@n

Business Informatics Group . R R
[wwir | - - - - - Vienna University of Technology -

Guided Merging of Sequence Diagrams

@) ’ 7
Magdalena Widl
Knowledge-Based Systems Group
Vienna University of Technology

Motivation and Scope

ofee/prepCofice

s Done/of m
Home Working - Drinking

needTea/prepTen

((prepine

Prepng e |

bob:PhD | | cm:CM

resdCoffe L: prepCoffee

done

bob:PhD | | cm:CM

workdone

el o
Deotiecdone e Jestecdene
S
e e300

Motivation and Scope

bob:PhD | | cm:CM

bob:PhD | | cm:CM

eofeedone

done ;‘mlieguena don
ool e

eadone

Model-Driven Engineering

Motivation and Scope

Model-Driven Engineering

bob:PhD | | cm:CM

Model Evolution

bob:PhD | | cm:CM

ot 5 S
e eotiepone e eotiecdine
eadone

Motivation and Scope

Model-Driven Engineering

Model Evolution

bob:PhD | | cm:CM bob:PhD | | cm:CM Model Versioning
needCoteel neesCoteelS
| SJeotieedone e Jestecdene
e e300

Motivation and Scope

Model-Driven Engineering

Model Evolution

) :o’ZPhD cm:CM . "bo’ZPhD cm:CM Model Versioning

Deotiecdone Deofiecdane

done

B el Model Merging

ot
e i

Motivation and Scope

Model-Driven Engineering

Model Evolution

feaDone/don

) :o’ZPhD cm:CM B "bc’ZPhD cm:CM Model Versioning
Dcoffeedone Deoffeedone

done

woonle e Model Merging

e i

Multi-View Modelling

Example

~
PhD) &\ needCoffee/prepCoffee
T/JvorkDone/ofF
Home Working
hasWork/on
needTea/prepTea

Example

~

PhD

e

needCoffee/prepCoffee

&«

7;NorkDone/ofF

hasWork/on

Working

needTea/prepTea

Off

on/- | off/-

[Preparing Tea Idle
-)

\prepTea/done(

“teaDone/done

\prepCoffee /- -

Preparing Coffee }

cofl"eeDone/—k

Example

PhD needCo"ae/prepCoﬂee
WkDone/e"
[Home }:{ Working](—[Drinking]
hasWork/on Preparing Tea - Preparing Coffee
needTea/prepTea

Example

PhD 4

needCoffee/prepCoffee
workDone/off 3
done/-
[Home]:(Working]<—[Drinking]
hasWork/on f
needTea/prepTea

Preparing Tea

Preparing Coffee

eaDone/done offeeDone/~

So

cm:

1

bob:PhD

CM

needCoffee
prepCoffee _:

(:) done

;‘ coffeeDone

Example

OO |
.. g
PhD 4 needCoffee/prepCoffee
workDone /off done/- l’
[Home }:{ Working]<—[Drinking]
hasWork/on) Preparing Tea Preparing Coffee
needTea/prepTea teaDone/done’ -offeeDone /-
S/ . .
0 bob:PhD cm:CM
1 ; T
needCoffee :
prepCoffee
coffeeDone

:) done
worggoneg (:)

Example

e
i o
N (M
PhD = needCoffee/prepCoffee
- e
workDone/off
done/-
[Home }:{ Working]<—[Drinking]
hasWork/on r i Preparing Coffee
needTea/prepTea eaDone/done offeeDone/~

S§ | bob:PhD | | cm:CM
1

needCoffee : :
prepCoffee
@ :) done
needTea
1: prepTea @
teaDone
. done

coffeeDone

Example

L=
~ [o
PhD) needCoffee/prepCoffee >
wkaone/o" done/. l’
[Home }:{ Working]<°—[Drinking]
hasWork/on r i Preparing Coffee
needTea/prepTea teaDone/done’ -offeeDone /-
Sl SII
0 bob:PhD cm:CM 0 bob:PhD cm:CM
1 T 1 T
needCoffee : needCoffee :
prepCoffee @ prepCoffee

coffeeDone coffeeDone

: done : done
®
wor%oneg needTea |;1: prepTea
L 5
teaDone
. done

s)

Example

N
PhD = needCoffee/prepCoffee
workDone/off

—— 3
done/-
[Home Working Drinking

hasWork/on §

Preparing Coffee

needTea/prepTea

S17? dbob:PhD cm:CM
1

needCoffee : :
prepCoffee

coffeeDone

_(: done
®
workDoneI; (:)
needTea prepTea
;g o
teaDone
’ done

Example

~.
PhD 4 needCoffee/prepCoffee
workDone/off v
done/-
[Home }:{ Working]<—[Drinking]
hasWork/on r i Preparing Coffee
needTea/prepTea

S17? dbob:PhD cm:CM
1

dCoff : :
needi-otiee prepCoffee

coffeeDone

done
Wo%o.,eg@—g %
needTea prepTea
’g o
teaDone
. done

Example

~.
PhD = needCoffee/prepCoffee
workDone/off v
done/-
[Home }:{ Working]<_[Drinking]
hasWork/on r i Preparing Coffee
needTea/prepTea

S17? dbob:PhD cm:CM
1

needCoffee : :
prepCoffee

coffeeDone

@ (: done
needTea l; prepTea
§L> @

teaDone

‘ done
O,

workDone| _: ofF

Example

~.
PhD 4 needCoffee/prepCoffee
- e
workDone/off
done/-
[Home }:{ Working]<—[Drinking]
hasWork/on r Preparing Coffee
needTea/prepTea

S17? dbob:PhD cm:CM
1 N T

needCoffee :
prepCoffee :

;‘ coffeeDone

:f:}done :

needTea I; prepTea J
e O

: ._ |teaDone

. done

workDone ‘ off

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges

Model merging is much more complex than text merging

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges
Model merging is much more complex than text merging

Formal semantics for inter-diagram relations

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges
Model merging is much more complex than text merging
Formal semantics for inter-diagram relations

A scalable algorithm that solves the problem

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges
Model merging is much more complex than text merging
Formal semantics for inter-diagram relations

A scalable algorithm that solves the problem

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges

Model merging is much more complex than text merging
Formal semantics for inter-diagram relations

A scalable algorithm that solves the problem

Our Contributions

Formalization of state machine, sequence diagram, formal problem
statement

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges
Model merging is much more complex than text merging
Formal semantics for inter-diagram relations

A scalable algorithm that solves the problem

Our Contributions

Formalization of state machine, sequence diagram, formal problem
statement

Translation to propositional SAT Problem

Guided Merging of Sequence Diagrams

Why? No more cumbersome manual merging!

Challenges
Model merging is much more complex than text merging
Formal semantics for inter-diagram relations

A scalable algorithm that solves the problem

Our Contributions

Formalization of state machine, sequence diagram, formal problem
statement

Translation to propositional SAT Problem

Implementation and evaluation

Guided Merging of Sequence Diagrams

Our Contributions
Formalization of state machine, sequence diagram, formal
problem statement
Translation to propositional SAT Problem

Implementation and evaluation

Formalization

The tMVML Metamodel

out *

k. *k
| StateMachineView |0-| StateMachine |0—| State
%

n

1 ; * | ¥

trigger | effect
1 *
*
ActionSymbol
% 1
SequenceDiagramView
SendEvent
% *) *
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization

The tMVML Metamodel

* * out *
StateMachineView [@- StateMachine O—I State I:lm
* 1 1 in * E3
trigger | effect
1 *
*
Model [@ ActionSymbol
? !
SequenceDiagramView
SendEvent
% * 1] «
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization

The tMVML Metamodel

* * out *
StateMachineView [@- StateMachine O—I State I:lm
* 1 1 in * E3
trigger | effect
1 *
*
Model [@ ActionSymbol
? :
SequenceDiagramView
SendEvent
% * 1] «
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization

The tMVML Metamodel

* * out *
StateMachineView [@- StateMachine O—I State I:lm
* 1 1 in * E3
trigger | effect
1 *
*
Model [@ ActionSymbol
? !
SequenceDiagramView
SendEvent
% * 1] «
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization

The tMVML Metamodel

* * out *
StateMachineView [@- StateMachine O—I State I:lm
* 1 1 in * E3
trigger | effect
1 *
*
Model [@ ActionSymbol
? !
SequenceDiagramView
SendEvent
% * 1] «
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization

The tMVML Metamodel

* * out *
S
StateMachineView [@- StateMachine [@— State Transition
* 1 1 in * *
trigger | effect
1 *
*
Model [@ ActionSymbol
? :
SequenceDiagramView
SendEvent
% * 1] «
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization
State Machine

*
* - out
| StateMachine |0—{ State | Transition |
1 in * | k
trigger

1

*

effect
*

ActionSymbol

Formalization
State Machine

*
* - out
| StateMachine |0—{ State | Transition |
1 in * | % *
trigger effect
1 *

ActionSymbol

Given an alphabet Ay, a state machine is a quadruple (S, A", A%F T),
where
S is a set of states,
At A C Ay are sets of action symbols, and
T C (S x A" x P(A%) x §) is a relation representing the transitions
between states.

Formalization

The tMVML Metamodel

* * out *
StateMachineView [@- StateMachine O—I State I:lm
* 1 1 in * E3
trigger | effect
1 *
*
Model [@ ActionSymbol
? !
SequenceDiagramView
SendEvent
% * 1] «
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered} W *
! foraere) 5

Formalization

The tMVML Metamodel

%

*

StateMachineView

@ StateMachine

out ¥

o state [Transition |
1 i *

effect
*

l* 1 in *
trigger
* 1
Model [@ ActionSymbol
?. !
SequenceDiagramView
SendEvent
?* * 1 *
SequenceDiagram 0—* Lifeline 0—* Event Message
ordered *
T {) v\ ReceiveEvent 1 1

Formalization

Sequence Diagram

StateMachine ActionSymbol

1 1

*

LX
SequenceDiagram " Lifeline |0—*| Event |
V.

(] {ordered}

Formalization

Sequence Diagram

StateMachine ActionSymbol

1 1

*

LX
SequenceDiagram " Lifeline |0—*| Event |
V.

(] {ordered}

Given the alphabets A4 and Apg, and a set SM of state machines, a
sequence diagram is a quadruple (L, M, life, msg), where

L is a set of lifelines,

M is a set of messages,

life: L — (SM x P(Ag) x P(Ag) x P(Ag X Ag))

msg : M — (Aa x Ujer ma(life(l)) x U, ms(life(1))).

Formalization

Sequence Diagram

Lifeline conformance: For each lifeline, the sequence of received
message symbols is a path of triggers in the attached state machine.

10

Formalization

Sequence Diagram

Lifeline conformance: For each lifeline, the sequence of received
message symbols is a path of triggers in the attached state machine.

dCoffe
neece eeg prepCoffee on/- | off/-
E—
Z] coffeeDone prepTea/done prepCoffee/-
< done ¢ Preparing Tea - Idle]:(Preparing Coffee }

teaDone /done CoffeeDone /-~

workDone g off
— >

10

Formalization

Sequence Diagram

Lifeline conformance: For each lifeline, the sequence of received
message symbols is a path of triggers in the attached state machine.

needCoffee g prepCoffee
—_——

Z] coffeeDone
B done R

workDone g off
— >

[V

on/-

prepTea/done

prepCoffee/-

| Preparing Coffee

a
Preparing Tea | | Idle
\
e

)

teaDone/don

CoffeeDone /-~

10

Formalization

Sequence Diagram

Lifeline conformance: For each lifeline, the sequence of received
message symbols is a path of triggers in the attached state machine.

d Coff
needto eeg prepCoffee
—_——
Z] coffeeDone
B done R
H off
needTea
[; prepTea
gteaDone

done

on/- | off/-

prepTea/done

prepCoffee/-

Preparing Tea - Idle]:(

Preparing Coffee }

teaDone/done

CoffeeDone /-~

10

Formalization

Sequence Diagram

Lifeline conformance: For each lifeline, the sequence of received
message symbols is a path of triggers in the attached state machine.

[rovPrD] (e

needCoffee g prepCoffee
—_——

Z] coffeeDone
B done R
off :

needTea [; prepTea

2 teaDone

done

)

on/- | off/-
prepTea/done prepCoffee/
Preparing Tea | | Idle | Preparing Coffee
teaDone,/done~ LoffeeDone,/

10

Problem statement

Instance: A sequence diagram and two of its revisions.

So [bob:PhD So [bob:PhD S5 [bob:PhD

needCoffee| _ dCoffee| _ dCoffee| _
EZ prepCoffee 3 needtofiee EQ prepCoffee _: needto ee[z prepCoffee _:
N — 3 > B
Z] coffeeDone Z] coffeeDone Z] coffeeDone
64 done L4 done &4 done

5

®
workDone g (i) off needTea g¥6 prepTea

7
‘JteaDone
< 8) done

11

Problem statement

Objective: Find a consolidated version
Contains all original and added messages and lifelines

Lifelines conform to state machines

S 7 !bobPhDHcmCM\ S 7 !bobPhDHcmCM\
dC fre : dC fre
needto eeE2 prepCoffee _: needte eer2 prepCoffee _:
ﬁ 3 H— 8
coffeeDone : ;] coffeeDone
4 done B %4 done B
: @ R :
dT : : :
nee eag prepTea workDoneg off
6 preplea (:) S
7
teaDone dT
8 Jdone 2 nee ea[; 8) prepTea
= 9
teaDone
workDone ofF 10 done 2

12

Guided Merging of Sequence Diagrams

Our Contributions
Formalization of state machine, sequence diagram, formal problem

statement
Translation to propositional SAT Problem

Implementation and evaluation

13

Translation to propositional SAT

Three types of variables

m;, m: message, i: position

S
7

15

7

c?, s state in state machine, i: position, c: “source”

s: state in state machine, i: position, ¢: “target”

14

Translation to propositional SAT

Three types of variables
m;, m: message, i: position
S

cf, s: state in state machine, ¢: position, c: “source”

7, s: state in state machine, ¢: position, : “target”

Propositional formula consists of constraints that describe legal solutions,
e.g.

(m1 V ma V mg) VAN (—|m1 V —|m2) A (—|m2 V —|m3) N (—|m1 V —|m3)

14

Translation to propositional SAT

Three types of variables

m;, m: message, i: position

cf, s: state in state machine, ¢: position, c: “source”

7, s: state in state machine, ¢: position, : “target”

Propositional formula consists of constraints that describe legal solutions,
e.g.

(m1 V ma V mg) VAN (—|m1 V —|m2) A (—|m2 V —|m3) N (—|m1 V —|m3)

mi = ((cf' A2V (e? A 1))

14

Translation to propositional SAT

Three types of variables
m;, m: message, i: position
cf, s: state in state machine, ¢: position, c: “source”

t?, s: state in state machine, ¢: position, ¢: “target”

Propositional formula consists of constraints that describe legal solutions,
e.g.
(m1 V ma V mg) VAN (—|m1 V —|m2) A (—|m2 V —|m3) A (—|m1 V ﬂmg)
my = ((ef' A2V (e A 1Y)

The encoding is polynomial in the input size.

Satisfying assignments of the formula can be directly translated back into
a solution of our problem.

14

Translation to propositional SAT

ALY A A (o)

meM i€allow(m) meM i]Eallow(m)
AN A VOV)
z€{o,a,8} meM? icallow(m) neM®, j>i,

n>=m j€Eallow(n)

/\ (ﬂmiv \/ (C;"l(ﬁ)/\t;%(")))

i€allow(m) tEtrans(m)

k

AV A (V) A A (ovmpneio)
i=1 cf€ve tZEvt SES, TESG\s

k—1
i=1 MESM sEmq (SM)
i J

(tfﬁ A ﬂc;H)A(/\(zfA/\ﬂciﬂ A ﬂcﬁ'ﬂ))

remy (SM)\s j=1 =1 remy (SM)\s

15

Guided Merging of Sequence Diagrams

Our Contributions
Formalization of state machine, sequence diagram, formal problem

statement
Translation to propositional SAT Problem

Implementation and evaluation

16

Implementation — Workflow

SD* j SD° T SDP j

Implementation — Workflow

=

)

SDP j

N

Diff Provider

Y

Diff
Model

Implementation — Workflow

=

)

SDP j

N

!

Diff Provider

CNF
Formula

Y

A

Diff
Model 7—{ SAT Encoder }

Implementation — Workflow

SD"‘T SD"j SDﬁj
N VS

L Diff Provider } vl

Formula

SAT Solver

A

Y

Diff
Model 7#{ SAT Encoder}

Implementation — Workflow

SD"‘T SD"j SDﬁj
N VS

L Diff Provider } vl

Formula

SAT Solver

A

Y

Diff
Model 7#{ SAT Encoder}

Implementation — Workflow

SD"‘T SD"j SDﬁj
N VS

L Diff Provider } vl

Formula

SAT Solver

SAT
Model

A

Y

Diff
Model 7#{ SAT Encoder}

Implementation — Workflow

SD"‘? SD"? SDﬁj
N VS

L Diff Provider } vl

SAT

Formula Model

A

Y

Diff
Model 7#{ SAT Encoder}

Implementation — Workflow

SD"‘? SD"? SDﬁj
N VS

L Diff Provider } vl

SAT

Formula Model

A

Y

Diff
Model 7#{ SAT Encoder} Merger

U<

Implementation — Workflow

SD"‘? SD"? SDﬁj
N VS

L Diff Provider } vl

Formula

A

Y

.
Diff
Model 7#{ SAT Encoder} Merger
o)

Implementation — Workflow

=

SD° ﬁ SDP j

N

!

/

L Diff Provider } vl

Formula

Y

A

Diff
Model

7#{ SAT Encoder } '
N

Evaluation

» Benchmark set with 45 instances

Evaluation

Benchmark set with 45 instances

For some instances, no state machines are defined

18

Evaluation

Benchmark set with 45 instances
For some instances, no state machines are defined
Quit after 1,000 solutions are found

18

Evaluation

Benchmark set with 45 instances
For some instances, no state machines are defined
Quit after 1,000 solutions are found

18

Evaluation

Benchmark set with 45 instances
For some instances, no state machines are defined
Quit after 1,000 solutions are found

Set # SM | # action symbols | # states | # transitions
email 3 15 16 19
coffee 2 9 7 8
philosopher 2 8 7 8

Evaluation

Benchmark set with 45 instances
For some instances, no state machines are defined
Quit after 1,000 solutions are found

Set # SM | # action symbols | # states | # transitions

email 3 15 16 19

coffee 2 9 7 8

philosopher 2 8 7 8
Results

Between 0.06s and 0.2s per solution depending on instance

Evaluation

Benchmark set with 45 instances
For some instances, no state machines are defined
Quit after 1,000 solutions are found

Set # SM | # action symbols | # states | # transitions

email 3 15 16 19

coffee 2 9 7 8

philosopher 2 8 7 8
Results

Between 0.06s and 0.2s per solution depending on instance

Some instances have many solutions (>1,000)

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

19

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

19

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

19

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

What we consider next

Handling high numbers of solutions

19

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

What we consider next
Handling high numbers of solutions

Including deletions and updates

19

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

What we consider next
Handling high numbers of solutions
Including deletions and updates

Integration of other UML concepts

19

Summary and Future Work

We
Formalized a subset of the UML in our language tMVML
Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

What we consider next
Handling high numbers of solutions
Including deletions and updates
Integration of other UML concepts

Visualization

19

Related Work

Model merging:
Gerth et al., Merge support for business process models using term
rewriting systems
Cicchetti et al., Definition of conflict patterns
Nejati et al., Merging of state machines

Consistency checking:
Diskin et al., Category theory based framework
Van der Straeten et al., Inconsistency detection between class and
sequence diagrams using Kodkod
Sabatzadeh et al., Consistency checks between overlapping models
Tsoliakis, Integration of constraints of other views into sequence
diagrams
Brosch et al., Model checking on state machines and sequence

diagrams
20

