yQuaffle in total solved fewer
instances, among them five instances not solved by DepQBF-LDQ. DepQBF-LDQ solved
three instances less than DepQBF and solved two instances not solved by DepQBF. A
comparison of the 115 instances solved by both DepQBF-LDQ and DepQBF illustrates the

2 http://www.princeton.edu/˜chaff/quaffle.html, last accessed in July 2013.
3 We refer to supplementary material like further experiments, binaries, log files, and an appendix:
http://www.kr.tuwien.ac.at/staff/lonsing/lpar13.tar.7z

4 http://fmv.jku.at/bloqqer/

10

http://www.princeton.edu/~chaff/quaffle.html
http://www.kr.tuwien.ac.at/staff/lonsing/lpar13.tar.7z
http://fmv.jku.at/bloqqer/

QBFEVAL’12-pre (276 formulas)
yQuaffle 61 (32 sat, 29 unsat)
DepQBF 120 (62 sat, 58 unsat)
DepQBF-LDQ 117 (62 sat, 55 unsat)

115 solved by both: DepQBF-LDQ DepQBF

Avg. assignments 13.7×106 14.4×106

Avg. backtracks 43,676 50,116
Avg. resolutions 573,245 899,931
Avg. learn.clauses 31,939 (taut: 5,571) 36,854
Avg. run time 51.77 57.78

Table 1. Search-based QBF solvers with (yQuaffle, DepQBF-LDQ) and without LD-resolution
(DepQBF) in clause learning on preprocessed instances from QBFEVAL’12. Number of solved
instances (left) with a timeout of 900s and detailed statistics (right).

Parameter t 13 14 15 16 17 18 19 20
yQuaffle 0.448 0.524 0.606 0.694 0.788 0.888 TO TO
DepQBF 118 253 540 1,146 2,424 5,111 10,747 22,544

DepQBF-LDQ 0.287 0.330 0.376 0.425 0.477 0.532 0.590 0.651

Table 2. Number of resolution steps (in units of 1,000) in refutations of selected formulas in the
family ϕt from Section 3. The solvers yQuaffle and DepQBF-LDQ implement the LDQ-resolution
calculus, and DepQBF implements Q-resolution. The timeout (TO) was 900 seconds.

potential of the LDQ-resolution calculus in LD-QCDCL. For DepQBF-LDQ, the average
numbers in the right part of Table 1 are smaller than for DepQBF, regarding assignments
(-5%), backtracks (-13%), resolution steps (-37%), learned clauses (-14%), and run time
(-11%). On average, 17% (5,571) of the learned clauses were tautological.

We computed detailed statistics to measure the effects of tautological learned clauses in
DepQBF-LDQ. Thereby we focus on instances which were solved and where tautological
clauses were learned. Tautological clauses were learned on 38 of the 117 instances solved
by DepQBF-LDQ (32%). Among these 38 instances, 2,714,908 clauses were learned in
total, 641,746 of which were tautological clauses (23%). A total of 22,324,295 learned
clauses became unit by unit literal detection, among them 903,619 tautological clauses
(4%). A total of 1,364,248 learned clauses became falsified, among them no tautological
clauses (0%). Hence we did not observe a tautological clause to be falsified and used
as a start point to derive a new learned clause (falsified clauses are returned by function
find confl clause in Fig. 2).

On a different benchmark set from the QBF competition 2010,3 DepQBF-LDQ solved
three instances more than DepQBF and solved five instances not solved by DepQBF. On
that set, we observed fewer resolutions (-11%) and smaller run time (-9%) with DepQBF-
LDQ, compared to DepQBF. Further, tautological clauses were learned on 25% of the in-
stances solved by DepQBF-LDQ in that set. On these instances, 35% of the learned clauses
were tautological. Among the learned clauses which became unit, 8% were tautological.
Like for the set QBFEVAL’12-pre, we did not observe a tautological clause to be falsified.

Additionally, we empirically confirmed Proposition 1. As expected, the refutation
size for the family (ϕt)t≥1 produced by yQuaffle and DepQBF-LDQ scales linearly with
t. In contrast to that, the refutation size scales exponentially with Q-resolution [7] in
DepQBF. Table 2 illustrates the difference in the refutation sizes. Somewhat unexpectedly,
yQuaffle times out on formulas of size t≥19 (and DepQBF times out for t≥21), whereas

11

DepQBF-LDQ solves formulas of size up to t=100 in about one second of run time (we
did not test with higher parameter values). As an explanation, we found that the number
of cubes learned by yQuaffle (i.e. the number of times function analyze solution
in Fig. 2 is called) doubles with each increase of t. The learned cubes do not affect the
refutation size but the time to generate the refutation. With DepQBF-LDQ, both the number
of learned clauses and learned cubes scales linearly with t.

5 Extracting Strategies from LDQ-Proofs

We show that the method to extract strategies from Q-refutations [6] is also correct when
applied to LDQ-refutations. This result enables a complete workflow including QBF
solving and strategy extraction based on the LDQ-resolution calculus. A similar workflow
could be implemented based on a translation of an LDQ-refutation into a Q-refutation as
presented in [1]. However, this translation can cause an exponential blow-up in proof size.
By applying strategy extraction directly on LDQ-refutations we avoid this blow-up.

Strategy extraction [6] is described as a game between a universal (∀) player and an
existential (∃) player on a Q-refutation of a QBF . The game aims at an assignment to∀ vari-
ables that renders the matrix unsatisfiable. It proceeds through the quantifier prefix from the
left to the right alternating the two players according to the quantifier blocks. The ∃ player
arbitrarily chooses an assignment σ∃ to the variables in the current block. Then the proof
is modified according to σ∃ using sound derivation rules outside the Q-resolution calculus.
This modification results in a smaller derivation of 2 with all literals contained in σ∃ and
their opposite polarities being removed. Based on this modified proof, an assignment σ∀ to
the following quantifier block, a ∀ block, is calculated such that applying σ∀ to each clause
of the proof and applying some extra derivation rules to the proof results in a derivation
of2. In this section we show with an argument similar to [6], that (1) the modification of an
LDQ-refutation according to any assignment to ∃ variables derives 2, and (2) the modifi-
cation of an LDQ-refutation according to a computed assignment to ∀ variables derives 2.

The reason why this method works for LDQ-refutations in the same way as for Q-
refutations is the following. Consider an LDQ-refutation under an assignment σ∃ to
∃ variables of some quantifier block of level `. Then the applications of rule r2 from Sec-
tion 2 (LD-steps) on ∀ variables with quantification level `+1 are always removed. This is
the case because an LD-step can result in a merged literal x∗ only if the pivot variable p (an
∃ variable) has a lower quantification level thanx. Thus before the ∀ player’s turn, the pivot
variable of each LD-step that results in merged literals of the respective quantifier block
is contained in the partial assignment. Either of the parents in the LD-step is then set to>,
and by fixing the derivation, only one polarity of the ∀ variable is left in the derived clause.

The algorithms play and assign describe the algorithm presented in [6], where
play implements the alternating turns of the ∀ and the ∃ player. Each player chooses
an assignment to the variables in the current quantifier block (Lines 3 and 6 of play).
The proof is modified after each assignment (Lines 7 and 8 of play) and results in
an LDQ-refutation of the QBF under the partial assignment. The modification of the
LDQ-refutationΠ consists of two steps represented by assign and transform. The
algorithm assign applies an assignment toΠ . It changes each leaf clause according to
the definition of a clause under an assignment in Section 2. Then it adjusts the successor

12

Algorithm 1: play
Input : QBFP.ψ, LDQ-refutationΠ
foreach Quantifier blockQ inP from left to right do1

ifQ is existential then2

σ← any assignment to each variable inQ;3

elseQ is universal4

C← topologically first clause inΠ with no existential literals;5

σ←{x |x∈C∧var(x)∈Q}∪{x |x 6∈C∧x 6∈C∧var(x)∈Q} ;6

Πp← assign (Π ,σ) (Πp is not an LDQ-refutation);7

Π← transform (Πp) (Π is an LDQ-refutation);8

Algorithm 2: assign
Input : LDQ-refutationΠ , assignment σ to all variables of outermost block
Output: Refutation under assignment σ containing LD-rules and P-rules
foreach leaf clauseC inΠ do1

C←Cdσ;2

foreach inner clauseC topologically inΠ do3

ifC is a resolution clause then4

Cl,Cr← parents ofC;5

p← pivot ofC;6

C← p-resolve(Cl,p,Cr);7

elseC is a clause derived by reduction8

Cc← parent ofC;9

x← variable reduced fromCc;10

C← p-reduce(Cc,p);11

returnΠ12

clauses in topological order (from leaves to root) by either applying an LDQ-resolution
rules or, in cases where the pivot variable or a reduced variable has been removed from at
least one of the parents, by applying one of the additional rules presented in [6,13]. These
additional rules (P-rules) are reproduced in the following. Symmetric rules are omitted.

Cl∨p >
[p] >

(r3)

Cl∨p Cr
[p]

Cr
p 6∈Cr (r4)

C[x]
C

x 6∈C (u2)

>[x] > (u3)

Cl Cr[p]
narrower(Cl,Cr)

p,p 6∈Cland p,p 6∈Cr (r5)

In rule r5, narrower(Cl,Cr) returns the clause containing fewer literals. IfCl andCr con-
tain the same number of literals,Cl is returned. The narrowest clause is2 and> is defined
to contain all literals. In the remainder, we write p-resolve(Cl,p,Cr) for a resolution step

13

(e1)
C1

(e3)
C2

>
C3

>
C4

(x6,e1,e3)
C5

>
C6,R0,R4

∃e2,e4,e5 ∀x6 ∃e1,e3

(x6,e1,e3)
R1,R5

(x6,e1,e3)
R2,R6

>
R7

(x6,e1)
R3

(x6,e1)
R8

(x6)
R9

2

assign
with assignment
σ={e2,e4,e5}

(e1)
C1

(e3)
C2

(x6,e1,e3)
C5

∀x6 ∃e1,e3

(x6,e1)
R3

(x6)
R9

2

transform

(e1)
C1

(e3)
C2

(e1,e3)
C5

∀x6 ∃e1,e3

(e1)
R3

2

R9

2

assignwith
assignment σ={x6}

(e1)
C1

(e3)
C2

(e1,e3)
C5

∃e1,e3

(e1)
R3

2

transform

Fig. 3. Two possible iterations of the strategy extraction algorithm play on the example in Fig. 1

over pivot variable p according to rules r1 to r5, and p-reduce(C,x) for a reduction step
reducing variable x according to rules u1 to u3.

After this procedure, the refutation contains applications of P-rules and thus is a proof
outside the LDQ-resolution calculus. It is transformed back into an LDQ-refutation by the
following procedure. Starting at the leaves of the proof, the algorithm transform (Πp),
where Πp is a proof that contains clauses derived using LDQ-rules and P-rules, steps
through the proof in topological order. Each clause derived by rule r3, is merged with its
parent>. Each clause derived by rule r4 is merged with its parentCr. Each clause derived
by rule r5, is merged with its narrower parent. Each clause derived by rules u1 to u3 is
merged with its parent. When an empty clauseC=2 is encountered, the procedure stops
and all clauses that are not involved in derivingC are removed.>-clauses are eliminated
by applying rule r4 or by removing clauses when 2 is found. The resulting refutation is
an LDQ-refutation.

Example 4. Figure 3 depicts a possible execution of the play algorithm on the instance
introduced in Fig. 1. First, an arbitrary assignment is chosen for the first existential quanti-
fier block. The leftmost proof shows the result of executing assign on the original proof
in Fig. 1. The leaf clauses are changed according to σ. P-rules are applied to the derived
clauses “R1,R5”, “R2,R6”, R8 (by rule r4) and R7 (by rule r3). The merged literal x∗6 has
disappeared in clause “R2,R6” because of the assignment to e4, which is the pivot variable
of the resolution step deriving “R2,R6”. Before continuing with the ∀ player’s move, the
proof is transformed back to the LDQ-resolution calculus by deleting redundant clauses
and edges as depicted in the proof in the right upper corner of Fig. 3. Next, an assignment
is calculated for the variable x6 in following universal quantifier block by inspecting the
clause R9 from which x6 is reduced. The proof is then modified according to the computed
assignment, which sets R9 to 2 in the middle lower proof. If there were more than one
variable in this quantifier block, reducing one after another would result in a subsequent ap-
plication of universal reduction, eventually deriving 2. In the next transformation, a list of
redundant clauses containing2 is removed, resulting in the lower right proof. This remain-

14

ing proof shows unsatisfiability of a propositional formula. The example can be executed
similarly for any other assignment to the variables in the existential quantifier blocks.

This algorithm is correct when executed on a Q-resolution proof [6]. We show that
it is also correct when executed on an LDQ-resolution proof. To this end, we prove that
assign, when called in Line 7 of play, returns a derivation of 2 using LDQ-rules and
P-rules. Proposition 5 shows that this holds for an arbitrary assignment to all ∃ variables
in the outermost quantifier block, and Proposition 6 shows the same for the computed
assignment to ∀ variables.

We start by showing that any clause generated from parent(s) under a partial assign-
ment by applying an LDQ-rule or a P-rule subsumes the clause generated from the original
parent(s) under the partial assignment. The proof of the following lemma is based on a case
distinction ofCl,Cr, andC containing none, at least one, or only literals also contained
in σ. The subset relation is shown separately for each case.5

Lemma 1. (cf. Lemma 2.6 in [13]) Given a QBF ψ = ∃VPφ with V the set of all
variables of the outermost quantifier block, P the prefix of ψ without ∃V , and φ the
matrix of ψ, let C, Cl and Cr be clauses of φ, and σ an assignment to V . Then it
holds that p-resolve(Cldσ, p, C

r
dσ) ⊆ p-resolve(Cl, p, Cr)dσ and p-reduce(Cdσ, x) ⊆

p-reduce(C,x)dσ .

With respect to the application of rule r2 (LD-step), we observe the following from
the play algorithm: Let ` be the level of an existential quantifier block, p be an existential
variable with lev(p)=`, x be a universal variable with lev(x)=`+1, σ∃ be an assignment
to the variables of the quantifier block with level `, andC be a clause derived by rule r2
with pivot variable p producing the merged literal x∗. Recall that by the conditions for
rule r2 it must hold that lev(p)< lev(x∗) whenever any merged literal x∗ is produced by
resolving over a pivot p. The algorithm play iterates over the prefix from the lower to
the higher quantification levels. Therefore, σ∃ must contain a literal of p. By modifying
the proof according to σ∃, one ofC’s parents becomes> and with that, one polarity of the
x disappears. By further modifying the proof, the P-rule r4 must be applied to derive the
modifiedC, which keeps only opposite polarity of x. Therefore, x∗ is no longer contained
in the proof when its quantifier block is processed.

Lemma 2. Given a QBF in PCNF ψ = ∃VPφ with V the set of all variables of the
outermost quantifier block, P the prefix of ψ without ∃V , and φ the matrix of ψ, an
LDQ-derivation Π of a clause C from ψ, and an assignment σ∃ to V , it holds that
Π ′=assign(Π,σ∃) derives a clauseC ′ fromPφdσ∃ such thatC ′⊆Cdσ∃ .

Proof. By induction on the structure ofΠ using Lemma 1. ut

Proposition 5. Given a QBF in PCNF ψ = ∃VPφ with V the set of all variables of
the outermost quantifier block, P the prefix of ψ without ∃V , and φ the matrix of ψ, an
LDQ-refutationΠ of ψ, and an assignment σ∃ to V , it holds thatΠp=assign(Π,σ∃)
derives 2 fromPφdσ∃ .

5 We refer to Footnote 3 for an appendix containing a detailed proof of Lemma 1.

15

Proof. By Lemma 2, for any clauseC derived inΠ it holds thatΠ ′ derives a clauseC ′

such thatC ′⊆Cdσ∃ . Therefore, ifC=2, thenΠ ′ must derive a clauseC ′=2. ut
Proposition 6. Given a QBF in PCNF ψ = ∀VPφ with V the set of all variables of
the outermost quantifier block, P the prefix of ψ without ∀V , and φ the matrix of ψ, an
LDQ-refutationΠ of ψ, and an assignment σ∀ to V as computed in Line 6 of Algorithm 1,
Πp=assign(Π,σ∀) derives 2 fromPφdσ∀ .

Proof. For any l∈σ∀ it holds that var(l) is either not reduced at all, or reduced exactly
once in Π . If var(l) is not reduced at all, then it is not involved in Π and therefore its
assignment does not alter the proof. LetR⊆σ∀ be the set of literals of opposite polarity
of those that are reduced exactly once in the proof. Then there is a set C with |C|= |R| of
clauses such that the clauses in C are directly following one another, each reducing exactly
one literal r inR. The last reduced clause of C results in 2. This is the case because all
literals ofR are in the outermost quantifier block. The algorithm assign (Π ,σ∀) then
applies rule u2 to each clauseC, setting eachC in C to 2. ut

6 Conclusions and Future Work

We have shown that the LDQ-resolution calculus [1] allows for a complete workflow in
search-based QBF solving, including the generation of LDQ-refutations in QBF solvers
and the extraction of strategies [6] from these LDQ-refutations. The run time of strategy
extraction is polynomial in the refutation size. Therefore, a speedup in strategy extraction
can be obtained from having short LDQ-refutations, compared to Q-refutations [7].

It is unclear whether Herbrand functions can be efficiently constructed in certificate
extraction [1] based on LDQ-refutations. It is possible to build Herbrand functions from
truth tables generated by the strategy extraction method in [6]. However, since each pos-
sible assignment to the existential variables has to be considered, the run time of this naive
method is exponential in the size of the quantifier prefix.

Regarding practice, learning tautological clauses by LD-QCDCL as used in QBF
solvers is conceptually simpler than disallowing tautological resolvents. Tautological re-
solvents can entirely be avoided in clause learning [4]. However, this approach has an expo-
nential worst case [14], in contrast to a more sophisticated polynomial-time procedure [10].

Experimental results for our implementation of LD-QCDCL illustrate the potential
of the LDQ-calculus in search-based QBF solving. For instances solved by both methods,
one learning only non-tautological clauses and the other learning also tautological clauses,
we observed fewer backtracks, resolution steps, and learned clauses for the latter.

Long-distance resolution can also be applied to derive learned cubes or terms, i.e. con-
junctions of literals (Proposition 6 in [16]). Dually to learned clauses, the learned cubes
represent a term-resolution proof [4] of a true QBF. Our implementation of LD-QCDCL
in DepQBF-LDQ includes cube learning as well.

In LD-QCDCL, a tautological clause is satisfied as soon as the variable causing the tau-
tology is assigned either truth value. These clauses cannot become unit under the current
assignment and hence cannot be used to derive a new learned clause in this context. There-
fore, further experiments are necessary to assess the value of learning tautological clauses.

In general, it would be interesting to compare the different clause learning meth-
ods [4,10,15,16] in search-based QBF solving to identify their individual strengths.

16

References

1. V. Balabanov and J.-H. R. Jiang. Unified QBF Certification and Its Applications. Formal
Methods in System Design, 41:45–65, 2012.

2. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean
Formulae. In AAAI/IAAI, 1998.

3. M. Davis, G. Logemann, and D. W. Loveland. A Machine Program for Theorem-Proving.
Communications of the ACM, 5(7):394–397, 1962.

4. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and Learning in
the Evaluation of Quantified Boolean Formulas. Journal of Artificial Intelligence Research,
26:371–416, 2006.

5. A. Goultiaeva and F. Bacchus. Recovering and Utilizing Partial Duality in QBF. In 16h
International Conference on Theory and Applications of Satisfiability Testing (SAT), volume
7962 of LNCS. Springer, 2013.

6. A. Goultiaeva, A. Van Gelder, and F. Bacchus. A Uniform Approach for Generating Proofs
and Strategies for Both True and False QBF Formulas. In 22nd International Joint Conference
on Artificial Intelligence (IJCAI), pages 546–553. AAAI Press, 2011.

7. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas.
Information and Computation, 117(1):12–18, Feb. 1995.

8. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas.
In TABLEAUX, pages 160–175, 2002.

9. F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver (System Description).
Journal on Satisfiability, Boolean Modeling and Computation, 7:71–76, 2010.

10. F. Lonsing, U. Egly, and A. Van Gelder. Efficient Clause Learning for Quantified Boolean
Formulas via QBF Pseudo Unit Propagation. In 16h International Conference on Theory and
Applications of Satisfiability Testing (SAT), volume 7962 of LNCS. Springer, 2013.

11. J. P. Marques Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning SAT Solvers.
In Handbook of Satisfiability, pages 131–153. IOS Press, 2009.

12. S. Staber and R. Bloem. Fault Localization and Correction with QBF. In 10th International
Conference on Theory and Applications of Satisfiability Testing (SAT), volume 4501 of LNCS.
Springer, 2007.

13. A. Van Gelder. Input Distance and Lower Bounds for Propositional Resolution Proof Length.
In 8th International Conference on Theory and Applications of Satisfiability Testing (SAT),
volume 3569 of LNCS. Springer, 2005.

14. A. Van Gelder. Contributions to the Theory of Practical Quantified Boolean Formula Solving.
In 18th International Conference on Principles and Practice of Constraint Programming (CP),
volume 7514 of LNCS, pages 647–663. Springer, 2012.

15. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Satisfiability Solver. In
2002 IEEE/ACM International Conference on Computer-aided Design, pages 442–449, 2002.

16. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Conflicts in Quanti-
fied Boolean Formula Evaluation. In 18th International Conference on Principles and Practice
of Constraint Programming (CP), volume 2470 of LNCS, pages 200–215. Springer, 2006.

17

A Appendix

A.1 Proofs

Proof (Lemma 1).
We distinguish between each case ofC containing or not containing literals of σ.

C0(σ,C): ∃v∈σ such that v∈C∧v∈C. This case never happens because no tautologies
over ∃ variables are allowed.
C1(σ,C): ∀v∈σ it holds that v 6∈C and v 6∈C. ThenCdσ=C.
C2(σ,C): ∃v∈σ such that v∈C. ThenCdσ=>.
C3(σ,C): ∀v∈σ it holds that v 6∈C and ∃v∈σ such that v∈C. ThenCdσ=C\{v |v∈σ}.
For resolution steps, either of the following cases applies (symmetric cases are omitted):
(1) C1(σ, C

l) and C1(σ, C
r): Cldσ = Cl, Crdσ = Cr, and p-resolve(Cl, p, Cr)dσ =

p-resolve(Cl, p, Cr). By applying rule r1 or r2, we obtain p-resolve(Cldσ, p, C
r
dσ) =

p-resolve(Cl,p,Cr). Therefore the subset relation holds.
(2)C2(σ,C

l) andC1(σ,C
r):Cldσ=>,Crdσ=C

r, and p-resolve(Cl,p,Cr)dσ=>. By ap-
plying rule r3, we obtain p-resolve(Cldσ,p,C

r
dσ)=>. Therefore the subset relation holds.

(3)C3(σ,C
l) andC1(σ,C

r): SinceC1(σ,C
r), ∀v∈σ it holds that p 6=v and p 6=v. Then

Cldσ=C
l\{v | v∈σ}, Crdσ=Cr, and p-resolve(Cl,p,Cr)dσ=Cl∪Cr \{v | v∈σ}. By

applying rule r1 or r2, we obtain p-resolve(Cldσ,p,C
r
dσ)=C

l∪Cr\{v |v∈σ}. Therefore
the subset relation holds.
(4)C2(σ,C

l) andC2(σ,C
r):Cldσ=>,Crdσ=>, and p-resolve(Cl,p,Cr)dσ=>. By ap-

plying rule r3, we obtain p-resolve(Cldσ,p,C
r
dσ)=>. Therefore the subset relation holds.

(5) C2(σ,C
l) and C3(σ,C

r): Then Cldσ =>, and Crdσ = Cr \ {v | v ∈ σ}. We have to
distinguish two cases:
(a) ∃v∈σ such that var(v)=p. Then p-resolve(Cl,p,Cr)dσ=(Cl∪Cr)\{v |v∈σ}. By
applying rule r4, we obtain p-resolve(Cldσ,p,C

r
dσ)=C

r\{v |v∈σ}. Therefore the subset
relation holds.
(b) Otherwise (σ does not contain the pivot p). Then p-resolve(Cl,p,Cr)dσ=>. By apply-
ing rule r3, we obtain p-resolve(Cldσ,p,C

r
dσ)=>. Therefore the subset relation holds.

(6) C3(σ,C
l) and C3(σ,C

r) Cldσ = Cl \ {v | v ∈ σ}, Crdσ = Cr \ {v | v ∈ σ}, and
p-resolve(Cl,p,Cr)dσ = Cl ∪Cr \ {v | v ∈ σ}. By applying rule r1 or r2, we obtain
p-resolve(Cldσ,p,C

r
dσ)=C

l∪Cr\{v |v∈σ}. Therefore the subset relation holds.
For reduction steps, either of the following cases applies:
(7) C1(σ,C): Cdσ = C and p-reduce(C,x)dσ = p-reduce(C,x). Therefore the subset
relation holds.
(8) C2(σ,C): Cdσ = > and p-reduce(C, x)dσ = >. By applying rule u3 we obtain
p-reduce(Cdσ,x)=>. Therefore the subset relation holds.
(9) C3(σ,C): Cdσ =C \{v | v ∈ σ} and p-reduce(C,x)dσ = (C \{x})\{v | v ∈ σ}. By
applying rule u1, we obtain p-reduce(Cdσ,x) = (C \{x})\{v | v ∈ σ}. Therefore the
subset relation holds.

ut

18

A.2 Data Related to Experimental Results

The two benchmark sets QBFEVAL’10 and QBFEVAL’12-pre considered in Sections 4
and A.4 are available through the following links, respectively:

– http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/eval2010.tar.7z
– http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/eval12r2-bloqqer.tar

We provide a data package containing binaries, log files and additional material:
http://www.kr.tuwien.ac.at/staff/lonsing/lpar13.tar.7z

This data package contains binaries of DepQBF and DepQBF-LDQ, log files of experi-
ments, formulas from the familyϕt for t=1,...100, and selected proofs for formulas from
ϕt produced by DepQBF and DepQBF-LDQ.

A.3 Experimental Results with the Family ϕt

All reported experiments were run on AMD Opteron 6238, 2.6 GHz, 64-bit Linux with
limits of 7 GB memory and 900 seconds wall clock time.

The solvers DepQBF-LDQ (which is a modification of DepQBF [9]) and yQuaf-
fle [15,16] are based on LD-QCDCL as shown in Fig. 2 and hence implement the LDQ-
resolution calculus, which follows from Proposition 4.

Parameter t 13 14 15 16 17 18 19 20
yQuaffle 0.448 0.524 0.606 0.694 0.788 0.888 TO TO
DepQBF 118 253 540 1,146 2,424 5,111 10,747 22,544

DepQBF-LDQ 0.287 0.330 0.376 0.425 0.477 0.532 0.590 0.651

Table 3. Number of resolution steps (in units of 1,000) in proofs of selected formulas in the familyϕt

from Section 3. The solvers yQuaffle and DepQBF-LDQ implement the LDQ-resolution calculus,
and DepQBF implements Q-resolution. The timeout (TO) was 900 seconds.

Table 3 shows the proof sizes for selected formulas in the familyϕt. As expected from
the theoretical result in Section 3, the size of the proofs produced by yQuaffle and DepQBF-
LDQ, both implementing the LDQ-resolution calculus, scales linearly with respect to the
parameter t. In contrast to that, the proof size scales exponentially with Q-resolution [7] in
DepQBF, where tautological resolvents are disallowed.6

Somewhat unexpectedly, yQuaffle times out on formulas of size t≥19 (and DepQBF
times out for t≥21), whereas DepQBF-LDQ solves formulas of size up to t=100 in about
one second of run time (we did not test with higher parameter values). Table 4 shows the
run times on selected instances. As an explanation, we found that the number of cubes
learned by yQuaffle (i.e. the number of times function analyze solution in Fig. 2 is
called) doubles with each increase of t. With DepQBF-LDQ, the number of learned clauses
and learned cubes scales linearly with t. Tables 5 and 6 show the numbers of learned
clauses and cubes, respectively.

6 DepQBF produces the same proofs for the family ϕt if we apply a more sophisticated
implementation which avoids an exponential worst case in the clause learning procedure [10,14].

19

http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/eval2010.tar.7z
http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/eval12r2-bloqqer.tar
http://www.kr.tuwien.ac.at/staff/lonsing/lpar13.tar.7z

Parameter t 13 14 15 16 17 18 19 20
yQuaffle <1 1 4 18 115 617 TO TO
DepQBF 1 2 5 12 31 81 219 675

DepQBF-LDQ <1 <1 <1 <1 <1 <1 <1 <1

Table 4. Wall clock time in seconds spent by the solvers on selected formulas in the family ϕt

from Section 3. The timeout (TO) was 900 seconds.

Parameter t 13 14 15 16 17 18 19 20
yQuaffle 25 27 29 31 33 35 TO TO
DepQBF 4,097 8,193 16,385 32,769 65,537 131,073 262,145 524,289

DepQBF-LDQ 14 15 16 17 18 19 20 21

Table 5. Number of learned clauses on selected formulas in the family ϕt from Section 3.

Parameter t 13 14 15 16 17 18 19 20
yQuaffle 4,096 8,192 16,384 32,768 65,536 131,072 TO TO
DepQBF 10,242 20,489 40,984 81,975 163,958 327,925 655,860 1,311,731

DepQBF-LDQ 91 105 120 136 153 171 190 210

Table 6. Number of learned cubes on selected formulas in the family ϕt from Section 3.

A.4 Experimental Results with Competition Benchmarks

All reported experiments were run on AMD Opteron 6238, 2.6 GHz, 64-bit Linux with
limits of 7 GB memory and 900 seconds wall clock time.

Table 7 shows the number of instances solved by DepQBF, DepQBF-LDQ, and yQuaffle
with respect to the benchmarks sets from the QBF competitions 2010 (QBFEVAL’10)
and 2012 (QBFEVAL’12-pre), where the latter set was preprocessed using Bloqqer.7 On

QBFEVAL’10 (568 formulas, no preprocessing)
yQuaffle 174 (75 sat, 99 unsat)
DepQBF 365 (154 sat, 211 unsat)
DepQBF-LDQ 368 (156 sat, 212 unsat)
QBFEVAL’12-pre (276 formulas, preprocessed
yQuaffle 61 (32 sat, 29 unsat)
DepQBF 120 (62 sat, 58 unsat)
DepQBF-LDQ 117 (62 sat, 55 unsat)

Table 7. Number of instances solved in the benchmark sets from the QBF comptetitions 2010
(without preprocessing) and 2012 (preprocessed by Bloqqer).

the set QBFEVAL’12-pre, DepQBF-LDQ solved two instances not solved by DepQBF

7 http://fmv.jku.at/bloqqer/

20

http://fmv.jku.at/bloqqer/

and DepQBF solved five instances not solved by DepQBF-LDQ. On the set QBFEVAL’10,
DepQBF-LDQ solved five instances not solved by DepQBF and DepQBF solved two
instances not solved by DepQBF-LDQ.

Similar to the right part of Table 1, Table 8 shows detailed statistics for instances
from QBFEVAL’10 and QBFEVAL’12-pre which were solved by both DepQBF and
DepQBF-LDQ.

QBFEVAL’10 (363 instances solved by both)
DepQBF-LDQ DepQBF

Avg. assignments 10.51×106 10.37×106
Avg. backtracks 56,973 57,628
Avg. resolutions 642,043 721,569
Avg. learn.clauses 17,232 (taut: 2,180) 16,673
Avg. run time 49.45 54.11

QBFEVAL’12-pre (115 instances solved by both)
DepQBF-LDQ DepQBF

Avg. assignments 13.7×106 14.4×106
Avg. backtracks 43,676 50,116
Avg. resolutions 573,245 899,931
Avg. learn.clauses 31,939 (taut: 5,571) 36,854
Avg. run time 51.77 57.78

Table 8. Detailed statistics (average values) with respect to instances solved by both DepQBF-LDQ
and DepQBF.

We computed statistics to measure the effects of tautological learned clauses in
DepQBF-LDQ on the two benchmark sets.

In the set QBFEVAL’10, DepQBF-LDQ solved 368 instances. For 93 of these 368
instances, tautological clauses were learned (25%). Among these 93 instances, 3,995,202
clauses were learned in total, 1,430,562 of which were tautological clauses (35%). A total
of 44,399,956 learned clauses became unit by unit literal detection, among them 3,635,451
tautological clauses (8%). A total of 1,938,967 learned clauses became falsified, among
them 0 tautological clauses (0%).

21

	Long-Distance Resolution: Proof Generation and Strategy Extraction in Search-Based QBF Solving

