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Motivation

Consistent KBs serve as useful knowledge resources v.s. inconsistent KBs
imply any conclusion (meaningless!)

For handling inconsistent KBs:

paraconsistent reasoning (1960s)
knowledge diagnose and repair (1980s)
Which approach should we take?

 inconsistency measurement: a guidance to choice different approaches (2000s)

How about the computational aspects of inconsistent measurement?
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Introductive Example

K = {p,¬q, r} consistent

K ′ = {p,¬q, r,¬p ∨ q} inconsistent

K ′′ = {p,¬p, q,¬q} inconsistent

The inconsistency degrees (ID):

ID(K) = 0, ID(K ′) =
1
3
, ID(K ′′) = 1
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Related Work and Our Contribution

Related work:

Defining (various) inconsistency degrees:

(1) syntax-based; (2) semantics-based

Algorithms

for restricted KBs: [GrantHunter08] only deals with KBs in the form
Q1x1, ..., Qnxn.

∧
i(Pi(t1, ..., tmi) ∧ ¬Pi(t1, ..., tmi)), ;

with high complexity: [MaQiHLin2007] with exponential times of invoking a
SAT solver

Our work:

To show that computing IDs is intractable generally but can be

approximated polynomially
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Inconsistency Degree by 4-valued Semantics

The set of truth values
{t, f, BOTH, NONE}
A 4-model I:
Var(K) → {t, f, BOTH, NONE}
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Figure: FOUR

Conflict(I, K) = {p | p ∈ Var(K), pI =
BOTH},

PreferModel(K) = {I | ∀I ′ ∈M4(K),
|Conflict(I, K)| ≤ |Conflict(I ′, K)|}.

ID(K) = |Conflict(I,K)|
|Var(K)| ,

where I is a preferred model.

 K ′ = {p,¬q, r,¬p ∨ q} : ID(K ′) = 1
3

 I1 : pI1 = BOTH, qI1 = f, rI1 = t,
I2 : pI2 = f, qI2 = BOTH, rI2 = t
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Computational Complexities

Given a propositional knowledge base K and a number d ∈ [0, 1]:
ID≤d (resp. ID<d): is ID(K) ≤ d (resp. ID(K) < d)?

ID≥d (resp. ID>d): is ID(K) ≥ d (resp. ID(K) > d)?

EXACT-ID: is ID(K) = d?

ID: what is the value of ID(K)?

Theorem

ID≤d and ID<d are NP-complete;

ID≥d and ID>d are coNP-complete;

EXACT-ID is DP-complete;

ID is ΘP
2 -complete.
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Formal Definitions of Approximating IDs

Definition (Bounding Values)

Lower bounding value x: x ≤ ID(K); Upper bounding value y: ID(K) ≤ y.

Definition (Bounding Models)

Given a preferred model I:

Lower bounding model I ′ of K: |Conflict(I ′, K)| ≤ |Conflict(I, K)|
Upper bounding model I ′′ of K: |Conflict(I ′′, K)| ≥ |Conflict(I, K)|

and I ′′ ∈M4(K)
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Requirements on Algorithms for Approximating IDs

An anytime approximating algorithm for computing inconsistency degrees should
be able to produce two sequences r1, ..., rm and r1, ..., rk:

r1 ≤ ... ≤ rm ≤ ID(K) ≤ rk ≤ ... ≤ r1, (1)

such that these two sequences have the following properties:

Tractability: ∃.f(|K|), g(|K|) s.t. computing ri and rj both stay tractable if
i ≤ f(|K|) and j ≤ g(|K|);

Convergence: |ID(K)− ri+1| < |ID(K)− ri|, |ID(K)− ri| < |ID(K)− ri+1|;
Meaning: each ri (rj) corresponds to a lower (an upper) bounding model,
which indicates the sense of the two sequences.
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Approximations from Above and Below

For a given w (1 ≤ w ≤ |Var(K)|):

Theorem (Approximation from
Above)

If K is w-4 satisfiable, then
ID(K) ≤ 1− w/|Var(K)|.

Theorem (Approximation from
Below)

If K is w-4 unsatisfiable, then
ID(K) ≥ 1− (w − 1)/|Var(K)|.

Definition. K is w-4 satisfiable iff. there is a subset S ⊆ Var(K) such that K is
S-4 satisfiable, i.e., K has a 4-model in the form of

pI ∈
{
{B} if p ∈ Var(K) \ S,
{N, t, f} if p ∈ S.
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Tractability of the Approximations

Theorem (Complexity)

There exists an algorithm for deciding if K is S-4 unsatisfiable in O(|K||S| · 2|S|)
time for any given S ⊆ Var(K).

 S-4 unsatisfiability can be computed in P-time, if |S| = O(log |K|).
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Tractable Anytime Algorithm

Suppose ri, r
j are defined as follows (1 ≤ w ≤ |Var(K)|):

rj = 1− w/|Var(K)|, where K is w-4 satisfiable;

ri = 1− w − 1
|Var(K)|

, where K is w-4 unsatisfiable.

If w = O(log |K|), computing upper bounds can be done in P-time w.r.t |K|.
If w is limited by a constant, computing lower bounds can be done in P-time
w.r.t. |K|.
ri(rj) corresponds to inconsistency degrees of K w.r.t. its upper (lower)
bounding models.

 Meets all the requirements given previously for tractable anytime algorithms.
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Tractable Anytime Algorithm

Tow main sources of complexity to compute approximating inconsistency degrees:

1 the complexity of w-4 satisfiability  solved by previous results

2 the complexity of search space  a truncation strategy to limit the search
space by the monotonicity of S-4 unsatisfiability:

For all S, if K is S-4 unsatisfiable, K is S′-4 unsatisfiable for all S′ ⊃ S.
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Primary Experiment
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Figure: Evaluation results over KBs with |K| = N2 + 2N and |Var(K)| = 2N for
N = 5, 7, 8, 9, 10.
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Conclusion and Outlook

Conclusion
1 Studied the problem complexity of ID (intractable, Θp

2-complete)
2 Defined approximating inconsistency degrees
3 Proposed a tractable anytime algorithm for computing approximating IDs

Outlook
1 To test the algorithm on more benchmark datasets
2 To explore more optimization for the algorithm
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Thanks for Your Attention!

Questions?
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