Computing Inconsistency Measurements under Multi-Valued Semantics by Partial Max-SAT Solvers

Guohui Xiao^{1,2} Zuoquan Lin¹ Yue Ma³ Guilin Qi⁴

¹Department of Information Science, Peking University, China

²Knowledge Based Systems Group, Institute of Information Systems, Vienna University of Technology

Laboratoire d'Informatique de l'université Paris-Nord, Université Paris Nord - CNRS, France

⁴School of Computer Science and Engineering, Southeast University, China

xiao@kr.tuwien.ac.at, yue.ma@lipn.univ-paris13.fr, gqi@seu.edu.cn, lz@is.pku.edu.cn

Outline

- Motivation
- Inconsistency Measures under Multi-Valued Semantics
- ➤ Relationship among Different Measurements
- Encoding Algorithms
- Conclusion and Future Work

Motivation

- ➤ Consistent KBs serve as useful knowledge resources v.s. inconsistent KBs imply any conclusion (meaningless!)
- > For handling inconsistent KBs:
 - paraconsistent reasoning (1960s)
 - knowledge diagnose and repair (1980s)
 - Which approach should we take?
 - inconsistency measurement: a guidance to choose different approaches (2000s)

Motivation

- Consistent KBs serve as useful knowledge resources v.s. inconsistent KBs imply any conclusion (meaningless!)
- > For handling inconsistent KBs:
 - paraconsistent reasoning (1960s)
 - knowledge diagnose and repair (1980s)
 - Which approach should we take?
 - → inconsistency measurement: a guidance to choose different approaches (2000s)
- Problem
 - Relationship among different measurements
 - Efficient algorithms

- Multi-Valued Semantics
 - 4-valued, 3-valued, LP_m, Quasi-Classical, . . .
 - $I: Var(K) \rightarrow \{t, f, Both, None\}$

- Multi-Valued Semantics
 - 4-valued, 3-valued, LP_m, Quasi-Classical, . . .
 - $I: Var(K) \rightarrow \{t, f, Both, None\}$
- ▶ ID of K respect to I under i-semantics $(i = 3, 4, LP_m, Q)$

$$ID_i(K, I) = \frac{|\{p \mid p^I = B, p \in Var(K)\}|}{|Var(K)|}, \text{ if } I \models_i K$$

- Multi-Valued Semantics
 - 4-valued, 3-valued, LP_m, Quasi-Classical, . . .
 - $I: Var(K) \rightarrow \{t, f, Both, None\}$
- ▶ ID of K respect to I under i-semantics $(i = 3, 4, LP_m, Q)$

$$ID_i(K, I) = \frac{|\{p \mid p^I = B, p \in Var(K)\}|}{|Var(K)|}, \text{ if } I \models_i K$$

▶ ID of K under under i-semantics $(i = 3, 4, LP_m, Q)$

$$ID_i(K) = \min_{I \models K} ID_i(K, I)$$

Inconsistency Degree under 4-valued Semantics

Truth values: $\{t, f, B, N\}$ 4-model I: $K \rightarrow \{t, B\}$

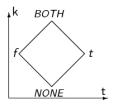


Figure: FOUR

$$ID_4(K, I) = \frac{|\{p|p^I = B, p \in Var(K)\}|}{|Var(K)|}$$

$$ID_4(K) = min_{I \models_4 K} ID_4(K),$$

$$\rightsquigarrow K = \{p, \neg q, \neg p \lor q, r \lor s\}$$

$$ightharpoonup I_1: p^{I_1} = B, q^{I_1} = f, r^{I_1} = t, s^{I_1} = t,$$
 $I_2: p^{I_2} = B, q^{I_2} = B, r^{I_2} = t, s^{I_2} = t,$
 $I_3: p^{I_3} = B, q^{I_3} = B, r^{I_3} = t, s^{I_3} = N$

$$→ ID4(K, I1) = \frac{1}{4}, ID4(K, I2) = \frac{2}{4}
ID4(K, I3) = \frac{2}{4}
ID4(K) = \frac{1}{4}$$

Inconsistency Degree under 3-valued Semantics

Truth values: $\{t, f, B\}$ 3-model I: $K \rightarrow \{t, B\}$

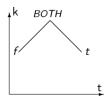


Figure: Three

►
$$ID_3(K, I) = \frac{|\{p|p^I = B, p \in Var(K)\}|}{|Var(K)|}$$

 $ID_3(K) = min_{I \models_3 K} ID_3(K),$

$$\rightsquigarrow K = \{p, \neg q, \neg p \lor q, r \lor s\}$$

$$ightharpoonup I_1: p^{I_1} = B, q^{I_1} = f, r^{I_1} = t, s^{I_1} = t$$
 $label{I_2: p^{I_2} = B, q^{I_2} = B, r^{I_2} = t, s^{I_2} = t}$
 $label{I_3: p^{I_3} = B, q^{I_3} = B, r^{I_3} = t, s^{I_3} = N}$

$$ID_3(K, I_1) = \frac{1}{4}, ID_3(K, I_2) = \frac{2}{4}$$
 $ID_3(K, I_3) = \frac{2}{4}$
 $ID_3(K) = \frac{1}{4}$

Inconsistency Degree under LPm Semantics

LP_m interpretation:

- 3-valued interpretation
- only "most classical" ones are considered

►
$$ID_{LP_m}(K, I) = \frac{|\{p|p^I = B, p \in Var(K)\}|}{|Var(K)|}$$

 $ID_{LP_m}(K) = min_{I \models_{LP_m} K} ID_{LP_m}(K),$

$$\rightsquigarrow K = \{p, \neg q, \neg p \lor q, r \lor s\}$$

$$AD_{LP_m}(K, I_1) = \frac{1}{4}, \ ID_{LP_m}(K, I_2) = \frac{2}{4}$$
 $ID_{LP_m}(K, I_3) = \frac{2}{4}$
 $ID_{LP_m}(K) = \frac{1}{4}$

Inconsistency Degree under Quasi-Classical Semantics

Quasi-Classical (Q) interpretation:

- 4-valued interpretation
- Resolution laws are satisfied

$$I \models_{Q} \alpha \vee \beta,$$

$$I \models_{Q} \neg \beta \vee \gamma$$

$$\Rightarrow I \models_{Q} \alpha \vee \gamma$$

$$ID_Q(K,I) = \frac{|\{p|p^I = B, p \in Var(K)\}|}{|Var(K)|}$$

$$ID_Q(K) = min_{I \models_Q K} ID_Q(K),$$

$$\rightsquigarrow K = \{p, \neg q, \neg p \lor q, r \lor s\}$$

$$AD_Q(K, I_1) = \frac{1}{4}, ID_Q(K, I_2) = \frac{2}{4}$$
 $ID_Q(K, I_3) = \frac{2}{4}$
 $ID_Q(K) = \frac{2}{4}$

Theorem

Given a knowledge base K, then

$$ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K).$$

Theorem

Given a knowledge base K, then

$$ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K).$$

Theorem

Given a knowledge base K, then

$$ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K).$$

Proof Hints:

► $ID_3(K) \ge ID_4(K)$: Trivial since $I \models_3 K \Rightarrow I \models_4 K$

Theorem

Given a knowledge base K, then

$$ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K).$$

- ► $ID_3(K) \ge ID_4(K)$: Trivial since $I \models_3 K \Rightarrow I \models_4 K$
- ▶ $ID_3(K) \le ID_4(K)$: Every 4-model can be modified to a 3-model by changing N to t while preserving the inconsistency degree.

Theorem

Given a knowledge base K, then

$$ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K).$$

- ► $ID_3(K) \ge ID_4(K)$: Trivial since $I \models_3 K \Rightarrow I \models_4 K$
- ▶ $ID_3(K) \le ID_4(K)$: Every 4-model can be modified to a 3-model by changing N to t while preserving the inconsistency degree.
- ▶ $ID_3(K) \ge ID_{LP_m}(K)$: Assume that $ID_3(K) < ID_{LP_m}(K)$. Then we can find a contradiction.

Theorem

Given a knowledge base K, then $ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K)$.

- ► $ID_3(K) \ge ID_4(K)$: Trivial since $I \models_3 K \Rightarrow I \models_4 K$
- ▶ $ID_3(K) \le ID_4(K)$: Every 4-model can be modified to a 3-model by changing N to t while preserving the inconsistency degree.
- ▶ $ID_3(K) \ge ID_{LP_m}(K)$: Assume that $ID_3(K) < ID_{LP_m}(K)$. Then we can find a contradiction.
- ► $ID_3(K) \leq ID_{LP_m}(K)$: Trivial since $I \models_{LP_m} K \Rightarrow I \models_3 (K)$.

Theorem

Given a knowledge base K, then

$$ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K).$$

- ► $ID_3(K) \ge ID_4(K)$: Trivial since $I \models_3 K \Rightarrow I \models_4 K$
- ▶ $ID_3(K) \le ID_4(K)$: Every 4-model can be modified to a 3-model by changing N to t while preserving the inconsistency degree.
- ▶ $ID_3(K) \ge ID_{LP_m}(K)$: Assume that $ID_3(K) < ID_{LP_m}(K)$. Then we can find a contradiction.
- ► $ID_3(K) \le ID_{LP_m}(K)$: Trivial since $I \models_{LP_m} K \Rightarrow I \models_3 (K)$.
- ► $ID_4(K) \le ID_Q(K)$: Trivial since $I \models_Q K \Rightarrow I \models_4 (K)$.

- Partial Max-SAT Problem:
 - Optimized Version of SAT problem
 - P = (H, S)
 - H: hard clauses, all must be satisfied
 - S : soft clauses, should be satisfied as many as possible
 - $\hat{I} = \arg \max_{I} |\{ \gamma \mid \gamma \in S, I \models \gamma, I \models H \}|.$

- Partial Max-SAT Problem:
 - Optimized Version of SAT problem
 - P = (H, S)
 - H: hard clauses, all must be satisfied
 - S : soft clauses, should be satisfied as many as possible
 - $\hat{I} = \arg \max_{I} |\{ \gamma \mid \gamma \in S, I \models \gamma, I \models H \}|.$
- Solvers:
 - SAT4j MaxSAT, MSUnCore, Clone, MiniMaxSAT, ...

- Partial Max-SAT Problem:
 - Optimized Version of SAT problem
 - P = (H, S)
 - H: hard clauses, all must be satisfied
 - S : soft clauses, should be satisfied as many as possible
 - $\hat{I} = \arg \max_{I} |\{ \gamma \mid \gamma \in S, I \models \gamma, I \models H \}|.$
- > Solvers:
 - SAT4j MaxSAT, MSUnCore, Clone, MiniMaxSAT, . . .
- Max-SAT Competition
 - http://www.maxsat.udl.cat/09/
 - http://www.maxsat.udl.cat/10/

Computing Inconsistency Degrees

- only KB as a set of clauses (CNF) considered
- ➤ consider ID_4 and ID_Q (Since $ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K)$)

Computing Inconsistency Degrees

- only KB as a set of clauses (CNF) considered
- rightharpoonup consider ID_4 and ID_Q (Since $ID_3(K) = ID_4(K) = ID_{LP_m}(K) \le ID_Q(K)$)

Road Map

- 1 Multi-valued semantics \Rightarrow 2-valued semantics.
- 2 Represent ID_i by 2-valued semantics.
- 3 $ID_i \Rightarrow partial Max-SAT problem$.

$$K = \{\gamma_1, \gamma_2, \dots, \gamma_n\}
\gamma = I_1 \vee \dots \vee I_k \Rightarrow 4(K) = \{4(\gamma_1), 4(\gamma_2), \dots, 4(\gamma_n)\}
I = p
I = \neg p
$$4(p) = +p
I(\neg p) = -p$$$$

$$K = \{\gamma_1, \gamma_2, \dots, \gamma_n\}$$

$$\gamma = l_1 \vee \dots \vee l_k$$

$$l = p$$

$$l = \neg p$$

$$4(K) = \{4(\gamma_1), 4(\gamma_2), \dots, 4(\gamma_n)\}$$

$$4(\gamma) = 4(l_1) \vee \dots \vee 4(l_k)$$

$$4(p) = +p$$

$$4(\neg p) = -p$$

$$K = \{\neg p, p \lor q, \neg q, r\} \Rightarrow 4(K) = \{-p, +p \lor +q, -q, +r\}$$

Example

$$K = \{\neg p, p \lor q, \neg q, r\} \Rightarrow 4(K) = \{-p, +p \lor +q, -q, +r\}$$

Remark

- ▶ 4(K) is a knowledge base over variables $\{+p, -p \mid p \in Var(K)\}$
- ➤ A 4-valued interpretation I can also be seen as a 2-valued interpretation on $\{+p, -p \mid p \in Var(K)\}$.

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

$$ightharpoonup$$
 $K = {\neg p, p \lor q, \neg q, r} \Rightarrow 4(K) = {-p, +p \lor +q, -q, +r}$

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

$$I_1 = \{+p, -p, -q, +r\}$$

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

- $ightharpoonup K = \{\neg p, p \lor q, \neg q, r\} \qquad \Rightarrow \qquad 4(K) = \{-p, +p \lor +q, -q, +r\}$
- $I_1 = \{+p, -p, -q, +r\}$
- As 4-interpretation over $\{p, q, r\}$: $p^{l_1} = B, q^{l_1} = f, r^{l_1} = t.$

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

- $ightharpoonup I_1 = \{+p, -p, -q, +r\}$
- As 4-interpretation over $\{p, q, r\}$: $p^{l_1} = B, q^{l_1} = f, r^{l_1} = t.$
- As 2-interpretation over $\{+p, -p, +q, -q, +r, -r\}$: $+p^{l_1} = t, -p^{l_1} = t, -q^{l_1} = t, +r^{l_1} = t, +q^{l_1} = f, -r^{l_1} = f.$

Theorem ([?])

$$I \models_4 K \Leftrightarrow I \models 4(K)$$

- $ightharpoonup I_1 = \{+p, -p, -q, +r\}$
- As 4-interpretation over $\{p, q, r\}$: $p^{l_1} = B, q^{l_1} = f, r^{l_1} = t.$
- As 2-interpretation over $\{+p, -p, +q, -q, +r, -r\}$: $+p^{l_1} = t, -p^{l_1} = t, -q^{l_1} = t, +r^{l_1} = t, +q^{l_1} = f, -r^{l_1} = f.$
- \blacktriangleright We have $I_1 \models_4 K$ and $I_1 \models 4(K)$.

Representing ID_4 by 2-valued logic

$$ID_4(K,I) = \frac{|\{p \mid p^I = B, p \in Var(K)\}|}{|Var(K)|},$$

$$ID_4(K) = \min_{I \models_4 K} ID_4(K,I)$$

Representing ID_4 by 2-valued logic

$$ID_4(K,I) = \frac{|\{p \mid p^I = B, p \in Var(K)\}|}{|Var(K)|},$$

$$ID_4(K) = \min_{I \models_4 K} ID_4(K,I)$$

Representing ID_4 by 2-valued logic

$$\begin{split} \textit{ID}_4(\textit{K},\textit{I}) &= \frac{|\{\textit{p} \mid \textit{p}^\textit{I} = \textit{B}, \textit{p} \in \textit{Var}(\textit{K})\}|}{|\textit{Var}(\textit{K})|}, \\ \textit{ID}_4(\textit{K}) &= \min_{\textit{I} \models_4 \textit{K}} \textit{ID}_4(\textit{K},\textit{I}) \end{split}$$

$$ID_4(K, I) = \frac{|\{p \mid +p^I = t \land -p^I = t, p \in Var(K)\}|}{|Var(K)|};$$
 $ID_4(K) = \min_{I \models 4(K)} ID_4(K, I).$

$$\begin{aligned} & \min_{I \models 4(K)} | \{ p \mid p \in Var(K), +p^I = t \land -p^I = t \} | \\ &= \min_{I \models 4(K)} | \{ p \mid p \in Var(K), (\neg + p \lor \neg - p)^I = f \} | \\ &= \max_{I \models 4(K)} | \{ p \mid p \in Var(K), (\neg + p \lor \neg - p)^I = t \} |. \end{aligned}$$

 $I \models 4(K) \Rightarrow \text{Hard constraints}$ $max|...| \Rightarrow \text{Soft Constraints}$

$$\begin{aligned} & \min_{l \models 4(K)} | \{ p \mid p \in Var(K), +p^{l} = t \land -p^{l} = t \} | \\ &= \min_{l \models 4(K)} | \{ p \mid p \in Var(K), (\neg + p \lor \neg - p)^{l} = f \} | \\ &= \max_{l \models 4(K)} | \{ p \mid p \in Var(K), (\neg + p \lor \neg - p)^{l} = t \} |. \end{aligned}$$

$$I \models 4(K) \Rightarrow \text{Hard constraints}$$

 $max|...| \Rightarrow \text{Soft Constraints}$

Definition

Given $K = \{\gamma_1, \dots, \gamma_n\}$, the corresponding partial Max-SAT problem for ID_4 , written $P_4(K) = (H_4(K), S_4(K))$, is defined as follows:

$$H_4(K) = \{4(\gamma) \mid \gamma \in K\};$$

 $S_4(K) = \{\neg + p \lor \neg - p \mid p \in Var(K)\}.$

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

- $ightharpoonup K = \{\neg p, p \lor q, \neg q, r\}$
- **▶** $4(K) = \{-p, +p \lor +q, -q, +r\}$

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

- \blacktriangleright 4(K) = {-p, +p \lor +q, -q, +r}
- ► $P_4(K) = (H_4(K), S_4(K))$ $H_4(K) = \{-p, +p \lor +q, -q, +r\}$ $S_4(K) = \{\neg + p \lor \neg -p, \neg +q \lor \neg -q, \neg +r \lor \neg -r\}$

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

- $ightharpoonup K = \{\neg p, p \lor q, \neg q, r\}$
- \blacktriangleright 4(K) = {-p, +p \lor +q, -q, +r}
- ► $P_4(K) = (H_4(K), S_4(K))$ $H_4(K) = \{-p, +p \lor +q, -q, +r\}$ $S_4(K) = \{\neg + p \lor \neg -p, \neg +q \lor \neg -q, \neg +r \lor \neg -r\}$
- One optimized solution I: $+p^I = t, -p^I = t, +q^I = f, -q^I = t, +r^I = t, -r^I = f.$

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

- $ightharpoonup K = \{\neg p, p \lor q, \neg q, r\}$
- \blacktriangleright 4(K) = { $-p, +p \lor +q, -q, +r$ }
- ► $P_4(K) = (H_4(K), S_4(K))$ $H_4(K) = \{-p, +p \lor +q, -q, +r\}$ $S_4(K) = \{\neg + p \lor \neg -p, \neg +q \lor \neg -q, \neg +r \lor \neg -r\}$
- One optimized solution *I*: $+p^I = t, -p^I = t, +q^I = f, -q^I = t, +r^I = t, -r^I = f.$
- \triangleright Corresponding 4-model : $p^I = B$, $q^I = f$, $r^I = t$.

Theorem

Suppose I is a solution to the partial Max-SAT problem $P_4(K)$. Let $b = |\{p \mid +p^I = t \land -p^I = t\}|$ and m = |Var(K)|. Then $ID_4(K) = b/m$.

- $ightharpoonup K = \{\neg p, p \lor q, \neg q, r\}$
- \blacktriangleright 4(K) = { $-p, +p \lor +q, -q, +r$ }
- ► $P_4(K) = (H_4(K), S_4(K))$ $H_4(K) = \{-p, +p \lor +q, -q, +r\}$ $S_4(K) = \{\neg + p \lor \neg - p, \neg + q \lor \neg - q, \neg + r \lor \neg -r\}$
- One optimized solution *I*: +p' = t, -p' = t, +q' = f, -q' = t, +r' = t, -r' = f.
- ➤ Corresponding 4-model : $p^I = B$, $q^I = f$, $r^I = t$.
- $\rightarrow ID_4(K) = 1/3$

Algorithm 1 Computing ID_4 by Partial MAX-SAT Solver

```
1: procedure ID_4(K)
        P \leftarrow \{\}
 2:
 3:
     m \leftarrow |Var(K)|
        for all Clause \gamma \in K do
 4:
             P.addHardClause(4(\gamma))
 5:
 6:
        end for
        for all Variable p \in Var(K) do
 7:
             P.addSoftClause(\neg + p \lor \neg - p)
 8.
        end for
 9.
        I \leftarrow \mathsf{PartialMaxSATSolver}(P)
10:
        b = |\{p| + p' = t \land -p' = t\}|
11:
        return b/m
12:
13: end procedure
```

- 1 QC semantics \Rightarrow 2-valued semantics.
- 2 Represent ID_Q by 2-valued semantics.
- 3 $ID_Q \Rightarrow \text{partial Max-SAT problem}$.

1 QC semantics \Rightarrow 2-valued semantics.

$$Q(I_1 \vee \ldots \vee I_n) = \bigvee_{i=1}^n (+I_i \wedge \neg - I_i) \vee \bigwedge_{i=1}^n (+I_i \wedge - I_i)$$
[?]

- 2 Represent ID_Q by 2-valued semantics.
- 3 $ID_O \Rightarrow$ partial Max-SAT problem.

1 QC semantics \Rightarrow 2-valued semantics.

$$Q(I_1 \vee \ldots \vee I_n) = \bigvee_{i=1}^n (+I_i \wedge \neg - I_i) \vee \bigwedge_{i=1}^n (+I_i \wedge - I_i)$$
 [?]

2 Represent ID_Q by 2-valued semantics.

$$ID_Q(K) = \min_{I \models Q(K)} ID_Q(K, I)$$
.

3 $ID_O \Rightarrow$ partial Max-SAT problem.

1 QC semantics \Rightarrow 2-valued semantics.

$$Q(I_1 \vee \ldots \vee I_n) = \bigvee_{i=1}^n (+I_i \wedge \neg - I_i) \vee \bigwedge_{i=1}^n (+I_i \wedge - I_i)$$
 [?]

2 Represent ID_Q by 2-valued semantics.

$$ID_Q(K) = \min_{I \models Q(K)} ID_Q(K, I)$$
.

3 $ID_O \Rightarrow$ partial Max-SAT problem.

Problem: $Q(I_1 \vee ... \vee I_n)$ can not keep CNF!

1 QC semantics \Rightarrow 2-valued semantics.

$$Q(I_1 \vee \ldots \vee I_n) = \bigvee_{i=1}^n (+I_i \wedge \neg - I_i) \vee \bigwedge_{i=1}^n (+I_i \wedge - I_i)$$
[?]

2 Represent ID_Q by 2-valued semantics.

$$ID_Q(K) = \min_{I \models Q(K)} ID_Q(K, I)$$
.

3 $ID_Q \Rightarrow$ partial Max-SAT problem.

Problem: $Q(I_1 \vee ... \vee I_n)$ can not keep CNF!

Solution: Introduce new variables and convert it to CNF

Algorithm 2 Computing ID_Q by Partial Max-SAT Solver

```
1: procedure ID_{\mathcal{O}}(K)
       P \leftarrow \{\}
 3:
      m \leftarrow |Var(K)|
      for all Clause \gamma = \{l_1, \dots, l_n\} \in K do
 4:
             P.addHardClause(y_1 \lor ... \lor v_n \lor z)
 5:
 6:
             for i = 1 to n do
 7:
                 P.addHardClause(\neg v_i \lor +l_i)
                 P.addHardClause(\neg y_i \lor \neg - I_i)
 8:
                 P.addHardClause(\neg z \lor +l_i)
 9:
                 P.addHardClause(\neg z \lor -l_i)
10:
             end for
11:
        end for
12:
13:
        for all p \in Var(K) do
             P.addSoftClause(\neg + p \lor \neg - p)
14:
        end for
15:
      I \leftarrow PartialMaxSATSolver(P)
16:
      b = |\{p \mid +p' = t \land -p' = t\}|
17:
18:
         return b/m
19: end procedure
```

Evaluation

- Data Set:
 - SAT benchmark SATLIB http://www.satlib.org
 - automotive product configuration

Evaluation

- ➤ Data Set:
 - SAT benchmark SATLIB http://www.satlib.org
 - automotive product configuration
- Partial Max-SAT Solvers:
 - SAT4j MaxSAT
 - MsUncore
 - Clone

I	Encoding Algorithm					
name	#V	#C	ID_4	sat4j	MsUncore	clone
uuf50-0101	50	218	0.02000	0.396	0.026	1.119
uuf50-0102	50	218	0.02000	0.398	0.020	1.121
uuf50-0103	50	218	0.02000	0.450	0.044	1.142
uuf50-0104	50	218	0.02000	0.397	0.027	1.279
uuf75-011	75	325	0.01330	0.496	0.031	1.379
uuf75-012	75	325	0.01330	0.447	0.030	1.355
uuf75-013	75	325	0.01330	0.443	0.033	1.333
uuf75-014	75	325	0.01333	0.494	0.029	1.372
uuf100-0101	100	430	0.01000	0.545	0.045	1.748
uuf100-0102	100	430	0.01000	0.918	0.053	2.088
uuf100-0103	100	430	0.02000	3.951	2.592	*
C168_FW_SZ_107	1698	5401	0.00059	0.698	0.120	*
C168_FW_SZ_128	1698	5422	0.00059	0.601	0.090	13.191
C168_FW_SZ_41	1698	7489	0.00059	0.849	0.085	11.939

Table: Computing ID₄ by Encoding Algorithm

In	Encoding Algorithm					
name	#V	#C	ID_Q	sat4j	MSUnCore	clone
uuf50-0101	50	218	1.000	0.445	*	0.428
uuf50-0102	50	218	1.000	0.444	*	0.446
uuf50-0103	50	218	1.000	0.449	*	0.246
uuf50-0104	50	218	1.000	0.494	*	0.433
uuf75-011	75	325	1.000	0.544	*	0.434
uuf75-012	75	325	1.000	0.548	*	0.435
uuf75-013	75	325	1.000	0.455	*	1.338
uuf75-014	75	325	1.000	0.646	*	0.437
uuf100-0101	100	430	1.000	0.709	*	0.478
uuf100-0102	100	430	1.000	0.803	*	0.438
uuf100-0103	100	430	1.000	0.749	*	0.445
C168_FW_SZ_107	1698	5401	0.124	9.269	*	1.487
C168_FW_SZ_128	1698	5422	0.107	9.916	*	0.792
C168_FW_SZ_41	1698	7489	0.117	13.627	*	0.738

Table: Computing ID_Q by Encoding Algorithm

Conclusion & Future Work

Conclusion & Future Work

Conclusion:

- $ID_4(K) = ID_{LP_m}(K) = ID_3(K) \le ID_Q(K)$
- $ID_4 \Rightarrow Partial Max-SAT$
- $ID_O \Rightarrow Partial Max-SAT$

Conclusion & Future Work

Conclusion:

- $ID_4(K) = ID_{LP_m}(K) = ID_3(K) \le ID_Q(K)$
- ID₄ ⇒ Partial Max-SAT
- $ID_Q \Rightarrow Partial Max-SAT$

Future Work:

- approximating inconsistency degrees
- Other encoding: Pseudo Problem for IDQ
- Measure inconsistent Description Logic and Logic Program.

References I

Cadoli, M. and Schaerf, M. (1996).
On the complexity of entailment in propositional multivalued logics.
Annals of Mathematics and Artificial Intelligence, 18(1):29–50.

Marquis, P. and Porquet, N. (2001). Computational aspects of quasi-classical entailment. Journal of Applied Non-Classical Logics, 11(3–4):295–312. Questions?