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Scenario-based Testing

Scenarios can be represented by models
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Sequence Diagram
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A triple (L,m,N ), where
L a set of lifelines
m : L →M a function assigning a state machine to each lifeline
N a sequence of elements in L ×A× L

Only neg fragments.
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Encoding

Model Checker SPIN
Each state machine a process
Communication over synchronous channels
Each sequence diagram a (no)trace assertion

Automatic code generation

12



Example

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

CM

PhD

13



Encoding

14



Challenges

1. Formal problem definition, formal semantics of models

3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax
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