

Vienna University of Technology

Towards a Uniform Framework to Support the Evolution of Software Models

Magdalena Widl Business Informatics Group Vienna University of Technology

Model-driven engineering


```
package org.modelevolution.multiview.java.coffee;
public enum CoffeeMachineState implements ICoffeeMachineTransition {
                public woid busy(CoffeeMachine cm) (
                        throw new IllegalStateException("busy not allowed in state OFF.");
                 public woid turnOn(CoffeeMachine cm) {
                public woid turnOff(CoffeeMachine cm) {
                public woid done((offeeMachine cm) (
throw new Illean|StateException("done not allowed in state OFF"):
                public wold busy(CoffeeMachine cm) {
                        cm.setCurrentState(BUSY);
                public woid turnOn(CoffeeMachine cm) {
                        throw new IllegalStateException("turnOn not allowed in state IDLE.");
                public woid turnOff(CoffeeMachine cm) {
                public woid done(CoffeeMachine cm) {
                         throw new IllegalStateException("done not allowed in state IDLE."):
       8USY() {
                        done(rull):
```

Model-driven engineering


```
package org.modelevolution.multiview.iava.coffee;
public enum CoffeeMachineState implements [CoffeeMachineTransition {
                public woid busy(CoffeeMachine cm) (
                       throw new IllegalStateException("busy not allowed in state OFF.");
                public woid turnOn(CoffeeHachine cm) {
                public woid turnOff(CoffeeMachine cm) {
                public woid done((offeeMachine cm) (
throw new Illean|StateException("done not allowed in state OFF"):
                public wold busy(CoffeeMachine cm) {
                       cm.setCurrentState(BUSY);
                public woid turnOn(CoffeeMachine cm) {
                       throw new IllegalStateException("turnOn not allowed in state IDLE.");
                public woid turnOff(CoffeeMachine cm) {
                       cm.setCurrentState(GFF);
                public woid done(CoffeeMachine cm) {
                        throw new IllegalStateException("done not allowed in state IDLE."):
      8USY() {
                       done(rull):
```

Software verification, testing

Model-driven engineering

Model verification?

Software verification, testing

Model-driven engineering

Model verification?

Software verification, testing

Idea

Find errors on *model* level
Then work only on *consistent* models

Inconsistencies

Static diagrams

Dynamic diagrams

Inconsistencies

Static diagrams

Dynamic diagrams

Both

example from Calvanese et al., slides from ESSLI Summer School 2003, Vienna

Inconsistencies

Static diagrams

Dynamic diagrams

Inconsistencies

Static diagrams

Dynamic diagrams

Inconsistencies

Inconsistencies

Model evolution

Evolution is multi-view, multidimensional

May introduce inconsistencies

Different evolution tasks may introduce different types of inconsistencies

Model evolution

Evolution is multi-view, multidimensional

May introduce inconsistencies

Different evolution tasks may introduce different types of inconsistencies

Idea

Establish a classification of changes in models and find which inconsistencies they may cause

We consider a multi-view subset of UML relevant for MDE:

- State machines
- Sequence diagrams
- Class diagrams

We consider a multi-view subset of UML relevant for MDE:

- State machines
- Sequence diagrams
- Class diagrams

Many complex constructs are omitted, but will be gradually added.

 V_1 ?

teaComplete()

Problem

Many syntactically correct merges possible. But how to avoid inconsistency with state machine?

Model Evolution

- Model Evolution
 - *Mens et al.* Challenges in Software Evolution
 - Mens et al. Challenges in Model-Driven Software Engineering
 - Brosch et al. Model Versioning, Change Management

- Model Evolution
 - Mens et al. Challenges in Software Evolution
 - Mens et al. Challenges in Model-Driven Software Engineering
 - Brosch et al. Model Versioning, Change Management
- Model Verification

Model Evolution

- Mens et al. Challenges in Software Evolution
- Mens et al. Challenges in Model-Driven Software Engineering
- Brosch et al. Model Versioning, Change Management
- Model Verification
 - Maoz et al. Semantic model differencing
 - Knapp et al., Schaefer et al., Eshuis et al. Model checking dynamic UML diagrams
 - v.d. Straeten et al. Description Logics

- Model Evolution
 - Mens et al. Challenges in Software Evolution
 - Mens et al. Challenges in Model-Driven Software Engineering
 - Brosch et al. Model Versioning, Change Management
- Model Verification
 - Maoz et al. Semantic model differencing
 - Knapp et al., Schaefer et al., Eshuis et al. Model checking dynamic UML diagrams
 - v.d. Straeten et al. Description Logics
- Formal Semantics of UMI

Model Evolution

- Mens et al. Challenges in Software Evolution
- Mens et al. Challenges in Model-Driven Software Engineering
- Brosch et al. Model Versioning, Change Management

Model Verification

- Maoz et al. Semantic model differencing
- Knapp et al., Schaefer et al., Eshuis et al. Model checking dynamic UML diagrams
- v.d. Straeten et al. Description Logics

Formal Semantics of UML

- Rumpe et al. System Model
- Eshuis et al. Activity Diagrams
- Luettgen and Mendler Statechart Semantics via Intuitionistic Kripke Models

State of the art survey

State of the art survey

- Model evolution
- Model verification
- Semantics of UML

State of the art survey

Taxonomy of change

State of the art survey

Taxonomy of change

- Change in model evolution
- Definitions of inconsistencies
- Relations between change and inconsistency

State of the art survey

Taxonomy of change

UML subset

State of the art survey

Taxonomy of change

UML subset

State of the art survey

Taxonomy of change

UML subset

Verification methods

State of the art survey

Taxonomy of change

UML subset

Verification methods

- Model checking (focus on dynamic view)
- Analysis of state space
- Own model checker for software models?

State of the art survey

Taxonomy of change

UML subset

Verification methods

Handling complexity

State of the art survey

Taxonomy of change

UML subset

Verification methods

Handling complexity

- Identify complex tasks
- Incremental verification

State of the art survey

Taxonomy of change

UML subset

Verification methods

Handling complexity

Evaluation

State of the art survey

Taxonomy of change

UML subset

Verification methods

Handling complexity

Evaluation

- Eclipse-based implementation
- Benchmarks from previous project
- Students in "Model Engineering" lab

State of the art survey

Taxonomy of change

UML subset

Verification methods

Handling complexity

Evaluation


```
turnOn
              Off
                         Idle
                   turnOff
                prepareCoffee
                              prepareTea
     Preparing Coffee
                                       Preparing Tea
                coffeeComplete
                            teaComplete
 Off:
printf("Off", CM[h]);
if
    CM[h] == turnOn -> h++; goto Idle
     CM[h] == acc -> goto end
fi;
```



```
turnOn
              Off
                         Idle
                prepareCoffee
                              prepareTea
     Preparing Coffee
                                       Preparing Tea
                coffeeComplete
                            teaComplete
 Idle:
printf("Idle", CM[h]);
if
     CM[h] == prepareCoffee -> h++; goto PrepareCoffee
     CM[h] == prepareTea -> h++; goto PrepareTea
    CM[h] == turnOff -> h++; goto Off
    CM[h] == acc -> goto end
fi;
```


Expected Contributions

- Survey on model evolution
- Taxonomy of change and inconsistencies
- Verification methods
- Integration into a formal framework to assist MDE

