
Memetic Algorithms for Break
Scheduling

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Magdalena Widl
Matrikelnummer 0327059

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Priv.-Doz. Dr. Nysret Musliu
Mitwirkung: Dipl.-Ing. Werner Schafhauser

Wien, 10.04.2010
(Unterschrift Verfasserin) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Magdalena Widl: Memetic Algorithms for Break Scheduling , ©

D E C L A R AT I O N

Magdalena Widl
Parkweg 24

2352 Gumpoldskirchen

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.”

Wien, 1. April 2010

Magdalena Widl

Meiner Oma gewidmet

A B S T R A C T

Break scheduling problems arise in working areas where breaks are indispensable
due to the nature of the tasks to be performed, e.g. in air traffic control, supervision
or assembly lines. We regard such a problem, denoted Bsp, originating in the area of
supervision personnel. The objective is to assign breaks to an existing shiftplan such
that various constraints reflecting legal demands or ergonomic criteria are satisfied
and staffing requirement violations are minimised.

We prove NP-completeness of this problem when all possible break patterns are
given explicitly in the input.

To solve Bsp, we propose variations of a memetic algorithm. A memetic algorithm
combines genetic operators such as selection, crossover and mutation with local
improvement techniques. We suggest two different memetic representations of
Bsp and three different memetic algorithms built upon these representations. The
algorithms differ in their genetic operators and memetic representation, but include
the same local search heuristic. We propose three different neighbourhoods the local
search can be based upon. Additionally, we evaluate the impact of a tabu list within
one of the algorithms, and within another the impact of a penalty system that tries
to detect local optima.

Our approaches are influenced by various parameters, for which we experimen-
tally evaluate different settings. The impact of each parameter is assessed with
statistical methods. We compare the three algorithms, each with the best parameter
setting according to the evaluation, to state of the art results on a set of publicly
available instances. 20 instances were drawn from real life scenarios and 10 ran-
domly generated. One of our algorithms returns improved results on 28 out of the
30 benchmark instances. To the best of our knowledge, our improved results for the
real life instances constitute new upper bounds.

9

Z U S A M M E N FA S S U N G

Pauseneinteilungsprobleme entstehen in Arbeitsbereichen, in welchen regelmäßige
Pausen unabdingbar sind. Dazu zählen Flugsicherung, Überwachungsaufgaben oder
Fließbandarbeit. Wir betrachten ein solches Problem, abgekürzt Bsp für die englische
Bezeichnung “Break Scheduling Problem”, aus dem Überwachungsbereich. Das Ziel
ist es, Pausen in einen gegebenen Schichtplan unter Berücksichtigung verschiedener
rechtlicher und ergonomischer Kriterien so einzuteilen, dass Abweichungen vom
gegebenen Personalbedarf minimiert werden.

Wir zeigen, dass Bsp NP-vollständig ist, wenn eine fixe Menge an Pausenmustern
Teil des Inputs ist.

Zur Optimierung des Bsp entwickeln wir verschiedene memetische Algorithmen.
Ein memetischer Algorithmus kombiniert genetische Operatoren wie Selektion,
Kreuzung und Mutation mit lokalen Verbesserungstechniken. Wir präsentieren zwei
verschiedene memetische Darstellungen des Bsp sowie, darauf aufbauend, drei
verschiedene neuartige memetische Algorithmen. Die Algorithmen unterscheiden
sich durch ihre genetischen Operatoren und die memetische Darstellung, verwen-
den aber dieselbe lokale Suche als Verbesserungstechnik. Für die lokale Suche
präsentieren wir drei verschiedene Nachbarschaften, die unterschiedlich kombiniert
werden können. Wir evaluieren für einen der Algorithmen den Einfluss einer in
den Suchprozess integrierten Tabu Liste, sowie für einen anderen Algorithmus den
Einfluss der Vergabe von Strafpunkten zur Vermeidung lokaler Optima.

Der Verlauf dieser metaheuristischen Ansätze wird von mehreren Parametern bee-
influsst, für welche wir verschiedene Werte experimentell evaluieren. Die Bedeutung
jedes Parameters wird mithilfe statistischer Methoden beurteilt.

Wir vergleichen unsere Algorithmen, jeweils unter der besten ermittelten Parame-
terbelegung, mit Resultaten aus der Literatur auf öffentlich verfügbaren Instanzen.
20 Instanzen stammen aus Szenarien der Praxis und 10 sind zufällig generiert. Unser
bester Algorithmus findet bessere Lösungen für 28 von 30 Instanzen. Nach unserem
Wissen stellen unsere verbesserten Resultate für die Instanzen aus der Praxis neue
obere Schranken dar.

11

P U B L I C AT I O N S

Some results of this thesis have appeared previously in the following publication:

Nysret Musliu, Werner Schafhauser and Magdalena Widl: A Memetic Algorithm for a
Break Scheduling Problem. The 8th Metaheuristic International Conference (MIC 2009),
Hamburg, Germany, July 13-16, 2009.

13

A C K N O W L E D G M E N T S

I hereby express my gratitude and sincere appreciation to my advisor Nysret
Musliu, whose expertise, support, encouragement and patience were invaluable
for the progress of this work. I thank my co-advisor Werner Schafhauser for his
assistance in many areas, be it writing of a publication, algorithmic questions or
implementation issues. I also really enjoyed his particular kind of humour.

I thank the DBAI group of the Institute of Information Systems for providing me
with a workstation, a quiet room, powerful servers and a coffee machine. A special
reference goes to the group’s system administrator Toni Pisjak for his technical
support and never-failing backup system.

During more than one year working within this group, I enjoyed the company and
intellectual input of many colleagues who in one way or another have influenced
this work. In this context I particularly thank Andreas Pfandler, Emanuel Sallinger
and Stefan Rümmele for their advice in complexity theory.

I am grateful to my parents and grandmothers for providing me with good
education, encouragement and security during the past 26 years. I particularly thank
my father for his interest and assistance regarding various mathematical questions
that emerged during my studies.

Last but not least, muchísimas gracias go to my partner José for sharing with me
both moments of joy and moments of difficulties.

15

C O N T E N T S

1 introduction 21

1.1 Objectives 23

1.2 Results 23

1.3 Organisation 24

2 the break scheduling problem 25

2.1 Problem Statement 25

2.2 Complexity 28

2.3 Related Work 31

2.3.1 Shift scheduling with breaks 32

2.3.2 Break scheduling 33

3 memetics 35

3.1 Concept and Terminology 35

3.2 From Memetics to Memetic Algorithms 37

4 solving the break scheduling problem 39

4.1 Representations and Definitions 40

4.2 Break Patterns 43

4.3 Initialisation 45

4.4 Neighbourhoods 46

4.4.1 Single Assignment 46

4.4.2 Double Assignment 47

4.4.3 Shift Assignment 47

4.5 Local Search 48

4.6 MAR1 – Memetic Algorithm with Representation 1 48

4.6.1 Selection 49

4.6.2 Crossover and Mutation 49

4.6.3 Local Search 52

4.7 MAR2 – Memetic Algorithm with Representation 2 52

4.7.1 Crossover and Mutation 54

4.7.2 Selection 54

4.7.3 Local Search with Tabu List 54

4.8 MAPS – Memetic Algorithm with Penalty System 55

17

18 contents

4.8.1 Penalty System 55

4.8.2 Selection and Interaction 56

4.8.3 Mutation and Local Search 56

4.8.4 Penalty Update 58

5 empirical parameter evaluation 59

5.1 Evaluation MAR1 59

5.2 Evaluation MAR2 and MAPS 63

5.2.1 Experimental design 63

5.2.2 Instances 63

5.2.3 Parameters 64

5.2.4 Testing environment 64

5.2.5 Evaluation method 65

5.2.6 Evaluation of MAR2 68

5.2.7 Evaluation MAPS 72

5.3 Comparison of Results 76

6 conclusions and future work 81

L I S T O F F I G U R E S

Figure 1.1 Shiftplan with different shifts and breaktimes 22

Figure 2.1 A sample instance of Bsp with solution and explanations 27

Figure 2.2 Solution for Bsp’ instance reduced from X3C instance 31

Figure 4.1 Memetic Representation 1 40

Figure 4.2 Memetic Representation 2 43

Figure 4.3 7 possible break patterns for length |S| = 74 44

Figure 4.4 Computation of break patterns 45

Figure 4.5 Single assignment moves 46

Figure 4.6 Double assignment moves 47

Figure 4.7 Shift assignment moves 48

Figure 4.8 Simple Crossover 51

Figure 4.9 Smart Crossover 52

Figure 4.10 Interaction operator 57

L I S T O F TA B L E S

Table 4.1 Sizes of D′ for different shift lengths 44

Table 5.1 MAR1: Population size 60

Table 5.2 MAR1: Selection pressure 60

Table 5.3 MAR1: Smart crossover preference γ 60

Table 5.4 MAR1: Crossover probability α 61

Table 5.5 MAR1: Search rate λ 61

Table 5.6 MAR1: Search intensity µ 61

Table 5.7 MAR1: Neighbourhoods η 61

Table 5.8 MAR1: Size of the shift assignment neighbourhood N3 62

Table 5.9 Overview on sample instances. 67

Table 5.10 MAR2: Population size 69

19

20 List of Tables

Table 5.11 MAR2: Crossover, preference for fitter memes 69

Table 5.12 MAR2: Crossover vs. Mutation 69

Table 5.13 MAR2: Selection pressure 70

Table 5.14 MAR2: Search rate λ 70

Table 5.15 MAR2: Length of tabu list |L| 70

Table 5.16 MAR2: Search intensity µ 71

Table 5.17 MAR2: Neighbourhoods η 71

Table 5.18 MAPS: Population Size 73

Table 5.19 MAPS: Mutation and search rate 73

Table 5.20 MAPS: Mutation weight 74

Table 5.21 MAPS: Selection κ 74

Table 5.22 MAPS: Search intensity 74

Table 5.23 MAPS: Neighbourhood 75

Table 5.24 Comparison with literature: Real life instances 78

Table 5.25 Comparison with literature: Random instances 79

1
I N T R O D U C T I O N

Many working areas require staff to maintain high concentration when performing
their tasks. This includes air traffic control, security checking, supervision or assem-
bly line workers. Loss of concentration might result in dangerous situations. It is
thus required, often by law, that staff working in such areas take breaks after given
time periods.

Breaks are periods during working shifts when staff is allowed, or in some cases
obliged, to discontinue work in order to recover and to perform personal activities
like having meals or using facilities. In many countries constraints for work and
break periods are governed by federal law, i.e. for Austria, this can be found in
paragraph 11 of Arbeitszeitgesetz [25]. Some employers might grant additional or
extended breaks to comply with ergonomic needs of staff members and in some
working areas, breaks after certain working periods might even be crucial due to
security related issues. While each employee is supposed to take breaks according to
the mentioned constraints, also staffing requirements are to be fullfilled at all time,
i.e. enough staff must be available to perform a specific task during any timeslot.

Consider, for instance, airport security staff in charge of monitoring baggage
x-ray machines: The person working in front of the monitor is required to keep
high concentration in order to prevent mistakes that might result in hazardous
items passing through. Thus, for all staff, breaks are mandatory to properly recover
after given periods of working time. Additionally, suppose there are estimated
staffing requirements according to scheduled aircraft take-offs. Now breaks are to
be scheduled such that all employees take breaks within given intervals, but at the
same time a minimum required number of employees is monitoring the screens. In
order to avoid overestaffing and thus minimise personnel costs, we may also aim at
an exact number of employees being present, instead of a minimum.

Our particular problem statement origins from a real world scenario in the area of
supervision personnel. We regard a shiftplan that consists of consecutive timeslots
and of shifts. Each shift starts and ends in a specific timeslot and must contain a
given amount of breaktime. Shifts may overlap in time. There are several constraints
concerning the distribution of breaktime within a single shift such as minimum and

21

22 introduction

Staff.req.
Timeslot

Shift 1

Shift 2

Shift 3

Shift 4

Shift 5

Shift 6

Shift 7

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

2 2 2 1 0 2 3 3 3 2 1 1 4 4 5 7 3 4 5 3 5 5 2 3 2 2 4 2 2 2

Breaks are scheduled s.t. no break is longer than two timeslots, and no working period is longer than six
timeslots. The staffing requirements are not satisfied in all timeslots, i.e. there is undercover in timeslot t22 and

overcover in timeslots t12 and t24.

Figure 1.1: Shiftplan with different shifts and breaktimes

maximum values limiting the length of breaks and worktime, to which we refer as
temporal constraints. Additionally, during each timeslot a given number of staff is
required to be working. The breaktime for each shift is to be scheduled such that the
temporal constraints are satisfied and staffing requirement violations are minimised.
A shiftplan with a possible, though sub-optimal, solution is depicted in figure 1.1.
We denote our formulation as Break Scheduling Problem and abbreviate it with
Bsp.

In literature, this problem has mainly been addressed as part of the so-called shift
scheduling problem, where shifts are scheduled along with breaks. For this problem,
there has been some previous work, like a set-covering formulation developed
by Dantzig, [12], an integer programming formulation with implicit modelling of
breaks by Bechtold and Jacobs [4], or heuristic methods suggested by Canon [11]
and Tellier and White [32]. However, the problem of shift scheduling with breaks,
as defined in the mentioned works, differs significantly to our case. Bsp considers
scheduled shifts are part of the input and the objective is to insert breaks according
to staffing requirements and temporal constraints.

For Bsp there has been previous work by Beer et al. [5, 6], who suggest a min-
conflicts based metaheuristic and present experimental results on real life and
randomly created instances. This previous work however leaves some open questions:
What is the computational complexity of Bsp? How do other methods perform on
Bsp? And is there a method that is able to improve the current results on Bsp?

1.1 objectives 23

1.1 objectives

The objectives of this work are:

• Determination of computational complexity for Bsp.

• Design and implementation of a metaheuristic based on the concept of memet-
ics to obtain good solutions for Bsp. This includes the definition of a memetic
representation, the crossover, mutation and selection operators as well as a
method for local improvements.

• Determination and experimental evaluation of parameters that influence the
process of the designed method.

• Comparison to state of the art results.

1.2 results

The following are the main contributions of this thesis:

• We prove that Bsp is NP-complete when break patterns are defined explicitely
as part of the input.

• We propose three algorithms to optimise the break scheduling problem. Each
of them is based on the concept of memetic algorithms introduced by Moscato
[23]. The key idea is to improve a set of solutions, which have been created
randomly or by some quick heuristic, by applying genetic operators together
with some local improvement technique. We propose two different memetic
representations, a set of genetic operators, a penalty system to detect local
optima, as well as a local search heuristic based on different neighbourhoods
and an optional tabu list.

• We experimentally evaluate the parameters that influence the optimisation
process. The impact of each parameter is statistically verified.

• We compare our algorithms with the best existing results for this problem
in literature. One of our algorithms returns improved results on 28 out of 30

instances. To our best knowledge, these results represent new upper bounds.

24 introduction

1.3 organisation

The remaining parts of this thesis are organised as follows: We first give a formal
problem definition of BSP , present our complexity results and an give an overview
on related work in Chapter 2. The concept of memetics and memetic algorithms is
explained in Chapter 3. Chapter 4 provides an in-depth description of the memetic
representations, the local improvement technique and the three proposed algorithms.
Details on the experimental parameter optimisation, the nature of the real life and
randomly created instances and a comparison with literature is given in Chapter 5.
We draw our conclusions in Chapter 6.

2
T H E B R E A K S C H E D U L I N G P R O B L E M

2.1 problem statement

The break scheduling problem (Bsp) regards a shiftplan that consists of consecutive
timeslots and of shifts starting and ending in defined timeslots (the length is the
difference between start and end). One shift represents exactly one employee on
duty. Two or more shifts may overlap in time, i.e. have timeslots in common. A
timeslot in a particular shift is referred to as slot. A slot can be assigned one of
three values: break, worktime or time used for familiarisation with a new working
situation. The objective is to find an assignment for each slot, such that breaks are
distributed within each shift according to given criteria, while violations of staffing
requirements, which are given for each timeslot, are minimised.

We first define relevant terms for Bsp and then continue with a formal problem
definition.

Definition 2.1 (Timeslot). A timeslot is a time period of fixed length. In our real life
problem, one timeslot corresponds to a period of five minutes.

Definition 2.2 (Shift). A shift S is defined by a set of n consecutive timeslots S =
{ti, ti+1, ..., ti+n}: ∀j(i ≤ j < i + n) it holds that tj+1− tj = 1. Ss = ti denotes the shift
start and Se = ti+n denotes the shift end. Each shift represents exactly one employee
on duty.

Definition 2.3 (Slot). A slot is a timeslot in a particular shift. A slot can be assigned
one of three values: 1 (1-slot) for a working employee, 0 (0-slot) for an employee on
break or 0′ (0′-slot). 0′-slots are assigned to those and only those slots that directly
follow a sequence of 0-slots. A 0′-slot stands for an employee who is getting familiar
with an altered working situation after a break. During a 0′-slot, the employee
is not consuming breaktime but neither counted as working regarding staffing
requirements.

25

26 the break scheduling problem

Definition 2.4 (Break). A break B is a set of consecutive 0-slots within a particular
shift. The first slot in the set is referred to as break start, and the last slot as break
end. A break is associated to exactly one shift.

Definition 2.5 (Work period). A work period W is a set of consecutive 1-slots and the
succeeding 0′-slot.

Definition 2.6 (Breaktime). The breaktime for a shift S is the number of 0-slots that
have to be assigned to S. The breaktime depends on the shift’s length |S| and is
given as input by a function τ(|S|).

Definition 2.7 (Temporal Constraint). A temporal constraint defines global restrictions
on the lengths and locations of breaks and worktime in shifts.

Definition 2.8 (Break pattern). A break pattern Ds for shift S, Ds ⊂ S is a set of
timeslots defining an assignment of breaks satisfying the shift’s breaktime τ(|S|)
and the set of constraints C. It holds that |Ds| = τ(|S|).

Definition 2.9 (Domain). The domain Ds of a shift S is the set of all possible break
patterns for S. DS is induced by C and τ(|S|). The size of DS usually grows expo-
nentially with respect to |S|.

Definition 2.10 (Staffing requirements). Staffing requirements denote the number of
required 1-slots for each timeslot t ∈ T.

We formally define Bsp as follows:

instance A tuple (k,S , τ, ρ, C):

k: Number of timeslots. Given k, we define a set of consecutive timeslots T =
{1, 2, ..., k}.

S: Collection of shifts, each shift taking place within T, ∀S ∈ S : S ⊆ T.

τ(|S|); Function that maps each shift length to a value denoting its breaktime.

ρ(t): Function that maps each timeslot t to its staffing requirements.

C: Set of temporal constraints {C1, C2, ..C5}, as defined below.

2.1 problem statement 27

C1 Break positions: Defined by (d1, d2). In each shift, the first d1 and the last d2

slots must be 1-slots, i.e. a break may start earliest d1 timeslots after the start
and end latest d2 timeslots before the end of its associated shift.

C2 Lunch breaks: Defined by (h, g, l1, l2). Each shift S with |S| > h must contain a
lunch break consisting of at least g consecutive 0-slots. The break may start
earliest l1 timeslots and end latest l2 timeslots after the start of its associated
shift.

C3 Duration of work periods: Defined by (w1, w2). The number of timeslots in each
work period must range between w1 and w2.

C4 Minimum break times: Defined by (w, b). A work period containing a number
of timeslots greater or equal w must be followed by a break greater or equal b
timeslots.

C5 Break durations: Defined by (b1, b2) The length of each break must range be-
tween b1 and b2 timeslots.

A sample instance of Bsp with a possible solution is depicted in Figure 2.1.

ρ(ti)
T

S1

S2

S3

S4

S5

S6

S7

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

2 2 2 1 0 2 3 3 3 2 1 1 4 4 5 7 3 4 5 3 5 5 2 3 2 2 4 2 2 2

1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1

1 1 1 1 0 0 1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1

1 2 3 4 6 2 3 2 2 2

work periodbreak1-slot

0’-slot

overcover undercover

Solution for instance (k,S , τ, ρ, C) with k = 30, S = {S1, S2, ..S7}, τ(|S|) = 3 if |S| ≤ 15; 4 otherwise, ρ as stated in
the second line, C1 = (3, 3), C2 = (25, 4, 7, 7), C3 = (3, 6), C4 = (5, 2), C5 = (1, 3)

Figure 2.1: A sample instance of Bsp with solution and explanations

objective Let P = (k,S , τ, ρ, C) be an instance of Bsp. The objective is to find
a mapping B relating each shift S ∈ S to a break pattern D ∈ DS, such that the
following objective function F(B,P) is minimised:

28 the break scheduling problem

F(B,P) = wo ·O(B,P) + wu ·U(B,P)

where

• wo and wu are weights for over- and undercover violations respectively.

• O(B,P) = ∑
t∈T

max(0, ρ(t)−ω(B, t)) i.e. sum of undercover

• U(B,P) = ∑
t∈T

max(0, ω(B, t)− ρ(t)) i.e. sum of overcover

• ω(B, t) the number of 1-slots in timeslot t ∈ T according to B

2.2 complexity

We present a proof of NP-completeness for Bsp under the condition that break
patterns are given explicitly as part of the input. The hardness is proven by reduction
from the well-known NP-complete problem Set Cover by 3-Sets, abbreviated X3C
[17].

Bsp can be re-formulated as decision problem with the same input (k,S , τ, ρ, C).
The objective is to decide whether for an instance P there exists a solution B such
that F(B,P) = 0.

We show that Bsp is in NP.

Proof. We are given input (k,S , τ, ρ, C) and construct a certificate by generating a
break pattern for each S ∈ S . The certificate can be checked in polynomial time, or
more precisely in O(k ∗ |S|), by checking for each shift if the temporal constraints
are satisfied, and then checking for each timeslot if the staffing requirements are
satisfied.

We define Bsp’ as modification of Bsp as follows:

Definition 2.11 (Bsp’). 0′-slots are eliminated from the problem, i.e. break patterns
in Bsp’ contain only 0- and 1-slots.

As instance we are given a tuple (k,S , τ, ρ, γ), where the definition of k,S , τ, ρ

equal those in Bsp and γ(S) is a function that maps each shift S to a set Ds of break
patterns. It must hold that ∀D ∈ Ds : |D| = τ(S).

2.2 complexity 29

The objective of Bsp’ is to decide whether for an instance P ′ there exists a solution
B that relates each shift S ∈ S to a break pattern D ∈ Ds such that F(B,P ′) = 0.

The difference between Bsp and Bsp’ is that for Bsp the set of possible break
patterns, or domain, Ds for a shift S is given implicitly by τ(S) and C while for Bsp’
this set is given explicitly by γ(S).

We show that Bsp’ is NP-complete.

Proof. The NP-membership of Bsp’ follows from the NP-membership for Bsp .
We show that Bsp’ is NP-hard by reduction from the well-known NP-complete

problem X3C [17].

Definition 2.12 (X3C). Instance: A set U with |U| = 3m, a collection F of 3-element
subsets of U, ∀F ∈ F : |F| = 3. Question: Does F contain an exact cover for U, i.e. a
subcollection F ′ ⊆ F , s.t. each element of U occurs in exactly one member of F ′?

From an instance of X3C with input (U,F) we construct an instance of Bsp’ with
input (k,S , τ, ρ, γ) as follows:

• k = |U|

• |S| = k
3

• ∀ S ∈ S : S = T (remember that T = 1, 2, ..., k as per definition of Bsp’).

• ∀ S ∈ S : τS = 3.

• We define a bijective function σ that enumerates all elements ui ∈ U: σ(u1) =
1, σ(u2) = 2, ..., σ(u3m) = 3m.

• ∀ t ∈ T : ρ(t) = |S| − 1, or in other words, in each timeslot exactly one break
is required.

• Let σ(F) = {σ(f) | f ∈ F}, then for each shift S ∈ S , γ(S) = {σ(F) | F ∈ F}

Obviously, all of these steps can be done in polynomial time.

We now show the equivalence of this reduction.

Let P ′ be an instance of the Bsp’ problem obtained from an instance X of the X3C
problem by applying the steps described above.

30 the break scheduling problem

With this construction, the number of shifts in P ′ equals the number of sets in
X that are needed to cover U. All shifts are of the same length, stretching over all
timeslots. The timeslots are defined by applying σ to all elements in U. In each
timeslot, exactly one 0-slot is required. All shifts S ∈ S share the same domain Ds,
which contains the contents of F ∈ F mapped by σ.

We now show that X ∈ X3C⇔ P ′ ∈ BSP′ holds.

⇒ If X is a YES instance of X3C, then there exists a collection of sets F ′ such that
all elements u ∈ U occur in one F ∈ F ′. By applying σ to all elements in each set
F ∈ F ′, we obtain a solution for P ′, namely a break pattern for each shift. Thus, P ′
is a YES instance of the reduced Bsp’ problem.
⇐ If P ′ is a YES instance of Bsp’, then there exists a set of break patterns such that

each timeslot t ∈ T occurs in exactly one break pattern (each timeslot must contain
exactly one 0-slot according to ρ). By applying σ−1 to all elements in all sets in B, we
obtain a solution for X . Thus, X is a YES instance of the original X3C problem.

We present an example of the X3C to Bsp’ reduction as follows:
Let X = (U ,F) with U = {A, B, C, D, E, F, G, H, I} and
F = ({A, C, F}, {C, D, E}, {F, G, H}, {A, D, G}, {B, G, I}, {D, E, H}), Then an in-
stance P ′ = (k,S , τ, ρ, γ) of Bsp’ is constructed as follows:

• k = |U | = 9, thus T = {1, 2, 3, 4, 5, 6, 7, 8, 9}

• |S| = 3

• S1 = S2 = S3 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

• σ
U A B C D E F G H I

T 1 2 3 4 5 6 7 8 9

•
t 1 2 3 4 5 6 7 8 9

ρ(t) 2 2 2 2 2 2 2 2 2

• D1 = D2 = D3 = ({1, 3, 6}, {3, 4, 5}, {6, 7, 8}, {1, 4, 7}, {2, 7, 9}, {4, 5, 8})

A solution for P ′ is the mapping (S1, {1, 3, 6}), (S2, {2, 7, 9}), (S3, {4, 5, 8}). Figure
2.2 depicts this solution. It is easy to construct the solution for the X3C instance X
by looking up the values in the σ function.

2.3 related work 31

ρ(ti)
T

S1

S2

S3

t1

2

t2

2

t3

2

t4

2

t5

2

t6

2

t7

2

t8

2

t9

2

Figure 2.2: Solution for Bsp’ instance reduced from X3C instance

2.3 related work

In literature, break scheduling problems have been addressed in two ways: As part
of the so-called shift scheduling problem and, as in our case, as break scheduling
problem with fixed shifts. The objective of the former problem is to schedule shifts
and breaks at the same time according to given constraints, while for the latter,
readily scheduled shifts are part of the input and the objective is to place breaks into
the shifts according to given constraints.

In practice, the decision on whether to schedule shifts along with breaks or each
independently depends on many different factors, such as predictability of staffing
requirements or constraints imposed by federal laws. It makes sense to schedule
shifts and breaks independently in if employer has to announce shiftplans well in
advance with little possibility to change, while staffing requirements are difficult
to predict and change rapidly between short timeslots. In this case, new break
assignments may be necessary for shifts that cannot be moved.

Another point is that, to our best knowledge, there has not yet been any work
on shift scheduling with breaks for problem formulations that allow an arbitrary
number of breaks. To find a solution for such a problem, one way is to schedule
shifts together with breaks at the same time and another to first schedule the shifts
and then to insert the breaks into the existing shiftplan. It is unclear which approach
is more effective, but the first one certainly considers a larger search space.

Most work however can be found on shift scheduling with breaks, though in all
problem formulations the number of breaks is restricted. We give a quick overview
on related work on both the shift scheduling with breaks problem and the stand-
alone break scheduling problem.

32 the break scheduling problem

2.3.1 Shift scheduling with breaks

Research on methods to solve or optimise shift scheduling problems with breaks
started in the 1950’s with Dantzig’s set-covering formulation [12] for an assignment
of shifts with up to three breaks for toll booth staff. In this formulation feasible
shifts are enumerated based on possible shift starts, shift lengths, breaks, and time
windows for breaks. In the 70’s, this problem was addressed by Segal [30] who
presented a set of network-flow formulations for operator-scheduling, where shifts
with breaks and reliefs for telephone operators were to be scheduled.

Based on Dantzig’s formulation, various integer programming approaches were
introduced in the 1990’s. Bechtold and Jacobs proposed an integer programming
formulation [4] where break assignments are modelled implicitly. The advantage of
this approach is that the number of variables does not increase as rapidly as within
Dantzig’s formulation. They claimed this method to be superior to Dantzig’s formu-
lation with respect to execution time, memory requirements and finding optimal
solutions for larger instances. Thompson [33] presented an integer programming
model with implicit modelling of both shifts and breaks. He reported improvements
on execution time compared to Bechtold and Jacobs. Yet another integer program-
ming model is proposed in Aykin [3]. Aykin later compared the different models for
shift scheduling with breaks in [2]. While [3] requires more variables than [4], their
approach finds optimal solutions in shorter time.

A very recent work from Rekik et al. [29] in 2010 addresses a problem more similar
to our problem formulation. They propose an implicit model for a shift scheduling
problem with multiple breaks. Additionally one break in each shift can be fractioned
into multiple breaks resulting in break profiles, which are something similar to what
we denote as break patterns. Additionally, possible work stretches, similar to our
work periods, are constrained by a maximum and minimum length.

Besides exact methods, also meta-heuristic methods have been proposed for shift
scheduling problems with breaks. Tabu search algorithms have been introduced by
both Canon [11] and Tellier and White [32] for problems in the call or contact center
industry. Both report satisfactory results. A genetic algorithm with local search and
parametrised fitness function was presented by Yamada et al. [35] for an information
operator scheduling problem. The shifts according to their problem definition last
up to five hours and contain up to five breaks.

2.3 related work 33

2.3.2 Break scheduling

The break scheduling problem with a fixed shiftplan has been attended by Beer et
al. [5, 6]. They propose a min-conflicts based local search algorithm, a tabu search
and a simulating annealing approach to optimise this problem. The min-conflicts
heuristic iteratively improves the current solution by focusing only on breaks causing
temporal constraint or staffing requirements violations. In each iteration, a break
that violates a constraint is selected randomly and its neighbourhood constructed.
The move leading to a solution improving or at least not worsening the current
violation degree is performed and the new solution used for the following iteration.

To avoid local optima the authors apply a random walk strategy: In each iteration
a random, possibly worsening, move is performed on a randomly selected break
with some probability.

The authors evaluate different parameter settings and publish their best results
for two different flavours of the algorithm, one considering temporal constraints as
hard constraints and thus resolving them from the very beginning, and another one
which randomly initialises solutions which may violate temporal constraints. The
second version resolves temporal constraints along with the staffing requirement
violations.

3
M E M E T I C S

The concept of memes was presented by evolutionary biologist Richard Dawkins
in the last chapter of his book “The Selfish Gene” in 1976 [14]. His intention was
to show applications of Darwin’s theory of evolution [13] to other fields than
biological evolution. He claims that cultural development within human societies
undergoes a process that can also be seen as evolutionary. His ideas were picked
up by scientists of different disciplines such as psychologist Susan Blackmore [7],
philosopher Daniel Dennet [16] or anthropologist Scott Atran [1], just to mention
a few. We take advantage of the concept of memetics to design an optimisation
algorithm, as suggested by Moscato [23].

3.1 concept and terminology

In this work, we will stick to the terminology coined by Dawkins and Blackmore
[7, 14]. Similarly to genes, memes represent replicable units that are hosted by an
individual. However, rather than for a biological unit, a meme stands for a cultural
unit like a thought, an idea, a piece of music. Multiple memes may work together
and make up cultural entities like music genres, political or religious ideologies,
or instructions on how to construct something. Other than genes, memes are of
non-physical, intangible nature. A set of memes with different characteristics is
referred to as memepool.

Looking at the development of cultural entities, a behaviour similar to biological
evolution can be observed: Cultural entities, or sometimes only single memes, are
passed on within individuals through communication, i.e. they replicate. Through
misunderstandings or misinterpretations they may change arbitrarily, i.e. they mutate.
Selection might take place through personal preference of an individual for a specific
meme or by external influence, for example by censorship. An important difference
between genes and memes is that the latter can be improved independently by
its hosting individual, e.g. a person can improve an idea previously copied from
someone else.

35

36 memetics

Based on the work of Dawkins and Blackmore [7, 14], let us discuss the following
hypothetical example: We define the cultural entity “Spanish Tortilla Preparation
Instructions” consisting of the memes “Ingredients”, “Potato-cutting technique”,
“Frying temperature”. The ingredients are usually potatoes, eggs and olive oil, but
sometimes onions are added. Potatoes can be cut as sticks, even or uneven slices, or
tetrahedrons. Each of these options represents a meme, which can be manipulated
and passed on to fellow individuals.

In our example, suppose that individual A, who used to cut the potatoes as
sticks, learns from individual B the technique of tetrahedron-slicing. He likes it and
replaces his previously obtained stick method. Later, he publishes this recipe in a
bestselling book which causes its 10,000 readers to also apply and spread the tortilla
recipe with the recommendation to cut the potatoes as tetrahedrons. The tetrahedron
meme has thus successfully superseded the stick meme. Here, Replication took place.
Other than in biological evolution, memes are passed on also between individuals
of the same generation.

Now consider a new individual C copying the tortilla recipe from individual
A, but he understands octahedron instead of tetrahedron. Now he has serious
difficulties cutting potatoes in that shape, eventually gives up, and forgets about
the whole tortilla recipe. The tortilla recipe that includes the octahedron meme thus
extincts. It was not fit enough to survive the requirements of tortilla preparation.
This incorrectly imitated meme can be seen as mutated. Such an incorrect imitation
can happen through simple misunderstandings or misinterpretations occuring quite
frequently in human communication.

The selection mechanism was already implicitly included in the previous two
paragraphs. Individual A selected the tetrahedron slicing method over the stick
method because it improved his overall tortilla cooking and eating experience.
Similarly, the mutated octahedron method was not selected to continue inside the
memepool.

As opposed to genes, an individual is able to independently modify any of its
memes. Applying such a modification, the individual usually aims at improving the
cultural entity as a whole. In our example, this could be towards optimising the
preparation time and taste of the tortilla. It is easy to see that this optimisation can
be quite subjective. While the preparation time is relatively easy to measure, taste is
subject to personal preference.

This mechanism of local improvement along with high replication rates is what
accelerates the evolution of memes compared to the evolution of genes. In biolog-

3.2 from memetics to memetic algorithms 37

ical evolution, as presented by Darwin [13], genetic changes appear randomly by
mutation while selection pressure makes sure genes with a lower fitness extinct.
Replication occurs only by heredity, which means a gene is replicated only from
one generation to another. This makes the biological evolution process much slower
compared to memetic evolution, where memes may spread to an arbitrary number
of individuals within or between generations. Changes occur much more frequently,
given that each individual may modify its memes in any way it likes. Also memes
can improve much faster, since each individual has control over its memes, as
opposed to genes, which are improved over many generations by natural selection.

3.2 from memetics to memetic algorithms

The term Memetic Algorithm was introduced by Moscato in [23]. Memetic algorithms
are also known as Hybrid Genetic Algorithms as presented by Goldberg [19]. The
idea is to imitate cultural evolution on a pool of different solutions for an instance
of an optimisation problem in order to obtain improved solutions. In contrast to
purely genetic algorithms, also local improvements are integrated in addition to the
standard operators of biological evolution. It can thus be seen as a hybridisation of
genetic operators with a local improvement method. We can also say that individuals,
each carrying a (probably sub-optimal) solution, are able to independently improve
their genes. Looking into the concept of memetics as described in the previous
section, we find that it describes exactly this behaviour. Further, crossover may take
place within more than two individuals and we will thus denote it as “interaction”.
Selection is often integrated in the interaction process in this way, that an individual,
when copying memes from others, may choose memes with specific characteristics
over others.

Memetic algorithms have been investigated on many different problems, such
as the travelling salesman problem [24], timetabling problems [9, 10] or quadratic
assignment problem [21].

The challenge of designing an algorithm based on memetics to solve a particular
optimisation problem includes many different aspects. The very basis of any memetic
algorithm is an appropriate memetic representation of the problem, i.e. the definition
of a meme, an individual and a fitness function. Only upon this representation, the
interaction, selection, mutation and improvement operators can be built.

38 memetics

Each of these operators again requires careful definition taking into consideration
many different options: How exactly should the interaction take place? How many
individuals should be involved in each interaction? Regarding which criteria should
an meme be chosen over its competing memes? Which kind of mutation should
be applied? Should every single meme be locally improved or only selected ones?
If we choose for selected memes, how should they be selected? How intensively
should the local improvement be performed? Which method should be used for
local improvement?

The choice on the local improvement process itself again opens up a broad range
of possibilities. In fact, any heuristic, and for some problems also exact methods,
can be used. For optimisation problems, local search is a popular choice. However,
local search again comes in many different flavours: One or more neighbourhoods
can be defined. In the case of various neighbourhoods, many different exploration
strategies exist. And within the chosen strategy, should we use best, random or first
improving steps? Integrate a tabu list? Use perturbation?

Additionally, several parameters might influence the algorithm, which impose an
additional level of difficulty for the design of a good memetic algorithm. Examples
for such parameters are the number of individuals, i.e. the population size, the
intensity of local improvement or the selection pressure.

We address these questions in Chapter 4 within the description of the algorithms,
and in Chapter 5 within the discussion of the parameter evaluation.

4
S O LV I N G T H E B R E A K S C H E D U L I N G P R O B L E M

To solve the Break Scheduling Problem, we propose two different memetic repre-
sentations, one defining a meme as a single shift and the other defining a meme
as a group of shifts which largely overlap in time. Upon these representations,
we present three different novel methods to obtain good solutions for Bsp. The
algorithms are based on the concepts discussed in Section 3. In Chapter 5 we show
how the different representations influence the quality of the solutions.
The following characteristics all algorithms have in common:

• Initialisation by random assignment of break patterns followed by a simple
local search.

• Use of elitism, i.e. the fittest individual (elitist) is determined after each opera-
tion and is prevented from worsening its fitness in the following iteration.

• Creation of new individuals by copying memes out of the current memepool.

• Mutation of memes by randomly changing break assignments.

• Local improvement of memes by a local search heuristic.

• The local search is based upon the same set of three neighbourhoods.

Each of these operations can be done in different ways depending on the memetic
representation in use. We propose one algorithm, Memetic Algorithm with Repre-
sentation 1 or MAR1, based on the first representation, and two algorithms, Memetic
Algorithm with Representation 2 or MAR2 and Memetic Algorithm with Penalty
System or MAPS, based on the second representation. MAPS, as the name suggests,
additionally uses a penalty system that tries to escape local optima.

We first introduce the different representations and some terminology, then de-
scribe the initialisation procedure, the neighbourhoods and the local search proce-
dure. Each of the algorithms with its specific operators is then described separately.

39

40 solving the break scheduling problem

4.1 representations and definitions

By memetic representation we refer to the representation of a solution B by a
set of memes M, similarly to genetic representations in genetic algorithms. The
genetic operators are defined upon this representation. We present two different
representations.

Definition 4.1 (Memetic Representation 1). A meme M is represented by exactly
one shift S ∈ S and its associated breaks according to B and each shift represents a
meme, i.e. M1 ∪M2 ∪ · · · ∪Mm = S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35
ρ
T

3 3 2 2 2 2 2 2 2 3 3 3 4 4 3 3 2 2 3 3 3 3 3 3 4 3 2 2 2 2 2 2 3 3 3

S1

S4

S5

S6

S7

S8

S9

S10

S2

S31 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 1

1 1 0 0 1 1 1 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 0 0 1 1

1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

u
o

- - - 1 2 - - - - - - 1 - - 1 - 1 - - - - - 2 - - - 1 - - - - 1 1 - -

- - - - - - 1 - - - - - 2 1 - - - - - - 1 1 - - - - - - - - - - - - -

Shiftplan with solution represented by set of memesM with 10 memes, each meme represented by one shift.

Figure 4.1: Memetic Representation 1

The problem with Representation 1 is a strong interference between memes
regarding the satisfaction of staffing requirements. This makes the design of effective
genetic operators difficult, as we will see in Section 4.6. We propose a second
memetic representation, which aims at avoiding these interferences.

Memetic Representation 2 overcomes this problem by regarding interfering shifts
as memes. Shifts interfere if they take place during the same time period and thus
may assign breaks to the same timeslots.

Definition 4.2 (Memetic Representation 2). A meme M is defined by a period
[m′, m′′), with m′, m′′ ∈ T and contains

• Those and only those shifts S ∈ S : m′ ≤ b(Se + Ss)/2c ≤ m′′, Ss and Se

denoting shift start and end

4.1 representations and definitions 41

• The breaks associated to these shifts

Each shift S ∈ S is thus contained in exactly one meme: ∀Mi, Mj ∈ M : Mi ∩Mj =
∅, M1 ∪M2 ∪ · · · ∪Mm = S .

We use the following heuristic to determine the periods that induce the set of
memes for Representation 2: For each timeslot t ∈ T let set of shifts St ⊂ S s.t.
∀S : S ∈ St iff t ∈ S, i.e. the set of shifts taking place during t.

We assign a penalty value p(t) to each t ∈ T:

p(t) = ∑
S∈St

0 if t < Ss + d1

0 if t > Se − d2

1 if Ss + d1 < t < Ss + d1 + b1 + w1

1 if Se − d2 > t > Se − d2 − b1 − w1

10 otherwise

.
Recall that Ss and Se denote start and end of shift S, d1, d2 denote the number of

timeslots after Ss and before Se respectively, to which no breaks can be assigned, b1

stands for the minimal length of a break and w1 for the minimal length of a work
period. These values are described in more detail in Section 2.1.

The lower the penalty value p(t) for a timeslot t, the less breaks can be assigned
to t. This makes it a good separation point.

We determine a set of timeslots T′ ⊂ T with size |T′| given by a parameter such
that

• ∑
t′∈T′

p(t′) is minimised

• ∀t′i, t′j ∈ T′ :
∣∣∣t′i − t′j

∣∣∣ > d with d = b(min
S∈S
|S|)/2c, i.e. the distance between all

pairs of timeslots is at least half of the smallest shift length

To retrieve this set, we start with adding timeslot t′0 to T′ with t′0 = t s.t. min
t∈T

p(t),

i.e. the timeslot with the lowest penalty value, ties are broken randomly. We continue
by adding timeslots t′i = t s.t.

42 solving the break scheduling problem

• min
t∈T\T′

p(t)

• ∀t′k, t′j ∈ T′ ∪ t :
∣∣∣t′k − t′j

∣∣∣ > d

We obtain a setM of memes with |M| = |T′| − 1 by sorting the elements in T′

and defining each meme Mi by period [t′i, t′i+1).

Definition 4.3 (Meme Fitness). For Representation 2, we define the fitness F(M) of a
meme M as the weighted sum of staffing requirement violations in all timeslots that
are covered by the shifts contained in M, or more formally: Let T′ =

⋃
S, ∀S ∈ M

F(M) = F(B,P , T′) = wo ·O(B,P , T′) + wu ·U(B,P , T′)

where

• wo and wu are the same weights for over- and undercover defined in Section
2.1.

• O(B,P , T′) = ∑
t∈T′

max(0, ρ(t)−ω(B, t)) i.e. sum of undercover

• U(B,PT′) = ∑
t∈T′

max(0, ω(B, t)− ρ(t)) i.e. sum of overcover

• ω(B, t) the number of 1-slots in timeslot t ∈ T′ according to B

This is the fitness function presented in Section 2.1, but applied only on a subset
of T.

Figure 4.1 depicts a possible memetic representation of Bsp.

Definition 4.4 (Individual). An individual I contains a solution B, i.e. a mapping of
shifts to break patterns for each shift S ∈ S and a Fitness value F(I), which is the
value of the objective function F(B,P).

Definition 4.5 (Population). A population is a set I of individuals.

Definition 4.6 (Generation). A generation is a population during an iteration of the
algorithm.

Definition 4.7 (Memepool). A memepool is the set of all memes in a given generation.

4.2 break patterns 43

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35
ρ
T

3 3 2 2 2 2 2 2 2 3 3 3 4 4 3 3 2 2 3 3 3 3 3 3 4 3 2 2 2 2 2 2 3 3 3

S1

S4

S5

S6

S7

S8

S9

S10

S2

S31 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 1

1 1 0 0 1 1 1 0 0 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 1 1 1 1 0 0 1 1

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 0 0 1 1

1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

u
o

- - - 1 2 - - - - - - 1 - - 1 - 1 - - - - - 2 - - - 1 - - - - 1 1 - -

- - - - - - 1 - - - - - 2 1 - - - - - - 1 1 - - - - - - - - - - - - -

M1 M2 M3

Shiftplan with solution represented by a set of memesM = {M1, M2, M3}, M1 = ({S1, S2, S3}, m′ = 1, m′′ = 12),
M2 = ({S4, S5, S6, S7}, m′ = 13, m′′ = 23) and M3 = ({S8, S9, S10}, m′ = 24, m′′ = 35)

Figure 4.2: Memetic Representation 2

4.2 break patterns

As mentioned in Section 2.1, using input data C and τ, a set of break patterns, or
domain, Ds for each shift S can be computed. We refer to Ds as domain for shift S.

The problem of finding a single break pattern D ∈ Ds can be modeled as simple
temporal problem as presented by Dechter et al. [15] and consequently be solved in
cubic time with respect to |S| using Floyd-Warshall’s shortest path algorithm [26].
The size of a domain |Ds| usually grows exponentially with respect to |S|.

We precalculate a subset D′s of Ds for each shift length with the following restric-
tions:

• b1 = 2, b2 = 3, b1, b2 denoting minimal and maximal allowed length of breaks
respectively, except for lunch breaks, which are all set to their minimal size
g = 6

• Break patterns may include breaks of different sizes. E.g. if τ(|S|) = 10 without
lunchbreak, then this breaktime can be made up out of two breaks with
length 2 and two breaks with length 3 or five breaks with length 2. Possible
break patterns in Ds for a shift S thus include all possible combinations of
break lengths that sum up to τ(|S|) as well as their permutations. In the
example defined the following are all possible permutations of break lengths:
(3, 3, 2, 2), (2, 3, 2, 3), (3, 2, 3, 2), (2, 2, 3, 3), (2, 3, 3, 2), (3, 2, 2, 3) and (2, 2, 2, 2, 2).

44 solving the break scheduling problem

|S| |D′s| |S| |D′s|
60 2,514 110 1,028,879

66 7,457 114 7,685,738

72 13,175 116 7,075,413

92 14,149 126 56,150,948

96 223,315 134 181,462,430

102 131,698 138 374,959,311

106 1,475,034 144 1,133,795,593

108 1,283,700

Table 4.1: Sizes of D′ for different shift lengths

To save computation time, we select only one permutation of each combination
at random. For the example τ(|S|) = 10, we would compute all possible
patterns with break ordering (2, 2, 2, 2, 2) and one selected randomly out of all
permutations of (3, 3, 2, 2).

Figure 4.3 depicts an example for different break patterns and Table 4.1 shows
the sizes of D′s calculated according to the described restrictions for different shift
lengths occuring in the publicly available instances. Specific information on the
instances is given in Section 5.2.2.

Figure 4.3: 7 possible break patterns for length |S| = 74

To save computation time and space, we use the following method to compute
D′s for each shift: If, according to constraint C2 (see Section 2.1), the shift contains a
lunch break, we consider each timeslot the lunch break may be assigned to according
to C2 and divide the shift into a period before and a period after each lunch break
position. A domain for any of the periods depends on the length p of the period that

4.3 initialisation 45

is covered, the breaktime b it contains and C. Since C is defined globally, a domain is
identified by (p, b). For each possible period before/after lunch breaks, and periods
covering shifts that do not contain a lunch break, we compute a subdomain. Note
that periods with the same length and breaktime, i.e. (p, b), share the same domain.
We thus compute a subdomain for each tuple (p, b) and for each shift length we
store only references to the domains.

An example for this method is depicted in Figure 4.2

|S1 | = 60, τ(60) = 10p = 25, b = 3 p = 32, b = 4

|S2 | = 50, τ(50) = 8

p = 22, b = 2 p = 25, b = 3

|S3 | = 50, τ(50) = 8

p = 25, b = 3 p = 22, b = 1

|S4 | = 25, τ(25) = 3

p = 25, b = 3

Some break patterns for p = 25, b = 3:

The first three shifts are divided into two parts by their lunch break. The parts with the same b and p, e.g. p = 25
and b = 3, as well as S4 with length 25 and no lunch break, have the same set of break patterns. We thus have to

compute and store it only once.

Figure 4.4: Computation of break patterns

4.3 initialisation

We use the same initialisation procedure for all algorithms presented in this thesis.
Each individual I in the population is initialised in two steps: First, for each shift

S ∈ S a valid break pattern D ∈ Ds is selected randomly. This provides us with

46 solving the break scheduling problem

a first solution satisfying the temporal constraints C. Second, a randomised local
search procedure is executed on the solution.

The randomised local search iterates the following steps: First, a break b is picked
at random out of all breaks of individual I and the set N of neighbours in its single
assignment neighbourhood computed. This neighbourhood is described in Section
4.4.

Second, for each N ∈ N let δ(N, I) = F(N)− F(I), i.e. the difference between the
fitness values. Let N ′ = {N ∈ N : δ(N, I) ≤ 0}. If |N ′| > 0 then we pick a N ∈ N ′
at random, otherwise we do nothing.

The local search terminates when for 10 subsequent iterations |N ′| = 0, i.e. no
improvements could be found.

4.4 neighbourhoods

4.4.1 Single Assignment

This neighbourhood, N1, comprises the set of all solutions that are reached by
applying a single assignment move. This move assigns a break b to a different set of
timeslots under consideration of C. This includes appending b to its predecessor or
successor, b′ or b′′ respectively, resulting in one longer break. Examples for single
assignment moves are depicted in Figure 4.5. For the instances used in this work
(for details see Section 5.2.2), the size of this neighbourhood averages three to four
neighbours.

Two examples for possible moves in the single assignment neighbourhood. The second move shows two breaks
being joined to a longer break and thus eliminating one 0′-slot.

Figure 4.5: Single assignment moves

4.4 neighbourhoods 47

4.4.2 Double Assignment

This neighbourhood, N2, consists of the set of all solutions that are reached by a
double assignment move. This move involves two breaks. We consider a break b and
both its predecessor b′ and successor b′′, or only b′ respectively b′′ if b is the last or
first break within its shift. A double assignment move is a re-assignment of b and
b′ or b and b′′ under consideration of C. Like single assignment moves, two breaks
might be joined to form a longer break. Two breaks of different length may also
be swapped. This neighbourhood is significantly larger then the neighbourhood
constructed by single assignment moves. For the instances tested, its size amounts
to up to 100 neighbours. This neighbourhood is illustrated in Figure 4.6.

Two examples for possible moves in the double assignment neighbourhood with two breaks of different lengths.

Figure 4.6: Double assignment moves

4.4.3 Shift Assignment

This neighbourhood, N3, consists of a set of solutions that are reached by assigning
all breaks associated to the shift S containing b. Possible re-assignments are retrieved
from in the pre-calculated set of break patterns D′s described in Section 4.2. For
performance reasons, we do not consider the complete D′s, but only a randomly
selected subset. The size of this subset determines the size of the neighourhood.
Figure 4.7 depicts some shift assignment moves.

48 solving the break scheduling problem

Four possible moves in the shift assignment neighbourhood. Any break assignment that satisfies C can be
contained in this neighbourhood.

Figure 4.7: Shift assignment moves

4.5 local search

We propose the following local search heuristic, which is used by all three algo-
rithms. In each iteration of the local search the following steps are performed on an
individual I: First, a break b is selected at random out of a set B of breaks. B may
comprise all breaks that are currently included in the individual’s solution or only
a subset. Second, a neighbourhood N out of three neighbourhoods {N1,N2,N3}
is chosen at random with a different probability for each neighbourhood given by
parameter η = (η1, η2, η3), which represents the probability for each neighbourhood
to be selected. Then the set N of all neighbours according to the chosen neighbour-
hood is computed. For each N ∈ N let δ(N, I) = F(N)− F(I), i.e. the difference
between the fitness values. Let N ′ = {N ∈ N : δ(N, I) ≤ 0}. If |N ′| > 0 then
I = N with N ∈ N ′ s.t. min

N∈N ′
δ(N, I), i.e. the best neighbour is chosen with ties

broken randomly. Otherwise we do nothing. The local search terminates when for µ

subsequent iterations |N ′| = 0, i.e. no neighbours with better or equal fitness could
be found. This procedure is influenced by three parameters: The size of B, the search
intensity determined by µ and the probabilities of the different neighbourhoods
η. Different values for these parameters have been tested for each algorithm. The
results are presented in Chapter 5. Algorithm 1 outlines the local search procedure.

4.6 mar1 – memetic algorithm with representation 1

This algorithm is based on Representation 1. The algorithm creates each offspring
either by mutation or by crossover from the previous generation. A k-tournament

4.6 mar1 – memetic algorithm with representation 1 49

Algorithm 1 Search (Individual I, Breaks{}B)
1: c← 0
2: repeat
3: b← select break b ∈ B randomly
4: N ← select and compute one of {N1,N2,N3}
5: N ′ ← {N ∈ N : δ(N, I) ≤ 0}
6: if |N ′| > 0 then
7: I ← N ∈ N ′ with minimal δ(N, I)
8: c← 0
9: else

10: c← c + 1
11: end if
12: until c == µ
13: return I

selector [8] decides which inidividuals survive in each iteration. The local search is
applied in each iteration on a subset of the population. 4.6 outlines this algorithm.

4.6.1 Selection

The selection operator selects a set of individuals that survive the current iteration.
First, an elitist E is determined by selecting the individual with the best fitness value
in the current generation (ties are broken randomly). The elitist individual remains
unaltered during the whole iteration.

Second, individuals are selected out of the current generation by a k-tournament
selector [8]: This operator randomly takes k individuals, k ≤ |I| out of the current
population to perform a tournament. Out of these k individuals, the one with the
best fitness value survives. This procedure is repeated |I| − 1 times (|I| − 1 since
one individual is represented by the elitist). The population now consists of the
elitist and the individuals selected by the tournament selection operator.

4.6.2 Crossover and Mutation

Each individual I ∈ I \ E is replaced by an offspring created either by mutation or
by crossover. The elitist individual remains the same. Crossover takes place with
probability α and mutation with 1− α, where α is a parameter set experimentally

50 solving the break scheduling problem

Algorithm 2 Memetic Algorithm with Representation 1

1: buildDomains

2: I ← Initialisation
3: repeat
4: E← fittest I ∈ I
5: I ← select(I) ∪ E
6: for all individuals I ∈ I \ E do
7: x ← select random float uniformly distributed in [0..1]
8: if x ≤ α then
9: J ← select individual J 6= I randomly

10: I ← crossover(I, J)
11: else
12: I ← mutate(I)
13: end if
14: end for
15: m← |I| · λ
16: L ← m fittest individuals in I
17: for all L ∈ L do
18: B← set of all breaks contained in L
19: L← search(L,B)
20: end for
21: until timeout
22: return fittest I ∈ I

4.6 mar1 – memetic algorithm with representation 1 51

as described in Section 4.5. We propose a combination of two different crossovers.
Both select a partner individual J different to I randomly out of the generation and
create an offspring inheriting entire shifts (memes) with their breaks from one of the
parents. They differ in the decision about which shifts are taken from which partner.

simple crossover An offspring is produced by randomly inheriting a percent-
age γ of all shifts with their assigned breaks from one parent’s exchangeable shifts,
and the remaining shifts from the other parent. By exchangeable shifts we refer to
shifts with equal shift start and length. Figure 4.6.2 depicts this operator. Obviously,
the Simple Crossover merely perturbates a solution and improvements are not very
likely since the staffing requirement violations are not considered at all.

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 4 3 3 2 2 1 1 3 3

S1
S2
S3
S4

S5
S6

u - - - - 1 1 1 - - - - - 1 - - - - - - - - 1 - 1 - 60
o - - - - - - - 1 1 1 2 - - - - 1 - - - - - - - - - 12

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 4 3 3 2 2 1 1 3 3

u - - - 1 - - - - - - - - 1 1 1 - - - 1 1 2 - - - - 80
o - - - - - - - - 1 - 2 1 - - - 2 - - 0 0 0 - 2 - - 24

u - - - - - - 1 - - - - - 2 1 1 - 1 - 1 - 1 - - - - 80
o - - - - - - - - 1 1 3 1 - - - 1 - - - - - - 1 - - 16

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 4 3 3 2 2 1 1 3 3

S1
S2
S3
S4

S5
S6

Two parent individuals and one offspring with under- and overcover violations, assuming undercover weight
wu = 10 and overcover weight wo = 2: fitness of left parent 104, fitness of right parent 72 and fitness of offspring

F(B3, T) = 96

Figure 4.8: Simple Crossover

smart crossover This crossover looks at each shift of one of the parents and
determines the constraint violations the shift is involved in, i.e. the sum of constraint
violations of the timeslots covered by the shift. The offspring inherits the respective
shift from the parent with lower constraint violations during the timeslots covered
by the shift. This way we are more likely to improve the fitness value of the offspring
compared to its parents. Figure 4.9 depicts this operator.

52 solving the break scheduling problem

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 4 3 3 2 2 1 1 3 3

S1
S2
S3
S4

S5
S6

u - - - - 1 1 1 - - - - - 1 - - - - - - - - 1 - 1 - 60
o - - - - - - - 1 1 1 2 - - - - 1 - - - - - - - - - 12

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 4 3 3 2 2 1 1 3 3

u - - - 1 - - - - - - - - 1 1 1 - - - 1 1 2 - - - - 80
o - - - - - - - - 1 - 2 1 - - - 2 - - 0 0 0 - 2 - - 24

52
52
92
92
88
52

52
52
36
36
32
52

u - - - 1 - - - - - - - - - - 2 - - - - - - 1 - 1 - 50
o - - - - - - - - 1 - 2 1 - - - 1 - - - - - - - - - 10

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 4 3 3 2 2 1 1 3 3

S1
S2
S3
S4

S5
S6

Two parent individuals with violations of each shift and under- and overcover violations, assuming undercover
weight wu = 10 and overcover weight wo = 2: Fitness of left parent 104, fitness of right parent 72 and fitness of

offspring 64. The shifts with lower violations are inherited to the offspring, ties broken randomly. Here, S1, S2, S6
are inherited from the left parent, and S3, S4, S5 from the right parent. The result is an offspring with a better

fitness value than both parents.

Figure 4.9: Smart Crossover

mutation The mutation operator performs one random move on the given
individual using the single assignment neighbourhood, which is described in the
Section 4.4.

4.6.3 Local Search

In each iteration, we select a set L ⊂ I individuals, |L| = |I| · λ of the current
population. λ is a parameter whose value has been determined experimentally
as described in Section 5.1. On each individual L ∈ L the local search heuristic
described in Section 4.5 is executed with the set of breaks B comprising all breaks
contained in I. Different values tested for λ are described in Section 4.5.

4.7 mar2 – memetic algorithm with representation 2

MAR2 is similar to MAR1, but uses Representation 2. The operators are mostly the
same as those presented for MAR1. Within this algorithm, we tested a tabu list as
part of the local search heuristic.

4.7 mar2 – memetic algorithm with representation 2 53

Algorithm 3 Memetic Algorithm with Representation 2

1: buildDomains

2: I ← Initialisation
3: repeat
4: E← fittest I ∈ I
5: for all individuals I ∈ I \ E do
6: x ← select random float uniformly distributed in [0..1]
7: if x ≤ α then
8: J ← select random individual J 6= I
9: I ← crossover(I, J)

10: else
11: I ← mutate(I)
12: end if
13: end for
14: I ← select(I) ∪E
15: m← |I| · λ
16: L ← m fittest individuals in I
17: for all L ∈ L do
18: B← all breaks contained in L
19: L← search(L,B)
20: end for
21: until timeout
22: return fittest I ∈ I

54 solving the break scheduling problem

4.7.1 Crossover and Mutation

The crossover and mutation operators in this algorithm work very similar to those
described in Section 4.6.2. Each individual I ∈ I \ E is replaced by an offspring
created either by mutation or by crossover I ∈ I , except for the elitist individual.
Crossover will take place with probability α and mutation with 1− α.

The crossover operator selects a partner J different to I randomly out of the
generation and creates an offspring inheriting each meme from either of the parents.
The decision on which meme to inherit from which parent can be taken randomly or
with a probability υ to inherit the meme M with better fitness F(M). υ is a parameter
for which different values are evaluated in Section 5.2.6.

The mutation operator performs one random move on the given individual using
the shift assignment neighbourhood, which is described in the Section 4.4.

4.7.2 Selection

The selection operator for this algorithm is exactly the same as described for the
MAR1 algorithm described in Section 4.6.1.

4.7.3 Local Search with Tabu List

Like MAR1, MAR2 also performs the local search on a subset of individuals. The
search procedure is as described in Section 4.5 with the only exception that the
computed neighbourhood N is reduced by those neighbours that are currently
forbidden by a tabu list.

A tabu list [18] L is maintained for each break b. L contains the timeslots the first
slot of b has previously been assigned to. Whenever a move is performed by b, L is
updated: The oldest value of L is deleted and the current first slot of b is added. The
length |L| of the tabu list thus determines how long a value is kept tabu.

The neighbourhood N is computed as described in Section 4.5, but reduced by
those neighbours that are reached applying a move that includes moving the first
slot of b to any of the values contained in L. However, if any of the tabu moves leads
to a globally improved neighbour, it is allowed anyway. This is called an aspiration
criterion. The tabu list intends to prevent the local search from re-visiting previously
computed solutions.

4.8 maps – memetic algorithm with penalty system 55

4.8 maps – memetic algorithm with penalty system

MAPS uses Representation 2 as does MAR2. However, the algorithm is different
in many aspects: The crossover operator uses memes of the whole generation
to create an offspring instead of only two parents. We renamed the crossover
operator to the more appropriate term “interaction” operator as an analogy to the
interaction of multiple individuals in cultural evolution. Further, in this algorithm
the selection mechanism is included in the interaction operator. The mutation and
local search procedures consider only breaks contained in a subset of an individual’s
memes. Memes additionally keep a memory to track data about their search history.
Algorithm 4 outlines the method.

Algorithm 4 Memetic Algorithm with Penalty System
1: buildDomains

2: I ← Initialisation
3: repeat
4: E← fittest I ∈ I
5: for all individuals I ∈ I \ E do
6: I ← interact-select(I)
7: E← fittest I ∈ I
8: M′ ← get(M′ ⊂M)
9: I ← mutate(I,M′)

10: B← all breaks contained inM′

11: I ← search(I, B)
12: I ← penalty-update(I, B)
13: end for
14: until timeout
15: return fittest I ∈ I

4.8.1 Penalty System

For each meme M we store the following values:

Best fitness value B(M): The best fitness value F(M) the meme reached since the
start of the algorithm

Penalty value P(M): Number of iterations since last update of best fitness value

56 solving the break scheduling problem

The higher P(M), the longer the meme was not able to improve. This means it
is more likely to be stuck in a local optima. We use this value at two points of the
algorithm: The interaction operator prefers memes with low P(M), thus memes
stuck in local optima are likely to be eliminated, disregarding their fitness value
F(M). Second, the subset of memes which is used for the mutation and local search
also prefers memes with low P(M) and this way focuses on areas within a solution
where improvements can be found more easily. We describe this behaviour more
detailled within the following sections.

4.8.2 Selection and Interaction

The interaction procedure consists of two parts. We first create an individual by
selecting each meme M with the best current fitness value F(M) out of the current
memepool. This individual is likely to become the elitist individual in the current
population.

The second step contains a selection procedure: Each of |I| − 1 individuals, |I|
being the population size, is created as follows: For each meme M with period
[m′, m′′) we perform a k-tournament selection [8] on the set of memes with the same
period in the current memepool: We select k memes with the same period [m′, m′′)
at random out of the current memepool. Out of these k memes, the meme with the
lowest penalty value P(M) is inherited to the offspring.

The first part assures to survive the best memes in the current memepool. The
second part forms the actual interaction procedure. Using P(M) as selection criteria,
we get rid of memes that have been stuck in local optima for too long. If a local
optimum constitutes in fact a global optimum, then it survives through the first step
of the interaction operator as described above. Figure 4.10 depicts the interaction
operator.

4.8.3 Mutation and Local Search

We evaluate the fitness function F(I) of each individual I ∈ I and determine
individual E ∈ I , which is the individual with the lowest value for F(I). On each
individual except the elitist I ∈ I \ E we perform the following procedure:

4.8 maps – memetic algorithm with penalty system 57

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

2 2 3 3 1 1 1 2 2 2 2 4 4 3 3 3 3 3 2 2 2 1 1 3 3

I4

I3

I2

I1

I2 , I1

I1 , I3

I3 , I4

I3 , I2

F = 56, P = 3 F = 70, P = 3

F = 80, P = 3 F = 72, P = 3

F = 46, P = 2 F = 74, P = 4

F = 58, P = 3 F = 50, P = 4

F = 80, P = 3 F = 74, P = 4

F = 80, P = 3 F = 70, P = 3

F = 58, P = 3 F = 72, P = 3

F = 46, P = 2 F = 50, P = 4

A population of |I| = 4 individuals create offsprings by interaction. The first offspring is created by choosing
only the fittest memes, i.e. M1 from I2 and M2 from I1. The remaining offsprings are created applying a

k-tournament selection on memes with the same period. Different values for F after the interaction may occur
from shifts overlapping into different memes.

Figure 4.10: Interaction operator

For each individual I ∈ I we define a set M′ ∈ M of memes, such that M′

contains the memes with the lowest penalty values (ties are broken randomly). Only
memes inM′ are going to be mutated and locally improved in the current iteration.

Each M ∈ M′ is mutated as follows: A set of shifts S ′ ∈ M is chosen at random.
Then for each shift S ∈ S ′ its current break pattern is replaced by a pattern selected
randomly out of the set D′s of break patterns computed in the beginning. The size of
S ′ is a parameter value. Different values for this parameter are evaluated in Section
5.2.7.

58 solving the break scheduling problem

The local search is executed as described in Section 4.5 with set B containing the
set of breaks contained inM′.

4.8.4 Penalty Update

The last step is to update the values for F(M), B(M) and P(M) for each M ∈ M′:
We compute F(M) as described in Section 4.1 and update as follows:

B(M) = F(M), P(M) = 0, if B(M) < F(M)

P(M) = P(M) + 1 otherwise

The application of each of the methods described in this chapter along with the
evaluation of different parameter settings is described in the next chapter.

5
E M P I R I C A L PA R A M E T E R E VA L U AT I O N

In Chapter 4 some parameters emerged that influence the progress and the results of
the algorithm. For instance, a high population size |I| may provide higher diversity
and different starting points for the local search, but on the other hand consume
more CPU time. For each algorithm we evaluate a set of parameters, for which a
preliminary analysis showed a great impact on the solution qualities. While for
MAR1 we only compare average values, for MAR2 and MAPS the impact of each
parameter is assessed using statistical methods.

5.1 evaluation mar1

Parameters for MAR1 were evaluated only on the set of publicly available, randomly
created instances [31] also used by the authors of [6]. We selected a set of instances
for which we executed five runs for each parameter value with a timeout of 900s.
The final runs were executed with the parameter values that gave the best results on
average solution qualities.

We tested the following parameters:

|I| Population size

κ Selection pressure: Number of individuals performing a tournament

α Crossover/Mutation: Probability an offspring is created by crossover, 1− α proba-
bility to an offspring is created by mutation

γ Preference for smart crossover over simple crossover

λ Search rate: Percentage of population the local search is applied on

µ Search intensity: Number of iterations the search continues without finding
improvements

(η1, η2, η3): Probability for each neighbourhood to be selected in each local search
iteration

|N3|: Size of the shift assignment neighbourhood

59

60 empirical parameter evaluation

The initial parameters were set after some trial and error preliminary runs. Each
parameter was tested after another and the parameters successively adapted ac-
cording to the result of each experiment. The following were the initial parameter
settings: |I| = 50, κ = 3, γ = 0.8, α = 0.7, λ = 0.15, µ = 700, (η) = (0.3, 0.3, 0.3),
|N3| = 1000.

The following tables describe the average values of each set of runs. The best
values are highlighted.

PPPPPPPPPInst.
|I|

10 20 30 40 70

ran1-1 1,052 968 886 891 1,048

ran1-2 2,738 2,698 2,437 2,430 2,578

ran1-5 1,430 1,402 1,200 1,163 1,306

ran1-7 1,185 1,146 1,016 1,009 1,149

ran2-1 2,100 1,855 1,778 1,794 2,043

Table 5.1: MAR1: Population size

HHH
HHHInst.

κ
2 3

ran1-1 792 1,084

ran1-2 2,500 3,052

ran1-5 1,086 1,629

ran1-7 934 1,293

ran2-1 1,664 2,492

Table 5.2: MAR1: Selection pres-
sure

H
HHH

HHInst.
γ

1.0 0.0 0.8 0.9

ran1-1 887 1,201 886 938

ran1-2 2,657 2,758 2,437 2,508

ran1-5 1,268 1,374 1,200 1,193

ran1-7 1,020 1,345 1,016 1,075

ran2-1 1,880 2,130 1,778 1,860

Table 5.3: MAR1: Smart crossover preference γ

5.1 evaluation mar1 61

HH
HHHHInst.

α
0.7 0.9

ran1-1 891 876

ran1-2 2,430 2,346

ran1-5 1,163 1,071

ran1-7 1,009 1,018

ran2-1 1,794 1,830

Table 5.4: MAR1: Crossover probabil-
ity α

HHH
HHHInst.

λ
0.1 0.15 0.2

ran1-1 809 798 1,012

ran1-2 2,352 2,307 2,400

ran1-24 1,359 1,352 1,480

ran1-28 3,077 3,042 3,020

ran2-4 2,480 2,413 2,534

Table 5.5: MAR1: Search rate λ

HH
HHHHInst.

µ
100 500 700 1,000

ran1-1 959 798 745 855

ran1-2 2,447 2,307 2,331 2,405

ran1-24 1,376 1,352 1,230 1,270

ran1-28 3,594 3,042 2,964 3,082

ran2-4 2,480 2,413 2,378 2,474

Table 5.6: MAR1: Search intensity µ

H
HHH

HHInst.
η

(.3, .3, .3) (.8, .15, .05) (.05, .8, .15) (.15, .05, .8)

ran1-1 670 654 675 685

ran1-2 2,066 2,174 2,135 2,197

ran1-5 844 884 866 872

ran1-7 712 799 813 756

ran2-1 1,232 1,398 1,328 1,373

Table 5.7: MAR1: Neighbourhoods η

62 empirical parameter evaluation

PPPPPPPPPInst.
|N3|

100 300 1000

ran1-1 631 705 731

ran1-2 2,262 2,251 2,269

ran1-5 972 920 981

ran1-7 794 784 822

ran2-1 1,224 1,454 1,523

Table 5.8: MAR1: Size of the shift assignment neighbourhood N3

We finally executed the algorithm with the parameter values that which proved
to be most appropriate according to the experiments. The parameters were set as
follows: |I| = 40, κ = 2, γ = 0.8, α = 0.9, λ = 0.15, µ = 700, η = (0.3, 0.3, 0.3) and
N3 = 300. Results are compared with those of our other algorithms and those from
literature in Table 5.25, Section 5.3.

5.2 evaluation mar2 and maps 63

5.2 evaluation mar2 and maps

5.2.1 Experimental design

Experiments are conducted to draw conclusions about the impact of different factors
on sets of drawn samples. A factor, according to the terminology of experimental
design, represents a characteristic of the testing environment that is assumed to
have an impact on the samples. In our case, a sample corresponds to the fitness
value of a particular solution and a factor to a parameter. Rardin et al. [28] suggest
different problem instances also to be considered as factors, as different instance
characteristics may also influence the solutions’ quality. In this case we deal with
two dimensions of factors, i.e. instances and parameters. However, in our case we
will only look at the parameter dimension.

For each factor, different levels are tested. A factor level corresponds to a concrete
parameter setting or a concrete problem instance.

We ran experiments for each level of each factor against the same set of problem
instances. This method is also known as blocking, as opposed to randomisation [22] .
Lin and Rardin [20] give arguments in favor of blocking compared to randomisation
with respect to analysis of algorithms.

5.2.2 Instances

For the parameter evaluation we selected a set of six different instances among
those presented by Beer at al. [6], which are publicly available in [31]. 20 of them
were retrieved from a real life application without known optimal solutions, and ten
selected among 60 randomly generated instances with known optimal solutions. The
set of instances is the same as the one used by the authors of [6]. Details regarding
the random generation are provided online by the same authors [31] .

The input data C (constraints) and k (number of timeslots) is the same for all
random and real life instances with k = 2016 and C defined as follows:

C1 Break positions: d1 = d2 = 6.

C2 Lunch breaks: h = 72, g = 6, l1 = 42, l2 = 72.

C3 Duration of work periods: w1 = 6, w2 = 20.

64 empirical parameter evaluation

C4 Minimum break times: w = 10, b = 4.

C5 Break durations: b1 = 2, b2 = 12.

All measures are given in timeslots with one timeslot corresponding to five
minutes. k thus represents an entire calendar week.

The real life instances were drawn from a real life problem in the area of su-
pervision personnel. They are characterised by two main factors: Different staffing
requirements and different forecast methods. Staffing requirements vary according
to calendar weeks. A forecast method is a specific way of planning a future shiftplan,
influencing the number of shifts and the shift lengths. As shown in Section 4.2, the
domain size DS grows exponentially with respect to the shift size |S|, which results
in a smaller search space for instances with smaller shifts.

Table 5.9 gives an overview on the available instances. We renamed them for better
readability.

5.2.3 Parameters

We first determined by trial and error a set of parameters influencing the search
process along with relevant levels. In the course of experimention additional levels,
which seemed worth testing, were added. The relevant set of parameters and levels
is different for each of the algorithms. However, the following parameters have been
evaluated for both algorithms

|I| Population size

κ Number of individuals (MAR2) or memes (MAPS) performing a tournament in
the selection process

µ Search intensity: Number of iterations the local search continues without finding
improvements

(η1, η2, η3): Probability for each neighbourhood to be selected in each local search
iteration

5.2.4 Testing environment

The algorithms were implemented with Comet [34], which is an object-oriented pro-
gramming language specifically designed for constraint-based local search. Comet

5.2 evaluation mar2 and maps 65

was also used by the authors of [6], which eases the comparison of results. Since we
were dealing with a stochastic algorithm, we executed ten runs for each experimental
setting. Each run was performed on one core with 2.33Ghz of a QuadCore Intel
Xeon 5345 with three runs being executed simultaneously, i.e. three cores being fully
loaded. The machine provides 48GB of memory.

We benchmarked our machine and the one used by Beer et al. [6] in order to adjust
our timeout and retrieve comparable results. This was done using the benchmark
program provided by the organisers of PATAT 2008 timetabling competition [27],
which determined the time a timetabling algorithm was allowed to run for the
timetabling competition. The result retrieved by the benchmark program for Beer et
al.’s machine was 468 on average for 10 runs and for ours 396. Beer et al. executed
their algorithm for 3600 seconds, consequently our timeout was set to 3046 seconds.
We analyse the solutions our algorithms produce after this timeout under different
parameter settings.

5.2.5 Evaluation method

Different statistical methods exist to investigate the impact of different parameter
settings, analysis of variance (ANOVA) (e.g. in [22]) being a widely used parametric
method among them. This method assumes normal distribution in each of the
groups, which for our case is difficult to test since our groups consist of only
ten samples. We thus decided to use the Kruskal-Wallis test as non-parametric
alternative to ANOVA. This method is also described in [22].

The Kruskal-Wallis method tests the null hypothesis that the samples of differ-
ent groups were drawn from the same population [22] . This corresponds to the
hypothesis that a parameter does not have a significant effect on the results. The
null hypothesis is rejected if p is below an α-level usually chosen < 0.1.

The following tables show average results for each instance and parameter levels.
The rightmost column indicates the level of significance obtained by applying the
Kruskal-Wallis test on groups of ten runs for each level using the following legend:

*** standing for p < 0.001

** standing for p < 0.01

* standing for p < 0.05

. standing for p < 0.1

66 empirical parameter evaluation

The lower p, the higher the significance of the impact of the parameter with respect
to the levels tested. A blank field in the p column means that the null hypothesis
could not be rejected.

5.2 evaluation mar2 and maps 67

Name Alt. Name Week Forecast # Shifts # Slots
2fc04a rl-1 2 A 135 15,656

2fc04a03 rl-2 2 A1 134 15,778

2fc04a04 rl-3 2 A2 137 15,870

2fc04b rl-4 2 B 126 14,784

3fc04a rl-5 3 A 124 14,740

3fc04a03 rl-6 3 A1 123 14,840

3fc04a04 rl-7 3 A2 128 14,980

3si2ji2 rl-8 3 C 151 16,324

4fc04a rl-9 4 A 124 14,734

4fc04a03 rl-10 4 A1 123 14,828

4fc04a04 rl-11 4 A2 127 14,940

4fc04b rl-12 4 B 125 14,564

50fc04a rl-13 50 A 130 15,246

50fc04a03 rl-14 50 A1 130 15,372

50fc04a04 rl-15 50 A2 131 15,452

50fc04b rl-16 50 B 126 14,952

51fc04a rl-17 51 A 129 15,106

51fc04a03 rl-18 51 A1 129 15,226

51fc04a04 rl-19 51 A2 130 15,312

51fc04b rl-20 51 B 126 14,830

random1-1 ran1-1 n/a n/a 137 13,188

random1-2 ran1-2 n/a n/a 164 15,144

random1-5 ran1-5 n/a n/a 151 14,208

random1-7 ran1-7 n/a n/a 137 12,780

random1-9 ran1-9 n/a n/a 151 14,208

random1-13 ran1-13 n/a n/a 124 12,288

random1-24 ran1-24 n/a n/a 137 12,780

random1-28 ran1-28 n/a n/a 124 11,412

random2-1 ran2-1 n/a n/a 179 17,208

random2-4 ran2-4 n/a n/a 162 15,444

Table 5.9: Overview on sample instances.

68 empirical parameter evaluation

5.2.6 Evaluation of MAR2

We tested the following parameters for this algorithm:

|I| Population size

γ Crossover: Probability to select the fitter meme

α Crossover vs Mutation: Probability to create offspring by crossover, 1− α proba-
bility to create offspring by mutation

κ Selection pressure: Number of individuals performing a tournament

λ Search rate, percentage of population the local search is applied on

|L| Length of tabu list

µ Search intensity: Number of iterations the local search continues without finding
improvements, this value is multiplied by the number of breaks |B| available
to the local search

(η1, η2, η3): Probability for each neighbourhood to be selected in each local search
iteration

Th population size made a significant difference in most of the instances, with
the value performing best being |I| = 4. We also tested a population size |I| = 1 to
verify if the genetic operators are relevant to the algorithm.

Interestingly, two of the parameters that were supposed to influence the genetic
operators, i.e. γ and α did not have a significant impact. The parameter κ defining
the selection pressure did have an impact on the solution qualities, but interestingly,
the best value was κ = 1, i.e. the algorithm performed best when no selection
pressure was applied at all.

Other than the parameters for the genetic operators, most of the parameters for
the tabu search, i.e. λ, |L|, µ and η did have a significant impact the solution qualities.
An interesting outcome is that the use of the tabu list actually worsened the solution
qualities, as for most of the instances tested, best results were obtained with a tabu
list length of 0. The following tables summarise the average results over ten runs for
each parameter and its values.

5.2 evaluation mar2 and maps 69

PPPPPPPPInst.
|I|

1 10 20 4 40 70 p

random1-7 1090 1114 1120 1106 1061 1085

rl-2 3375 3425 3426 3378 3426 3436

rl-3 3316 3370 3398 3301 3381 3427 **

rl-4 2364 2420 2499 2318 2585 2731 ***

rl-5 1995 2128 2089 2004 2212 2282 ***

rl-6 1983 2059 2030 1927 2143 2200 ***

Table 5.10: MAR2: Population size

HHH
HHHInst.

γ
0.0 0.6 0.9 p

random1-7 1139 1120 1100

rl-2 3431 3426 3406

rl-3 3371 3398 3428

rl-4 2507 2499 2478

rl-5 2111 2089 2070

rl-6 2062 2030 2016

Table 5.11: MAR2: Crossover, preference for fitter memes

H
HHH

HHInst.
α

0.5 0.7 0.9 p

random1-7 1084 1061 1057

rl-2 3435 3426 3425

rl-3 3367 3381 3358

rl-4 2656 2585 2639

rl-5 2157 2212 2176

rl-6 2130 2143 2157

Table 5.12: MAR2: Crossover vs. Mutation

70 empirical parameter evaluation

HH
HHHHInst.

κ
1 2 3 p

random1-7 1023 1120 1105 **

rl-2 3315 3426 3474 **

rl-3 3296 3398 3411 *

rl-4 2353 2499 2451 **

rl-5 1963 2089 2108 **

rl-6 1935 2030 2061 **

Table 5.13: MAR2: Selection pressure

HHH
HHHInst.

λ
0.1 0.2 0.5 0.8 p

random1-7 1012 920 894 826 ***

rl-2 3324 3346 3279 3324

rl-3 3269 3244 3235 3283

rl-4 2434 2449 2468 2454

rl-5 2028 2010 2002 1991

rl-6 2005 1958 2014 1938

Table 5.14: MAR2: Search rate λ

PPPPPPPPInst.
|L|

0 1 2 4 p

random1-7 767 772 842 885 **

rl-2 3275 3217 3241 3314 *

rl-3 3193 3213 3211 3240

rl-4 2328 2315 2325 2440 **

rl-5 1867 1878 1892 2011 **

rl-6 1806 1835 1866 1922 *

Table 5.15: MAR2: Length of tabu list |L|

5.2 evaluation mar2 and maps 71

HH
HHHHInst.

µ
10 15 2 6 8 p

random1-7 854 1010 999 938 885 ***

rl-2 3357 3339 3572 3367 3314 ***

rl-3 3306 3339 3459 3219 3240 ***

rl-4 2428 2327 2831 2476 2440 ***

rl-5 1945 1978 2367 2062 2011 ***

rl-6 1897 1929 2298 2034 1922 ***

Table 5.16: MAR2: Search intensity µ

HHH
HHHInst.

η
1 2 nh1 nh2 nh3 p

random1-7 1624 1131 1446 1446 1601 ***

rl-2 4201 3470 3486 3411 3809 ***

rl-3 4014 3484 3412 3395 3706 ***

rl-4 3600 2771 2734 2658 3161 ***

rl-5 3158 2302 2294 2247 2688 ***

rl-6 3134 2296 2250 2148 2597 ***

Table 5.17: MAR2: Neighbourhoods η

The final runs for all real-life and randomly created instances were executed with
the following parameters: |I| = 4, γ = 0.9, κ = 1, α = 0.9, λ = 0.8, |L| = 0, µ = 10
and η = (0.3, 0.6, 0.1). The results of those runs are compared to results from our
other algorithms and results from literature in Section 5.3.

72 empirical parameter evaluation

5.2.7 Evaluation MAPS

The following parameters were evaluated for this algorithm:

|I| Population size

λ Defines number of memes |M′| being mutated and improved for each individual:
max(1, |M| · λ), 0 ≤ σ ≤ 1

σ Mutation weight, number of shifts being mutated: max(1, |S′| · σ), 0 ≤ σ ≤ 1

κ Selection: Number of memes performing a tournament in the interaction operator

µ Search intensity: Number of iterations the local search continues without finding
improvements, this value is multiplied by the number of breaks |B| available
to the local search

(η1, η2, η3): Probability for each neighbourhood to be selected in each local search
iteration

This algorithm performs best with a small population size. We also tested a
population size of |I| = 1 to make sure that the population based approach is
indeed necessary to obtain good solutions. With |I| = 1 no selection and no
interaction is performed and thus the algorithm is reduced to a local search with
mutation acting as perturbation. Since mutation may worsen a solution during the
progress of the algorithm, for |I| = 1 the best obtained solution is kept in memory.
The results in Table 5.18 show clearly that there is indeed the need for a population
based approach, as the results with runs applying local search only, i.e. with |I| = 1,
show the worst results.

The mutation and search rate λ determining |M′|, the number of memes being
improved on each individual led to the best results when kept low. On many
instances, λ = 0.05 leads to only one memes being mutated and searched.

The mutation weight σ also worked well with a low value. σ determines the
percentage of shifts which are assigned a new break pattern during a mutation.

Similar to the previous algorithms, the value of κ did not have a major impact.
As in MAR2, the local search intensity µ was set relative to the number of

breaks |B| taking part in the search. For this algorithm, larger values for µ probably
performed better than for MAR2, because |B| is much smaller. While in MAR2, B
contained the complete set of break in the solution, MAPS considers only a subset

5.2 evaluation mar2 and maps 73

of all breaks, namely those contained inM′, which, according to the low value for
λ are only a small subset.

We tested some more neighbourhood combinations than for MAR2. In Table 5.23

it can be seen very clearly, that all runs where N3 participated gave worse results
than those where we used only N2 and N1. The best performing combination was
η1 = 0.8 and η2 = 0.2, that is, N1 chosen with a probability of 80% and N2 with a
probability of 20%.

PPPPPPPPInstance
|I|

1 10 20 4 6 p

random1-7 1631 667 674 715 669 ***

rl-1 3427 2969 3133 2957 2967 ***

rl-16 2530 2070 2237 2012 2008 ***

rl-19 2558 2120 2280 2068 2084 ***

rl-4 2450 2018 2114 1966 1957 ***

rl-7 2105 1786 1906 1727 1736 ***

Table 5.18: MAPS: Population Size

PPPPPPPPInstance
λ

0.05 0.1 0.2 0.3 0.5 p

random1-7 695 694 702 711 754

rl-1 2982 2992 3033 3121 3223 ***

rl-16 1950 2027 2048 2217 2263 ***

rl-19 2098 2144 2155 2196 2311 ***

rl-4 1986 1985 2038 2096 2165 ***

rl-7 1750 1779 1819 1830 1929 ***

Table 5.19: MAPS: Mutation and search rate

74 empirical parameter evaluation

PPPPPPPPInstance
σ

0.01 0.05 0.1 0.3 0.5 p

random1-7 617 624 674 667 657 .

rl-1 2947 2910 2924 2905 2971

rl-16 1915 1886 1961 1974 1999 **

rl-19 2041 1965 2077 2022 2043 *

rl-4 1904 1905 1953 1949 1975 **

rl-7 1688 1670 1708 1702 1730

Table 5.20: MAPS: Mutation weight

HHH
HHHInst.

κ
1 2 p

random1-7 676 715

rl-1 2975 2957

rl-16 1972 2012

rl-19 2019 2068 *

rl-4 1974 1966

rl-7 1737 1727

Table 5.21: MAPS: Selection κ

PPPPPPPPInstance
µ

10 20 30 40 p

random1-7 669 618 630 613 .

rl-1 2987 2910 2937 2921 *

rl-16 2003 1891 1917 1927 *

rl-19 2056 2016 2026 2004

rl-4 1968 1933 1916 1911 .

rl-7 1732 1677 1699 1699

Table 5.22: MAPS: Search intensity

5.2 evaluation mar2 and maps 75

H
H

H
H

H H
In

st
.

η
(1

,0
,0

)
(.

2,
.8

,0
)

(.
5,

.5
,0

)
(.

8,
.2

,0
)

(.
3,

.3
,.

3)
(.

5,
0,

.5
)

(0
,1

,0
)

(0
,.

5,
.5

)
p

ra
nd

om
1

-7
8

5
0

7
1

0
6

9
8

64
0

2
0

2
7

2
4

0
4

7
4

1
2

0
5

9
**

*

rl
-1

3
4

2
7

2
9

9
2

2
9

7
5

29
31

4
3

3
4

4
4

6
7

3
0

7
0

4
4

6
3

**
*

rl
-1

6
2

6
3

5
2

1
1

1
2

0
4

3
19

56
4

2
9

7
4

5
2

8
2

2
4

3
4

3
2

3
**

*

rl
-1

9
2

6
3

4
2

1
5

6
2

0
9

9
20

70
4

1
0

5
4

2
5

2
2

2
1

2
4

0
5

9
**

*

rl
-4

2
4

0
6

2
0

3
2

2
0

0
2

19
51

3
7

0
8

3
9

5
1

2
0

5
2

3
8

3
3

**
*

rl
-7

2
1

1
8

1
7

7
7

17
05

17
05

3
2

0
4

3
3

5
6

1
8

1
0

3
2

9
0

**
*

Ta
bl

e
5

.2
3

:M
A

PS
:N

ei
gh

bo
ur

ho
od

76 empirical parameter evaluation

For the final runs we used the following settings: |I| = 4, λ = 0.05, σ = 0.05,
µ = 20, κ = 1 and η = (0.8, 0.2, 0.0). The results of those runs are compared with
results from our other algorithms and results from literature in Section 5.3.

5.3 comparison of results

The following tables compare the results of the final runs for MAR1, MAR2 and
MAPS with the best values provided by literature [6]. Each column indicates the best
and average results as well as the standard deviation σ over 10 runs. The timeout
has been normalised as described in Section 5.2.4 to make the results comparable.

The table includes two result columns from [6]. Each represents values retrieved
by a min-conflicts heuristic. They differ in the initialisation and the definition of
hard- and soft constraints. While the values in the first column (“STP init”) were
retrieved by defining all constraints C as hard constraints, thus never allowing any
violation and using the small temporal problem model [15], the values in the second
column (“Random init”) define C as soft constraints and resolve them along with
optimising the staffing requirements. In the “Random init” version, violations in
C are included in the objective function. According to the authors, over 20 real life
instances no significant difference between the two approaches could be found.

Compared within our algorithms, MAR1 performs worst on most of the random
instances, except for one. Since the main difference between MAR1 and MAR2 is
the memetic representation, we conclude that Memetic Representation 2 indeed
outperforms Memetic Representation 1. Additionally, the standard deviation σ is
lower for the results retrieved with Memetic Representation 2, which makes MAR2

and MAPS more reliable methods.
The best results, however, were returned by MAPS. Using this algorithm, we

managed to set new upper bounds for 18 out of 20 real life instances. Also on the
random instances this algorithm returns better results than both the algorithms from
literature and the algorithms from this work. Additionally, in most instances the
solutions returned by MAPS have a lower standard deviation than any of the other
algorithms.

Details on the solutions are presented in Table 5.24 showing best and average
values as well as the standard deviation over ten runs for each real life instance for
the algorithms presented by [6], MAR2 and MAPS. Solutions for random instances

5.3 comparison of results 77

are presented in Table 5.25 comparing the algorithm presented by [6], MAR1, MAR2

and MAPS.

78 empirical parameter evaluation

In
st

an
ce

[6
]

ST
P

in
it

[6
]

R
an

do
m

in
it

M
A

R
2

M
A

PS
Be

st
A

vg
σ

Be
st

A
vg

σ
Be

st
A

vg
σ

Be
st

A
vg

σ

2
fc

0
4
a

3
,0

9
4

3
,2

4
8

8
4

3
,1

1
2

3
,2

2
4

8
6

3
,2

4
4

3
,3

2
6

5
0

2,
81

6
2,

96
1

7
1

2
fc

0
4
a0

3
3

,1
0
0

3
,2

2
9

6
1

3
,1

3
8

3
,2

0
0

3
9

3
,2

2
0

3
,3

2
8

5
7

2,
83

4
2,

93
4

5
4

2
fc

0
4
a0

4
3

,2
3
2

3
,3

7
1

6
8

3
,2

3
4

3
,3

4
2

6
0

3
,2

2
6

3
,2

9
7

4
4

2,
88

4
2,

95
4

6
0

2
fc

0
4
b

2
,0

1
7

2
,1

0
4

9
2

1,
82

2
2

,0
4
3

9
9

2
,2

6
6

2
,3

8
7

6
8

1
,8

8
4

1,
94

8
4
9

3
fc

0
4
a

1
,7

4
6

1
,8

0
9

4
9

1
,6

4
4

1
,7

6
7

1
0
2

1
,8

1
0

1
,9

0
9

5
9

1,
43

0
1,

53
3

6
7

3
fc

0
4
a0

3
1

,6
3
2

1
,8

0
4

8
7

1
,6

7
0

1
,7

5
9

5
3

1
,8

4
6

1
,9

4
4

5
5

1,
44

0
1,

51
4

4
0

3
fc

0
4
a0

4
1

,9
4
2

2
,0

3
2

5
1

1
,9

3
2

1
,9

8
0

4
0

1
,9

3
0

2
,0

5
6

8
7

1,
61

4
1,

71
8

4
8

3
si

2
ji2

3
,6

2
6

3
,6

9
2

3
5

3
,6

4
6

3
,6

6
7

1
4

3
,3

4
4

3
,3

9
8

2
7

3,
17

7
3,

20
6

1
7

4
fc

0
4
a

1
,6

9
4

1
,8

5
1

1
2
6

1
,7

3
0

1
,8

1
7

4
8

1
,8

1
4

1
,9

7
2

1
3
9

1,
47

8
1,

54
0

2
9

4
fc

0
4
a0

3
1

,6
6
6

1
,7

9
5

8
7

1
,7

4
8

1
,8

3
4

5
5

1
,7

4
2

1
,8

7
0

5
9

1,
43

0
1,

50
2

4
2

4
fc

0
4
a0

4
1

,9
1
8

2
,0

1
7

9
5

1
,9

8
2

2
,0

6
4

6
2

1
,8

5
0

1
,9

8
0

6
0

1,
60

6
1,

67
4

4
8

4
fc

0
4
b

1
,4

4
0

1
,5

2
7

5
6

1
,4

1
0

1
,4

8
9

4
9

1
,6

2
8

1
,7

7
2

1
5
4

1,
16

2
1,

23
3

4
8

5
0
fc

0
4
a

1
,7

5
0

1
,8

6
1

9
5

1
,6

7
2

1
,8

2
7

8
1

2
,0

1
8

2
,0

9
0

3
2

1,
54

8
1,

60
3

3
6

5
0
fc

0
4
a0

3
1

,7
1
8

1
,8

4
7

9
6

1
,6

8
6

1
,8

1
3

8
4

1
,8

2
2

1
,9

5
1

8
7

1,
40

2
1,

51
4

6
7

5
0
fc

0
4
a0

4
1

,7
9
0

1
,9

8
5

8
3

1
,7

9
2

1
,9

1
7

6
4

1
,9

1
4

2
,0

0
9

4
8

1,
48

0
1,

62
3

8
9

5
0
fc

0
4
b

1
,8

5
4

2
,0

1
2

9
1

1
,8

2
2

1
,9

5
4

7
7

2
,3

2
2

2
,4

6
4

9
8

1,
81

8
1,

90
0

5
6

5
1
fc

0
4
a

2
,0

4
8

2
,2

0
4

8
9

2
,0

5
4

2
,1

6
6

6
2

2
,4

9
0

2
,8

3
6

6
8
7

1,
88

6
2,

07
4

8
7

5
1
fc

0
4
a0

3
2

,0
0
4

2
,0

9
6

6
0

1
,9

5
0

2
,0

5
0

8
6

2
,3

1
8

2
,3

7
7

3
7

1,
88

6
1,

94
9

4
6

5
1
fc

0
4
a0

4
2

,0
5
8

2
,1

9
5

6
4

2
,1

1
6

2
,1

9
1

5
3

2
,3

7
0

2
,7

2
8

6
7
8

1,
95

8
2,

03
9

5
2

5
1
fc

0
4
b

2
,3

8
0

2
,5

1
4

1
0
6

2,
24

4
2

,3
8
9

9
4

2
,7

9
6

2
,9

5
0

8
8

2
,3

0
6

2,
36

7
4
3

Ta
bl

e
5

.2
4

:C
om

pa
ri

so
n

w
it

h
lit

er
at

ur
e:

R
ea

ll
if

e
in

st
an

ce
s

5.3 comparison of results 79

In
st

an
ce

[6
]

ST
P

in
it

M
A

R
1

M
A

R
2

M
A

PS
Be

st
A

vg
σ

Be
st

A
vg

σ
Be

st
A

vg
σ

Be
st

A
vg

σ

ra
nd

om
1
-1

7
2
8

9
7
2

1
7
7

6
7
2

7
3
8

5
6

5
4
4

5
9
2

4
1

34
6

44
0

4
8

ra
nd

om
1
-2

1
,6

5
4

1
,9

9
4

1
7
2

2
,1

7
4

2
,3

5
2

8
9

7
1
2

8
1
7

9
2

37
0

47
6

6
5

ra
nd

om
1
-5

1
,2

8
4

1
,4

7
7

9
9

8
7
0

1
,0

4
4

8
6

6
9
6

7
4
2

4
7

37
8

41
8

2
9

ra
nd

om
1
-7

8
6
0

1
,0

7
7

1
5
4

7
4
2

8
6
1

6
8

8
2
4

9
4
0

7
3

49
6

58
3

4
2

ra
nd

om
1
-9

1
,3

5
8

1
,6

5
8

2
1
3

1
,9

1
8

2
,0

9
5

1
0
8

6
7
2

7
3
4

3
8

31
8

42
3

5
1

ra
nd

om
1
-1

3
1
,2

6
4

1
,5

3
5

2
4
5

2
,8

8
4

3
,0

3
9

9
8

5
7
0

6
9
9

6
8

37
0

44
5

5
5

ra
nd

om
1
-2

4
1
,5

8
6

1
,7

1
3

7
4

1
,1

8
2

1
,3

3
0

1
0
7

8
8
4

9
3
4

4
6

54
2

61
1

4
3

ra
nd

om
1
-2

8
1
,7

1
0

2
,0

2
0

2
3
3

2
,9

2
6

3
,0

1
8

6
3

6
2
6

7
2
6

7
1

22
2

31
8

7
1

ra
nd

om
2
-1

1
,6

8
6

1
,8

5
5

1
4
2

1
,2

6
2

1
,5

3
7

1
1
7

9
1
4

1
,0

5
8

9
1

72
4

88
9

7
5

ra
nd

om
2
-4

1
,7

1
2

2
,0

5
3

2
4
2

2
,1

8
2

2
,3

3
6

1
1
1

7
9
4

8
8
9

5
6

47
6

53
5

4
5

Ta
bl

e
5

.2
5

:C
om

pa
ri

so
n

w
it

h
lit

er
at

ur
e:

R
an

do
m

in
st

an
ce

s

6
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis we proposed different memetic approaches to optimise Bsp. We intro-
duced two different representations upon which we built three different memetic
algorithms. For each method we designed a set of genetic operators. As local im-
provement we applied in all approaches the same local search heuristic, for which
we proposed three different neighbourhoods. Further, we introduced a concept to
avoid local optima based on penalty values for parts of solutions which are not
improved during too many iterations.

We justified the choice of a metaheuristic to optimise Bsp by presenting an NP-
completeness proof for this problem under the condition that the input contains
break patterns explicitly instead of defining them by a set of constraints.

For each algorithm we conducted a set of experiments on different parameter
settings and then compared the algorithms with their best settings. The impact of
each parameter was assessed with statistical methods. Important outcomes of these
parameter evaluations are the following:

• Using genetic operators combined with local search returns better results than
using only local search.

• Applying the local search either only on some individuals or only on small
parts of each individual significantly improves the qualities of the solutions
compared to applying the local search on all and entire individuals.

• Focusing on neighbourhoods N1 and N2 returns better solutions than using
only one neighbourhood. The largest neighbourhood performs worst, the
smallest best.

• The use of a penalty system along with focusing the local search only on
memes that are not likely to be stuck in local optima significantly improves
the qualities of the solutions.

The results of the algorithm performing best according to our experiments were
compared to the results in literature according to 30 publicly available benchmarks.

81

82 conclusions and future work

Our algorithm returned improved results for 28 out of 30 instances. To the best of
our knowledge, our results are the new upper bounds for the improved instances.

We leave the computational complexity of Bsp with break patterns implicitly given
by a set of constraints as open issue. As mentioned in Section 2.3, to the best of
our knowledge, it is still unclear whether solving a shift scheduling problem with a
large number of breaks or approaching the problem into two phases, namely a shift
scheduling and a break scheduling phase, is more effective in practice. Future work
could include an investigation on the performance of metaheuristics on these two
different optimisation approaches.

Another interesting topic that was not addressed in this work is the question on
how the algorithms perform in very long runs, e.g. up to ten hours. The execution
of the algorithm could also be accelerated by parallelization.

B I B L I O G R A P H Y

[1] S. Atran. In Gods We Trust: The Evolutionary Landscape of Religion. Oxford
University Press, 2002. ISBN 978-0195149302.

[2] T. Aykin. A comparative evaluation of modelling approaches to the labour shift
scheduling problem. European Journal of Operational Research, 125:381–397, 2000.

[3] T. Aykin. Optimal shift scheduling with multiple break windows. Management
Science, 42:591–603, 1996.

[4] S.E. Bechtold and L.W. Jacobs. Implicit modelling of flexible break assignments
in optimal shift scheduling. Management Science, 36(11):1339–1351, 1990.

[5] A. Beer, J. Gaertner, N. Musliu, W. Schafhauser, and W. Slany. An iterated
local search algorithm for a real-life break scheduling problem. In Matheuristics
2008- Second International Workshop on Model Based Metaheuristics, Bertinoro, Italy,
2008.

[6] A. Beer, J. Gaertner, N. Musliu, W. Schafhauser, and W. Slany. A break schedul-
ing system using AI techniques. IEEE Intelligent Systems, 2008.

[7] S.J. Blackmore. The meme machine. Oxford University Press, 2000.

[8] A. Brindle. Genetic algorithms for function optimisation. PhD thesis, University of
Alberta, Department of Computer Science, Edmonton, Canada, 1981.

[9] E.K. Burke, D.G. Elliman, and R.F. Weare. A hybrid genetic algorithm for
highly constrained timetabling problems. In 6th International Conference on
Genetic Algorithms, pages 1258–1271, Pittsburgh, USA, 1995.

[10] E.K. Burke, J.P. Newall, and R.F. Weare. Handbook of Combinatorial Optimization,
volume 3, chapter Tabu Search, pages 621–757. Kluwer Academic Publishers,
1999.

[11] C. Canon. Personnel scheduling in the call center industry. 4OR: A Quarterly
Journal of Operations Research, 5(5(1)):89–92, 1989.

83

84 bibliography

[12] G. B. Dantzig. A comment on Eddie’s traffic delays at toll booths. Operations
Research, 2:339–341, 1954.

[13] C.R. Darwin. The origin of species by means of natural selection, or the preservation
of favoured races in the struggle for life. London: John Murray, 1859.

[14] R. Dawkins. The Selfish Gene. Oxford University Press, 1976.

[15] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

[16] D.C. Dennett. Consciousness Explained. Little, Brown and Co., 1991. ISBN
0316180653.

[17] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[18] F. Glover and M. Laguna. Lecture Notes in Computer Science, chapter A
Memetic Algorithm for University Exam Timetabling, pages 241–250. Springer
Berlin/Heidelberg, 1996.

[19] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, 1989.

[20] B.W. Lin and R.L. Rardin. Controlled experimental design for statistical com-
parison of integer programming algorithms. Management Science, 25:1258–1271,
1980.

[21] P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms
for the quadratic assignment problem. IEEE Transactions on Evolutionary Compu-
tation, 4:337–351, 2000.

[22] D.C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 6

edition, 2005.

[23] P. Moscato. On evolution, search, optimization, gas and martial arts: Towards
memetic algorithms. Technical Report Caltech Concurrent Comput. Prog. Rep.
826, California Institute of Technology, 1989.

bibliography 85

[24] P. Moscato and M.G. Norman. Parallel Computing and Transputer Applications,
chapter A Memetic Approach for the Traveling Salesman Problem – Imple-
mentation of a Computational Ecology for Combinatorial Optimization on
Message-Passing Systems, pages 177–186. IOS Press, 1992.

[25] Österreichisches Arbeitszeitgesetz, paragraph 11, 2009. URL http://www.ris.

bka.gv.at/Dokumente/Bundesnormen/NOR12113700/NOR12113700.pdf.

[26] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, 1982.

[27] PATAT Benchmark program, 2008. URL http://www.cs.qub.ac.uk/itc2007/

index_files/benchmarking.htm.

[28] R.L. Rardin and R. Uzsoy. Experimental evaluation of heuristic optimization
algorithms: A tutorial. Journal of Heuristics, 7:261–304, 2001.

[29] M. Rekik, J.F. Cordeau, and F. Soumis. Implicit shift scheduling with multiple
breaks and work stretch duration restrictions. Journal of Scheduling, 13:49–75,
2010.

[30] M. Segal. The operator-scheduling problem: A network flow approach. Opera-
tions Research, 22:808–823, 1974.

[31] Shift Design and Break Scheduling Benchmarks, 2008. URL http://www.dbai.

tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/.

[32] P. Tellier and G. White. Generating personnel schedules in an industrial setting
using a tabu search algorithm. In H. Rudova E. K. Burke, editor, PATAT 2006,
pages 293–302, 2006.

[33] G. Thompson. Improved implicit modeling of the labor shift scheduling prob-
lem. Management Science, 41(4):595–607, 1995.

[34] P. Van Hentenryck and L. Michel. Constraint-based local search. Massachusetts
Institute of Technology, 2005.

[35] T. Yamada, K. Yoshimura, and R. Nakano. Simulated Evolution and Learning,
chapter Information Operator Scheduling by Genetic Algorithms, pages 50–57.
Springer Berlin / Heidelberg, 1999.

http://www.ris.bka.gv.at/Dokumente/Bundesnormen/NOR12113700/NOR12113700.pdf
http://www.ris.bka.gv.at/Dokumente/Bundesnormen/NOR12113700/NOR12113700.pdf
http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm
http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm
http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/
http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/

	Declaration
	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Objectives
	1.2 Results
	1.3 Organisation

	2 The Break Scheduling Problem
	2.1 Problem Statement
	2.2 Complexity
	2.3 Related Work
	2.3.1 Shift scheduling with breaks
	2.3.2 Break scheduling

	3 Memetics
	3.1 Concept and Terminology
	3.2 From Memetics to Memetic Algorithms

	4 Solving the Break Scheduling Problem
	4.1 Representations and Definitions
	4.2 Break Patterns
	4.3 Initialisation
	4.4 Neighbourhoods
	4.4.1 Single Assignment
	4.4.2 Double Assignment
	4.4.3 Shift Assignment

	4.5 Local Search
	4.6 MAR1 -- Memetic Algorithm with Representation 1
	4.6.1 Selection
	4.6.2 Crossover and Mutation
	4.6.3 Local Search

	4.7 MAR2 -- Memetic Algorithm with Representation 2
	4.7.1 Crossover and Mutation
	4.7.2 Selection
	4.7.3 Local Search with Tabu List

	4.8 MAPS -- Memetic Algorithm with Penalty System
	4.8.1 Penalty System
	4.8.2 Selection and Interaction
	4.8.3 Mutation and Local Search
	4.8.4 Penalty Update

	5 Empirical Parameter Evaluation
	5.1 Evaluation MAR1
	5.2 Evaluation MAR2 and MAPS
	5.2.1 Experimental design
	5.2.2 Instances
	5.2.3 Parameters
	5.2.4 Testing environment
	5.2.5 Evaluation method
	5.2.6 Evaluation of MAR2
	5.2.7 Evaluation MAPS

	5.3 Comparison of Results

	6 Conclusions and Future Work
	Bibliography

