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Abstract Measuring inconsistency degrees of inconsistent knowledge bases is an important problem
as it provides context information for facilitating inconsistency handling. Many methods have been pro-
posed to solve this problem and a main class of them is based on some kind of paraconsistent semantics.
In this paper, we consider the computational aspects of inconsistency degrees of propositional knowl-
edge bases under 4-valued semantics. We first give a complete analysis of the computational complexity
of computing inconsistency degrees. As it turns out that computing the exact inconsistency degree is
intractable, we then propose an anytime algorithm that provides tractable approximations of the incon-
sistency degree from above and below. We show that our algorithm satisfies some desirable properties
and give experimental results of our implementation of the algorithm.
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1 Introduction

Inconsistency handling is one of the central problems in the field of knowledge representa-
tion. Recently, there is an increasing interest in quantifying inconsistency in an inconsistent
knowledge base. This is because it is not fine-grained enough to simply say that two incon-
sistent knowledge bases contain the same amount of inconsistency. Indeed, it has been shown
that analyzing inconsistency is helpful to decide how to act on inconsistency [1], i.e. whether
to ignore it or to resolve it. Furthermore, measuring inconsistency in a knowledge base can
provide some context information which can be used to resolve inconsistency [2, 3, 4], and
proves useful in different scenarios such as Software Engineering [5].

Different approaches to measuring inconsistency are based on different views of atomic
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inconsistency [3]. Syntactic ones put atomicity to formulae, such as taking maximal consis-
tent subsets of formulae [6] or minimal inconsistent sets [7]. Semantic ones put atomicity to
propositional letters, such as considering the conflicting propositional letters based on some
kind of paraconsistent model [8, 2, 3, 9, 10]. In this paper, we focus on the computational
aspect of a 4-valued semantics based inconsistency degree which is among the latter view.

The main contributions of this paper are two-folded. One is to give a complete study of
the computation complexity of the decision and functional problems related to measuring in-
consistency degree. We show that computing exact inconsistency degrees is a computational
problem of high complexity (Θp

2-complete). To conquer such a high complexity in computa-
tion, we present an anytime algorithm that provides tractable approximations of the inconsis-
tency degree from above and below, by computing the lower and upper bounds. We show that
our algorithm satisfies some desirable properties. Furthermore, we give some experimental
explanations of the algorithm. Compared to many existing work on measuring inconsistency,
our work complements them in that (1) it analyzes the complexity issues of computing the
inconsistency degree and that (2) it attempts to alleviate the intractability of computing the
exact inconsistency degree for full propositional logic by approximating it from above and
from below in an anytime manner. Our results show that the computation of approximating
inconsistency degree can be done tractable; and can be performed to full propositional knowl-
edge bases, unlike the restriction to CNF for designing a tractable paraconsistent reasoning
under the Quasi-Classical semantics [11].

The paper is structured as follows. Section 2 gives a discussion of related work. Then
after recalling some preliminaries on Belnap’s four-valued semantics and knowledge of in-
consistency degree in Section 3, we give the complexity analysis of problems of computing
inconsistency degree in Section 4. We deal in turn with an approach to approximating incon-
sistency degree and the corresponding anytime algorithm in Section 5. The implementation
of the anytime algorithm is given in Section 6. Finally we conclude the work in Section 7.

2 Related Work

Most effort has been directed at theoretical accounts of inconsistency measures, i.e. its def-
initions, properties, and possible applications. But few papers focus on the computational
aspect of inconsistency degree. Among the syntactic approaches, [6] shows the possibility
to compute inconsistency degrees using the simplex method. Among the semantics methods,
[13, 14] and [10] provide algorithms for computing inconsistency degrees that can be imple-
mented. The algorithm in [10] only deals with KBs consisting of first-order formulas in the
form Q1x1, ..., Qnxn.

∧
i(Pi(t1, ..., tmi

)∧¬Pi(t1, ..., tmi
)), where Q1, ..., Qn are universal

or existential quantifiers. In [13], an algorithm is proposed for full FOL logic. Although it can
be applied to measure inconsistency in propositional logic, its computational complexity is
too high to be used in general cases. In [14], approximating inconsistency degrees are defined
but without detailed study of an anytime algorithm. The anytime algorithm proposed in this
paper for computing approximating inconsistency degrees can avoid these shortcomings.

Although our algorithm is inspired by the algorithms given in [13, 14], it is significantly
different from the existing ones. Firstly, this paper develops the work in [14] by an anytime
algorithm which can return approximating inconsistency degrees in tractable time. We show
that for some special knowledge bases, this algorithm will return their exact inconsistency
degree in polynomial time. In contrast, the algorithm in [13] is based on a reduction to hard
SAT instances, which makes it inherently intractable. Secondly, ours is designed towards
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obtaining an approximation with guaranteed lower and upper bounds that gradually converge
to the exact solution. The approximations have a meaningful sense in terms of bounding
models. Thirdly, based on the monotonicity of S-4 semantics, we implement a new truncation
strategy to limit the search space for better polynomial time approximations. We also present
the preliminary evaluation results of the implementation of the algorithm. Our evaluation
results show our algorithm outperforms that given in [13] and develops the results given in
[14], which in all show that the approximating values are reasonable to replace the exact
inconsistency degree.

3 Preliminaries

Let P be a countable set of propositional letters. We concentrate on the classical proposi-
tional language formed by the usual Boolean connectives ∧ (conjunction), ∨ (disjunction),
→ (implication), and ¬ (negation). A propositional knowledge base K consists of a finite set
of formulae over that language. We use Var(K) for the set of propositional letters used in K
and |S| for the cardinality of S for any set S.

Next we give a brief introduction on Belnap’s four-valued (4-valued) semantics (See to
Appendix section of this paper for more details that are used in the proofs). Compared to two
truth values used by classical semantics, the set of truth values for four-valued semantics [15,
16] contains four elements: true, false, unknown and both, written by t, f,N,B, respectively.
The truth value B stands for contradictory information, hence four-valued logic leads itself
to dealing with inconsistencies. The four truth values together with the ordering � defined
below form a lattice, denoted by FOUR = ({t, f, B,N},�): f � N � t, f � B � t,N 6�
B,B 6� N . The four-valued semantics of connectives ∨,∧ are defined according to the upper
and lower bounds of two elements based on the ordering �, respectively, and the operator ¬
is defined as ¬t = f,¬f = t,¬B = B, and ¬N = N . The designated set of FOUR is
{t, B}. So a four-valued interpretation I is a 4-model of a knowledge base K if and only if
for each formula φ ∈ K, φI ∈ {t, B}. A knowledge base which has a 4-model is called
4-valued satisfiable. A knowledge base K 4-valued entails a formula ϕ, written K |=4 ϕ, if
and only if each 4-model of K is a 4-model of ϕ.

Every propositional knowledge base containing only connectives from {∨,∧,¬,→} has
a 4-model which assigns B to each propositional letter [16]. Four-valued entailment can be
reduced to the classical entailment [17]. We write K for a knowledge base, andM4(K) for
the set of 4-models of K throughout this paper. Four-valued semantics provides a novel way
to define inconsistency measurements [1].

Definition 1. Let I be a four-valued model of K. The inconsistency degree of K with re-
spect to I, denoted IncI(K), is a value in [0, 1] defined as IncI(K) = |Conflict(I,K)|

|Var(K)| , where
Conflict(I,K) = {p | p ∈ Var(K), pI = B}.

That is, the inconsistency degree ofK w.r.t. I is the ratio of the number of conflicting proposi-
tional letters under I divided by the amount of all propositional letters used inK. It measures
to what extent a given knowledge baseK contains inconsistencies with respect to its 4-model
I. Preferred models defined below are used to define inconsistency degrees and especially
useful to explain our approximating algorithm later.

In [1], instead of IncI(K), the concordance degree of a knowledge base is defined as 1−
|Conflict(I,K)|
|Var(K)| , denoted ConcordanceI(K). It is clear that IncI(K) = 1− ConcordanceI(K).
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So all the results we get in this paper for IncI(K) can be easily applied to the concordance
degree in [1].

Definition 2 (Preferred Models). The set of preferred models, written PreferModel(K), is
defined as PreferModel(K) = {I | ∀I′ ∈M4(K), IncI(K) ≤ IncI′(K)}.

By this definition and the fact that every knowledge base K containing only connectives
from {∨,∧,¬,→} has 4-models, the inequation PreferModel(K) 6= ∅ always holds, and the
inconsistency degree of K with respect to two preferred models are equal.

Definition 3 (Inconsistency Degree). The inconsistency degree of K, denoted by ID(K), is
defined as the value IncI(K), where I ∈ PreferModels(K).

Example 1. Let K = {p,¬p ∨ q,¬q, r}. Consider two 4-valued models I1 and I2 of K with
pI1 = t, qI1 = B, rI1 = t; and pI2 = B, qI2 = B, rI2 = t. We have IncI1(K) = 1

3 , while
IncI2(K) = 2

3 . Moreover, I1 is a preferred model of K because there is no other 4-model I′

of K such that IncI′(K) < IncI1(K). Then ID(K) = 1
3 .

One way to compute inconsistency degree is to recast the algorithm proposed in [13] to
propositional knowledge bases, where S-4 semantics defined as follows is used:

Definition 4 (S-4 Model). For any given set S ⊆ Var(K), an interpretation I is called an
S-4 model of K if and only if I ∈M4(K) and satisfies the following condition:

I(p) ∈

{
{B} if p ∈ Var(K) \ S,
{N, t, f} if p ∈ S.

That is, I is an S-4 model ofK if it is a 4-valued model ofK which assigns the propositional
letters not in S to the contradictory truth value, while it assigns others to non-contradictory
truth values.

For a given S ⊆ Var(K), the knowledge base K is called S-4 unsatisfiable iff. it has
no S-4 model. Let ϕ be a formula and Var({ϕ}) ⊆ Var(K). ϕ is S-4 entailed by K, written
K |=4

S ϕ, iff. each S-4 model of K is an S-4 model of ϕ. Obviously, K |=4
S f if and only if

K has no S-4 model, where f is the truth value symbol in FOUR.

Theorem 1 ([14]). For any KBK, we have ID(K) = 1−A/|Var(K)|, whereA = max{|S| :
S ⊆ Var(K), K is S-4 satisfiable}.

Theorem 1 shows that the computation of ID(K) can be reduced to the problem of computing
the maximal cardinality of subsets S of Var(K) such that K is S-4 satisfiable.

4 Computational Complexities

Apart from any particular algorithm, let us study the computational complexity of the incon-
sistency degree to see how hard the problem itself is. First we define following computation
problems related inconsistency degrees:

• ID≤d (resp. ID<d, ID≥d,ID>d): Given a propositional knowledge base K and a number
d ∈ [0, 1], is ID(K) ≤ d (resp. ID(K) < d, ID(K) ≥ d, ID(K) > d)?

• EXACT-ID: Given a propositional knowledge baseK and a number d ∈ [0, 1], is ID(K) =
d?

• ID: Given a propositional knowledge base K, what is the value of ID(K)?
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Obviously, we have ID≤1 and ID≥0 that are two trivial instances of these decision prob-
lems with the answer ”yes”; And another two trivial instances ID<0 and ID>1 with the answer
”no”.

In more general cases, the complexities of these computational problems are indicated
by following theorems.

Theorem 2. ID≤d and ID<d are NP-complete; ID≥d and ID>d are coNP-complete.

Proof. We prove these results separately as follows:
ID≤d is NP-complete:
The membership to NP is achieved by the following non-deterministic algorithm:

1. Guess a 4-valued interpretation I over Var(K);
2. Check that I is a 4-model of K and |Conflict(I)|

|Var(K)| ≤M , which can be done in deterministic
polynomial time.

The hardness to NP comes from the following reduction from checking the satisfiability
of K under classical 2-valued semantics, which is known to NP-complete, to this problem.
The reduction is that K is 2-valued satisfiable if and only if ID(K) ≤ 0 which is obvious by
the definition of inconsistency degree.

ID<d is NP-complete:
Similarly to the case of ID≤d, the membership to NP holds obviously. The hardness

to NP holds by the reduction that K is 2-valued satisfiable if and only if ID(K) < 1
2|Var| .

This is because, by the definition of ID(K), the smallest value of ID(K) for an inconsistent
knowledge base is 1

|Var| .

ID≥d and ID>d are coNP-complete:
This is because that ID≥d is the complementary problem of ID<d and ID>d is the com-

plementary problem of ID≤d.

Theorem 3. EXACT-ID is DP-complete 1.

Proof. To show that it is in DP, we have to exhibit two languages L1 ∈ NP and L2 ∈ coNP
such that the set of all ”yes” instances of EXACT-ID is L1 ∩ L2. This is easy by setting
L1 = {K | ID(K) ≤M} and L2 = {K | ID(K) ≥M}.

To show completeness, let L = L1 ∩ L2 be any language in DP. We have to show that
L can be reduced to EXACT-ID. To this end, recall that ID≤ is NP-complete and ID≥ is
coNP-complete, that is, there is a reduction R1 from L1 to ID≤ and a reduction R2 from L2

to ID≥. Therefore, the reduction R from L to EXACT-ID can be defined as follows, for any
input x: R(x) = (R1(x), R2(x)). We have that R(x) is a ”yes” instance of EXACT-ID if
and only if R1(x) is a ”yes” instance of ID≤ and R2(x) is a ”yes” instance of ID≥, which is
equal to x ∈ L.

Theorem 4. ID is FPNP[log n]-complete2.

1 A language L is in the class DP [18] iff there are two languages L1 ∈ NP and L2 ∈ coNP such that
L = L1 ∩ L2.
2 Complexity PNP[log n] is defined to be the class of all languages decided by a polynomial-time oracle machine
which on input x asks a total of O(log |x|) SAT (or any other problem in NP) queries. FPNP[log n] is the
corresponding class of functions. FPNP[log n] is also written as Θp

2 .
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Proof. To show that ID is in FPNP[log n], consider problems of the following form: is the
inconsistency degree less than i

|Var(K)| (NP-complete by Theorem 2)? Through solving a
logarithmic number of such problems (by dichotomy on i ∈ {0, ..., |Var(K)|}), we find an
FPNP[log n] algorithm to compute the inconsistency degree, which shows that the problem
belongs to FPNP[log n].

Next we prove that ID is FPNP[log n]-hard, which is achieved by showing that MaxSAT3

(the maximum satisfiability problem) can be polynomially reduced to an instance of ID.
W.o.l.g, assume the inconsistent propositional knowledge base is K = {ϕ1, ..., ϕn}.

Define a new knowledge base Knew as follows:

Knew = {ϕi ∨ ¬newi, newi | 1 ≤ i ≤ n} ∪ {(pi ∧ ¬pi) ⊃ f | pi ∈ V ar(K)},

where⊃ is the internal implication under four-valued semantics (see to Appendix for details).
Clearly, the reduction is polynomial with respect to the size of K and Var(K). Next, we aim
to show that the maximal size of consistent subsets of K is M if and only if ID(Knew) =

n−M
|Var(K)|+n , where |Var(K)| + n = |Var(Knew)|. That is, the maximal size of consistent
subsets of K is M if and only if |Conflict(I,Knew)| = n −M for any preferred model I
of Knew.

(Only If) First, we show that |Conflict(I,Knew)| ≤ n − M . By the assumption,
there is an M -size consistent subset of K, without loss of generality, written as Kcons =
{ϕ1, ..., ϕM}. Suppose J is a classical model of Kcons and define J ′ based on J as follows:

pJ′ =


pJ , if p ∈ V ar(K),

t, if p = newi(i ≤M),

B, if p = newi(i > M).

By the fact that pJ′ = pJ for p ∈ V ar(K), we have that J ′ satisfiesKcons and in turn satisfies
{ϕ1 ∨¬new1, ..., ϕM ∨¬newM}. Obviously, J ′ satisfies {new1, ..., newM}. Moreover, we
have J ′ satisfies {ϕM+1∨¬newM+1, ..., ϕn∨¬newn} by the fact that newJ′

i = B(i > M).
Finally, note that J is a classical interpretation and J ′ equals J on all propositional letters in
Var(K). Therefore, J ′ interprets pi(pi ∈ Var(K)) classically. By the definition of semantics
of internal implication, (pi ∧ ¬pi) ⊃ f is satisfied by any classical interpretation, which
means that J ′ satisfies {(pi ∧ ¬pi) ⊃ f | pi ∈ V ar(K)}. In all, we have that J ′ is 4-model
of Knew. It is to see that |Conflict(J ′,Knew)| = |{newi | M < i ≤ n}| = n −m. Then,
by the definition of preferred model, we have |Conflict(I,Knew)| ≤ n−M .

Next we show that |Conflict(I,Knew)| 6< n −M for preferred models I of Knew.
Otherwise, we can assume |Conflict(I,Knew)| < n −M . By noting that {(pi ∧ ¬pi) ⊃
f | pi ∈ Var(K)} ⊆ Knew and by the semantics of internal implication, we have pI

i 6= B

for all pi ∈ V ar(K). That is, pi 6∈ Conflict(I,Knew), which means Conflict(I,Knew) ⊆
{newi | 1 ≤ i ≤ n}. By the assumption |Conflict(I,Knew)| < n − M , there are at
most n −M − 1 letters in {newj | 1 ≤ j ≤ n} values B in I . That is, there are at least
M + 1 clauses ϕi1 ∨ ¬newi1 , ..., ϕiM+1 ∨ ¬newiM+1 in Knew with newI

ij
∈ {t, f,N} for

j ∈ [1,M + 1]. By the assumption that I is a model of Knew and newij
∈ Knew, we have

newI
ij

= t. In all, newI
ij
∈ {t,N} (i.e. ¬newI

ij
∈ {f,N}). Since ϕij ∨ ¬newij ∈ Knew, it

3 A MaxSAT problem is to ask for the maximum number of clauses which are satisfiable of a propositional knowl-
edge base K.
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holds that ϕI
ij
∈ {t, B}(1 ≤ j ≤ M + 1). That is, I satisfies at least M + 1 clauses of K.

Consider the following classical interpretation I ′ for each p ∈ Var(K):

pI′ =

{
t if pI = N,

pI otherwise.

Obviously, I <k I ′ where <k denotes the partial order w.r.t to amount of information in
four-valued logic (Refer to Appendix for details). By the monotonicity of classical logical
connectives (¬,∨,∧,→) under the four-valued semantics (See to Proposition 8 in Appendix),
we have I ′ satisfies {ϕi1 , .., ϕiM +1}. Furthermore, by noting that p 6∈ Conflict(I,Knew),
we can see that I ′ is a classical model of {ϕi1 , .., ϕiM +1} , which conflicts with the fact that
the maximal size of consistent subsets of K is M .

In all, we have |Conflict(I,Knew)| = n−M .

(If) Similar to the proof of “only if” direction, the “if” direction can be proved.

5 Anytime Algorithm

According to the results shown in the previous section, computing inconsistency degrees is
usually intractable. In this section, we propose an anytime algorithm to approximate the exact
inconsistency degree. Our results show that in P-time we can get an interval containing the
accurate value of ID(K).

Firstly, by borrowing the idea of guidelines for a theory of approximating reasoning
[19], we precise the requirements that an anytime approximating algorithm for computing
inconsistency degrees should satisfy: It should be able to produce two sequences r1, ..., rm
and r1, ..., rk:

r1 ≤ ... ≤ rm ≤ ID(K) ≤ rk ≤ ... ≤ r1, (1)

such that these two sequences have the following properties:

• The length of each sequence is polynomial w.r.t |K|;
• Computing r1 and r1 are both tractable. Generally, computing rj and rj becomes expo-

nentially harder as j increases, but it is not harder than computing ID(K).
• Since computing ri and rj could become intractable as i and j increase, we need to find

functions f(|K|) and g(|K|) such that computing ri and rj both stay tractable as long as
i ≤ f(|K|) and j ≤ g(|K|).

• Each ri (rj) in the two sequences is meaningful (in terms of corresponding to approxi-
mating preferred models in our case), which indicates the sense of the two sequences.

For the notation clarity, some definitions are necessary as given in the next section, which
will be used to explain our algorithm.

5.1 Formal Definitions

Definition 5. (Bounding Values [14]) A real number x (resp. y) is a lower (resp. an upper)
bounding value of the inconsistency degree of K, if and only if x ≤ ID(K) (resp. ID(K) ≤
y).

Intuitively, a pair of lower and upper bounding values characterizes an interval containing
the exact inconsistency degree of a knowledge base. For simplicity, lower (resp. an upper)
bounding value is called lower (resp. upper) bound.
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Corresponding to bounding values, we define a new concept called bounding models
which are used to illustrate the sense of results of our anytime algorithm.

Definition 6. (Bounding Models) A four-valued interpretation I′ is a lower (resp. an upper)
bounding model of K if and only if for any preferred model I of K, Condition 1 holds (resp.
Condition 2 holds and I′ ∈M4(K)):

Condition 1: |Conflict(I′,K)| ≤ |Conflict(I,K)|
Condition 2: |Conflict(I′,K)| ≥ |Conflict(I,K)|

Intuitively, the lower and upper bounding models of K are approximations of preferred mod-
els from below and above. We call two-valued interpretations J trivial lower bounding models
since Conflict(J,K) = 0 and ID(K) = 0 always holds. We are only interested in nontriv-
ial bounding models for inconsistent knowledge bases, which can produce a nonzero lower
bound of ID(K).

Example 2. (Example 1 continued) K has a lower bounding model I3 and an upper bounding
model I4 defined as: pI3 = t, qI3 = t, rI3 = t; and pI4 = B, qI4 = B, rI4 = t.

Next proposition gives a connection between lower (resp. upper) bounds and lower
(resp. upper) bounding models.

Proposition 1. If I is a lower (an upper) bounding model of K, IncI(K) is a lower (an
upper) bounding value of ID(K).

Proof. If I is a lower bounding model of K, then |Conflict(I,K)| ≤ |Conflict(I1,K)| for
any preferred model I1, which in turn leads to that IncI(K) = |Conflict(I,K)|

|Var(K)| ≤ |Conflict(I1,K)|
|Var(K)| =

ID(K). That is, IncI(K) is a lower bounding value of ID(K). Similarly, we can prove the
conclusion in the case that I is an upper bounding model of K.

5.2 Tractable Approximations from Above and Below

By Theorem 1, we have an algorithm to compute inconsistency degrees via the computa-
tion of S-4 satisfiability. However, next theorem shows that S-4 entailment is generally in-
tractable.

Theorem 5. The decision problem of the S-4 satisfiability is NP-hard.

Proof. This theorem easily follows from the following reduction from SAT problem to S-4
satisfiability: A knowledge baseK is classically two-valued satisfiable if and only ifK is S-4
satisfiable, where S = Var(K). The “only if” direction of the reduction is obvious because
a classical model of K is also an S-4 model of K with S = Var(K). For the “if” direction,
suppose that K has an S-4 model I with S = Var(K), that is, for any p ∈ Var(K), I(p) ∈
{N, t, f}. Define the following classical interpretation I ′:

I ′(p) ∈

{
I(p) if I(p) ∈ {t, f},
t if I(p) = N.

By the monotonicity of classical logical connectives (¬,∨,∧,→) under the four-valued se-
mantics (See to Proposition 8 in Appendix), we have I ′ satisfies K, that is, K is classically
satisfiable.
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This theorem shows that algorithms based on S-4 semantics to compute inconsistency
degrees are time-consuming. In this section, by a tractable case of S-4 entailment (propor-
tional to the size of input knowledge base) [14], we give an algorithm to compute approxi-
mating inconsistency degrees in tractable time.

Lemma 1 ([14]). Let S = {p1, ..., pk} be a subset of V ar(K) and ϕ be a formula such that
Var(ϕ) ⊆ Var(K). K |=4

S ϕ if and only if

K ∧
∧

q∈Var(K)\S

(q ∧ ¬q) |=4 ϕ ∨ (c1 ∨ ... ∨ ck)

holds for any combination {c1, ..., ck}, where each ci is either pi or ¬pi(1 ≤ i ≤ k).

This lemma shows a way to reduce the S-4 entailment to the 4-entailment. Specially note
that if ϕ is in CNF (conjunctive normal formal), the righthand of the reduced 4-entailment
maintains CNF form by a little bit of rewriting, as follows: Suppose ϕ = C1 ∧ ...∧Cn. Then
ϕ∨ (c1 ∨ ...∨ ck) = (C1 ∨ c1 ∨ ...∨ ck)∧ ...∧ (Cn ∨ c1 ∨ ...∨ ck) which is still in CNF and
its size is linear to that of ϕ ∨ (c1 ∨ ... ∨ ck).

Lemma 2 ([20]). For K in any form and ϕ in CNF, there exists an algorithm for deciding if
K |=4 ϕ in O(|K| · |ϕ|) time.

By Lemma 1 and 2, we have the following theorem:

Theorem 6 ([14]). There exists an algorithm for deciding if K |=4
S ϕ and deciding if K is

S-4 satisfiable in O(|K||ϕ||S| · 2|S|) and O(|K||S| · 2|S|) time, respectively.

Theorem 6 shows that S-4 entailment and S-4 satisfiability can both be decided in poly-
nomial time w.r.t the size of K, exponential w.r.t that of S, though. So they can be justified in
P-time if |S| is limited by a logarithmic function of |K|.

The following results in [14] are useful for our anytime algorithm.

Theorem 7 ([14]). Given S ⊆ Var(K), if K is S-4 satisfiable, then ID(K) ≤ 1−|S|/|Var(K)|.

Theorems 6 and 7 together show that for a monotonic sequence of sets S1,...,Sk, where
|Si| < |Si+1| for any 1 ≤ i ≤ k − 1, if we can show that K is Si-4 (i = 1, ..., k) satisfiable
one by one, then we can get a sequence of decreasing upper bounding values of the incon-
sistency degree of K in time O(|K||Si| · 2|Si|). If |Si| = O(log |K|), it is easy to see that the
computation of an upper bound is done in polynomial time with respect to the size of K. In
the worst case (i.e., when S = Var(K)), the complexity of the method coincides with the
result that ID≤ is NP-complete (Theorem 2).

Theorem 8 ([14]). For a givenw (1 ≤ w ≤ |Var(K)|), if for eachw-size subset S of Var(K),
K is S-4 unsatisfiable, then ID(K) ≥ 1− (w − 1)/|Var(K)|.

Theorems 6 and 8 together show that for a monotonic sequence of sets S1, ..., Sm satis-
fying |Si| < |Si+1|, if we can prove that K is |Si|-4 unsatisfiable4 for each i ∈ [1,m], then
we can get a series of increasing lower bounds of the inconsistency degree of K. For each w,
it needs at most

(|Var(K)|
w

)
times tests of S-4 unsatisfiability. So it takesO(

(|Var(K)|
w

)
|K|w ·2w)

4 For the sake of simplicity, we say that K is l-4 satisfiable for l ∈ N, if there is a subset S ⊆ Var(K) such that K
is S-4 satisfiable. We say that K is l-4 unsatisfiable if K is not l-4 satisfiable.
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time to compute a lower bound 1− (w − 1)/|Var(K)|. If w is limited by a constant, we have
that each lower bound is obtained in polynomial time.

Suppose ri, rj in Inequation 1 are defined as follows:

rj = 1− |S|/|Var(K)|, where K is |S|-4 satisfiable, j = |S|;

ri = 1− |S| − 1
|Var(K)|

, where K is |S|-4 unsatisfiable, i = |S|.

By Theorems 6, 7 and 8, we get a way to compute the upper and lower bounds of ID(K)
which satisfy: if j ≤ log(|K|) and i ≤ M (M is a constant independent of |K|), rj and
ri are computed in polynomial time; Both i and j cannot be greater than |Var(K)|. This
is a typical approximation process of a NP-complete problem ID≥d (resp. coNP-complete
problem ID≤d) via polynomial intermediate steps, because each intermediate step provides a
partial solution which is an upper (resp. lower) bound of ID(K).

Example 3. Suppose K = {pi ∨ qj ,¬pi,¬qj | 1 ≤ i, j ≤ N}. So |Var(K)| = 2N . To
know whether ID(K) < 3

4 , by Theorem 7 we only need to find an S of size d 2N
4 e such that

K is S-4 satisfiable. This is true by choosing S = {pi | 1 ≤ i ≤ d 2N
4 e}. To know whether

ID(K) > 1
3 , Theorem 8 tells us to check whether K is S-4 unsatisfiable for all S of size

b 4N
3 c+ 1. This is true also. So ID(K) ∈ [ 1

3 ,
3
4 ].

An interesting consequence of the above theoretical results is that we can compute the exact
inconsistency of some knowledge bases in P-time. Let us first look at an example.

Example 4. Consider a knowledge base K = {(pi ∨ pi+1) ∧ (¬pi ∨ ¬pi+1), pi1 ∧ ... ∧
piN−5 ,¬pj1∧ ...∧¬pjN−10 , p2t,¬p3j+1∨¬p5u+2, }(1 ≤ i ≤ N−1, 1 ≤ 2t, 3j+1, 5u+2 ≤
N). Var(K) = N . To approximate ID(K), we can check whether K is l-4 satisfiable for l
going larger from 1 by one increase on the value each time. Obviously, K’s inconsistency
degree is close to 1 if N � 10. By Theorem 6, we can see that all of these operations can be
done in P-time before the exact value obtained.

More formally, we have the following proposition.

Proposition 2. If ID(K) ≥ 1−M/|Var(K)|, where M is an arbitrary constant which is
independent of |K|, then ID(K) can be computed in polynomial time.

Proof. By the definition of inconsistency degree and the assumption ID(K) ≥ 1 − M
|Var(K)| ,

we know that |Conflict(I,K)|
|Var(K)| ≥ 1− M

|Var(K)| for any preferred model I of K. That is,

|Conflict(I,K)| ≥ |Var(K)| −M, (2)

We claim that K has no S-4 model for any S ⊆ Var(K) whose size is strictly greater than M .
If not, suppose |S0| > M makes K S0-4 satisfiable. By the definition of S-4 semantics, we
have |Conflict(I,K)| = |Var(K)| − |S| < |V ar(K)| −M . This is a contradiction with In-
equation 2. Let us check whetherK is l-4 satisfiable for l going larger from 1 by one increase
on the value each time until K becomes l-4 unsatisfiable, then the accurate inconsistency
degree ID(K) = 1 − (l − 1)/|Var(K)|. By the claim above, the first l which makes K l-4
unsatisfiable is for l = M + 1 and K keeps l-unsatisfiable for l > M . Note that checking
K l-4 satisfiability from l = 1 to M + 1 can be done in polynomial time by Theorem 6.
Therefore, we find a way to get the exact inconsistency degree of K in P-time.
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5.3 The Anytime Algorithm

Given a knowledge base K with |Var(K)| = n, it is natural to perform dichotomy on n to
search for the maximal size of S ∈ Var(K) such that K is S-4 satisfiable. However, we will
see, in this section firstly, that it leads to intractability from the beginning. To avoid this,
subsequently, we give an anytime algorithm which can return approximating inconsistency
degrees in polynomial time.

By the analysis given after Theorem 7 and Theorem 8, we know that in the worst case,
given 0 ≤ w ≤ n, it takesO(

(
n
w

)
|K|w2w) time to get an upper (resp. a lower) bounding value

1− w
|Var(K)| (resp. 1− w−1

|Var(K)| ). By Fermat’s Lemma 5, the maximal value ofO(
(

n
w

)
|K|w2w)

is near w = d 2n+1
3 e when n is big enough. It means that to do dichotomy directly on size n

2

will be of high complexity. To get upper and lower bounding values in P-time instead of going
to intractable computation directly, we propose Algorithm 1, which consists of two stages:
The first one is to localize an interval [l1, l2] that contains the inconsistency degree (line 1-8),
while returning upper and lower bounding values in P-time; The second one is to pursue more
accurate approximations within the interval [l1, l2] by binary search (line 9-17).

Algorithm 1 is an anytime algorithm that can be interrupted at any time and returns
a pair of upper and lower bounding values of the exact inconsistency degree. It has five
parameters: the knowledge base K we are interested in; the precision threshold ε which is
used to control the precision of the returned results; the constantM � |Var(K)| to guarantee
that the computation begins with tractable approximations; a pair of positive reals a, b which
determines a linear function h(l2) = al2 + b that updates the interval’s right extreme point
l2 by h(l2) during the first stage (line 5). h(·) decides how to choose the sizes l to test l-4
satisfiability of K. For example, if h(l2) = l2 + 2, line 5 updates l from i to i + 1 (suitable
for ID(K) near 1); If h(l2) = 2l2, line 5 updates l from i to 2i (suitable for ID(K) near 0.5);
While if h(l2) = 2(|Var(K)| −M), line 5 updates l by |Var(K)| −M (suitable for ID(K)
near 0). We remark that h(l2) can be replaced by other functions.

Next we give detailed explanations about Algorithm 1. To guarantee that it runs in P-
time run at the beginning to return approximations, we begin with a far smaller search interval
[l1, l2] = [0,M ] compared to |Var(K)|. The while block (line 3) iteratively tests whether the
difference between upper and lower bounding values is still lager than the precision threshold
and whetherK is l-satisfiable, where l = d l2

2 e. If both yes, the upper bound r+ is updated, the
testing interval becomes [l, h(l2)], and the iteration continues; Otherwise (line 7), the lower
bound r− is updated and the search interval becomes [l1, l]. This completes the first part of
the algorithm to localize an interval. If r+ − r− is already below the precision threshold,
the algorithm terminates (line 8). Otherwise, we get an interval [l1, l2] such that K is l1-
4 satisfiable and l2-4 unsatisfiable. Then the algorithm turns to the second ”while” iteration
(line 9) which executes binary search within the search internal [l1, l2] found in the first stage.
If there is a subset |S| = l1 + d l2−l1

2 e such that K is S-4 satisfiable, then the search internal
shortens to the right half part of [l1, l2] (line 12), otherwise to the left half part (line 14).
During this stage, K keeps l2-4 unsatisfiable and l1-4 satisfiable for [l1, l2]. Until r+ − r−
below the precision threshold, the algorithm finishes and returns upper and lower bounds.

Theorem 9 (Correctness of Algorithm 1). Let r+ and r− be values computed by Algo-
rithm 1. We have r− ≤ ID(K) and r+ ≥ ID(K). Moreover, r+ = r− = ID(K) if ε = 0.

5 V.A. Zorich, Mathematical Analysis, Springer, 2004.
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Algorithm 1 Approx Incons Degree(K, ε,M, a, b)
Input: KB K; precision threshold ε ∈ [0, 1[ ; constant M � |Var(K)|; a, b ∈ R+

Output: Lower bound r− and upper bound r+ of ID(K)
1: r− ← 0; r+ ← 1 {Initial lower and upper bounds}
2: ε← r+ − r−; n← |Var(K)|; l1 ← 0; l2 ←M ; l← d l2

2 e
3: while ε > ε and K is l-4 satisfiable do
4: r+ ← (1− l/n); ε← r+ − r− {Update upper bound}
5: l1 ← l; l2 ← h(l2); l← d l2

2 e {Update search interval}
6: end while
7: r− ← 1− (l − 1)/n; ε← r+ − r−; l2 ← l

8: if ε ≤ ε then return r+ and r− end if
9: while ε > ε do

10: l← l1 + d l2−l1
2 e

11: if K is l-4 satisfiable then
12: r+ ← (1− l/n); ε← r+ − r−; l1 ← l

13: else
14: r− ← 1− (l − 1)/n; ε← r+ − r−; l2 ← l

15: end if
16: end while
17: return r+ and r−

Proof. By analyzing Algorithm 1, r+ is updated as 1−l/|Var(K)| only ifK is l-4 satisfiable.
By Theorem 7, r+ ≥ ID(K). Similarly, r− is updated as 1 − (l − 1)/|Var(K)| only if K is
l-4 unsatisfiable. By Theorem 8, r− ≤ ID(K). Note that Algorithm 1 terminates only when
ε ≤ ε. If ε = 0, r+ − r− = ε ≤ ε. So r+ = r− = ID(K).

The following example gives a detailed illustration.

Example 5. (Example 3 contd.) Let ε = 0.1, h(l2) = 2l2, and M = 4 � N . Algorithm 1
processes on K as follows:

Denote the initial search interval [l01, l
0
2] = [0, 4]. After initializations, l = 2 and line 3 is

executed. Obviously, K is S-4 satisfiable for some |S| = l (e.g. S = {p1, p2}). So we get a
newer upper bound r+ = 2N−l

2N . Meanwhile, the difference between upper and lower bounds
ε becomes 2N−l

2N > ε, and the search interval is updated as [l11, l
1
2] = [l, 2l2] and l = 4.

Stage 1. The while iteration from line 3 is repeatedly executed with double size increase
of l each time. After c times such that 2c−1 ≤ N < 2c, l = 2c and K becomes l-4 unsat-
isfiable. The localized interval is [2c−1, 2c]. It turns to line 7 to update the lower bound by
1 − l−1

2N . The newest upper bound is 1 − 2c−2/N , so ε = 2c−2/N . If ε ≤ ε, algorithm ends
by line 8. Otherwise, it turns to stage 2.

Stage 2. By dichotomy in the interval [2c−1, 2c], algorithm terminates until ε ≤ ε.

Unlike Example 5, for the knowledge base in Example 4, since its inconsistency degree
is quite close to 1, it becomes S-4 satisfiable for an S such that |S| is less than a constant M .
Therefore, after the first stage of Algorithm 1 applying on this knowledge base, the localized
interval [l1, l2] is bounded by M . For such an interval, the second stage of the algorithm runs
in P-time according to Theorem 6. So Algorithm 1 is a P-time algorithm for the knowledge
base given in Example 4. However, it fails for other knowledge bases whose inconsistency
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degrees are far less than 1. Fortunately, the following proposition shows that by setting the
precision threshold ε properly, Algorithm 1 can be executed in P-time to return approximating
values.

Proposition 3. Let s be an arbitrary constant independent of |K|. If ε ≥ 1 − hs(M)
2|Var(K)| ,

where hs(·) is s iterations of h(·), Algorithm 1 terminates in polynomial time with the differ-
ence between upper and lower bounds less than ε (r+ − r− ≤ ε).

Proof. Algorithm 1 terminates if and only if ε ≤ ε. At the beginning of the algorithm, r+ =
1, r− = 0, and ε = 1. Suppose r+ = 1− l/|Var(K)| after the first while block beginning line
3. At this moment, ε = r+ − r− = 1− l/|Var(K)|. It has two cases:

• 1− l/|Var(K)| ≤ ε holds such that the algorithm terminates. It is not difficult to see that
the while block (line 3) will end if l reaches to hs(M)/2 because ε ≥ 1 − hs(M)

2|Var(K)| and
ε = 1− l/|Var(K)|. Note that l = 0, dM/2e, dh(M)/2e, ... in each iteration of the while
block. Therefore, it takes s times of l-4 satisfiability tests of K, each of which is P-time
by Theorem 6. Because s is a constant independent of |Var(K)|, the computation time is
P-time in all.

• 1 − l/|Var(K)| > ε which means that while block runs for less than s times. So the
localized interval [l1, l2] satisfies 0 ≤ l2 − l1 ≤ hs(M)/2, that is, it is bounded by
a constant independent of |VarK|. Then the binary search in this interval costs P-time
because logarithmic times of P-time computations is still in P-time.

In all, the algorithm terminates in P-time.

The following proposition shows that r− and r+ computed by Algorithm 1 have a sound
semantics in terms of upper and lower bounding models defined in Definition 6.

Proposition 4. There is a lower (an upper) bounding model J′ (J′′) of K such that
IncJ′(K) = r− (IncJ′′(K) = r+).

Proof. For r+, there is an S ⊆ Σ such that K is S-4 satisfiable and r+ = 1− |S||Σ| . Therefore,

K has an S-4 model, written I′, and IncJ′(K) = 1− |S||Σ| . Obviously, I′ is an upper bounded
model and IncJ′(K) = r+.

For r−, if r− = 1 − l′−1
|Var(K)| , then by Algorithm 1, K is S′-unsatisfiable for all l′-size

subsets S′ and there is at least one S′′ such that |S′′| = l′ − 1 and K is S′′-4 satisfiable. So
K has an S′′-4 model, written I′′. By the proof of Theorem 8, we know that for any preferred
model I of K, |Conflict(I,K)| ≥ |Var(K)|− |S′′|, then I′′ is a lower bounded model of K and
IncI′′(K) = 1− |S

′|−1
|Σ| = r−.

Summing up, we have achieved an anytime algorithm for approximately computing in-
consistency degrees which is:

• computationally tractable: Each approximating step can be done in polynomial time if
|S| is limited by a logarithmic function for upper bounds (Theorems 6 and 7) and by a
constant function for lower bounds (Theorems 6 and 8).

• dual and semantical well-founded: The accurate inconsistency degree is approximated
both from above and from below (Theorem 9), corresponding to inconsistency degrees of
some upper and lower bounding models of K (Proposition 4).
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• convergent: More computation resource available, more precise values returned (Theo-
rems 7 and 8). It always converges to the accurate value if there is no limitation of com-
putation resource (Theorem 9) and terminates in polynomial time for special knowledge
bases (Proposition 2).

Proposition 5. Given two sets S and S′ satisfying S ⊆ S′ ⊆ P , if a theory K is S-4
unsatisfiable, then it is S′-4 unsatisfiable.

Proof. Assume that K is S-4 unsatisfiable and that there exists an S′-4 interpretation IS′

satisfying K. We construct an S-4 interpretation IS as follows. For each propositional letter
p ∈ P:

pIS =

{
B if p ∈ S′ \ S,
pIS′ otherwise.

Obviously, IS is an S-4 model of K, a contradiction.

Proposition 5 says that if we have known that K is S-4 unsatisfiable, then there’s no necessity
to test its S′-4 satisfiability for S′ ⊂ S. By this proposition, we can get a truncation strategy
to limit the search space in the implementation of our algorithm discussed in the next section:

Definition 7 (Truncation Strategy). For any knowledge base K, if an S ∈ Var(K) is found
which makes K being S-4 satisfiable, then all supersets S′ of S are pruned.

6 Evaluation

Our algorithm has been implemented in Java using a computer with Intel E7300 2.66G, 4G,
Windows Server 2008. Algorithm 1 gives a general framework to approximate inconsistency
degrees from above and below. In our implementation, we setM = 2, h(l2) = l2 +2. That is,
the first while loop (see line 3) keeps testing l-4 satisfiability of K from l = i to i+ 1. So the
interval [l1, l2] localized in the first stage of the algorithm satisfies l2 = l1 + 1 and the second
binary search is not necessary. According to our analysis in Section 5, this avoids direct binary
search which needs to test all n!

(n/2)!(n/2)! subsets of Var(K), where n = |Var(K)|.
There are tow main sources of complexity to compute approximating inconsistency de-

grees: the complexities of S-4 satisfiability and of search space. The S-4 satisfiability that
we implemented is based on the reduction given in Lemma 1 and the tractable algorithm for
4-satisfiability in [20]. Our experiments told us that search space could heavily affect effi-
ciency. So we carefully designed a truncation strategy to limit the search space based on the
monotonicity of S-4 unsatisfiability. That is, if we have found an S such that K is S-4 un-
satisfiable, then we can prune all supersets S′ of S which makes K S′-4 unsatisfiable. We
implemented this strategy in breadth-first search on the binomial tree [21, 22] of subsets of
Var(K).

Figure 1 shows the evaluation results over knowledge bases6 in Example 3 with |K| =
N2 + 2N and |Var(k)| = 2N for N = 5, 7, 8, 9, 10. The left part of the figure shows how the
preset precision threshold ε affects the run time performance of our algorithm: the smaller
ε is, the longer it executes. If ε ≥ 0.7, the algorithm terminated easily (at most 18.028s for

6 We use instances of Example 3 because they are the running examples through the paper and meet the worst cases
of the algorithm (e.g. the truncation strategy discussed later cannot be applied). We want to show the performance
of our algorithm in its worst case.



Computational Complexity and Anytime Algorithm for Inconsistency Measurement 15

[h]

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.9 0.8 0.7 0.5 0.4 0.2 0.1 0

precision threshold

t
i
m
e
 
(
m
i
l
l
i
s
e
c
o
n
d
)

N=9

N=8

N=7

N=5

0
0.2
0.4
0.6
0.8

1
1.2

1 13 48 15
2

26
4

28
30

39
72

41
749

22
815

23
883

7

time  (millisecond)

ap
pr

ox
im

at
io

ns
of

 ID
(K

)

upper bound  N=5 lower bound  N=5
upper bound  N=7 lower bound  N=7
upper bound  N=10 lower bound  N=10

 
 

N=7 N=10 N=5 

Fig. 1. Evaluation results over KBs in Example 3 with |K| = N2 + 2N and |Var(K)| = 2N for
N = 5, 7, 8, 9, 10.

N = 9 and much less forN < 9). The quality of the approximations at different time points is
shown on the right part of the figure. The decreasing (resp. increasing) curves represent upper
(resp. lower) bounds for N = 5, 7, 10, respectively. Note that the inconsistency degrees of all
the three knowledge bases are 0.5.

For large knowledge bases, it is time-consuming to compute the exact inconsistency
degrees. For example, for N = 10, our algorithm took 239.935s to get the accurate incon-
sistency degree. In contrast, by costing much less time, approximating values (upper bounds
for these examples) can provide a good estimation of the exact value and are much easier to
compute. For example, when N = 10, the algorithm told us that the inconsistency degree
is less than 0.8 at 3.9s; and when N = 5, we got the upper bound 0.6 at 0.152s. Note that
in these experiments, the lower bounds were updated slowly. In fact, the exact inconsistency
degrees were obtained as soon as the first nonzero lower bounding values were returned. This
is because we set M = 2, h(l2) = l2 + 2 in our implementation. If we set M and h(·)
differently, the results will be changed, as shown in Example 3 in Section 5.

We need to point out that our truncation strategy cannot be applied to the test data used
in the experiments because no subsets can be pruned. Therefore, although our experiments
show the benefits of the approximations, our algorithm can increase significantly when the
truncation strategy is applicable and if we carefully set M and h(·). Take {pi,¬pj | 0 ≤
i, j < 20, j is odd} for example, our optimized algorithm run less than 1s whilst it run over
5min without the truncation strategy.

7 Conclusion

In this paper, we investigated computational aspects of the inconsistency degree. We showed
that the complexities of several decision problems about inconsistency degree are high in
general. To compute inconsistency degrees more practically, we proposed an general frame-
work of an anytime algorithm which is computationally tractable, dual and semantical well-
founded, and improvable and convergent. The experimental results of our implementation
show that computing approximating inconsistency degrees is much faster than computing
the exact inconsistency degrees in general. The approximating inconsistency degrees can be
useful in many applications, such as knowledge base evaluation and merging inconsistent
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knowledge bases. We will further study on the real applications of approximating inconsis-
tency degree in the future work.
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Appendix. Four-valued Logic

Four-valued logic is based on the idea of having four truth values, instead of the classical two.
The four truth values stand for true, false, unknown (or undefined) and both (or overdefined,
contradictory). We use the symbols t, f,N,B, respectively, for these truth values, and the set
of these four truth values is denoted by FOUR. The truth value B stands for contradictory
information, hence four-valued logic lends itself to dealing with inconsistent knowledge. The
value B thus can be understood to stand for true and false, while N stands for neither true
nor false, i.e. for the absence of any information about truth or falsity.

Syntactically, four-valued logic is very similar to classical logic. Care has to be taken,
however, in defining meaningful notions of implication, as there are several ways to do this.
Indeed, there are three major notions of implication in the literature, namely the material
implication 7→, the internal implication ⊃, and the strong implication →, which are dis-
cussed in detail in [16, 23]. Thus the set of logical connectives allowed in four-valued logic
is {¬,∨,∧, 7→,⊃,→}.

Four-valued interpretations for formulae (i.e. 4-interpretations) are obviously mappings
from formulae to (the set of four) truth values, respecting the truth tables for the logical
connectives, as detailed in Table 7.

Table 1 Truth Table for 4-valued Connectives

α f f f f t t t t B B B B N N N N

β f t B N f t B N f t B N f t B N

¬α t t t t f f f f B B B B N N N

α ∧ β f f f f f t B N f B B f f N f N

α ∨ β f t B N t t t t B t B t N t t N

α 7→ β t t t t f t B N B t B t N t t N

α ⊃ β t t t t f t B N f t B N t t t t

α→ β t t t t f t f N f t B N N t N t

Four-valued models (4-models) are defined in the obvious way, as follows, where t and
B are the designated truth values.

Definition 8. Let I be a 4-interpretation, let Σ be a theory (i.e. set of formulae) and let
ϕ be a formula in four-valued logic. Then we call that I is a 4-model of ϕ if and only if
I(ϕ) ∈ {t, B}; We say that I is a 4-model of Σ if and only if I is a 4-model of each formula
in Σ; And we name that Σ four-valued entails ϕ, written Σ |=4 ϕ, if and only if every 4-model
of Σ is a 4-model of ϕ.
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Proposition 6. We note the following general properties.

• The language L = {¬,∨,∧,⊃, N,B} is functional complete for the set FOUR of truth
values, i.e. every function from FOURn to FOUR is representable by some formula in L
[16, Theorem 12].

• Any formula containing only connectives from {¬,∨,∧,⊃} always has a four-valued
model.

Some general remarks about the different notions of implication are in order. The basic
rationales behind them are the following: Material implication can be defined by means of
negation and disjunction as known from classical logic. However, it does not satisfy Modus
Ponens or the deduction theorem, and is thus of limited use as an implication in the intuitive
sense. Internal implication satisfies Modus Ponens and the deduction theorem, but cannot
be defined by means of other connectives. Furthermore, internal implication does not satisfy
contraposition. Strong implication is stronger than internal implication, in that it additionally
satisfies contraposition. Indeed, an alternative view on the truth tables for the implication
connectives is as follows.

ϕ 7→ ψ is definable as ¬ϕ ∨ ψ. (Material Implication)

ϕ ⊃ ψ evaluates to

{
ψ if ϕ ∈ {t, B}
t if ϕ ∈ {f,N}

(Internal Implication)

ϕ→ ψ is definable as (ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ) (Strong Implication)

Further properties of the implication connectives are summarized in the following proposition
(as shown in [16, Corollary 9] and [23]).

Proposition 7. [16] The following claims hold, where Γ is a theory and ψ, φ are formu-
lae.

• Internal implication is not definable in terms of the connectives ¬,∨,∧.
• Γ, ψ |=4 φ iff Γ |=4 ψ ⊃ φ.
• If Γ |=4 ψ and Γ |=4 ψ ⊃ φ then Γ |=4 φ.

• ψ → φ implies that ¬φ→ ¬ψ.

The other partial order defined on the four truth values {t, f, B,N}, denote <k, is to
reflect differences in the amount of knowledge or information that each truth value exhibits:
N <k t <k B,N <k f <k B, t 6<k f . That is, ({t, f, B,N}, <k) is a lattice where <k is its
minimal elementN , its maximal elementB, and t, f are incomparable. The truth operators ∧,
∨, and ¬ are monotone with respect to <k. For two four-valued interpretations I, I ′, we call
I <k I

′ if and only if pI <k p
I′ for any propositional letter p in the considered language.

Proposition 8. [16] For any given four-valued interpretations I, I ′ and any formula φ
containing only connections from {∨,∧,¬,→}, suppose I <k I

′, then φI <k φ
I′ . Moreover,

if I |=4 φ, I ′ |=4 φ.


