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Given the alphabets A4 and Apg, and a set SM of state machines, a
sequence diagram is a quadruple (L, M, life, msg), where

L is a set of lifelines,

M is a set of messages,

life: L — (SM x P(Ag) x P(Ag) x P(Ag X Ag))

msg : M — (Aa x Ujer ma(life(l)) x U, ms(life(1))).
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Problem statement

Instance: A sequence diagram and two of its revisions.
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Problem statement

Objective: Find a consolidated version
Contains all original and added messages and lifelines

Lifelines conform to state machines
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Translation to propositional SAT

Three types of variables
m;, m: message, i: position
cf, s: state in state machine, ¢: position, c: “source”

t?, s: state in state machine, ¢: position, ¢: “target”

Propositional formula consists of constraints that describe legal solutions,
e.g.
(m1 V ma V mg) VAN (—|m1 V —|m2) A (—|m2 V —|m3) A (—|m1 V ﬂmg)
my = ((ef' A2V (e A 1Y)

The encoding is polynomial in the input size.

Satisfying assignments of the formula can be directly translated back into
a solution of our problem.
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Translation to propositional SAT
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Evaluation

Benchmark set with 45 instances
For some instances, no state machines are defined
Quit after 1,000 solutions are found

Set # SM | # action symbols | # states | # transitions

email 3 15 16 19

coffee 2 9 7 8

philosopher 2 8 7 8
Results

Between 0.06s and 0.2s per solution depending on instance

Some instances have many solutions (>1,000)
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Translated the sequence diagram merging problem to prop. SAT

Implemented and evaluated our approach

What we consider next
Handling high numbers of solutions
Including deletions and updates
Integration of other UML concepts

Visualization
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Related Work

Model merging:
Gerth et al., Merge support for business process models using term
rewriting systems
Cicchetti et al., Definition of conflict patterns
Nejati et al., Merging of state machines

Consistency checking:
Diskin et al., Category theory based framework
Van der Straeten et al., Inconsistency detection between class and
sequence diagrams using Kodkod
Sabatzadeh et al., Consistency checks between overlapping models
Tsoliakis, Integration of constraints of other views into sequence
diagrams
Brosch et al., Model checking on state machines and sequence

diagrams
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