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Abstract. In Semantic Web, the knowledge sources usually contain inconsis-
tency because they are constantly changing and from different view points. As
is well known, as based on the description logic, OWL is lack of the ability of
tolerating inconsistent or incomplete data. Recently, the research in handling in-
consistency in OWL becomes more and more important. In this paper, we present
a paraconsistent OWL called quasi-classical OWL to handle inconsistency with
holding important inference rules such as modus tollens, modus ponens, and
disjunctive syllogism. We propose a terminable, sound and complete tableau al-
gorithm to implement paraconsistent reasoning in quasi-classical OWL. In com-
parison with other approaches to handle inconsistency in OWL, our approach
enhances the ability of reasoning by integrating paraconsistent reasoning with
important classical inference rules.

1 Introduction

In recent years, the problem of inconsistency handling in OWL is attracting a lot of
attention in logics and Semantic Web. Many reasons cause the occurrence of inconsis-
tency such as modeling errors, migration from other formalisms, merging ontologies,
and ontology evolution [1]. In practical reasoning, it is common to have “too much”
information about some situation. In other words, it is common for there to be classi-
cally inconsistent information in practical reasoning ontologies [2]. According the fact
ex contradictione quodlibet in classical logic, if ontologies contain inconsistencies
then the classical entailment in logics is explosive. That is to say, any formula is a logi-
cal consequence of a contradiction. Therefore, conclusions drawn from an inconsistent
knowledge base may be completely meaningless [3]. This is particularly important if the
full power of logic-based approaches like the Web Ontology Language (short OWL) [4]
shall be employed, as classical logic breaks down in the presence of inconsistent knowl-
edge. Not surprisingly, the study of handling inconsistency in OWL becomes more and
more important.

There are serval approaches to handling inconsistency in OWL, which can be gen-
erally divided into two fundamentally different approaches. The first is based on the
assumption that inconsistencies indicate erroneous data which are to be repaired in or-
der to obtain a consistent knowledge base, e.g. by selecting consistent subsets for the

� We acknowledge support by Major Program of National Natural Science Foundation of China
(NSFC) (No. 60496322).

L. Aroyo et al. (Eds.): ESWC 2009, LNCS 5554, pp. 399–413, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



400 X. Zhang, G. Xiao, and Z. Lin

reasoning process [3,5,6]. Another approach, called paraconsistent approach, is not to
simply avoid the inconsistency but to apply a non-standard reasoning method to ob-
tain meaningful answers [7,8,9,10,11]. In the paraconsistent approach, inconsistencies
are treated as a natural phenomenon in realistic data and are tolerated in reasoning.
Compared with the former, the latter acknowledges and distinguishes the different epis-
temic statuses between “the assertion is true” and “the assertion is true with conflict”.
So far, the main idea of paraconsistent approach of handling inconsistency in OWL is
borrowing Belnaps four-valued semantics [12] for OWL. The most prominent of them
are based on the use of additional truth values standing for underdefined (i.e. neither
true nor false) and overdefined (or contradictory, i.e, both true and false). Four-
valued semantics proves useful for measuring inconsistency of ontologies [13], which
can provide context information for facilitating inconsistency handling. To a certain
extent four-valued semantics handles inconsistency, however the capability of reason-
ing is weaker than classical OWL because four-valued OWL doesn’t hold three basic
inference rules such as modus ponens, disjunctive syllogism, modus tollens or intu-
itive equivalences. In [8,9], a total negation is introduced to strengthen the capability of
paraconsistent reasoning in four-valued OWL by applying resolution principles. How-
ever, four-valued OWL with the total negation don’t hold intuitive equivalences. These
shortcomings are inherent limitations of four-valued semantics in reasoning.

Naturally, we expect that there is a paraconsistent logic which has the same capability
of reasoning in classical logics to handle inconsistency in OWL. However, it is still an
open problem now. Motivation of this paper is to find a paraconsistent approach to OWL
with three basic inference rules and intuitive equivalences.

OWL is based on description logics and the description logic ALCNQ is considered
to be the most foundational one and comprises a large fragment of OWL. In this paper,
based on [14], we study a description logic ALCNQ version of paraconsistent logic,
called quasi-classical (or QC) ALCNQ, which is an extension of quasi-classical logic
[15,16] and a paraconsistent version of ALCNQ. We contribute to the inconsistency
handling for ALCNQ in terms of the QC semantics in the following aspects.

– A new semantics called QC semantics including two semantics “QC weak seman-
tics” and “QC strong semantics” is introduced to description logic ALCNQ in this
paper. QC weak semantics inherits the characters from four-valued semantics in or-
der to reason paraconsistently, while QC strong semantics is introduced to strengthen
the capability of reasoning in ontologies. Compared to QC weak semantics, QC
strong semantics refines the disjunction of concepts in order to hold three basic in-
ference rules. Moreover, concept subsumption redefined in QC strong semantics is
different from four-valued description logic in order to hold intuitive equivalences,
i.e., C � D iff ¬C � D(a) for any individual a occurring in ontologies.

– A QC entailment (written by “|=Q”) between an ontology and an axiom is pre-
sented by applying QC semantics in this paper. “|=Q” is a nontrivial entailment,
i.e., {C(a),¬C(a)} �|=Q α for any axiom α. Compared with four-valued descrip-
tion logic, QC entailment holds three basic inference rules such as modus ponens:
{C(a), C � D} |=Q D(a), modus tollens: {¬D(a), C � D} |=Q ¬C(a) and dis-
junctive syllogism: {¬C(a), C �D} |=Q D(a). So as a paraconsistent description
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logic, QC description logic based on QC entailment has the approximate ability of
classical description logic in reasoning.

– A complement of concept is defined to QC semantics in order to reverse both the
information of being true and of being false. The complement of concept plays the
same role as negation in classical description logics.

– A tableau algorithm for QC ALCNQ called QC tableau algorithm based on the
complement of concept is proposed to implement paraconsistent reasoning in on-
tologies. QC transformation rules are developed from transformation rules in clas-
sical description logics by modifying them moderately. Furthermore, we prove that
QC tableau algorithm for QC ALCNQ is terminable, sound and complete. Finally,
we show that the complexity of QC tableau algorithm for QC ALCNQ is not
higher than the complexity of tableau algorithms for ALCNQ.

The paper is structured as follows. In Section 2, description logic ALCNQ as basic
knowledge is briefly reviewed. In Section 3, we introduce QC semantics including QC
weak semantics and QC strong semantics for description logic ALCNQ and define
the QC entailment relationship. In Section 4, a terminable, sound and complete QC
tableau algorithm with blocking technique to implement the querying. In Section 5,
some related works on comparing the QC description logic to four-valued description
logic are discussed. In Section 6, we conclude the main contributions in this paper and
discuss the future work. Due to paper space limitations, proofs are absent, and detailed
proofs are available in an Online Appendix.1

2 Preliminaries

In this section, we briefly review notation and terminology of the description logic
ALCNQ, but we basically assume that the reader is familiar with description logics.
For comprehensive background reading, please refer to [17].

We assume that we are given a set of atomic concepts (or concept names), denoted by
NC , a set of roles (or role names), denoted by NR and a set of individuals, denoted by
NI . With the symbols � and ⊥, we furthermore denote the top concept and the bottom
concept, respectively.

Complex concepts in ALCNQ can be formed from these inductively as follows.

– �, ⊥, and each atomic concept are concepts;
– If C, D are concepts, then C � D, C � D, and ¬C are concepts;
– If C is a concept and R is a role, then ∀R.C, ∃R.C, ≥ nR.C and ≤ nR.C with n

a non-negative integer are concepts.

Let C, D be concepts, a, b individuals and R a role. In description logic ALCNQ,
an ontology O is a pair 〈T ,A〉, where T is called the TBox (or terminology) of the
ontology andA is called the ABox of the ontology. Assertions are of the form C(a) or
R(a, b). Inclusion axioms are of the form C � D which is called a general concept
inclusion (or GCI) axiom. Informally, an axiom C(a) means that the individual a is
an instance of concept C, and an axiom R(a, b) means that individual a is related with
individual b via the property R. The inclusion axiom C � D means that each individual
of C is an individual of D.

1 http://www.is.pku.edu.cn/˜zxw/QCALCNQAppendix.pdf

http://www.is.pku.edu.cn/~zxw/QCALCNQAppendix.pdf
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Table 1. Syntax and semantics of concept constructors and axioms in ALCNQ

Constructor Name Syntax Semantics

atomic concept A A AI ⊆ ΔI

abstract role R R RI ⊆ ΔI × ΔI

individuals I o oI ∈ ΔI

inverse role R− (R−)I ⊆ ΔI × ΔI

top concept � ΔI

bottom concept ⊥ ∅
conjunction C1 � C2 CI

1 ∩ CI
2

disjunction C1 	 C2 CI
1 ∪ CI

2

negation ¬C ΔI \ CI

exists restriction ∃R.C {x | ∃y, (x, y) ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y, (x, y) ∈ RI implies y ∈ CI}

number atleast restriction ≥ nR {x | �({y.(x, y) ∈ RI}) ≥ n}
number atmost restriction ≤ nR {x | �({y.(x, y) ∈ RI}) ≤ n}

qualifying atleast restriction ≥ nR.C {x | �({y.(x, y) ∈ RI} and y ∈ CI) ≥ n}
qualifying atmost restriction ≤ nR.C {x | �({y.(x, y) ∈ RI} and y ∈ CI) ≤ n}

Axiom Name Syntax Semantics

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

concept inclusion C1 � C2 CI
1 ⊆ CI

2

individual equality a = b aI = bI

individual inequality a �= b aI �= bI

Remark 1. In Table 1, number restrictions can be taken as qualifying restrictions, i.e., ≤
nR ≡≤ nR.� and ≥ nR ≡≥ nR.�, where ≡ is the logically equivalent relationship.

The formal definition of the (model-theoretic) semantics of ALCNQ is given by means
of interpretations I = (ΔI , ·I) consisting of a non-empty domain ΔI and a mapping
·I satisfying the conditions in Table 1 where �M denotes the cardinality of a set M ,
interpreting concepts as subsets of the domain and roles as binary relations on the do-
main. An interpretation I satisfies C � D (written I |= C � D) iff CI ⊆ DI and it
satisfies a TBox T if it satisfies every assertion in T . Such an interpretation is called a
model of T (written I |= T ). A concept C is called satisfiable w.r.t. a terminology T
iff there is a model I of T with CI �= ∅. A concept D subsumes a concept C w.r.t T
iff CI ⊆ DI holds for each model I of T . For an interpretation I, an element aI ∈ ΔI

is called an instance of a concept C iff aI ∈ CI . An interpretation I satisfies C(a)
iff aI ∈ CI , it satisfies R(a, b) iff (aI , bI) ∈ RI and it satisfies an ABox A (written
I |= A) if it satisfies every assertion in A. An interpretation I satisfies an ALCNQ
ontology (i.e. is a model of the ontology) (written I |= O) iff it satisfies each axiom in
both the ABox and the TBox.

An ontology is called satisfiable (unsatisfiable) iff there exists (does not exist)
such a model. An ABox is consistent iff it has a model; and inconsistent otherwise.
Using the definition of satisfiability, an assertion α is said to be a logical consequence
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of an ontologyO ( written O |= α ) iff α is satisfied by every interpretation that satisfies
O. In ALCNQ, reasoning tasks, i.e. the derivation of logical consequences, can be re-
duced to check satisfiability of ontologies. Tableau algorithms can implement checking
satisfiability of ABox. Ian Horrocks et al [18] have developed an algorithm for com-
bined TBox and ABox reasoning in description logic based on the following lemma.

Lemma 1. Let C, D be concepts, A an ABox, T a TBox. We define

CT := �Ci�Di∈T ¬Ci � Di.

Then the following properties hold.

1. C is satisfiable w.r.t. T iff C � CT is satisfiable.
2. D subsumes C w.r.t. T iff C � ¬D � CT is unsatisfiable.
3. A is consistent w.r.t. T iff A ∪ {a : CT | a occurs in A} is consistent.

3 Quasi-Classical Description Logic ALCNQ
Quasi-classical description logic is a development of quasi-classical logic as defined in
[15]. We assume that the language of QC description logic ALCNQ is L.

3.1 Basic Definitions

Let A be an atomic concept and R be a role. A and ¬A are concept literals. A concept
C is in NNF , i.e., negation (¬) occurs only in front of concept names. A role literal
has the form ∀R.C, ∃R.C, ≥ nR, ≤ nR, ≥ nR.C or ≤ nR.C with C a concept in
NNF. A literal is either a concept literal or a role literal, written by L. A clause is the
disjunction of finite literals. Let L1�· · ·�Ln be a clause, then Lit(L1�· · ·�Ln) is the
set of literals {L1, . . . , Ln} that are in the clause. A clause is empty clause, denoted
by ♦, if it has no literals. We define ∼ be a complementation operation such that
∼ A is ¬A and ∼ (¬A) is A. The ∼ operator is used to make some definitions clearer.

Definition 1. Let L1 � · · · � Ln be a clause that includes a literal disjunct Li. The
focus of L1 � · · · � Ln by Li, denoted ⊗(L1 � · · · � Ln, Li), is defined as the clause
obtained by removing Li from Lit(L1 � · · · �Ln). In the case of a clause with just one
disjunct, we assume ⊗(L, L) = ⊥.

Example 1. Given a clause L1 � L2 � L3, ⊗(L1 � L2 � L3, L2) = L1 � L3.

In the following, we define strong interpretation and weak interpretation over domain
ΔI by assigning to each concept C a pair 〈+C,−C〉 of (not necessarily disjoint) subsets
of CI . Intuitively,+C is the set of elements known to belong to the extension of C, while
−C is the set of elements known to be not contained in the extension of C. +C and −C
are not necessarily disjoint and mutual complemental with respect to the domain. The
complemental set of a set S w.r.t. an interpretation I, denoted by S, if S = ΔI \ S.

Definition 2. Let I be a pair I = (ΔI , ·I) with ΔI as domain, where ·I is a function
assigning elements of ΔI to individuals, and subsets of ΔI × ΔI to concepts. I is a
weak interpretation in QC ALCNQ if the conditions in Table 2 are satisfied.
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Table 2. Weak Semantics of QC ALCNQ

Constructor Syntax Weak Semantics

A AI = 〈+A,−A〉, where +A,−A ⊆ ΔI

R RI = 〈+R,−R〉, where +R,−R ⊆ ΔI × ΔI

o oI ∈ ΔI

� 〈ΔI , ∅〉
⊥ 〈∅, ΔI〉

C1 � C2 〈+C1 ∩ +C2,−C1 ∪ −C2〉,if CI
i = 〈+Ci,−Ci〉 for i = 1, 2

C1 	 C2 〈+C1 ∪ +C2,−C1 ∩ −C2〉,if CI
i = 〈+Ci,−Ci〉 for i = 1, 2

¬C (¬C)I = 〈−C,+C〉, if CI = 〈+C,−C〉
∃R.C 〈{x | ∃y, (x, y) ∈ +R and y ∈ +C}, {x | ∀y, (x, y) ∈ +R

implies y ∈ −C}〉, if CI = 〈+C,−C〉 and RI = 〈+R,−R〉
∀R.C 〈{x | ∀y, (x, y) ∈ +R implies y ∈ +C}, {x | ∃y, (x, y) ∈ +R

and y ∈ −C}〉, if CI = 〈+C,−C〉 and RI = 〈+R,−R〉
≥ nR 〈{x | �({y.(x, y) ∈ +R}) ≥ n}, {x | �({y.(x, y) ∈ +R}) < n}〉,

if RI = 〈+R,−R〉
≤ nR 〈{x | �({y.(x, y) ∈ +R}) ≤ n}, {x | �({y.(x, y) ∈ +R}) > n}〉,

if RI = 〈+R,−R〉
≥ nR.C 〈{x | �({y.(x, y) ∈ +R} and y ∈ +C) ≥ n},

{x | �({y.(x, y) ∈ +R} and y �∈ −C) < n}〉
if CI = 〈+C,−C〉 and RI = 〈+R,−R〉

≤ nR.C 〈{x | �({y.(x, y) ∈ +R} and y �∈ −C) ≤ n},
{x | �({y.(x, y) ∈ +R} and y ∈ +C) > n}〉

if CI = 〈+C,−C〉 and RI = 〈+R,−R〉

Definition 3. Let |=w be a satisfiability relation called weak satisfaction. For a weak
interpretation I, we define |=w as follows:

– I |=w C(a) iff aI ∈ +C, CI = 〈+C,−C〉;
– I |=w R(a, b) iff (aI , bI) ∈ +R, RI = 〈+R,−R〉;
– I |=w C1 � C2 iff +C1 ⊆ +C2, for i = 1, 2, CI

i = 〈+Ci,−Ci〉;
– I |=w a = b iff aI = bI;
– I |=w a �= b iff aI �= bI;

where C, C1, C2 are concepts, R is a role and a is an individual.

A weak interpretation I satisfies a terminology T iff I |=w C � D for each GCI
C � D in T . Such a weak interpretation is called a QC weak model of T ( written
I |=w T ). A weak interpretation I satisfies an ABox A iff I |=w α for each assertion
α in A, where α ∈ {C(a), R(a, b), a = b, a �= b}. Such a weak interpretation is called
a QC weak model of A (written I |=w A).

The definition of strong interpretation is similar to weak interpretation. The main
difference is that the definition for disjunction of concept in strong interpretation is
more restricted.

Definition 4. Let I be a pair I = (ΔI , ·I) with ΔI as domain, where ·I is a function
assigning elements of ΔI to individuals, and subsets of ΔI × ΔI to concepts. I is a
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strong interpretation in QC ALCNQ if the conditions in Table 2, except conjunction
concept and disjunction concept, are satisfied and I satisfies as follows:

– conjunction of concept C1 � C2: (C1 � C2) under strong interpretation I is de-
fined as 〈+C1 ∩ +C2, (−C1 ∪ −C2) ∩ (−C1 ∪ +C2) ∩(+C1 ∪ −C2)〉, if CI

i =
〈+Ci,−Ci〉 for i = 1, 2;

– disjunction of concept C1 �C2: (C1 �C2) under strong interpretation I is defined
as 〈(+C1∪+C2)∩(−C1∪+C2)∩(+C1∪−C2),−C1∩−C2〉, if CI

i = 〈+Ci,−Ci〉
for i = 1, 2.

Remark 2. In Definition 4, the disjunction of concept under strong interpretation is de-
fined in order to hold three inference rules and the conjunction of concept under strong
interpretation is defined in order to hold De Morgan law with disjunction of concept.

Definition 5. Let |=s be a satisfiability relation called strong satisfaction. For a
strong interpretation I, we define |=s as follows:

– I |=s C(a) iff aI ∈ +C where CI = 〈+C,−C〉;
– I |=s R(a, b) iff (aI , bI) ∈ +R where RI = 〈+R,−R〉;
– I |=s C1 � C2 iff −C1 ⊆ +C2, +C1 ⊆ +C2 and −C2 ⊆ −C1, for i = 1, 2,

CI
i = 〈+Ci,−Ci〉;

– I |=s a = b iff aI = bI;
– I |=s a �= b iff aI �= bI;

where C, C1, C2 are concepts, R is a role and a is an individual.

A strong interpretation I satisfies a terminology T iff I |=s C � D for each GCI
C � D in T . Such a strong interpretation is called a QC strong model of T ( written
I |=s T ). A strong interpretation I satisfies an ABox A iff I |=s α for each assertion
α in A, where α ∈ {C(a), R(a, b), a = b, a �= b}. Such a strong interpretation is called
a QC strong model of A ( written I |=s A).

By Definition 4 and Definition 5, we conclude several properties in the following
theorems.

Theorem 1. Let L1�· · ·�Ln be a clause and a be an individual. I |=s L1�· · ·�Ln(a)
iff for some Li ∈ Lit(L1 � · · · � Ln), aI ∈ +Li and aI �∈ −Li; or for all Li ∈
Lit(L1 � · · · � Ln), aI ∈ +Li and aI ∈ −Li; where LI

i = 〈+Li,−Li〉.

Theorem 2. Let C be a concept and R be a role. For any weak ( or strong) interpreta-
tion I defined in Definition 2 (or Definition 4), we have

1. (¬(≤ nR.C))I = (> nR.C)I and (¬(≥ nR.C))I = (< nR.C)I;
2. (∃R.C)I = (≥ 1R.C)I and (∀R.C)I = (< 1R.¬C)I .

Theorem 3. Let I and α be an interpretation and a formula in ALCNQ respectively.

If I |=s α then I |=w α.

Theorem 3 shows that a strong model is a weak model but not vice versa.



406 X. Zhang, G. Xiao, and Z. Lin

Example 2. Given an ABox A = {C(a),¬C(a)}. We assume that there exists an in-
terpretation I such that aI ∈ +C and aI ∈ −C where CI = 〈+C,−C〉. Clearly,
I |=w C � D(a) while I �|=s C � D(a).

Definition 6. Given a set of formula K and an axiom α in ALCNQ, K QC entails
α, denoted by K |=Q α, iff for every interpretation I, if I is a strong model of every
formula of K then I is a weak model of α. In this case, |=Q is a QC entailment
(relation) between K and α.

That |=Q is non-trivializable in the sense that when an ontology O is classically incon-
sistent, it is not the case that any axiom is entailed by O in QC ALCNQ.

Example 3. Given an ABox A = {B(a),¬B(a)} and an atomic concept A in QC
ALCNQ. So {B(a),¬B(a)} is classically inconsistent. However it is not the case that
A |=Q C(a) holds, since there exists an interpretation I such that aI ∈ +B and
aI ∈ −B where BI = 〈+B,−B〉. So I |=s B � ¬B(a), but I �|=w A(a) since A(a)
does not occur in A.

Example 4. Let an ABox A = {B �C(a),¬B(a)}. For all interpretations I such that
(aI ∈ +B or aI ∈ +C) and aI ∈ −B, if I |=s B � C(a) and I |=s ¬B(a) then
I |=w C(a). Hence, A |=Q B � C(a), A |=Q ¬B(a), and A |=Q C(a).

Example 5. Suppose an ABox A is empty. Now consider the classical � = A � ¬A.
Here A |=Q A � ¬A(a) does not hold. Since A strongly satisfies every formula in A,
but A does not weakly satisfy A � ¬A(a).

Example 5 shows that QC description logic is weaker than description logic in ability
of reasoning.

Definition 7. A complement of a concept C is defined by C
I

= 〈+C,−C〉 if CI =
〈+C,−C〉 where I is a (strong or weak) interpretation of C, denoted by C. We call C
is the complement of C.

Remark 3. The intuition behind complement of concepts is to reverse both the infor-
mation of being true and of being false. And any ALCNQ ABox doesn’t contain com-
plement concepts.

In QC ALCNQ, the set of signed formulae of L is denoted L∗ and is defined as
L ∪ {C|C ∈ L}. In the following, we discuss the QC tableau algorithm based on
the language L∗.

Theorem 4. For concept name A, concepts C, D in NC , individuals a, b in NI and a
role R in NR in QC ALCNQ.

(1) I |=x A(a) iff I �|=x A(a) (7) I |=x (∀R.C)(a) iff I |=x ∃R.C(a)

(2) I |=x ¬A(a) iff I |=x ¬A(a) (8) I |=x (∃R.C)(a) iff I |=x ∀R.C(a)

(3) I |=x A(a) iff I |=x A(a) (9) I |=x (≥ nR)(a) iff I |=x≤ n − 1R(a)

(4) I |=w C 	 D(a) iff I |=w C � D(a) (10) I |=x (≤ nR)(a) iff I |=x≥ n + 1R(a)

(5) I |=w C � D(a) iff I |=w C 	 D(a) (11) I |=x (≥ nR.C)(a) iff I |=x≤ n − 1R.C(a)

(6) I |=x �(a) iff I |=x ⊥(a) (12) I |=x (≤ nR.C)(a) iff I |=x≥ n + 1R.C(a)

Here |=x is a place-holder for both |=w and |=s.
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Theorem 5. Let I be an interpretation and let C, D be concepts.

1. I |=s C � D iff for any individual a ∈ NI , I |=s ¬C � D(a).
2. I |=w C � D iff for any individual a ∈ NI , I |=w C � D(a).

In QC ALCNQ, a QC ABox (QC TBox) is a set whose axioms (concept inclusions)
are formulae in L∗. A concept C is QC satisfiable w.r.t. a QC ABox A if there exists
an individual a such that A |=Q C(a), and QC unsatisfiable w.r.t. A otherwise. A
concept C is QC satisfiable w.r.t. a QC ABox A and a QC TBox T if there exists
an individual a such that T ∪ A |=Q C(a), and QC unsatisfiable w.r.t. T and A
otherwise. A QC ABox A is QC consistent if each concept occurring in A is QC
satisfiable w.r.t. A, and QC inconsistent otherwise. A QC ABox A is QC consistent
w.r.t. a QC TBox T if each concept occurring in A is QC satisfiable w.r.t. T and A, and
QC inconsistent w.r.t. T otherwise. A set of QC ABoxesS is QC consistent iff there
is a QC satisfiable QC ABox in S, QC inconsistent otherwise. A set of QC ABoxes
S is QC satisfiable iff there is a QC satisfiable QC ABox in S, QC unsatisfiable
otherwise.

A concept C is in QC NNF , i.e., iff complement only occurs over concept names.
By Theorem 4, for any concept C ∈ L∗, C can be transformed into its QC NNF.
For a concept, we define clos(C) as the smallest set that contains C and is closed
under sub-concepts, its NNF and QC NNF of its complement. We denote clos(A) =⋃

C∈A clos(C). Clearly, the size of clos(A) is polynomial in the size of A.

Theorem 6. Let O = (T ,A) be an ALCNQ ontology, a be a individual and ι be a
new individual not occurring in O. Then the following hold.

1. A |=Q C(a) iff A∪ {C(a)} is QC unsatisfiable.
2. A |=Q C � D iff A ∪ {C � D(ι)} is QC unsatisfiable.

4 QC Tableau Algorithm for ALCNQ
In this section, we develop a tableau algorithm called by QC tableau algorithm for
reasoning with inconsistency in QC ALCNQ. RA denotes the set of roles occurring in
A, and UA denotes the set of individuals occurring in A.

4.1 QC Tableau

Definition 8. Given a QC ABox A, T = (S,L, E ,J ) is a QC tableau for A iff

– S is a non-empty set;
– L : S → 2clos(A) maps each element in S to a set of concepts;
– E : RA → 2S×S maps each role to a set of pairs of elements in S;
– J : UA → S maps individuals occurring in A to elements in S.

Furthermore, for all s, t ∈ S, C, C1, C2 ∈ clos(A) and T satisfies:

(P1) if C ∈ L(s), then C �∈ L(s),
(P2) if C1 � C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),
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(P3) if C1 � C2 ∈ L(s), then
(a) if ∼ Ci ∈ L(s) for some (i ∈ {1, 2}), then ⊗(C1 � C2, Ci) ∈ L(s),
(b) else C1 ∈ L(s) or C2 ∈ L(s),

(P4) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t),
(P5) if ∃R.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(R) and C ∈ L(t),
(P6) if ≤ nR.C ∈ L(s), then �RT (s, C) ≤ n,
(P7) if ≥ nR.C ∈ L(s), then �RT (s, C) ≥ n,
(P8) if (�� nR.C) ∈ L(s) and 〈s, t〉 ∈ E(R) then C ∈ L(t) or C ∈ L(t),
(P9) if a : C ∈ A, then C ∈ L(J (a)),
(P10) if (a, b) : R ∈ A, then 〈J (a),J (b)〉 ∈ E(R),
(P11) if a �= b ∈ A, then J (a) �= J (b),

where �� is a place-holder for both ≤ and ≥, and RT (s, C) = {t ∈ S | 〈s, t〉 ∈ E(R)
and C ∈ L(t)}.

Theorem 7. A QC ABox A is QC satisfiable iff there is a QC tableau for A.

4.2 QC Tableau Algorithm

In this subsection, we develop a QC tableau algorithm based on QC transformation
rules which are obtained by modifying the expansion rules in [18] in order to obtain
a QC tableau for a QC ABox A. In the following, we borrow the reasoning technique
from Horrocks [18,19] to implement paraconsistent reasoning under QC semantics.

In QC ALCNQ, a completion forest F for a QC ABox A is a collection of trees
whose distinguished root nodes are possibly connected by edges in an arbitrary way.
Moreover, each node x is labeled with a set L(x) ⊆ clos(A) and each edge 〈x, y〉 is
labeled with a set L(〈x, y〉) ∈ R of (possibly inverse) roles occurring in A. Finally,
completion forests come with an explicit inequality relation �= on nodes and an explicit
equality relation = which are implicitly assumed to be symmetric.

If nodes x and y are connected by an edge 〈x, y〉 with R ∈ L(〈x, y〉), then y is called
an R-successor of x and x is called an R-predecessor of y. If y is an R-successor of
x, then y is called an R-neighbor of x. A node y is a successor (resp. predecessor
or neighbor) of y if it is an R-successor (resp. R-predecessor or R-neighbor) of y for
some role R. Finally, ancestor is the transitive closure of predecessor.

For a role R, a concept C and a node x in F we define RF(x, C) by RF(x, C) :=
{y | y is R-neighbor of x and C ∈ L(y)}. A node is blocked iff it is not a root node
and it is either directly or indirectly blocked. A node x is directly blocked iff none of
its ancestors are blocked, and it has ancestors x′, y and y′ such that

– y is not a root node;
– x is a successor of x′ and y is a successor of y′;
– L(x) = L(y) and L(x′) = L(y′);
– L(〈x′, x〉) = L(〈y′, y〉).
In QC ALCNQ, given a QC ABox A and a role R, the algorithm initializes a com-

pletion forest FA consisting only of root nodes. More precisely, FA contains a root
node xi

0 for each individual ai ∈ UA, and an edge 〈xi
0, x

j
0〉 if A contains an assertion

(ai, aj) : R for some R. The labels of these nodes and edges and the relations �= and =
are initialized as follows:



A Tableau Algorithm for Handling Inconsistency in OWL 409

(1) L(x0
i ) := {C | ai : C ∈ A}, and

(2) L(〈xi
0, x

j
0〉) := {R | (ai, aj) : R ∈ A}, xi

0 �= xj
0 iff ai �= aj ∈ A, and the =

-relation is initialized to be empty.

FA is then expanded by repeatedly applying the rules from Table 3.

Definition 9. Let O = (T ,A) be an ontology, C1, C2, C concepts, R a role and x, y, z
individuals in QC ALCNQ. We define QC transformation rules in Table 3.

For a node x, L(x) is said to contain a clash if {A, A} ∈ L(x) for some concept name
A ∈ NC , or if there is some concept ≤ nR.C ∈ L(x) and x has n + 1 R-neighbors
y0, . . . , yn with C ∈ L(yi) and yi �= yj for all 0 ≤ i < j ≤ n. A completion forest is
clash-free if none of its nodes contains a clash, and it is complete if no QC transfor-
mation rule from Table 3 can be applied to it. For a QC ABox A, the algorithm starts
with the completion forest FA. It applies the QC transformation rules in Table 3, stop-
ping when a clash occurs, and answers “ A is QC satisfiable ” iff the QC transformation
rules can be applied in such a way that they yield a complete and clash-free completion
forest; and answering “ A is QC unsatisfiable ” otherwise.

Theorem 8. Let A be a QC ABox in QC ALCNQ.

1. The QC tableau algorithm terminates when started for A.
2. If the QC transformation rules can be applied to A such that they yield a complete

and clash-free completion forest, then A has a QC tableau.
3. If A has a QC tableau, then the QC transformation rules can be applied to A such

that they yield a complete and clash-free completion forest.
4. The QC tableau algorithm is a decision procedure for the consistency of QC ABoxes

and the satisfiability and subsumption of concepts with respect to terminologies.

Theorem 9. Satisfiability of QC ABoxes is PSPACE-complete in ALCNQ.

5 Related Work

In this section, we compare QC description logic with four-valued description logic
[7,9,20] which is a paraconsistent logic by integrating description logic with Belanp’s
four-valued logic [12]. The similarities and differences between QC logic and four-
valued logic still exist between QC DLs and four-valued DLs.

In QC DLs, the weak semantics is analogous to the four-valued semantics in four-
valued DLs. In fact, inconsistent or incomplete can be tolerated under two semantics
and the contradiction can be taken as a part of ontologies. Below we give a presentation
of the definition 4-model of four-valued DL which was proposed in [7,9,20].

Definition 10 (Ma [9]). Let C, D be concepts and a be an individual in four-valued
DLs. An interpretation I is a 4-model of an axiom C(a) (written by I |=4 C(a))
iff aI ∈ proj+(CI); I is a 4-model of a material inclusion C �→ D (written by
I |=4 C �→ D) iff proj−(CI) ⊆ proj+(DI); I is a 4-model of an internal inclusion
C � D (written by I |=4 C � D) iff proj+(CI) ⊆ proj+(DI) and I is a 4-model
of a strong inclusion C → D (written by I |=4 C → D) iff proj+(CI) ⊆ proj+(DI)
and proj−(DI) ⊆ proj−(CI).
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Table 3. QC Transformation Rules in QC ALCNQ

1. The →�-rule
Condition: C1 � C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} �⊆ L(x).
Action: L(x) := L(x) ∪ {C1(x), C2(x)}.
2. The →�-rule
Condition: C1 � C2 ∈ L(x), x is not indirectly blocked, and {C1, C2,∼ C1,∼ C2} ∩ L(x) = ∅.
Action: L(x) := L(x) ∪ {E} for some E ∈ {C1, C2}.
3.The →QC -rule
Condition: C1 � C2 ∈ L(x), x is not indirectly blocked, and ∼ Ci ∈ L(x)(for some i ∈ {1, 2}).
Action: L(x) := L(x) ∪ {⊗(C1 � C2, Ci)}.
4. The →∃-rule
Condition: ∃R.C ∈ L(x), x is not blocked, and x has no R-neighbor y with C ∈ L(y).
Action: create a new node y with L(〈x, y〉) := {R} and L(y) := {C}.
5. The →∀-rule
Condition:
(1) ∀R.C ∈ L(x), x is not indirectly blocked, and
(2) there is an R-neighbor y of x with C ∈ L(y).
Action: L( ) := L(y) ∪ {C}.
6. The choose-rule
Condition: (�� nR.C) ∈ L(x), x is not indirectly blocked, and there is an R-neighbor y of x

with {C, C} ∩ L(y) = ∅.
Action: L( ) := L(y) ∪ {E} for some E ∈ {C, C}.
7. The →≥-rule
Condition:
(1)≥ nR.C ∈ L(x), x is not blocked, and
(2) there are no n R-neighbors y1, . . . , yn such that C ∈ L(yi)
and yi �= yj for 1 ≤ i < j ≤ n.
Action: create n new nodes y1, . . . , yn with L(〈x, yi〉) := {R}, L(yi) := {C}, and yi �= yj .
8. The →≤-rule
Condition:
(1) ≤ nR.C ∈ L(x), x is not indirectly blocked, and �RF (x, C) > n,
(2) there are R-neighbors y, z of x with not y �= z, y is neither a root node nor an ancestor of z,
and C ∈ L(y) ∩ L(z).
Action:
(1)L(z) := L(z) ∪ L(y); and
(2)if z is an ancestor of x then L(〈z, x〉) := L(〈z, x〉) else L(〈x, z〉) := L(〈x, z〉) ∪ L(〈x, y〉)
(3) L(〈x, y〉) := ∅;
(4) set u �= z for all u with u �= y.
9. The →≤r -rule
Condition:
(1)≤ nR.C ∈ L(x), and �RF (x, C) > n and
(2) there are two R-neighbors y, z of x which are both root nodes,
C ∈ L(y) ∩ L(z), and not y �= z.
Action:
(1) L(z) := L(z) ∪ L(y);
(2) for all edges 〈y, w〉:

(a) if the edge 〈z, w〉 does not exist, create it with L(〈z, w〉) := ∅ and
(b) L(〈z, w〉) := L(〈z, w〉) ∪ L(〈y, w〉);

(3) for all edges 〈w, y〉:
(a) if the edge 〈w, z〉 does not exist, create it with L(〈w, z〉) := ∅ and
(b) L(〈w, z〉) := L(〈w, z〉) ∪ L(〈w, y〉);

(4) set L(y) := ∅ and remove all edges to/from y;
(5) set u �= z for all u with u �= y and set y �= z.

y

y
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Definition 11 (Ma [9]). Let O be an ontology and α be an axiom in four-valued DL.
O entails α under four semantics, denoted by O |=4 α, iff for any model I of O,2 I is
a 4-model of α.

The follow property shows that there exists a close relationship between weak models
and 4-models in description logic.

Theorem 10. Let C, D be concepts, a be an individual and I be an interpretation in
description logic.

1. I |=w C(a) iff I |=4 C(a); 2. I |=w C � D iff I |=4 C � D.

The follow property shows that strong models is stronger than 4-models in description
logic.

Theorem 11. Let C, D be concepts, a be an individual and I be an interpretation in
description logic.

1. I |=4 C(a) if I |=s C(a);
2. I |=4 C ∝ D, where ∝∈ {�→, �,→} if I |=s C � D.

Theorem 12. Let O be an ontology and α be a query in ALC. If O |=4 α then
O |=Q α.

Theorem 12 shows that QC entailment is stronger than four-valued entailment because
QC entailment holds modus ponens, modus tollens, hypothetical syllogism and disjunc-
tive syllogism which four-valued entailment does hold.

6 Conclusions

In this paper, we present QC OWL to handle inconsistency with holding three inference
rules and intuitive equivalences. For the aim of paraconsistent reasoning, QC weak se-
mantics is similar to four-valued semantics for OWL. In order to hold three inference
rules, QC strong semantics is introduced by restricting disjunction of concepts in de-
scription logic. Compared with four-valued OWL, we redefine concept inclusion (or
subsumption) in QC OWL to follow intuitive equivalences. For this purpose, concept
inclusion under QC weak semantics is defined by internal inclusion of four-valued OWL
and concept inclusion under QC strong semantics is defined by hybrid of three inclu-
sions (material inclusion, internal inclusion and strong inclusion) of four-valued OWL.
In order to find suitable for implementation of paraconsistent reasoning in QC OWL, we
propose the QC tableau algorithm with technique of blocking for checking satisfiability
of QC ALCNQ ABox. Technique of blocking is introduced to hold the terminability
of QC tableau algorithm. Moreover, we conclude the terminability, soundness and com-
pleteness of the algorithm. The complexity of QC tableau algorithm is not more than
the complexity of classical tableau algorithm for an ALCNQ ABox. Complement of

2 An interpretation is a 4-models of an ontology iff it satisfies each assertion and each inclusion
axiom in the ontology [9].
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concept is introduced to QC semantics in order to build reasoning system of QC OWL
by not rebuilding whole new reasoning system but borrowing from classical reason-
ing systems of OWL. It is quite easy to show that the QC tableau algorithm, which is
presented in this paper, is obtained by modifying classical reasoning systems of OWL
[18]. In the future, we will further study the similar paraconsistent approach for more
complex DLs such as OWL Lite and OWL DL.
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