
Towards Scenario-Based Testing of UML Diagrams

Magdalena Widl
Knowledge-Based Systems Group
Vienna University of Technology



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testingModel verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testingModel verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testingModel verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Model-Driven Engineering

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()
*

*

User

CoffeeMachine

turnOn() : void
prepareCoffee(strength : Int) : Coffee
prepareTea() : Tea
turnOff() : void

Software verification, testing

Model verification!

2



Scenario-based Testing

Scenarios can be represented by models

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

3



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



The Big Picture

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

Model to generate code
(e.g. state machines)

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

A model checking problem!

K
Kripke structure

φ
Temporal logic

|= ?

4



Idea & Challenges

Use model checking to verify a set of state machines against a set of
sequence diagrams.

1. Formal problem definition, formal semantics of models
2. Translation to model checker
3. Presentation of result (counterexample)

5



Idea & Challenges

Use model checking to verify a set of state machines against a set of
sequence diagrams.

1. Formal problem definition, formal semantics of models

2. Translation to model checker
3. Presentation of result (counterexample)

5



Idea & Challenges

Use model checking to verify a set of state machines against a set of
sequence diagrams.

1. Formal problem definition, formal semantics of models
2. Translation to model checker

3. Presentation of result (counterexample)

5



Idea & Challenges

Use model checking to verify a set of state machines against a set of
sequence diagrams.

1. Formal problem definition, formal semantics of models
2. Translation to model checker
3. Presentation of result (counterexample)

5



Idea & Challenges

Use model checking to verify a set of state machines against a set of
sequence diagrams.

1. Formal problem definition, formal semantics of models
2. Translation to model checker
3. Presentation of result (counterexample)

5



Problem Instance

A triple (A,M,S), where
A a set of actions (vocabulary)
M a set of state machines, and
S a set of sequence diagrams.

6



Problem Instance

A triple (A,M,S), where
A a set of actions (vocabulary)
M a set of state machines, and
S a set of sequence diagrams.

6



Problem Instance

A triple (A,M,S), where
A a set of actions (vocabulary)
M a set of state machines, and
S a set of sequence diagrams.

6



State Machine

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

A quintuple (S , ι,Atr ,Aeff ,T ), where
S is a set of states
ι ∈ S is an initial state
Atr ∈ A is a set of triggers
Aeff ∈ A is a set of effects
T ⊆ S ×Atr × P(Aeff )× S is a set of transitions

7



State Machine

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

A quintuple (S , ι,Atr ,Aeff ,T ), where
S is a set of states
ι ∈ S is an initial state
Atr ∈ A is a set of triggers
Aeff ∈ A is a set of effects
T ⊆ S ×Atr × P(Aeff )× S is a set of transitions

7



State Machine

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

A quintuple (S , ι,Atr ,Aeff ,T ), where
S is a set of states
ι ∈ S is an initial state
Atr ∈ A is a set of triggers
Aeff ∈ A is a set of effects
T ⊆ S ×Atr × P(Aeff )× S is a set of transitions

7



State Machine

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

A quintuple (S , ι,Atr ,Aeff ,T ), where
S is a set of states
ι ∈ S is an initial state
Atr ∈ A is a set of triggers
Aeff ∈ A is a set of effects
T ⊆ S ×Atr × P(Aeff )× S is a set of transitions

7



State Machine

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

A quintuple (S , ι,Atr ,Aeff ,T ), where
S is a set of states
ι ∈ S is an initial state
Atr ∈ A is a set of triggers
Aeff ∈ A is a set of effects
T ⊆ S ×Atr × P(Aeff )× S is a set of transitions

7



State Machine

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

A quintuple (S , ι,Atr ,Aeff ,T ), where
S is a set of states
ι ∈ S is an initial state
Atr ∈ A is a set of triggers
Aeff ∈ A is a set of effects
T ⊆ S ×Atr × P(Aeff )× S is a set of transitions

7



Sequence Diagram

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

A triple (L,m,N ), where
L a set of lifelines
m : L →M a function assigning a state machine to each lifeline
N a sequence of elements in L ×A× L

Only neg fragments.
8



Sequence Diagram

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

A triple (L,m,N ), where
L a set of lifelines
m : L →M a function assigning a state machine to each lifeline
N a sequence of elements in L ×A× L

Only neg fragments.
8



Sequence Diagram

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

A triple (L,m,N ), where
L a set of lifelines
m : L →M a function assigning a state machine to each lifeline
N a sequence of elements in L ×A× L

Only neg fragments.
8



Sequence Diagram

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

A triple (L,m,N ), where
L a set of lifelines
m : L →M a function assigning a state machine to each lifeline
N a sequence of elements in L ×A× L

Only neg fragments.
8



Sequence Diagram

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

A triple (L,m,N ), where
L a set of lifelines
m : L →M a function assigning a state machine to each lifeline
N a sequence of elements in L ×A× L

Only neg fragments.
8



Problem Definition

Given a setM of state machines

and a set S of neg sequences (scenarios),
does any S ∈ S occur on any path of the composition ofM?

9



Problem Definition

Given a setM of state machines and a set S of neg sequences (scenarios),

does any S ∈ S occur on any path of the composition ofM?

9



Problem Definition

Given a setM of state machines and a set S of neg sequences (scenarios),
does any S ∈ S occur on any path of the composition ofM?

9



Idea & Challenges

Use model checking to verify a set of state machines against a set of
sequence diagrams.

1. Formal problem definition, formal semantics of models
2. Translation to model checker
3. Presentation of result (counterexample)

10



Model Checking with SPIN

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

State machines
cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

K
Kripke structure

φ
Temporal logic

|= ?

PROMELA processes Never claims (Buchi Automata)
or (no)trace assertions

11



Model Checking with SPIN

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

State machines
cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

Scenario

implements ?

K
Kripke structure

φ
Temporal logic

|= ?

PROMELA processes Never claims (Buchi Automata)
or (no)trace assertions

11



Encoding

Model Checker SPIN
Each state machine a process
Communication over synchronous channels
Each sequence diagram a (no)trace assertion

Automatic code generation

12



Example

OffOff HeatingHeating

BrokenBrokenIdleIdlePreparingCoffeePreparingCoffee

on()/−

noBeans()/error()off()/−

coffee()/−

−/coffeeComplete()
repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

−/on()

error()/−

ready()/−

−/coffee()

coffeeComplete()/−

tired()/−

+ entry / off()

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

CM

PhD

13



Encoding

14



Challenges

1. Formal problem definition, formal semantics of models

3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine

7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards

3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram

7 Additional concepts like other combined fragments, asynchronous
communication

7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication

7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker

3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker
3 Prototype in Spin

7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker
3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker
3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)

7 Concrete syntax

15



Challenges

1. Formal problem definition, formal semantics of models
3 Definition of restricted state machine
7 Additional concepts like guards
3 Definition of restricted sequence diagram
7 Additional concepts like other combined fragments, asynchronous

communication
7 Semantics of non-neg fragments

2. Translation to model checker
3 Prototype in Spin
7 Better encodings in other model checkers

3. Presentation of result (counterexample)
7 Concrete syntax

15





Related Work

Cimatti et al.: Hybrid Automata and Message Sequence Charts
Li et al.: Petri nets and Message Sequence Charts
CHARMY tool suite: Software Architecture with componen, state
transition and sequence diagrams
HUGO: State machines and collaboration diagrams with SPIN
Other works in the area of synthesis (e.g. Uchitel et al.)

16


